1
|
Yan L, Geng Q, Cao Z, Liu B, Li L, Lu P, Lin L, Wei L, Tan Y, He X, Li L, Zhao N, Lu C. Insights into DNMT1 and programmed cell death in diseases. Biomed Pharmacother 2023; 168:115753. [PMID: 37871559 DOI: 10.1016/j.biopha.2023.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
DNMT1 (DNA methyltransferase 1) is the predominant member of the DNMT family and the most abundant DNMT in various cell types. It functions as a maintenance DNMT and is involved in various diseases, including cancer and nervous system diseases. Programmed cell death (PCD) is a fundamental mechanism that regulates cell proliferation and maintains the development and homeostasis of multicellular organisms. DNMT1 plays a regulatory role in various types of PCD, including apoptosis, autophagy, necroptosis, ferroptosis, and others. DNMT1 is closely associated with the development of various diseases by regulating key genes and pathways involved in PCD, including caspase 3/7 activities in apoptosis, Beclin 1, LC3, and some autophagy-related proteins in autophagy, glutathione peroxidase 4 (GPX4) and nuclear receptor coactivator 4 (NCOA4) in ferroptosis, and receptor-interacting protein kinase 1-receptor-interacting protein kinase 3-mixed lineage kinase domain-like protein (RIPK1-RIPK3-MLKL) in necroptosis. Our study summarizes the regulatory relationship between DNMT1 and different types of PCD in various diseases and discusses the potential of DNMT1 as a common regulatory hub in multiple types of PCD, offering a perspective for therapeutic approaches in disease.
Collapse
Affiliation(s)
- Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Lin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lini Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Sun Z, Lin D, Shen Y, Ma K, Wang B, Liu H, Chen S, Wu D, Wang Y. Critical role of MXRA7 in differentiation blockade in human acute promyelocytic leukemia cells. Exp Hematol 2023; 125-126:45-54. [PMID: 37419299 DOI: 10.1016/j.exphem.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
The biology of the matrix remodeling-associated 7 (MXRA7) gene has been ill defined. Bioinformatic analysis of public data sets revealed that MXRA7 messenger RNA (mRNA) was highly expressed in acute myeloid leukemia (AML), especially acute promyelocytic leukemia (APL). High expression of MXRA7 was associated with poor overall survival of patients with AML. We confirmed that MXRA7 expression was upregulated in patients with APL and cell lines. Knockdown or overexpression of MXRA7 did not affect the proliferation of NB4 cells directly. Knockdown of MXRA7 in NB4 cells promoted drug-induced cell apoptosis, whereas overexpression of MXRA7 had no obvious influence on drug-induced cell apoptosis. Lowering MXRA7 protein levels in NB4 cells promoted all-trans retinoic acid (ATRA)-induced cell differentiation possibly through decreasing the PML-RARα level and increasing PML and RARα levels. Correspondingly, overexpression of MXRA7 showed consistent results. We also demonstrated that MXRA7 altered the expression of genes involved in leukemic cell differentiation and growth. Knockdown of MXRA7 upregulated the expression levels of C/EBPB, C/EBPD, and UBE2L6, and downregulated the expression levels of KDM5A, CCND2, and SPARC. Moreover, knockdown of MXRA7 inhibited the malignancy of NB4 cells in a non-obese diabetic-severe combined immune-deficient mice model. In conclusion, this study demonstrated that MXRA7 influences the pathogenesis of APL via regulation of cell differentiation. The novel findings about the role of MXRA7 in leukemia not only shed light on the biology of this gene but also proposed this gene as a new target for APL treatment.
Collapse
Affiliation(s)
- Zhenjiang Sun
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, China
| | - Dandan Lin
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, China
| | - Ying Shen
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kunpeng Ma
- Key Lab of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Benfang Wang
- Key Lab of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Hong Liu
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, China
| | - Suning Chen
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, China
| | - Depei Wu
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Yiqiang Wang
- Key Lab of Thrombosis and Hemostasis of Ministry of Health, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China; Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
3
|
Berlow M, Wada H, Derryberry EP. Experimental Exposure to Noise Alters Gut Microbiota in a Captive Songbird. MICROBIAL ECOLOGY 2022; 84:1264-1277. [PMID: 34783872 DOI: 10.1007/s00248-021-01924-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Noise pollution is an unprecedented evolutionary pressure on wild animals that can lead to alteration of stress hormone levels and changes in foraging behavior. Both corticosterone and feeding behavior can have direct effects on gut bacteria, as well as indirect effects through changes in gut physiology. Therefore, we hypothesized that exposure to noise will alter gut microbial communities via indirect effects on glucocorticoids and foraging behaviors. We exposed captive white-crowned sparrows to city-like noise and measured each individuals' corticosterone level, food intake, and gut microbial diversity at the end of four treatments (acclimation, noise, recovery, and control) using a balanced repeated measures design. We found evidence that noise acts to increase corticosterone and decrease food intake, adding to a growing body of research indicating noise exposure affects stress hormone levels and foraging behaviors. We also found evidence to support our prediction for a causal, positive relationship between noise exposure and gut microbial diversity, such that birds had higher measures of alpha diversity during noise exposure. These results help to explain previous findings that urban, free-living white-crowned sparrows have higher bacterial richness than rural sparrows. However, noise appeared to act directly on the gut microbiome or, more likely, through an unmeasured variable, rather than through indirect effects via corticosterone and food intake. Altogether, our study indicates that noise affects plasma corticosterone, feeding behavior, and the gut microbiome in a songbird and raises new questions as to the mechanism linking noise exposure to gut microbial diversity.
Collapse
Affiliation(s)
- Mae Berlow
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA.
| | - Haruka Wada
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
4
|
Berlow M, Phillips JN, Derryberry EP. Effects of Urbanization and Landscape on Gut Microbiomes in White-Crowned Sparrows. MICROBIAL ECOLOGY 2021; 81:253-266. [PMID: 32803364 DOI: 10.1007/s00248-020-01569-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Habitats are changing rapidly around the globe and urbanization is one of the primary drivers. Urbanization changes food availability, environmental stressors, and the prevalence of disease for many species. These changes can lead to divergence in phenotypic traits, including behavioral, physiological, and morphological features between urban and rural populations. Recent research highlights that urbanization is also changing the gut microbial communities found in a diverse group of host species. These changes have not been uniform, leaving uncertainty as to how urban habitats are shaping gut microbial communities. To better understand these effects, we investigated the gut bacterial communities of White-Crowned Sparrow (Zonotrichia leucophrys) populations along an urbanization gradient in the San Francisco Bay area. We examined how gut bacterial communities vary with the local environment and host morphological characteristics. We found direct effects of environmental factors, including urban noise levels and territory land cover, as well as indirect effects through body size and condition, on alpha and beta diversity of gut microbial communities. We also found that urban and rural birds' microbiomes differed in which variables predicted their diversity, with urban communities driven by host morphology, and rural communities driven by environmental factors. Elucidating these effects provides a better understanding of how urbanization affects wild avian physiology.
Collapse
Affiliation(s)
- Mae Berlow
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA.
| | - Jennifer N Phillips
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA
| |
Collapse
|
5
|
Qin S, Schulte BA, Wang GY. Role of senescence induction in cancer treatment. World J Clin Oncol 2018; 9:180-187. [PMID: 30622926 PMCID: PMC6314866 DOI: 10.5306/wjco.v9.i8.180] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/20/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023] Open
Abstract
Cellular senescence is a form of permanent cell cycle arrest that can be triggered by a variety of cell-intrinsic and extrinsic stimuli, including telomere shortening, DNA damage, oxidative stress, and exposure to chemotherapeutic agents and ionizing radiation. Although the induction of apoptotic cell death is a desirable outcome in cancer therapy, mutations and/or deficiencies in the apoptotic signaling pathways have been frequently identified in many human cancer types, suggesting the importance of alternative apoptosis-independent therapeutic approaches for cancer treatment. A growing body of evidence has documented that senescence induction in tumor cells is a frequent response to many anticancer modalities including cyclin-dependent kinases 4/6 small molecule inhibitor-based targeted therapeutics and T helper-1 cytokine-mediated immunotherapy. This review discusses the recent advances and clinical relevance of therapy-induced senescence in cancer treatment.
Collapse
Affiliation(s)
- Shenghui Qin
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Gavin Y Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, United States
- Developmental Cancer Therapeutics Program of Hollings Cancer Center, Charleston, SC 29425, United States
| |
Collapse
|
6
|
Harhouri K, Navarro C, Depetris D, Mattei MG, Nissan X, Cau P, De Sandre-Giovannoli A, Lévy N. MG132-induced progerin clearance is mediated by autophagy activation and splicing regulation. EMBO Mol Med 2018; 9:1294-1313. [PMID: 28674081 PMCID: PMC5582415 DOI: 10.15252/emmm.201607315] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a lethal premature and accelerated aging disease caused by a de novo point mutation in LMNA encoding A‐type lamins. Progerin, a truncated and toxic prelamin A issued from aberrant splicing, accumulates in HGPS cells' nuclei and is a hallmark of the disease. Small amounts of progerin are also produced during normal aging. We show that progerin is sequestered into abnormally shaped promyelocytic nuclear bodies, identified as novel biomarkers in late passage HGPS cell lines. We found that the proteasome inhibitor MG132 induces progerin degradation through macroautophagy and strongly reduces progerin production through downregulation of SRSF‐1 and SRSF‐5 accumulation, controlling prelamin A mRNA aberrant splicing. MG132 treatment improves cellular HGPS phenotypes. MG132 injection in skeletal muscle of LmnaG609G/G609G mice locally reduces SRSF‐1 expression and progerin levels. Altogether, we demonstrate progerin reduction based on MG132 dual action and shed light on a promising class of molecules toward a potential therapy for children with HGPS.
Collapse
Affiliation(s)
- Karim Harhouri
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Claire Navarro
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Danielle Depetris
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Marie-Geneviève Mattei
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Xavier Nissan
- CECS, I-STEM, Institut des cellules Souches pour le Traitement et l'Etude des maladies Monogéniques, AFM, Evry, France
| | - Pierre Cau
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France.,AP-HM, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
| | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France.,AP-HM, Hôpital la Timone, Département de Génétique Médicale, Marseille, France
| | - Nicolas Lévy
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France .,AP-HM, Hôpital la Timone, Département de Génétique Médicale, Marseille, France
| |
Collapse
|
7
|
Acevedo M, Vernier M, Mignacca L, Lessard F, Huot G, Moiseeva O, Bourdeau V, Ferbeyre G. A CDK4/6-Dependent Epigenetic Mechanism Protects Cancer Cells from PML-induced Senescence. Cancer Res 2016; 76:3252-64. [PMID: 27206849 DOI: 10.1158/0008-5472.can-15-2347] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/10/2016] [Indexed: 12/17/2022]
Abstract
Promyelocytic leukemia (PML) plays a tumor suppressive role by inducing cellular senescence in response to oncogenic stress. However, tumor cell lines fail to engage in complete senescence upon PML activation. In this study, we investigated the mechanisms underlying resistance to PML-induced senescence. Here, we report that activation of the cyclin-dependent kinases CDK4 and CDK6 are essential and sufficient to impair senescence induced by PML expression. Disrupting CDK function by RNA interference or pharmacological inhibition restored senescence in tumor cells and diminished their tumorigenic potential in mouse xenograft models. Complete senescence correlated with an increase in autophagy, repression of E2F target genes, and an gene expression signature of blocked DNA methylation. Accordingly, treatment of tumor cells with inhibitors of DNA methylation reversed resistance to PML-induced senescence. Further, CDK inhibition with palbociclib promoted autophagy-dependent degradation of the DNA methyltransferase DNMT1. Lastly, we found that CDK4 interacted with and phosphorylated DNMT1 in vitro, suggesting that CDK activity is required for its stabilization. Taken together, our findings highlight a potentially valuable feature of CDK4/6 inhibitors as epigenetic modulators to facilitate activation of senescence programs in tumor cells. Cancer Res; 76(11); 3252-64. ©2016 AACR.
Collapse
Affiliation(s)
- Mariana Acevedo
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Mathieu Vernier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Lian Mignacca
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Frédéric Lessard
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Geneviève Huot
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Olga Moiseeva
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Véronique Bourdeau
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada.
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
8
|
Nitto T, Sawaki K. Molecular mechanisms of the antileukemia activities of retinoid and arsenic. J Pharmacol Sci 2014; 126:179-85. [PMID: 25319615 DOI: 10.1254/jphs.14r15cp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by the occurrence of translocations between chromosomes 15 and 17, resulting in generation of a fusion protein of promyelocytic leukemia (PML) and retinoid A receptor (RAR) α. APL cells are unable to differentiate into mature granulocytes since PML-RARα functions as a strong transcriptional repressor for a gene involved in granulocyte differentiation. All-trans retinoic acid (ATRA) is the first agent that has been developed to target specific disease-causing molecules, i.e., ATRA suppresses abnormal functions of oncogenic proteins. Moreover, ATRA facilitates the differentiation of APL cells toward mature granulocytes by changing epigenetic modifiers from corepressor complexes to co-activator complexes on target genes after binding to the ligand-binding domain at the RARα moiety of the PML-RARα oncoprotein. On the other hand, arsenic trioxide (ATO), another promising agent used to treat APL, directly binds to the PML moiety of the PML-RARα protein, causing oxidation and multimerization. ATO enhances the conjugation of small ubiquitin-like modifiers to PML-RARα, followed by ubiquitination and degradation, relieving the genes associated with granulocytic differentiation from suppressive restraint by the oncoprotein. Recent clinical studies have demonstrated that combination therapy with both ATRA and ATO is useful to achieve remission.
Collapse
Affiliation(s)
- Takeaki Nitto
- Laboratory of Pharmacotherapy, Yokohama College of Pharmacy, Japan
| | | |
Collapse
|
9
|
Abstract
In most acute promyelocytic leukemia (APL) cases, translocons produce a promyelocytic leukemia protein-retinoic acid receptor α (PML-RARα) fusion gene. Although expression of the human PML fusion in mice promotes leukemia, its efficiency is rather low. Unexpectedly, we find that simply replacing the human PML fusion with its mouse counterpart results in a murine PML-RARα (mPR) hybrid protein that is transformed into a significantly more leukemogenic oncoprotein. Using this more potent isoform, we show that mPR promotes immortalization by preventing cellular senescence, impeding up-regulation of both the p21 and p19(ARF) cell-cycle regulators. This induction coincides with a loss of the cancer-associated ATRX/Daxx-histone H3.3 predisposition complex and suggests inhibition of senescence as a targetable mechanism in APL therapy.
Collapse
|
10
|
Münch S, Weidtkamp-Peters S, Klement K, Grigaravicius P, Monajembashi S, Salomoni P, Pandolfi PP, Weißhart K, Hemmerich P. The tumor suppressor PML specifically accumulates at RPA/Rad51-containing DNA damage repair foci but is nonessential for DNA damage-induced fibroblast senescence. Mol Cell Biol 2014; 34:1733-46. [PMID: 24615016 PMCID: PMC4019039 DOI: 10.1128/mcb.01345-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/19/2013] [Accepted: 02/14/2014] [Indexed: 12/24/2022] Open
Abstract
The PML tumor suppressor has been functionally implicated in DNA damage response and cellular senescence. Direct evidence for such a role based on PML knockdown or knockout approaches is still lacking. We have therefore analyzed the irradiation-induced DNA damage response and cellular senescence in human and mouse fibroblasts lacking PML. Our data show that PML nuclear bodies (NBs) nonrandomly associate with persistent DNA damage foci in unperturbed human skin and in high-dose-irradiated cell culture systems. PML bodies do not associate with transient γH2AX foci after low-dose gamma irradiation. Superresolution microscopy reveals that all PML bodies within a nucleus are engaged at Rad51- and RPA-containing repair foci during ongoing DNA repair. The lack of PML (i) does not majorly affect the DNA damage response, (ii) does not alter the efficiency of senescence induction after DNA damage, and (iii) does not affect the proliferative potential of primary mouse embryonic fibroblasts during serial passaging. Thus, while PML NBs specifically accumulate at Rad51/RPA-containing lesions and senescence-derived persistent DNA damage foci, they are not essential for DNA damage-induced and replicative senescence of human and murine fibroblasts.
Collapse
Affiliation(s)
- Sandra Münch
- Leibniz Institute for Age Research, Jena, Germany
| | | | | | | | | | - Paolo Salomoni
- University College London, UCL Cancer Institute, London, United Kingdom
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Klaus Weißhart
- Carl Zeiss Microscopy GmbH, BioSciences Division, Jena, Germany
| | | |
Collapse
|
11
|
Wolyniec K, Carney DA, Haupt S, Haupt Y. New Strategies to Direct Therapeutic Targeting of PML to Treat Cancers. Front Oncol 2013; 3:124. [PMID: 23730625 PMCID: PMC3656422 DOI: 10.3389/fonc.2013.00124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/03/2013] [Indexed: 01/16/2023] Open
Abstract
The tumor suppressor function of the promyelocytic leukemia (PML) protein was first identified as a result of its dysregulation in acute promyelocytic leukemia, however, its importance is now emerging far beyond hematological neoplasms, to an extensive range of malignancies, including solid tumors. In response to stress signals, PML coordinates the regulation of numerous proteins, which activate fundamental cellular processes that suppress tumorigenesis. Importantly, PML itself is the subject of specific post-translational modifications, including ubiquitination, phosphorylation, acetylation, and SUMOylation, which in turn control PML activity and stability and ultimately dictate cellular fate. Improved understanding of the regulation of this key tumor suppressor is uncovering potential opportunities for therapeutic intervention. Targeting the key negative regulators of PML in cancer cells such as casein kinase 2, big MAP kinase 1, and E6-associated protein, with specific inhibitors that are becoming available, provides unique and exciting avenues for restoring tumor suppression through the induction of apoptosis and senescence. These approaches could be combined with DNA damaging drugs and cytokines that are known to activate PML. Depending on the cellular context, reactivation or enhancement of tumor suppressive PML functions, or targeted elimination of aberrantly functioning PML, may provide clinical benefit.
Collapse
Affiliation(s)
- Kamil Wolyniec
- Tumour Suppression Laboratory, Peter MacCallum Cancer CentreEast Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of MelbourneParkville, VIC, Australia
| | - Dennis A. Carney
- Tumour Suppression Laboratory, Peter MacCallum Cancer CentreEast Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of MelbourneParkville, VIC, Australia
- Department of Haematology, Peter MacCallum Cancer CentreEast Melbourne, VIC, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer CentreEast Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of MelbourneParkville, VIC, Australia
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer CentreEast Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of MelbourneParkville, VIC, Australia
- Department of Pathology, The University of MelbourneParkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
12
|
Abstract
The accepted androgen receptor (AR) role is to promote proliferation and survival of prostate epithelium and thus prostate cancer progression. While growth-inhibitory, tumor-suppressive AR effects have also been documented, the underlying mechanisms are poorly understood. Here, we for the first time link AR anti-cancer action with cell senescence in vitro and in vivo. First, AR-driven senescence was p53-independent. Instead, AR induced p21, which subsequently reduced ΔN isoform of p63. Second, AR activation increased reactive oxygen species (ROS) and thereby suppressed Rb phosphorylation. Both pathways were critical for senescence as was proven by p21 and Rb knock-down and by quenching ROS with N-Acetyl cysteine and p63 silencing also mimicked AR-induced senescence. The two pathways engaged in a cross-talk, likely via PML tumor suppressor, whose localization to senescence-associated chromatin foci was increased by AR activation. All these pathways contributed to growth arrest, which resolved in senescence due to concomitant lack of p53 and high mTOR activity. This is the first demonstration of senescence response caused by a nuclear hormone receptor.
Collapse
|
13
|
Van Damme E, Laukens K, Dang TH, Van Ostade X. A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci 2010; 6:51-67. [PMID: 20087442 PMCID: PMC2808052 DOI: 10.7150/ijbs.6.51] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 01/09/2010] [Indexed: 12/22/2022] Open
Abstract
Promyelocytic Leukaemia Protein nuclear bodies (PML-NBs) are dynamic nuclear protein aggregates. To gain insight in PML-NB function, reductionist and high throughput techniques have been employed to identify PML-NB proteins. Here we present a manually curated network of the PML-NB interactome based on extensive literature review including database information. By compiling 'the PML-ome', we highlighted the presence of interactors in the Small Ubiquitin Like Modifier (SUMO) conjugation pathway. Additionally, we show an enrichment of SUMOylatable proteins in the PML-NBs through an in-house prediction algorithm. Therefore, based on the PML network, we hypothesize that PML-NBs may function as a nuclear SUMOylation hotspot.
Collapse
Affiliation(s)
- Ellen Van Damme
- Laboratory of Protein Chemistry, Proteomics and Signal Transduction, Department of Biomedical Sciences, University of Antwerp (Campus Drie Eiken), Universiteitsplein 1 - Building T, Wilrijk, Belgium.
| | | | | | | |
Collapse
|
14
|
Abstract
Normal mammalian somatic cells proliferate a finite number of times in vitro before permanently withdrawing from the cell cycle into a cellular state referred to as senescence. Senescence may be triggered by excessive mitogenic stimulation or by various forms of cellular damage including excessive telomere shortening. Over the past decade, there has been continuing accumulation of evidence that senescence occurs in vivo, that it is relevant to aging and that it has a tumor suppressor function. However, the phenotype of senescence has also been found to include a number of puzzling features, including the secretion of proinflammatory factors that may foster tumorigenesis as well as the senescence of neighboring cells. On the basis of these antagonistic pro- and antitumorigenic effects, and of the observation that many viruses have developed proteins that prevent senescence of the cells they infect, it is argued that the primary function of senescence may have been as an antiviral defense mechanism. Recent progress in understanding how tumor cells evade senescence is also reviewed here.
Collapse
Affiliation(s)
- Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, New South Wales 2145, Australia.
| |
Collapse
|
15
|
Rehman SK, Baldassarre G, Calin GA, Nicoloso MS. MicroRNAs: The Jack of All Trades. ACTA ACUST UNITED AC 2009. [DOI: 10.3816/clk.2009.n.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Abstract
Over the last 25 years roles have been established for vitamin D receptor (VDR) in influencing cell proliferation and differentiation. For example, murine knock-out approaches have revealed a role for the VDR in controlling mammary gland growth and function. These actions appear widespread, as the enzymes responsible for 1alpha,25-dihydroxycholecalciferol generation and degradation, and the VDR itself, are all functionally present in a wide range of epithelial and haematopoietic cell types. These findings, combined with epidemiological and functional data, support the concept that local, autocrine and paracrine VDR signalling exerts control over cell-fate decisions in multiple cell types. Furthermore, the recent identification of bile acid lithocholic acid as a VDR ligand underscores the environmental sensing role for the VDR. In vitro and in vivo dissection of VDR signalling in cancers (e.g. breast, prostate and colon) supports a role for targeting the VDR in either chemoprevention or chemotherapy settings. As with other potential therapeutics, it has become clear that cancer cells display de novo and acquired genetic and epigenetic mechanisms of resistance to these actions. Consequently, a range of experimental and clinical options are being developed to bring about more targeted actions, overcome resistance and enhance the efficacy of VDR-centred therapeutics.
Collapse
|
17
|
Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 2007; 8:1006-16. [PMID: 17928811 DOI: 10.1038/nrm2277] [Citation(s) in RCA: 716] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The promyelocytic leukaemia (PML) tumour suppressor protein epitomizes the PML-nuclear body (PML-NB) and is crucially required for the proper assembly of this macromolecular nuclear structure. Unlike other, more specialized subnuclear structures such as Cajal and Polycomb group bodies, PML-NBs are functionally promiscuous and have been implicated in the regulation of diverse cellular functions. PML-NBs are dynamic structures that favour the sequestration and release of proteins, mediate their post-translational modifications and promote specific nuclear events in response to various cellular stresses. Recent data suggest that PML-NBs may be heterogeneous in composition, mobility and function.
Collapse
Affiliation(s)
- Rosa Bernardi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
18
|
Melnick A. Targeting APL fusion proteins by peptide interference. Curr Top Microbiol Immunol 2007; 313:221-43. [PMID: 17217046 DOI: 10.1007/978-3-540-34594-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A significant barrier to experimental therapeutics is the ability to identify and specifically target oncogenic proteins involved in the molecular pathogenesis of disease. In acute promyelocytic leukemia (APL), aberrant transcription factors and their associated machinery play a central role in mediating the malignant phenotype. The mechanism of action of APL chimeric fusion proteins involves their ability to either self-associate or interact with different partner proteins. Thus, targeting protein-protein interactions could have a significant impact in blocking the activity of APL oncoproteins. As therapeutic targets, the interface between interacting proteins may not always be amenable to highly specific small molecule blockade. In contrast, peptides are well-suited to this purpose and can be reliably delivered when fused to cell-permeable peptide domains. Therapeutic peptides can be designed to directly target APL fusion proteins, their downstream effectors, or other potentially synergistic oncogenic mechanisms of importance in APL blasts. In addition to serving as potential therapeutic agents, such reagents could serve as powerful reagents to dissect the molecular pathogenesis of APL.
Collapse
Affiliation(s)
- A Melnick
- Department of Developmental and Molecular Biology and Medical Oncology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.
| |
Collapse
|
19
|
Moiseeva O, Mallette FA, Mukhopadhyay UK, Moores A, Ferbeyre G. DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation. Mol Biol Cell 2006; 17:1583-92. [PMID: 16436515 PMCID: PMC1415317 DOI: 10.1091/mbc.e05-09-0858] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Interferons are cytokines with potent antiviral and antiproliferative activities. We report that although a transient exposure to beta-interferon induces a reversible cell cycle arrest, a sustained treatment triggers a p53-dependent senescence program. Beta-interferon switched on p53 in two steps. First, it induced the acetylation of p53 at lysine 320 and its dephosphorylation at serine 392 but not p53 activity. Later on, it triggered a DNA signaling pathway, the phosphorylation of p53 at serine 15 and its transcriptional activity. In agreement, beta-interferon-treated cells accumulated gamma-H2AX foci and phosphorylated forms of ATM and CHK2. The DNA damage signaling pathway was activated by an increase in reactive oxygen species (ROS) induced by interferon and was inhibited by the antioxidant N-acetyl cysteine. More important, RNA interference against ATM inhibited p53 phosphorylation at serine 15, p53 activity and senescence in response to beta-interferon. Beta-interferon-induced senescence was more efficient in cells expressing either, p53, or constitutive allele of ERK2 or RasV12. Hence, beta-interferon-induced senescence targets preferentially cells with premalignant changes.
Collapse
Affiliation(s)
- Olga Moiseeva
- Département de Biochimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
20
|
Son SH, Yu E, Choi EK, Lee H, Choi J. Promyelocytic leukemia protein-induced growth suppression and cell death in liver cancer cells. Cancer Gene Ther 2005; 12:1-11. [PMID: 15529177 DOI: 10.1038/sj.cgt.7700755] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The promyelocytic leukemia protein (PML), involved in the pathogenesis of acute promyelocytic leukemia, is a coactivator of p53 tumor suppressive functions. The ability of PML to inhibit growth and induce cell death in solid tumor cells, however, has not been determined. We therefore assayed the tumor suppressor activities of PML and compared them with those of p53 in four liver cancer cell lines. Following infection of cells with replication-deficient recombinant PML adenovirus, the exogenous PML localized in the nucleus and formed abnormally enlarged PML-nuclear bodies after 24 hours. In vitro growth curve analysis showed that the overexpressed PML initially induced a substantial G1 cell cycle arrest and triggered massive cell death in all tested cell lines, irrespective of their p53 status. PML-induced cell death decreased by about 30% in the presence of a broad caspase inhibitor, zVAD. The cell death effect of PML was higher than that induced by p53 over a longer period of time. As with p53, overexpression of PML was closely related to upregulation of p21 and decrease of cyclin D1 expression. Unexpectedly, retinoic acid (RA) antagonized rather than enhanced PML-triggered cell death. RA enhanced the expression of adenovirus-cytomegalovirus-promoted PML at both transcription and protein levels within 12 hours after treatment; however, the PML protein was significantly degraded in the presence of RA at days 3-5 postinfection. PML degradation was also observed in SK-BR3 breast cancer cells treated with RA. Taken together, our findings strongly support the hypothesis that PML acts as a strong independent cell death inducer and that RA conversely abolishes the therapeutic effects of the PML proteins through proteasomal degradation of the protein.
Collapse
Affiliation(s)
- Se-Hee Son
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
21
|
Porta C, Hadj-Slimane R, Nejmeddine M, Pampin M, Tovey MG, Espert L, Alvarez S, Chelbi-Alix MK. Interferons α and γ induce p53-dependent and p53-independent apoptosis, respectively. Oncogene 2004; 24:605-15. [PMID: 15580300 DOI: 10.1038/sj.onc.1208204] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Type I interferon (IFN) enhances the transcription of the tumor suppressor gene p53. To elucidate the molecular mechanism mediating IFN-induced apoptosis, we analysed programmed cell death in response to type I (IFNalpha) or type II (IFNgamma) treatment in relation to p53 status. In two cell lines (MCF-7, SKNSH), IFNalpha, but not IFNgamma, enhanced apoptosis in a p53-dependent manner. Furthermore, only IFNalpha upregulated p53 as well as p53 target genes (Noxa, Mdm2 and CD95). The apoptotic response to IFNalpha decreased in the presence of ZB4, an anti-CD95 antibody, suggesting that CD95 is involved in this process. When p53 was inactivated by the E6 viral protein or the expression of a p53 mutant, IFNalpha-induced apoptosis and p53 target genes upregulation were abrogated. Altogether these results demonstrate that p53 plays a pivotal role in the IFNalpha-induced apoptotic response. IFNalpha-induced PML was unable to recruit p53 into nuclear bodies and its downregulation by siRNA did not alter CD95 expression. In contrast, IFNgamma-induced apoptosis is p53-independent. CD95 and IFN-regulatory factor 1 (IRF1) are directly upregulated by this cytokine. Apoptotic response to IFNgamma is decreased in the presence of ZB4 and strongly diminished by IRF1 siRNA, implicating both CD95 and IRF1 in IFNgamma-induced apoptotic response. Taken together, these results show that in two different cell lines, IFNalpha and IFNgamma, induce p53-dependent -independent apoptosis, respectively.
Collapse
Affiliation(s)
- Chiara Porta
- UPR CNRS 9045, Institut André Lwoff, 7 rue Guy Moquet, 94801 Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ninomiya M, Kiyoi H, Ito M, Hirose Y, Ito M, Naoe T. Retinoic acid syndrome in NOD/scid mice induced by injecting an acute promyelocytic leukemia cell line. Leukemia 2004; 18:442-8. [PMID: 14749706 DOI: 10.1038/sj.leu.2403284] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All-trans retinoic acid (ATRA) induces complete remission in patients with acute promyelocytic leukemia (APL). However, ATRA sometimes causes retinoic acid syndrome (RAS) characterized by respiratory distress, pleural effusions, fever and weight gain. To investigate the pathophysiology of RAS, we generated an animal model by injecting an APL cell line, NB4, into immunodeficient mice. When NOD/scid mice were injected intravenously with fully differentiated NB4 cells (1 x 10(7)) and then given a daily administration of ATRA, three of 12 mice died of pulmonary edema within 14 days. Pathologically, dilated lung capillary vessels and alveolar effusions were observed. After the injection, NB4 cells were detected in the lung within 2 days and in the pleural effusion later on. The gene expression levels of CXC chemokines (MIP-2 and KC) and ICAM-1 were increased in the lung and heart by the ATRA administration. In immunohistochemical analyses, MIP-2 was clearly detected in alveolar macrophages of the lung in mice with RAS. Dexamethasone treatment prevented the development of RAS and decreased the CXC chemokine mRNA expression in the lung. These findings suggested that the activation of adhesion molecules for leukocytes and expression of CXC chemokines in the lung are closely involved in triggering RAS.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/pharmacology
- Cell Differentiation/drug effects
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Doxorubicin/therapeutic use
- Heart/drug effects
- Heart/physiology
- Humans
- Injections, Intravenous
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/pathology
- Lung/drug effects
- Lung/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Neoplastic Stem Cells/drug effects
- Pulmonary Edema/etiology
- Remission Induction
- Syndrome
- Tretinoin/administration & dosage
- Tretinoin/adverse effects
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Ninomiya
- Department of Hematology, Nagoya University Hospital, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Ye W, Zhang L. Heme controls the expression of cell cycle regulators and cell growth in HeLa cells. Biochem Biophys Res Commun 2004; 315:546-54. [PMID: 14975735 DOI: 10.1016/j.bbrc.2004.01.092] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Indexed: 10/26/2022]
Abstract
Heme plays a central role in oxygen utilization and in the generation of cellular energy. Here we examined the effect of heme and heme deficiency on cell cycle progression and the expression of key regulators in HeLa cells. We found that inhibition of heme synthesis causes cell cycle arrest and induces the expression of molecular markers associated with senescence and apoptosis, such as increased formation of PML nuclear bodies. Our data show that succinyl acetone-induced heme deficiency increases the protein levels of the tumor suppressor gene product p53 and CDK inhibitor p21, and decreases the protein levels of Cdk4, Cdc2, and cyclin D2. Further, we found that heme deficiency diminishes the activation/phosphorylation of Raf, MEK1/2, and ERK1/2-components of the MAP kinase signaling pathway. Our results show that heme is a versatile molecule that can effectively control cell growth and survival by acting on multiple regulators.
Collapse
Affiliation(s)
- Weizhen Ye
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 60 Haven Avenue, B-1 New York, NY 10032, USA
| | | |
Collapse
|
24
|
Anti-aging medicine literaturewatch. JOURNAL OF ANTI-AGING MEDICINE 2003; 6:45-64. [PMID: 12971397 DOI: 10.1089/109454503765361588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Ohno R, Asou N, Ohnishi K. Treatment of acute promyelocytic leukemia: strategy toward further increase of cure rate. Leukemia 2003; 17:1454-63. [PMID: 12886231 DOI: 10.1038/sj.leu.2403031] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute promyelocytic leukemia (APL) has become a curable disease by all-trans retinoic acid (ATRA)-based induction therapy followed by two or three courses of consolidation chemotherapy. Currently around 90% of newly diagnosed patients with APL achieve complete remission (CR) and over 70% of patients are curable. To further increase the CR and cure rates, detection and diagnosis of this disease at its early stage is very important, hopefully before the appearance of APL-associated coagulopathy. In induction therapy, concomitant chemotherapy is indispensable, except for patients with low initial leukocyte counts. Prophylactic use of intrathecal methotrexate and cytarabine should be done, particularly for patients with hyperleukocytosis. If patients relapse hematologically or even molecularly, arsenic trioxide will be the treatment of choice under careful electrocardiogram monitoring. Am80, liposomal ATRA, gemtuzumab ozogamicin or ATRA in combination with cytotoxic drugs may be used at this stage or later. Allogeneic SCT will be the treatment of choice after patients of age <50 years have relapsed, provided that they have HLA-identical family donors or DNA-identical unrelated donors.
Collapse
Affiliation(s)
- R Ohno
- Aichi Cancer Center, Nagoya 464-8681, Japan
| | | | | |
Collapse
|
26
|
Melnick A. Spotlight on acute promyelocytic leukemia: controversies and challenges. Leukemia 2002; 16:1893-5. [PMID: 12357340 DOI: 10.1038/sj.leu.2402757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2002] [Accepted: 08/06/2002] [Indexed: 11/08/2022]
Affiliation(s)
- A Melnick
- Department of Developmental and Molecular Biology and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|