1
|
Jenkins TW, Fitzgerald JE, Park J, Wilson AM, Berry KL, Wong KS, Houry WA, Lee I, Maksimenko AV, Panizzi PR, Maxuitenko YY, Loop MS, Mitra AK, Kisselev AF. Highly specific Immunoproteasome inhibitor M3258 induces proteotoxic stress and apoptosis in KMT2A::AFF1 driven acute lymphoblastic leukemia. Sci Rep 2025; 15:17284. [PMID: 40389585 PMCID: PMC12089620 DOI: 10.1038/s41598-025-01657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 05/07/2025] [Indexed: 05/21/2025] Open
Abstract
Proteasome inhibitors (PIs) bortezomib, carfilzomib and ixazomib are approved for the treatment of multiple myeloma and mantle cell lymphoma and have clinical activity in acute lymphoblastic leukemia (ALL). The predominant form of proteasome in these hematologic malignancies is the lymphoid tissue-specific immunoproteasome. FDA-approved PIs inhibit immunoproteasomes and ubiquitously expressed constitutive proteasomes causing on-target toxicities in non-hematological tissues. Replacing PIs with selective immunoproteasome inhibitors (IPIs) should reduce these toxicities. We have previously shown that IPI ONX-0914 causes apoptosis of ALL cells expressing the KMT2A::AFF1 (MLL-AF4) fusion protein but did not elucidate the mechanism. Here we show that a novel, highly specific IPI M3258 induces rapid apoptosis in ALL cells in vitro and is comparable to bortezomib in its ability to reduce tumor growth and to cause tumor regression when combined with chemotherapy in vivo. Treatment of KMT2A::AFF1 ALL cells with M3258, ONX-0914, and bortezomib induced proteotoxic stress that was prevented by the protein synthesis inhibitor cycloheximide, which dramatically desensitized cells to PI-induced apoptosis. Thus, similar to multiple myeloma, ALL cells are sensitive to PIs and IPIs due to increased proteotoxic stress caused by elevated rates of protein synthesis.
Collapse
Affiliation(s)
- Tyler W Jenkins
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jacquelyn Elise Fitzgerald
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jieun Park
- Division of Research, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Addison M Wilson
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Kristy L Berry
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Keith S Wong
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Toronto, ON, M5G 1M1, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Toronto, ON, M5G 1M1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Irene Lee
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106-7078, USA
| | - Andrey V Maksimenko
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Peter R Panizzi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Yulia Y Maxuitenko
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Matthew Shane Loop
- Department of Health Outcomes and Research Policy, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Amit K Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Alexei F Kisselev
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA.
- Auburn University, 720 S. Donahue Dr., Auburn, 36849-5503, AL, USA.
| |
Collapse
|
2
|
Schwaller J. Learning from mouse models of MLL fusion gene-driven acute leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194550. [PMID: 32320749 DOI: 10.1016/j.bbagrm.2020.194550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/17/2020] [Accepted: 04/05/2020] [Indexed: 01/28/2023]
Abstract
5-10% of human acute leukemias carry chromosomal translocations involving the mixed lineage leukemia (MLL) gene that result in the expression of chimeric protein fusing MLL to >80 different partners of which AF4, ENL and AF9 are the most prevalent. In contrast to many other leukemia-associated mutations, several MLL-fusions are powerful oncogenes that transform hematopoietic stem cells but also more committed progenitor cells. Here, I review different approaches that were used to express MLL fusions in the murine hematopoietic system which often, but not always, resulted in highly penetrant and transplantable leukemias that closely phenocopied the human disease. Due to its simple and reliable nature, reconstitution of irradiated mice with bone marrow cells retrovirally expressing the MLL-AF9 fusion became the most frequently in vivo model to study the biology of acute myeloid leukemia (AML). I review some of the most influential studies that used this model to dissect critical protein interactions, the impact of epigenetic regulators, microRNAs and microenvironment-dependent signals for MLL fusion-driven leukemia. In addition, I highlight studies that used this model for shRNA- or genome editing-based screens for cellular vulnerabilities that allowed to identify novel therapeutic targets of which some entered clinical trials. Finally, I discuss some inherent characteristics of the widely used mouse model based on retroviral expression of the MLL-AF9 fusion that can limit general conclusions for the biology of AML. This article is part of a Special Issue entitled: The MLL family of proteins in normal development and disease edited by Thomas A Milne.
Collapse
Affiliation(s)
- Juerg Schwaller
- University Children's Hospital Beider Basel (UKBB), Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland.
| |
Collapse
|
3
|
The reciprocal world of MLL fusions: A personal view. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194547. [PMID: 32294539 DOI: 10.1016/j.bbagrm.2020.194547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/12/2020] [Accepted: 03/22/2020] [Indexed: 01/28/2023]
Abstract
Over the last 15 years the Diagnostic Center of Acute Leukemia (DCAL) at the Frankfurt University has diagnosed and elucidated the Mixed Lineage Leukemia (MLL) recombinome with >100 MLL fusion partners. When analyzing all these different events, balanced chromosomal translocations were found to comprise the majority of these cases (~70%), while other types of genetic rearrangements (3-way-translocations, spliced fusions, 11q inversions, interstitial deletions or insertion of chromosomal fragments into other chromosomes) account for about 30%. In nearly all those complex cases, functional fusion proteins can be produced by transcription, splicing and translation. With a few exceptions (10 out of 102 fusion genes which were per se out-of-frame), all these genetic rearrangements produced a direct MLL fusion gene, and in 94% of cases an additional reciprocal fusion gene. So far, 114 patients (out of 2454 = ~5%) have been diagnosed only with the reciprocal fusion allele, displaying no MLL-X allele. The fact that so many MLL rearrangements bear at least two fusion alleles, but also our findings that several direct MLL fusions were either out-of-frame fusions or missing, raises the question about the function and importance of reciprocal MLL fusions. Recent findings also demonstrate the presence of reciprocal MLL fusions in sarcoma patients. Here, we want to discuss the role of reciprocal MLL fusion proteins for leukemogenesis and beyond.
Collapse
|
4
|
Affiliation(s)
- Rolf Marschalek
- Institute of Pharmaceutical Biology / Diagnostic Center of Acute Leukemia, University of Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|
5
|
Kahlon S, Shreibman D, Unger T, Ben-Yehuda D, Elias S. The oncogenic fusion protein CBFB-SMMHC downregulates CD48 to evade NK cell recognition. Blood Cancer J 2018; 8:48. [PMID: 29795444 PMCID: PMC5968028 DOI: 10.1038/s41408-018-0082-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Shira Kahlon
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Dorin Shreibman
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Hematology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Tamar Unger
- Center of Structural Proteomics, Weizmann Institute of Science, Rehovot, Israel
| | - Dina Ben-Yehuda
- Department of Hematology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Shlomo Elias
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel. .,Department of Hematology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
6
|
Kim HS, Oh SH, Kim JH, Kim JY, Kim DH, Lee SJ, Choi SU, Park KM, Ryoo ZY, Park TS, Lee S. MLL-TET1 fusion protein promotes immortalization of myeloid progenitor cells and leukemia development. Haematologica 2017; 102:e434-e437. [PMID: 28798069 DOI: 10.3324/haematol.2017.169789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Hyeng-Soo Kim
- School of Life Science, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Seoul, Republic of Korea.,Institute of Life Science and Biotechnology, Kyungpook National University, Seoul, Republic of Korea
| | - Seung Hwan Oh
- Department of Laboratory Medicine, College of Medicine, Inje University, Seoul, Republic of Korea
| | - Ju-Heon Kim
- School of Life Science, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Seoul, Republic of Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Seoul, Republic of Korea
| | - Do-Hyung Kim
- Department of Physics, Kyungpook National University, Seoul, Republic of Korea
| | - Soo-Jin Lee
- Department of Occupational and Environmental Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sang-Un Choi
- Korea Research Institute of Chemical Technology, Seoul, Republic of Korea
| | - Kwon Moo Park
- Department of Anatomy, Kyungpook National University School of Medicine, Seoul, Republic of Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Seoul, Republic of Korea
| | - Tae Sung Park
- Department of Laboratory Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Sanggyu Lee
- School of Life Science, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Castaño J, Herrero AB, Bursen A, González F, Marschalek R, Gutiérrez NC, Menendez P. Expression of MLL-AF4 or AF4-MLL fusions does not impact the efficiency of DNA damage repair. Oncotarget 2016; 7:30440-52. [PMID: 27119507 PMCID: PMC5058691 DOI: 10.18632/oncotarget.8938] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 11/30/2022] Open
Abstract
The most frequent rearrangement of the human MLL gene fuses MLL to AF4 resulting in high-risk infant B-cell acute lymphoblastic leukemia (B-ALL). MLL fusions are also hallmark oncogenic events in secondary acute myeloid leukemia. They are a direct consequence of mis-repaired DNA double strand breaks (DNA-DSBs) due to defects in the DNA damage response associated with exposure to topoisomerase-II poisons such as etoposide. It has been suggested that MLL fusions render cells susceptible to additional chromosomal damage upon exposure to etoposide. Conversely, the genome-wide mutational landscape in MLL-rearranged infant B-ALL has been reported silent. Thus, whether MLL fusions compromise the recognition and/or repair of DNA damage remains unanswered. Here, the fusion proteins MLL-AF4 (MA4) and AF4-MLL (A4M) were CRISPR/Cas9-genome edited in the AAVS1 locus of HEK293 cells as a model to study MLL fusion-mediated DNA-DSB formation/repair. Repair kinetics of etoposide- and ionizing radiation-induced DSBs was identical in WT, MA4- and A4M-expressing cells, as revealed by flow cytometry, by immunoblot for γH2AX and by comet assay. Accordingly, no differences were observed between WT, MA4- and A4M-expressing cells in the presence of master proteins involved in non-homologous end-joining (NHEJ; i.e.KU86, KU70), alternative-NHEJ (Alt-NHEJ; i.e.LigIIIa, WRN and PARP1), and homologous recombination (HR, i.e.RAD51). Moreover, functional assays revealed identical NHEJ and HR efficiency irrespective of the genotype. Treatment with etoposide consistently induced cell cycle arrest in S/G2/M independent of MA4/A4M expression, revealing a proper activation of the DNA damage checkpoints. Collectively, expression of MA4 or A4M does neither influence DNA signaling nor DNA-DSB repair.
Collapse
Affiliation(s)
- Julio Castaño
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Ana B. Herrero
- Hematology Department, University Hospital of Salamanca, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Aldeheid Bursen
- Institute Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
| | | | - Rolf Marschalek
- Institute Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
| | - Norma C. Gutiérrez
- Hematology Department, University Hospital of Salamanca, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
8
|
DACH1 regulates cell cycle progression of myeloid cells through the control of cyclin D, Cdk 4/6 and p21Cip1. Biochem Biophys Res Commun 2012; 420:91-5. [PMID: 22405764 DOI: 10.1016/j.bbrc.2012.02.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 02/23/2012] [Indexed: 12/23/2022]
Abstract
The cell-fate determination factor Dachshund, a component of the Retinal Determination Gene Network (RDGN), has a role in breast tumor proliferation through the repression of cyclin D1 and several key regulators of embryonic stem cell function, such as Nanog and Sox2. However, little is known about the role of DACH1 in a myeloid lineage as a cell cycle regulator. Here, we identified the differential expression levels of extensive cell cycle regulators controlled by DACH1 in myeloid progenitor cells. The forced expression of DACH1 induced p27(Kip1) and repressed p21(Cip1), which is a pivotal characteristic of the myeloid progenitor. Furthermore, DACH1 significantly increased the expression of cyclin D1, D3, F, and Cdk 1, 4, and 6 in myeloid progenitor cells. The knockdown of DACH1 blocked the cell cycle progression of HL-60 promyeloblastic cells through the decrease of cyclin D1, D3, F, and Cdk 1, 4, and 6 and increase in p21(Cip1), which in turn decreased the phosphorylation of the Rb protein. The expression of Sox2, Oct4, and Klf4 was significantly up-regulated by the forced expression of DACH1 in mouse myeloid progenitor cells.
Collapse
|
9
|
|
10
|
Hackl H, Rommer A, Konrad TA, Nassimbeni C, Wieser R. Tetracycline regulator expression alters the transcriptional program of mammalian cells. PLoS One 2010; 5:e13013. [PMID: 20886048 PMCID: PMC2945318 DOI: 10.1371/journal.pone.0013013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 09/03/2010] [Indexed: 11/19/2022] Open
Abstract
Background Tetracycline regulated ectopic gene expression is a widely used tool to study gene function. However, the tetracycline regulator (tetR) itself has been reported to cause certain phenotypic changes in mammalian cells. We, therefore, asked whether human myeloid U937 cells expressing the tetR in an autoregulated manner would exhibit alterations in gene expression upon removal of tetracycline. Methodology/Principal Findings Microarray analyses revealed that 172 and 774 unique genes were significantly differentially expressed by at least 2- or 1.5-fold, respectively, when tetR expressing U937 cells were maintained in media with or without the antibiotic. Conclusions/Significance These alterations in gene expression are likely to contribute to the phenotypic consequences of tetR expression. In addition, they need to be taken into consideration when using the tetR system for the identification of target genes of transcription factors or other genes of interest.
Collapse
Affiliation(s)
- Hubert Hackl
- Biocenter, Section for Bioinformatics, Innsbruck Medical University, Innsbruck, Austria
| | - Anna Rommer
- Clinic of Medicine I, Medical University of Vienna, Vienna, Austria
- Institute of Human Genetics, Medical University of Vienna, Vienna, Austria
| | - Torsten A. Konrad
- Institute of Human Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Rotraud Wieser
- Clinic of Medicine I, Medical University of Vienna, Vienna, Austria
- Institute of Human Genetics, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
11
|
The AF4·MLL fusion protein is capable of inducing ALL in mice without requirement of MLL·AF4. Blood 2010; 115:3570-9. [DOI: 10.1182/blood-2009-06-229542] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The chromosomal translocation t(4;11)(q21;q23) is the most frequent genetic aberration of the human MLL gene, resulting in high-risk acute lymphoblastic leukemia (ALL). To elucidate the leukemogenic potential of the fusion proteins MLL·AF4 and AF4·MLL, Lin−/Sca1+ purified cells (LSPCs) were retrovirally transduced with either both fusion genes or with MLL·AF4 or AF4·MLL alone. Recipients of AF4·MLL- or double-transduced LSPCs developed pro-B ALL, B/T biphenotypic acute leukemia, or mixed lineage leukemia. Transplantation of MLL·AF4- or mock-transduced LSPCs did not result in disease development during an observation period of 13 months. These findings indicate that the expression of the AF4·MLL fusion protein is capable of inducing acute lymphoblastic leukemia even in the absence of the MLL·AF4 fusion protein. In view of recent findings, these results may imply that t(4;11) leukemia is based on 2 oncoproteins, providing an explanation for the very early onset of disease in humans.
Collapse
|
12
|
Kotani A, Ha D, Schotte D, den Boer ML, Armstrong SA, Lodish HF. A novel mutation in the miR-128b gene reduces miRNA processing and leads to glucocorticoid resistance of MLL-AF4 acute lymphocytic leukemia cells. Cell Cycle 2010; 9:1037-42. [PMID: 20237425 DOI: 10.4161/cc.9.6.11011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
MLL-AF4 acute lymphocytic leukemia has a poor prognosis, and the mechanisms by which these leukemias develop are not understood despite intensive research based on well-known concepts and methods. MicroRNAs (miRNAs) are a new class of small noncoding RNAs that post-transcriptionally regulate expression of target mRNA transcripts. We recently reported that ectopic expression of miR-128b together with miR-221, two of the miRNAs downregulated in MLL-AF4 ALL, restores glucocorticoid resistance through downregulation of the MLL-AF4 chimeric fusion proteins MLL-AF4 and AF4-MLL that are generated by chromosomal translocation t(4;11). Here we report the identification of new mutations in miR-128b in RS4;11 cells, derived from MLL-AF4 ALL patient. One novel mutation significantly reduces the processing of miR-128b. Finally, this base change occurs in a primary MLL-AF4 ALL sample as an acquired mutation. These results demonstrate that the novel mutation in miR-128b in MLL-AF4 ALL alters the processing of miR-128b and that the resultant downregulation of mature miR-128b contributes to glucocorticoid resistance through the failure to downregulate the fusion oncogenes.
Collapse
Affiliation(s)
- Ai Kotani
- Division of Molecular Therapy Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
miR-128b is a potent glucocorticoid sensitizer in MLL-AF4 acute lymphocytic leukemia cells and exerts cooperative effects with miR-221. Blood 2009; 114:4169-78. [PMID: 19749093 DOI: 10.1182/blood-2008-12-191619] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
MLL-AF4 acute lymphocytic leukemia (ALL) has a poor prognosis. MicroRNAs (miRNA) are small noncoding RNAs that posttranscriptionally regulate expression of target mRNAs. Our analysis of previously published data showed that expression of miR-128b and miR-221 is down-regulated in MLL-rearranged ALL relative to other types of ALL. Reexpression of these miRNAs cooperatively sensitizes 2 cultured lines of MLL-AF4 ALL cells to glucocorticoids. Target genes down-regulated by miR-128b include MLL, AF4, and both MLL-AF4 and AF4-MLL fusion genes; miR-221 down-regulates CDKN1B. These results demonstrate that down-regulation of miR-128b and miR-221 is implicated in glucocorticoid resistance and that restoration of their levels is a potentially promising therapeutic in MLL-AF4 ALL.
Collapse
|
15
|
Molecular targeting of MLL-rearranged leukemia cell lines with the synthetic peptide PFWT synergistically enhances the cytotoxic effect of established chemotherapeutic agents. Leuk Res 2009; 33:937-47. [PMID: 19232721 DOI: 10.1016/j.leukres.2009.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 01/12/2009] [Accepted: 01/15/2009] [Indexed: 11/21/2022]
Abstract
MLL leukemias are characterized cytogenetically by reciprocal translocations of the MLL gene at 11q23 and clinically by unfavorable outcomes. Evidence indicating that MLL leukemias are resistant to apoptosis encourages the identification of agents that induce cell death by other mechanisms. The AF4-mimetic peptide PFWT induces necrosis in the t(4;11) leukemia cell line, MV4-11. Treatment of MV4-11 cells with PFWT in combination with four chemotherapeutic compounds results in sequence-dependent synergy, induction of both apoptotic and necrotic cell death, and inhibition of MV4-11 clonogenicity. Therefore, PFWT holds promise as a therapy for MLL leukemias that augments the effects of several clinically available chemotherapeutic agents.
Collapse
|
16
|
Chen W, Kumar AR, Hudson WA, Li Q, Wu B, Staggs RA, Lund EA, Sam TN, Kersey JH. Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells. Cancer Cell 2008; 13:432-40. [PMID: 18455126 PMCID: PMC2430522 DOI: 10.1016/j.ccr.2008.03.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 12/28/2007] [Accepted: 03/07/2008] [Indexed: 01/28/2023]
Abstract
The pathways by which oncogenes, such as MLL-AF9, initiate transformation and leukemia in humans and mice are incompletely defined. In a study of target cells and oncogene dosage, we found that Mll-AF9, when under endogenous regulatory control, efficiently transformed LSK (Lin(-)Sca1(+)c-kit(+)) stem cells, while committed granulocyte-monocyte progenitors (GMPs) were transformation resistant and did not cause leukemia. Mll-AF9 was expressed at higher levels in hematopoietic stem (HSC) than GMP cells. Mll-AF9 gene dosage effects were directly shown in experiments where GMPs were efficiently transformed by the high dosage of Mll-AF9 resulting from retroviral transduction. Mll-AF9 upregulated expression of 192 genes in both LSK and progenitor cells, but to higher levels in LSKs than in committed myeloid progenitors.
Collapse
Affiliation(s)
- Weili Chen
- University of Minnesota Cancer Center, University of Minnesota, 420 Delaware Street S.E., Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu H, Cheng EHY, Hsieh JJD. Bimodal degradation of MLL by SCFSkp2 and APCCdc20 assures cell cycle execution: a critical regulatory circuit lost in leukemogenic MLL fusions. Genes Dev 2007; 21:2385-98. [PMID: 17908926 PMCID: PMC1993870 DOI: 10.1101/gad.1574507] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human chromosome 11q23 translocations disrupting MLL result in poor prognostic leukemias. It fuses the common MLL N-terminal approximately 1400 amino acids in-frame with >60 different partners without shared characteristics. In addition to the well-characterized activity of MLL in maintaining Hox gene expression, our recent studies established an MLL-E2F axis in orchestrating core cell cycle gene expression including Cyclins. Here, we demonstrate a biphasic expression of MLL conferred by defined windows of degradation mediated by specialized cell cycle E3 ligases. Specifically, SCF(Skp2) and APC(Cdc20) mark MLL for degradation at S phase and late M phase, respectively. Abolished peak expression of MLL incurs corresponding defects in G1/S transition and M-phase progression. Conversely, overexpression of MLL blocks S-phase progression. Remarkably, MLL degradation initiates at its N-terminal approximately 1400 amino acids, and tested prevalent MLL fusions are resistant to degradation. Thus, impaired degradation of MLL fusions likely constitutes the universal mechanism underlying all MLL leukemias. Our data conclude an essential post-translational regulation of MLL by the cell cycle ubiquitin/proteasome system (UPS) assures the temporal necessity of MLL in coordinating cell cycle progression.
Collapse
Affiliation(s)
- Han Liu
- Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Emily H.-Y. Cheng
- Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - James J.-D. Hsieh
- Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Corresponding author.E-MAIL ; FAX (314) 362-1589
| |
Collapse
|
18
|
Jansen MWJC, Corral L, van der Velden VHJ, Panzer-Grümayer R, Schrappe M, Schrauder A, Marschalek R, Meyer C, den Boer ML, Hop WJC, Valsecchi MG, Basso G, Biondi A, Pieters R, van Dongen JJM. Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia 2007; 21:633-41. [PMID: 17268512 DOI: 10.1038/sj.leu.2404578] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to identify immunobiological subgroups in 133 infant acute lymphoblastic leukemia (ALL) cases as assessed by their immunophenotype, immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangement pattern, and the presence of mixed lineage leukemia (MLL) rearrangements. About 70% of cases showed the pro-B-ALL immunophenotype, whereas the remaining cases were common ALL and pre-B-ALL. MLL translocations were found in 79% of infants, involving MLL-AF4 (41%), MLL-ENL (18%), MLL-AF9 (11%) or another MLL partner gene (10%). Detailed analysis of Ig/TCR rearrangement patterns revealed IGH, IGK and IGL rearrangements in 91, 21 and 13% of infants, respectively. Cross-lineage TCRD, TCRG and TCRB rearrangements were found in 46, 17 and 10% of cases, respectively. As compared to childhood precursor-B-ALL, Ig/TCR rearrangements in infant ALL were less frequent and more oligoclonal. MLL-AF4 and MLL-ENL-positive infants demonstrated immature rearrangements, whereas in MLL-AF9-positive leukemias more mature rearrangements predominated. The immature Ig/TCR pattern in infant ALL correlated with young age at diagnosis, CD10 negativity and predominantly with the presence and the type of MLL translocation. The high frequency of immature and oligoclonal Ig/TCR rearrangements is probably caused by early (prenatal) oncogenic transformation in immature B-lineage progenitor cells with germline Ig/TCR genes combined with a short latency period.
Collapse
Affiliation(s)
- M W J C Jansen
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gaussmann A, Wenger T, Eberle I, Bursen A, Bracharz S, Herr I, Dingermann T, Marschalek R. Combined effects of the two reciprocal t(4;11) fusion proteins MLL.AF4 and AF4.MLL confer resistance to apoptosis, cell cycling capacity and growth transformation. Oncogene 2006; 26:3352-63. [PMID: 17130830 DOI: 10.1038/sj.onc.1210125] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The reciprocal chromosomal translocation t(4;11) is correlated with infant, childhood, adult and therapy-related high-risk acute leukemia. Here, we investigated the biological effects of MLL.AF4, AF4.MLL or the combination of both reciprocal fusion proteins in a conditional in vitro cell culture model system. Several parameters like cell growth, cell cycling capacity, apoptotic behavior and growth transformation were investigated under physiological and stress conditions. Co-transfected cells displayed the highest resistance against apoptotic triggers, cell cycling capacity and loss-of-contact inhibition. These analyses were complemented by gene expression profiling experiments and specific gene signatures were established for each of the three cell lines. Interestingly, co-transfected cells strongly upregulate the homeobox gene Nanog. In combination with Oct4, the Nanog homeoprotein is steering maintenance of pluripotency and self-renewal in embryonic stem cells. Transcription of Nanog and other stem cell factors, like Oct4 and Bmi1, was verified in biopsy material of t(4;11) patient cells which express both reciprocal t(4;11) fusion genes. In conclusion, the presence of both reciprocal MLL fusion proteins confers biological properties known from t(4;11) leukemia, suggesting that each of the two fusion proteins contribute specific properties and, in combination, also synergistic effects to the leukemic phenotype.
Collapse
Affiliation(s)
- A Gaussmann
- Institute of Pharmaceutical Biology/ZAFES, JWG-University Frankfurt, Biocenter, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hayne CC, Winer E, Williams T, Chaves F, Khorsand J, Mark HFL. Acute lymphoblastic leukemia with 4;11 translocation analyzed by a multi-modal strategy of conventional cytogenetics, FISH, morphology, flow cytometry and molecular genetics, and review of the literature. Exp Mol Pathol 2006; 81:62-71. [PMID: 16765346 DOI: 10.1016/j.yexmp.2006.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 04/09/2006] [Accepted: 04/17/2006] [Indexed: 11/23/2022]
Abstract
We report a case of acute lymphoblastic leukemia (ALL) with a 4;11 translocation. Metaphase cells and interphase nuclei derived from a routine unstimulated culture of bone marrow were analyzed using a combined strategy of G-banding and fluorescent in situ hybridization (FISH) in addition to hematopathological analysis, flow cytometry, and molecular genetics. This multimodal approach enables a successful correlation of pathology and cytogenetics to support a comprehensive diagnosis of the patient. Meaningful prognostication and appropriate therapeutic considerations are possible only when accurate diagnostic information is given. We further search and review the literature for the most up-to-date information currently available for this subtype of ALL in the constantly evolving field of molecular cytogenetics.
Collapse
Affiliation(s)
- Cynthia C Hayne
- Boston University School of Medicine, 700 Albany Street, Suite 408, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
21
|
Chen W, Li Q, Hudson WA, Kumar A, Kirchhof N, Kersey JH. A murine Mll-AF4 knock-in model results in lymphoid and myeloid deregulation and hematologic malignancy. Blood 2006; 108:669-77. [PMID: 16551973 PMCID: PMC1895483 DOI: 10.1182/blood-2005-08-3498] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 2 most frequent human MLL hematopoietic malignancies involve either AF4 or AF9 as fusion partners; each has distinct biology but the role of the fusion partner is not clear. We produced Mll-AF4 knock-in (KI) mice by homologous recombination in embryonic stem cells and compared them with Mll-AF9 KI mice. Young Mll-AF4 mice had lymphoid and myeloid deregulation manifest by increased lymphoid and myeloid cells in hematopoietic organs. In vitro, bone marrow cells from young mice formed unique mixed pro-B lymphoid (B220(+)CD19(+)CD43(+)sIgM(-), PAX5(+), TdT(+), IgH rearranged)/myeloid (CD11b/Mac1(+), c-fms(+), lysozyme(+)) colonies when grown in IL-7- and Flt3 ligand-containing media. Mixed lymphoid/myeloid hyperplasia and hematologic malignancies (most frequently B-cell lymphomas) developed in Mll-AF4 mice after prolonged latency; long latency to malignancy indicates that Mll-AF4-induced lymphoid/myeloid deregulation alone is insufficient to produce malignancy. In contrast, young Mll-AF9 mice had predominately myeloid deregulation in vivo and in vitro and developed myeloid malignancies. The early onset of distinct mixed lymphoid/myeloid lineage deregulation in Mll-AF4 mice shows evidence for both "instructive" and "noninstructive" roles for AF4 and AF9 as partners in MLL fusion genes. The molecular basis for "instruction" and secondary cooperating mutations can now be studied in our Mll-AF4 model.
Collapse
Affiliation(s)
- Weili Chen
- Cancer Center, University of Minnesota, Minneapolis, USA
| | | | | | | | | | | |
Collapse
|
22
|
Eguchi M, Eguchi-Ishimae M, Knight D, Kearney L, Slany R, Greaves M. MLL chimeric protein activation renders cells vulnerable to chromosomal damage: An explanation for the very short latency of infant leukemia. Genes Chromosomes Cancer 2006; 45:754-60. [PMID: 16688745 DOI: 10.1002/gcc.20338] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
MLL fusion genes are a predominant feature of acute leukemias in infants and in secondary acute myeloid leukemia (AML) associated with prior chemotherapy with topo-II poisons. The former is considered to possibly arise in utero via transplacental chemical exposure. A striking feature of these leukemias is their malignancy and remarkably brief latencies implying the rapid acquisition of any necessary additional mutations. We have suggested that these coupled features might be explained if MLL fusion gene encoded proteins rendered cells more vulnerable to further DNA damage and mutation in the presence of chronic exposure to the agent(s) that induced the MLL fusion itself. We have tested this idea by exploiting a hormone regulated MLL-ENL (MLLT1) activation system and show that MLL-ENL function in normal murine progenitor cells substantially increases the incidence of chromosomal abnormalities in proliferating cells that survive exposure to etoposide VP-16. This phenotype is associated with an altered pattern of cell cycle arrest and/or apoptosis.
Collapse
Affiliation(s)
- Mariko Eguchi
- Section of Haemato-Oncology, The Institute of Cancer Research, London, UK
| | | | | | | | | | | |
Collapse
|
23
|
Xia ZB, Popovic R, Chen J, Theisler C, Stuart T, Santillan DA, Erfurth F, Diaz MO, Zeleznik-Le NJ. The MLL fusion gene, MLL-AF4, regulates cyclin-dependent kinase inhibitor CDKN1B (p27kip1) expression. Proc Natl Acad Sci U S A 2005; 102:14028-33. [PMID: 16169901 PMCID: PMC1236570 DOI: 10.1073/pnas.0506464102] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MLL, involved in many chromosomal translocations associated with acute myeloid and lymphoid leukemia, has >50 known partner genes with which it is able to form in-frame fusions. Characterizing important downstream target genes of MLL and of MLL fusion proteins may provide rational therapeutic strategies for the treatment of MLL-associated leukemia. We explored downstream target genes of the most prevalent MLL fusion protein, MLL-AF4. To this end, we developed inducible MLL-AF4 fusion cell lines in different backgrounds. Overexpression of MLL-AF4 does not lead to increased proliferation in either cell line, but rather, cell growth was slowed compared with similar cell lines inducibly expressing truncated MLL. We found that in the MLL-AF4-induced cell lines, the expression of the cyclin-dependent kinase inhibitor gene CDKN1B was dramatically changed at both the RNA and protein (p27kip1) levels. In contrast, the expression levels of CDKN1A (p21) and CDKN2A (p16) were unchanged. To explore whether CDKN1B might be a direct target of MLL and of MLL-AF4, we used chromatin immunoprecipitation (ChIP) assays and luciferase reporter gene assays. MLL-AF4 binds to the CDKN1B promoter in vivo and regulates CDKN1B promoter activity. Further, we confirmed CDKN1B promoter binding by ChIP in MLL-AF4 as well as in MLL-AF9 leukemia cell lines. Our results suggest that CDKN1B is a downstream target of MLL and of MLL-AF4, and that, depending on the background cell type, MLL-AF4 inhibits or activates CDKN1B expression. This finding may have implications in terms of leukemia stem cell resistance to chemotherapy in MLL-AF4 leukemias.
Collapse
Affiliation(s)
- Zhen-Biao Xia
- Department of Medicine, Molecular Biology Program, and Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Thomas M, Gessner A, Vornlocher HP, Hadwiger P, Greil J, Heidenreich O. Targeting MLL-AF4 with short interfering RNAs inhibits clonogenicity and engraftment of t(4;11)-positive human leukemic cells. Blood 2005; 106:3559-66. [PMID: 16046533 DOI: 10.1182/blood-2005-03-1283] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chromosomal translocation t(4;11) marks infant acute lymphoblastic leukemia associated with a particularly dismal prognosis. The leukemogenic role of the corresponding fusion gene MLL-AF4 is not well understood. We show that transient inhibition of MLL-AF4 expression with small interfering RNAs impairs the proliferation and clonogenicity of the t(4; 11)-positive human leukemic cell lines SEM and RS4;11. Reduction of mixed-lineage leukemia (MLL)-ALL-1 fused gene from chromosome 4 (AF4) levels induces apoptosis associated with caspase-3 activation and diminished BCL-X(L) expression. Suppression of MLL-AF4 is paralleled by a decreased expression of the homeotic genes HOXA7, HOXA9, and MEIS1. MLL-AF4 depletion inhibits expression of the stem-cell marker CD133, indicating hematopoietic differentiation. Transfection of leukemic cells with MLL-AF4 siRNAs reduces leukemia-associated morbidity and mortality in SCID mice that received a xenotransplant, suggesting that MLL-AF4 depletion negatively affects leukemia-initiating cells. Our findings demonstrate that MLL-AF4 is important for leukemic clonogenicity and engraftment of this highly aggressive leukemia. Targeted inhibition of MLL-AF4 fusion gene expression may lead to an effective and highly specific treatment of this therapy-resistant leukemia.
Collapse
Affiliation(s)
- Maria Thomas
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, Eberhard Karls University of Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|
25
|
To MD, Faseruk SA, Gokgoz N, Pinnaduwage D, Done SJ, Andrulis IL. LAF-4 is aberrantly expressed in human breast cancer. Int J Cancer 2005; 115:568-74. [PMID: 15704140 DOI: 10.1002/ijc.20881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
LAF-4, which encodes a nuclear protein with transactivation potential, is fused to the MLL gene in acute lymphoblastic leukemia (ALL). We identified LAF-4 as a gene that is transcriptionally deregulated in breast tumors and thus may have a pathological role in mammary tumorigenesis. In line with the previous finding that LAF-4 expression is tissue specific, we did not detect any LAF-4 mRNA in normal mammary epithelial cell lines. However, 2 of 5 breast cancer cell lines were found to express LAF-4 at both the RNA and protein levels. In 2 of 9 primary tumor-normal pairs, the expression of LAF-4 was clearly elevated in the tumor tissue. Using RNA in situ hybridization, we demonstrated that LAF-4 is expressed in mammary tumor cells but not in normal acini. In a group of 64 primary human breast tumors, we found that LAF-4 was overexpressed in approximately 20% of the cases. Although epigenetic changes may be involved in altered expression of some genes, differences in LAF-4 expression were not associated with DNA methylation of the predicted promoter region. Our results suggest that LAF-4 may be a proto-oncogene that is transcriptionally activated in some cases of breast cancer.
Collapse
Affiliation(s)
- Minh D To
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Chromosome translocations disrupting the MLL gene are associated with various hematologic malignancies but are particularly common in infant and secondary therapy-related acute leukemias. The normal MLL-encoded protein is an essential component of a supercomplex with chromatin-modulating activity conferred by histone acetylase and methyltransferase activities, and the protein plays a key role in the developmental regulation of gene expression, including Hox gene expression. In leukemia, this function is subverted by breakage, recombination, and the formation of chimeric fusion with one of many alternative partners. Such MLL translocations result in the replacement of the C-terminal functional domains of MLL with those of a fusion partner, yielding a newly formed MLL chimeric protein with an altered function that endows hematopoietic progenitors with self-renewing and leukemogenic activity. This potent impact of the MLL chimera can be attributed to one of 2 kinds of activity of the fusion partner: direct transcriptional transactivation or dimerization/oligomerization. Key unresolved issues currently being addressed include the set of target genes for MLL fusions, the stem cell of origin for the leukemias, the role of additional secondary mutations, and the origins or etiology of the MLL gene fusions themselves. Further elaboration of the biology of MLL gene-associated leukemia should lead to novel and specific therapeutic strategies.
Collapse
Affiliation(s)
- Mariko Eguchi
- Section of Haemato-Oncology, Institute of Cancer Research, London, UK.
| | | | | |
Collapse
|