1
|
Escherich CS, Chen W, Li Y, Yang W, Nishii R, Li Z, Raetz EA, Devidas M, Wu G, Nichols KE, Inaba H, Pui CH, Jeha S, Camitta BM, Larsen E, Hunger SP, Loh ML, Yang JJ. Germ line genetic NBN variation and predisposition to B-cell acute lymphoblastic leukemia in children. Blood 2024; 143:2270-2283. [PMID: 38446568 PMCID: PMC11443573 DOI: 10.1182/blood.2023023336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT Biallelic mutation in the DNA-damage repair gene NBN is the genetic cause of Nijmegen breakage syndrome, which is associated with predisposition to lymphoid malignancies. Heterozygous carriers of germ line NBN variants may also be at risk for leukemia development, although this is much less characterized. By sequencing 4325 pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL), we systematically examined the frequency of germ line NBN variants and identified 25 unique, putatively damaging NBN coding variants in 50 patients. Compared with the frequency of NBN variants in gnomAD noncancer controls (189 unique, putatively damaging NBN coding variants in 472 of 118 479 individuals), we found significant overrepresentation in pediatric B-ALL (P = .004; odds ratio, 1.8). Most B-ALL-risk variants were missense and cluster within the NBN N-terminal domains. Using 2 functional assays, we verified 14 of 25 variants with severe loss-of-function phenotypes and thus classified these as nonfunctional or partially functional. Finally, we found that germ line NBN variant carriers, all of whom were identified as heterozygous genotypes, showed similar survival outcomes relative to those with wild type status. Taken together, our findings provide novel insights into the genetic predisposition to B-ALL, and the impact of NBN variants on protein function and suggest that heterozygous NBN variant carriers may safely receive B-ALL therapy. These trials were registered at www.clinicaltrials.gov as #NCT01225874, NCT00075725, NCT00103285, NCI-T93-0101D, and NCT00137111.
Collapse
Affiliation(s)
- Carolin S. Escherich
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
- Department for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Wenan Chen
- Department of Pathology, Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yizhen Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Rina Nishii
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Zhenhua Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Elizabeth A. Raetz
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Health, New York, NY
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN
| | - Gang Wu
- Department of Pathology, Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sima Jeha
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Bruce M. Camitta
- Department of Pediatrics, Midwest Center for Cancer and Blood Disorders, Medical College of Wisconsin, Milwaukee, WI
| | - Eric Larsen
- Department of Pediatrics, Maine Children's Cancer Program, Scarborough, ME
| | - Stephen P. Hunger
- Department of Pediatrics and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mignon L. Loh
- Department of Pediatrics and the Ben Towne Center for Childhood Cancer Research, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | - Jun J. Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
2
|
Belhadj S, Khurram A, Bandlamudi C, Palou-Márquez G, Ravichandran V, Steinsnyder Z, Wildman T, Catchings A, Kemel Y, Mukherjee S, Fesko B, Arora K, Mehine M, Dandiker S, Izhar A, Petrini J, Domchek S, Nathanson KL, Brower J, Couch F, Stadler Z, Robson M, Walsh M, Vijai J, Berger M, Supek F, Karam R, Topka S, Offit K. NBN Pathogenic Germline Variants are Associated with Pan-Cancer Susceptibility and In Vitro DNA Damage Response Defects. Clin Cancer Res 2023; 29:422-431. [PMID: 36346689 PMCID: PMC9843434 DOI: 10.1158/1078-0432.ccr-22-1703] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/26/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To explore the role of NBN as a pan-cancer susceptibility gene. EXPERIMENTAL DESIGN Matched germline and somatic DNA samples from 34,046 patients were sequenced using Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets and presumed pathogenic germline variants (PGV) identified. Allele-specific and gene-centered analysis of enrichment was conducted and a validation cohort of 26,407 pan-cancer patients was analyzed. Functional studies utilized cellular models with analysis of protein expression, MRN complex formation/localization, and viability assessment following treatment with γ-irradiation. RESULTS We identified 83 carriers of 32 NBN PGVs (0.25% of the studied series), 40% of which (33/83) carried the Slavic founder p.K219fs. The frequency of PGVs varied across cancer types. Patients harboring NBN PGVs demonstrated increased loss of the wild-type allele in their tumors [OR = 2.7; confidence interval (CI): 1.4-5.5; P = 0.0024; pan-cancer], including lung and pancreatic tumors compared with breast and colorectal cancers. p.K219fs was enriched across all tumor types (OR = 2.22; CI: 1.3-3.6; P = 0.0018). Gene-centered analysis revealed enrichment of PGVs in cases compared with controls in the European population (OR = 1.9; CI: 1.3-2.7; P = 0.0004), a finding confirmed in the replication cohort (OR = 1.8; CI: 1.2-2.6; P = 0.003). Two novel truncating variants, p.L19* and p.N71fs, produced a 45 kDa fragment generated by alternative translation initiation that maintained binding to MRE11. Cells expressing these fragments showed higher sensitivity to γ-irradiation and lower levels of radiation-induced KAP1 phosphorylation. CONCLUSIONS Burden analyses, biallelic inactivation, and functional evidence support the role of NBN as contributing to a broad cancer spectrum. Further studies in large pan-cancer series and the assessment of epistatic and environmental interactions are warranted to further define these associations.
Collapse
Affiliation(s)
- Sami Belhadj
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
- Ambry Genetics, Aliso Viejo, California
| | - Aliya Khurram
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
| | - Chaitanya Bandlamudi
- Department of Pathology, Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Guillermo Palou-Márquez
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), Barcelona institute for Science and Technology, Barcelona, Spain
| | - Vignesh Ravichandran
- Department of Pathology, Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zoe Steinsnyder
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
| | - Temima Wildman
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
| | - Amanda Catchings
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
| | - Yelena Kemel
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
| | - Semanti Mukherjee
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
| | - Benjamin Fesko
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
| | - Kanika Arora
- Department of Pathology, Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Miika Mehine
- Department of Pathology, Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sita Dandiker
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
| | - Aalin Izhar
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
| | - John Petrini
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
| | - Susan Domchek
- Basser Center for BRCA and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katherine L. Nathanson
- Basser Center for BRCA and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jamie Brower
- Basser Center for BRCA and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fergus Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Zsofia Stadler
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
| | - Mark Robson
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Walsh
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph Vijai
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Michael Berger
- Department of Pathology, Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), Barcelona institute for Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Sabine Topka
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
3
|
Tarapara B, Shah F. An in-silico analysis to identify structural, functional and regulatory role of SNPs in hMRE11. J Biomol Struct Dyn 2022; 41:2160-2174. [PMID: 35048780 DOI: 10.1080/07391102.2022.2028678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Meiotic recombination 11 (MRE11) is a component of the tri-molecular MRE11-RAD50-NBS1 (MRN) complex, which functions as an exonuclease and endonuclease which is involved in identifying, signalling, protecting and repairing double-strand breaks in DNA (DSBs). Ataxia-telangiectasia-like disorder (ATLD) 1 and Nijmegen breakage syndrome (NBS)-like disorder are MRE11 associated diseases. In the present study, we used an integrated computational approach to identify the most deleterious SNPs and their structural and functional impact on human MRE11. Five of the 68 observed non-synonymous SNP (nsSNPs; I162T, S273C, W210C, D311Y and R364L) should be worked on due to their strong possible pathogenicity and the risk of changing protein properties. All the nsSNPs were highly conserved and decrease the protein stability located in the MRE11 nuclease and MRE11 DNA binding presumed domain. R364L and I162T were predicted to be involved in post-translational modification (PTM) sites. Furthermore, we also analysed the regulatory effect of noncoding SNPs on MRE11 gene regulation in which 6 SNPs were found to affect gene regulation. All six noncoding SNPs predicted chromatin interactive site whereas only one SNP was noted its association with miRNA binding site which disrupts 5 miRNA conserved site. These findings help future studies to get more insights into the role of these variants in the alteration of the MRE11 function. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhoomi Tarapara
- Department of Cancer Biology, Stem Cell Biology Lab, The Gujarat Cancer and Research Institute, Ahmedabad, India
| | - Franky Shah
- Department of Cancer Biology, Stem Cell Biology Lab, The Gujarat Cancer and Research Institute, Ahmedabad, India
| |
Collapse
|
4
|
Comprehensive germline-genomic and clinical profiling in 160 unselected children and adolescents with cancer. Eur J Hum Genet 2021; 29:1301-1311. [PMID: 33840814 PMCID: PMC8385053 DOI: 10.1038/s41431-021-00878-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/05/2021] [Accepted: 03/25/2021] [Indexed: 02/02/2023] Open
Abstract
In childhood cancer, the frequency of cancer-associated germline variants and their inheritance patterns are not thoroughly investigated. Moreover, the identification of children carrying a genetic predisposition by clinical means remains challenging. In this single-center study, we performed trio whole-exome sequencing and comprehensive clinical evaluation of a prospectively enrolled cohort of 160 children with cancer and their parents. We identified in 11/160 patients a pathogenic germline variant predisposing to cancer and a further eleven patients carried a prioritized VUS with a strong association to the cancerogenesis of the patient. Through clinical screening, 51 patients (31.3%) were identified as suspicious for an underlying cancer predisposition syndrome (CPS), but only in ten of those patients a pathogenic variant could be identified. In contrast, one patient with a classical CPS and ten patients with prioritized VUS were classified as unremarkable in the clinical work-up. Taken together, a monogenetic causative variant was detected in 13.8% of our patients using WES. Nevertheless, the still unclarified clinical suspicious cases emphasize the need to consider other genetic mechanisms including new target genes, structural variants, or polygenic interactions not previously associated with cancer predisposition.
Collapse
|
5
|
Rahimian E, Amini A, Alikarami F, Pezeshki SMS, Saki N, Safa M. DNA repair pathways as guardians of the genome: Therapeutic potential and possible prognostic role in hematologic neoplasms. DNA Repair (Amst) 2020; 96:102951. [PMID: 32971475 DOI: 10.1016/j.dnarep.2020.102951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
DNA repair pathways, which are also identified as guardians of the genome, protect cells from frequent damage that can lead to DNA breaks. The most deleterious types of damage are double-strand breaks (DSBs), which are repaired by homologous recombination (HR) and non-homologous end joining (NHEJ). Single strand breaks (SSBs) can be corrected through base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Failure to restore DNA lesions or inappropriately repaired DNA damage culminates in genomic instability and changes in the regulation of cellular functions. Intriguingly, particular mutations and translocations are accompanied by special types of leukemia. Besides, expression patterns of certain repair genes are altered in different hematologic malignancies. Moreover, analysis of mutations in key mediators of DNA damage repair (DDR) pathways, as well as investigation of their expression and function, may provide us with emerging biomarkers of response/resistance to treatment. Therefore, defective DDR pathways can offer a rational starting point for developing DNA repair-targeted drugs. In this review, we address genetic alterations and gene/protein expression changes, as well as provide an overview of DNA repair pathways.
Collapse
Affiliation(s)
- Elahe Rahimian
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alikarami
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA 19104, USA
| | - Seyed Mohammad Sadegh Pezeshki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
A Survey of Reported Disease-Related Mutations in the MRE11-RAD50-NBS1 Complex. Cells 2020; 9:cells9071678. [PMID: 32668560 PMCID: PMC7407228 DOI: 10.3390/cells9071678] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
The MRE11-RAD50-NBS1 (MRN) protein complex is one of the primary vehicles for repairing DNA double strand breaks and maintaining the genomic stability within the cell. The role of the MRN complex to recognize and process DNA double-strand breaks as well as signal other damage response factors is critical for maintaining proper cellular function. Mutations in any one of the components of the MRN complex that effect function or expression of the repair machinery could be detrimental to the cell and may initiate and/or propagate disease. Here, we discuss, in a structural and biochemical context, mutations in each of the three MRN components that have been associated with diseases such as ataxia telangiectasia-like disorder (ATLD), Nijmegen breakage syndrome (NBS), NBS-like disorder (NBSLD) and certain types of cancers. Overall, deepening our understanding of disease-causing mutations of the MRN complex at the structural and biochemical level is foundational to the future aim of treating diseases associated with these aberrations.
Collapse
|
7
|
Winer P, Muskens IS, Walsh KM, Vora A, Moorman AV, Wiemels JL, Roberts I, Roy A, de Smith AJ. Germline variants in predisposition genes in children with Down syndrome and acute lymphoblastic leukemia. Blood Adv 2020; 4:672-675. [PMID: 32084258 PMCID: PMC7042982 DOI: 10.1182/bloodadvances.2019001216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/27/2020] [Indexed: 11/20/2022] Open
Abstract
Rare and pathogenic germline variants, including in IKZF1 , contribute to acute lymphoblastic leukemia in children with Down syndrome.
Collapse
Affiliation(s)
- Peleg Winer
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA
| | - Ivo S Muskens
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA
| | - Kyle M Walsh
- Department of Neurosurgery, Duke University, Durham, NC
| | - Ajay Vora
- Great Ormond Street Hospital for Children National Health Service Trust, London, United Kingdom
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA
| | - Irene Roberts
- Department of Paediatrics and
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, United Kingdom; and
- Biomedical Research Centre Blood Theme, National Institute for Health Research Oxford Biomedical Centre, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics and
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, United Kingdom; and
- Biomedical Research Centre Blood Theme, National Institute for Health Research Oxford Biomedical Centre, Oxford, United Kingdom
| | - Adam J de Smith
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA
| |
Collapse
|
8
|
de Smith AJ, Lavoie G, Walsh KM, Aujla S, Evans E, Hansen HM, Smirnov I, Kang AY, Zenker M, Ceremsak JJ, Stieglitz E, Muskens IS, Roberts W, McKean-Cowdin R, Metayer C, Roux PP, Wiemels JL. Predisposing germline mutations in high hyperdiploid acute lymphoblastic leukemia in children. Genes Chromosomes Cancer 2019; 58:723-730. [PMID: 31102422 DOI: 10.1002/gcc.22765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022] Open
Abstract
High hyperdiploidy (HD) is the most common cytogenetic subtype of childhood acute lymphoblastic leukemia (ALL), and a higher incidence of HD has been reported in ALL patients with congenital cancer syndromes. We assessed the frequency of predisposing germline mutations in 57 HD-ALL patients from the California Childhood Leukemia Study via targeted sequencing of cancer-relevant genes. Three out of 57 patients (5.3%) harbored confirmed germline mutations that were likely causal, in NBN, ETV6, and FLT3, with an additional six patients (10.5%) harboring putative predisposing mutations that were rare in unselected individuals (<0.01% allele frequency in the Exome Aggregation Consortium, ExAC) and predicted functional (scaled CADD score ≥ 20) in known or potential ALL predisposition genes (SH2B3, CREBBP, PMS2, MLL, ABL1, and MYH9). Three additional patients carried rare and predicted damaging germline mutations in GAB2, a known activator of the ERK/MAPK and PI3K/AKT pathways and binding partner of PTPN11-encoded SHP2. The frequency of rare and predicted functional germline GAB2 mutations was significantly higher in our patients (2.6%) than in ExAC (0.28%, P = 4.4 × 10-3 ), an observation that was replicated in ALL patients from the TARGET project (P = .034). We cloned patient GAB2 mutations and expressed mutant proteins in HEK293 cells and found that frameshift mutation P621fs led to reduced SHP2 binding and ERK1/2 phosphorylation but significantly increased AKT phosphorylation, suggesting possible RAS-independent leukemogenic effects. Our results support a significant contribution of rare, high penetrance germline mutations to HD-ALL etiology, and pinpoint GAB2 as a putative novel ALL predisposition gene.
Collapse
Affiliation(s)
- Adam J de Smith
- Center for Genetic Epidemiology, Department of Preventive Medicine, USC Keck School of Medicine, Los Angeles, California.,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada
| | - Kyle M Walsh
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California.,Department of Neurosurgery, Duke University, Durham, North Carolina.,Children's Health and Discovery Institute, Duke University, Durham, North Carolina
| | - Sumeet Aujla
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Erica Evans
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Helen M Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Ivan Smirnov
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Alice Y Kang
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Martin Zenker
- University Hospital Magdeburg, Institute of Human Genetics, Magdeburg, Germany
| | - John J Ceremsak
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Elliot Stieglitz
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Ivo S Muskens
- Center for Genetic Epidemiology, Department of Preventive Medicine, USC Keck School of Medicine, Los Angeles, California
| | - William Roberts
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of California San Diego, San Diego, California.,Rady Children's Hospital San Diego, San Diego, California
| | - Roberta McKean-Cowdin
- Department of Preventive Medicine, USC Keck School of Medicine, Los Angeles, California
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Preventive Medicine, USC Keck School of Medicine, Los Angeles, California.,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| |
Collapse
|
9
|
Podralska M, Ziółkowska-Suchanek I, Żurawek M, Dzikiewicz-Krawczyk A, Słomski R, Nowak J, Stembalska A, Pesz K, Mosor M. Genetic variants in ATM, H2AFX and MRE11 genes and susceptibility to breast cancer in the polish population. BMC Cancer 2018; 18:452. [PMID: 29678143 PMCID: PMC5910560 DOI: 10.1186/s12885-018-4360-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/11/2018] [Indexed: 11/10/2022] Open
Abstract
Background DNA damage repair is a complex process, which can trigger the development of cancer if disturbed. In this study, we hypothesize a role of variants in the ATM, H2AFX and MRE11 genes in determining breast cancer (BC) susceptibility. Methods We examined the whole sequence of the ATM kinase domain and estimated the frequency of founder mutations in the ATM gene (c.5932G > T, c.6095G > A, and c.7630-2A > C) and single nucleotide polymorphisms (SNPs) in H2AFX (rs643788, rs8551, rs7759, and rs2509049) and MRE11 (rs1061956 and rs2155209) among 315 breast cancer patients and 515 controls. The analysis was performed using high-resolution melting for new variants and the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for recurrent ATM mutations. H2AFX and MRE11 polymorphisms were analyzed using TaqMan assays. The cumulative genetic risk scores (CGRS) were calculated using unweighted and weighted approaches. Results We identified four mutations (c.6067G > A, c.8314G > A, c.8187A > T, and c.6095G > A) in the ATM gene in three BC cases and two control subjects. We observed a statistically significant association of H2AFX variants with BC. Risk alleles (the G of rs7759 and the T of rs8551 and rs2509049) were observed more frequently in BC cases compared to the control group, with P values, odds ratios (OR) and 95% confidence intervals (CIs) of 0.0018, 1.47 (1.19 to 1.82); 0.018, 1.33 (1.09 to 1.64); and 0.024, 1.3 (1.06 to 1.59), respectively. Haplotype-based tests identified a significant association of the H2AFX CACT haplotype with BC (P < 0.0001, OR = 27.29, 95% CI 3.56 to 209.5). The risk of BC increased with the growing number of risk alleles. The OR (95% CI) for carriers of ≥ four risk alleles was 1.71 (1.11 to 2.62) for the CGRS. Conclusions This study confirms that H2AFX variants are associated with an increased risk of BC. The above-reported sequence variants of MRE11 genes may not constitute a risk factor of breast cancer in the Polish population. The contribution of mutations detected in the ATM gene to the development of breast cancer needs further detailed study.
Collapse
Affiliation(s)
- Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| | | | - Magdalena Żurawek
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,University of Life Sciences of Poznan, Poznan, Poland
| | - Jerzy Nowak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Karolina Pesz
- Department of Genetics, Wrocław Medical University, Wroclaw, Poland
| | - Maria Mosor
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
10
|
Abstract
Maintaining the genetic integrity is a key process in cell viability and is enabled by a wide network of repair pathways. When this system is defective, it generates genomic instability and results in an accumulation of chromosomal aberrations and mutations that may be responsible for various clinical phenotypes, including susceptibility to develop cancer. Indeed, these defects can promote not only the initiation of cancer, but also allow the tumor cells to rapidly acquire mutations during their evolution. Several genes are involved in these damage repair systems and particular polymorphisms are predictive of the onset of cancer, the best described of them being BRCA. In addition to its impact on carcinogenesis, the DNA damage repair system is now considered as a therapeutic target of choice for cancer treatment, as monotherapy or in combination with other cytotoxic therapies, such as chemotherapies or radiotherapy. PARP inhibitors are nowadays the best known, but other agents are emerging in the field of clinical research. The enthusiasm in this area is coupled with promising results and a successful collaboration between clinicians and biologists would allow to optimize treatment plans in order to take full advantage of the DNA repair system modulation.
Collapse
|
11
|
Trubicka J, Żemojtel T, Hecht J, Falana K, Piekutowska- Abramczuk D, Płoski R, Perek-Polnik M, Drogosiewicz M, Grajkowska W, Ciara E, Moszczyńska E, Dembowska-Bagińska B, Perek D, Chrzanowska KH, Krajewska-Walasek M, Łastowska M. The germline variants in DNA repair genes in pediatric medulloblastoma: a challenge for current therapeutic strategies. BMC Cancer 2017; 17:239. [PMID: 28376765 PMCID: PMC5379555 DOI: 10.1186/s12885-017-3211-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/22/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The defects in DNA repair genes are potentially linked to development and response to therapy in medulloblastoma. Therefore the purpose of this study was to establish the spectrum and frequency of germline variants in selected DNA repair genes and their impact on response to chemotherapy in medulloblastoma patients. METHODS The following genes were investigated in 102 paediatric patients: MSH2 and RAD50 using targeted gene panel sequencing and NBN variants (p.I171V and p.K219fs*19) by Sanger sequencing. In three patients with presence of rare life-threatening adverse events (AE) and no detected variants in the analyzed genes, whole exome sequencing was performed. Based on combination of molecular and immunohistochemical evaluations tumors were divided into molecular subgroups. Presence of variants was tested for potential association with the occurrence of rare life-threatening AE and other clinical features. RESULTS We have identified altogether six new potentially pathogenic variants in MSH2 (p.A733T and p.V606I), RAD50 (p.R1093*), FANCM (p.L694*), ERCC2 (p.R695C) and EXO1 (p.V738L), in addition to two known NBN variants. Five out of twelve patients with defects in either of MSH2, RAD50 and NBN genes suffered from rare life-threatening AE, more frequently than in control group (p = 0.0005). When all detected variants were taken into account, the majority of patients (8 out of 15) suffered from life-threatening toxicity during chemotherapy. CONCLUSION Our results, based on the largest systematic study performed in a clinical setting, provide preliminary evidence for a link between defects in DNA repair genes and treatment related toxicity in children with medulloblastoma. The data suggest that patients with DNA repair gene variants could need special vigilance during and after courses of chemotherapy.
Collapse
Affiliation(s)
- Joanna Trubicka
- Department of Medical Genetics, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
- Department of Pathology, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Tomasz Żemojtel
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 60-569 Poznan, Poland
| | - Jochen Hecht
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Katarzyna Falana
- Department of Medical Genetics, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Dorota Piekutowska- Abramczuk
- Department of Medical Genetics, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Marta Perek-Polnik
- Department of Oncology, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Monika Drogosiewicz
- Department of Oncology, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Wiesława Grajkowska
- Department of Pathology, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
- Department of Experimental and Clinical Pathology, Mossakowski Medical Research Centre Polish Academy of Sciences, A. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Elżbieta Moszczyńska
- Department of Endocrinology and Diabetology, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Bożenna Dembowska-Bagińska
- Department of Oncology, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Danuta Perek
- Department of Oncology, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Krystyna H. Chrzanowska
- Department of Medical Genetics, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Małgorzata Krajewska-Walasek
- Department of Medical Genetics, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Maria Łastowska
- Department of Pathology, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
- Department of Experimental and Clinical Pathology, Mossakowski Medical Research Centre Polish Academy of Sciences, A. Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
12
|
Nowak J, Świątek-Kościelna B, Kałużna EM, Rembowska J, Dzikiewicz-Krawczyk A, Zawada M, Januszkiewicz-Lewandowska D. Effect of irradiation on DNA synthesis, NBN gene expression and chromosomal stability in cells with NBN mutations. Arch Med Sci 2017; 13:283-292. [PMID: 28261280 PMCID: PMC5332466 DOI: 10.5114/aoms.2017.65452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/22/2015] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION The NBN gene product is part of the MRE11/RAD50/NBN complex, which plays an essential role in genomic stability. In the study we try to answer the question what is the effect of irradiation on DNA synthesis, NBN gene expression and chromosomal stability in cells with homozygous c.657-661del, and heterozygous c.657-661del, p.I171V and p.R215W NBN gene mutations. MATERIAL AND METHODS Immortalized B-lymphocytes with NBN gene mutations were X-ray irradiated at doses of 1, 2, 5 and 8 Gy/min. Radioresistant DNA synthesis rate and the percentage of cells in phase S was analyzed by 3H thymidine and BrdU incorporation assays. NBN gene expression was quantified by real-time PCR with TaqMan fluorescent probe. RESULTS Increasing the irradiation dose resulted in gradual decrease of 3H thymidine incorporation in all cells, but significantly only in homo- and heterozygous c.657-661del cells (p-values < 0.0001). After irradiation the relative expression of NBN was significantly higher in homozygous c.657-661del and heterozygous p.R215W cells as compared to heterozygous c.657-661del, p.I171V and control cells (p < 0.01). All cells with NBN gene mutations showed significantly higher total number of chromosomal aberrations per metaphase as compared to control cells, with the highest number of aberrations in homozygous c.657-661del cells (p < 0.001). CONCLUSIONS The results obtained indicate that homozygous c.657-661del mutation affects cell sensitivity to irradiation. Moreover, homozygous variant is associated with disturbance in the activation of cell cycle checkpoints and with defects in DNA repair. In turn, heterozygous c.657-661del, p.R215W and p.I171V mutations do not substantially alter the radiosensitivity.
Collapse
Affiliation(s)
- Jerzy Nowak
- Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Bogna Świątek-Kościelna
- Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Ewelina M. Kałużna
- Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Jolanta Rembowska
- Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Mariola Zawada
- Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Danuta Januszkiewicz-Lewandowska
- Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- Department of Paediatric Oncology, Haematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
13
|
Bhattacharjee S, Nandi S. Choices have consequences: the nexus between DNA repair pathways and genomic instability in cancer. Clin Transl Med 2016; 5:45. [PMID: 27921283 PMCID: PMC5136664 DOI: 10.1186/s40169-016-0128-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/22/2016] [Indexed: 11/10/2022] Open
Abstract
Background The genome is under constant assault from a multitude of sources that can lead to the formation of DNA double-stand breaks (DSBs). DSBs are cytotoxic lesions, which if left unrepaired could lead to genomic instability, cancer and even cell death. However, erroneous repair of DSBs can lead to chromosomal rearrangements and loss of heterozygosity, which in turn can also cause cancer and cell death. Hence, although the repair of DSBs is crucial for the maintenance of genome integrity the process of repair need to be well regulated and closely monitored. Main body The two most commonly used pathways to repair DSBs in higher eukaryotes include non-homologous end joining (NHEJ) and homologous recombination (HR). NHEJ is considered to be error-prone, intrinsically mutagenic quick fix remedy to seal together the broken DNA ends and restart replication. In contrast, HR is a high-fidelity process that has been very well conserved from phage to humans. Here we review HR and its sub-pathways. We discuss what factors determine the sub pathway choice including etiology of the DSB, chromatin structure at the break site, processing of the DSBs and the mechanisms regulating the sub-pathway choice. We also elaborate on the potential of targeting HR genes for cancer therapy and anticancer strategies. Conclusion The DNA repair field is a vibrant one, and the stage is ripe for scrutinizing the potential treatment efficacy and future clinical applications of the pharmacological inhibitors of HR enzymes as mono- or combinatorial therapy regimes. Electronic supplementary material The online version of this article (doi:10.1186/s40169-016-0128-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Saikat Nandi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
14
|
Naccarati A, Rosa F, Vymetalkova V, Barone E, Jiraskova K, Di Gaetano C, Novotny J, Levy M, Vodickova L, Gemignani F, Buchler T, Landi S, Vodicka P, Pardini B. Double-strand break repair and colorectal cancer: gene variants within 3' UTRs and microRNAs binding as modulators of cancer risk and clinical outcome. Oncotarget 2016; 7:23156-69. [PMID: 26735576 PMCID: PMC5029617 DOI: 10.18632/oncotarget.6804] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/09/2015] [Indexed: 12/25/2022] Open
Abstract
Genetic variations in 3' untranslated regions of target genes may affect microRNA binding, resulting in differential protein expression. microRNAs regulate DNA repair, and single-nucleotide polymorphisms in miRNA binding sites (miRSNPs) may account for interindividual differences in the DNA repair capacity. Our hypothesis is that miRSNPs in relevant DNA repair genes may ultimately affect cancer susceptibility and impact prognosis.In the present study, we analysed the association of polymorphisms in predicted microRNA target sites of double-strand breaks (DSBs) repair genes with colorectal cancer (CRC) risk and clinical outcome. Twenty-one miRSNPs in non-homologous end-joining and homologous recombination pathways were assessed in 1111 cases and 1469 controls. The variant CC genotype of rs2155209 in MRE11A was strongly associated with decreased cancer risk when compared with the other genotypes (OR 0.54, 95% CI 0.38-0.76, p = 0.0004). A reduced expression of the reporter gene was observed for the C allele of this polymorphism by in vitro assay, suggesting a more efficient interaction with potentially binding miRNAs. In colon cancer patients, the rs2155209 CC genotype was associated with shorter survival while the TT genotype of RAD52 rs11226 with longer survival when both compared with their respective more frequent genotypes (HR 1.63, 95% CI 1.06-2.51, p = 0.03 HR 0.60, 95% CI 0.41-0.89, p = 0.01, respectively).miRSNPs in DSB repair genes involved in the maintenance of genomic stability may have a role on CRC susceptibility and clinical outcome.
Collapse
Affiliation(s)
- Alessio Naccarati
- Molecular and Genetic Epidemiology Research Unit, Human Genetics Foundation, Turin, Italy
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
| | - Fabio Rosa
- Genomic Variation in Human Populations and Complex Diseases Research Unit, Human Genetics Foundation, Turin, Italy
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Elisa Barone
- Department of Biology, University of Pisa, Pisa, Italy
| | - Katerina Jiraskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Cornelia Di Gaetano
- Genomic Variation in Human Populations and Complex Diseases Research Unit, Human Genetics Foundation, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jan Novotny
- Department of Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Tomas Buchler
- Department of Oncology, Thomayer Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbara Pardini
- Genomic Variation in Human Populations and Complex Diseases Research Unit, Human Genetics Foundation, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Kałużna EM, Rembowska J, Ziółkowska-Suchanek I, Świątek-Kościelna B, Gabryel P, Dyszkiewicz W, Nowak JS. Heterozygous p.I171V mutation of the NBN gene as a risk factor for lung cancer development. Oncol Lett 2015; 10:3300-3304. [PMID: 26722329 DOI: 10.3892/ol.2015.3715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/17/2015] [Indexed: 11/06/2022] Open
Abstract
The NBN gene, also known as NBS1, is located on the chromosome band 8q21.3, and encodes a 754-amino acid-long protein named nibrin. This protein is a member of the MRE1-RAD50-NBN nuclear complex, and is involved in numerous cell processes essential for maintaining genomic stability. Heterozygous variants in the NBN gene, including p.I171V, c.657del5 and p.R215W, have been described as risk factors for the development of several malignancies. However, there is no report regarding the association of these mutations with lung cancer thus far. Therefore, the present study aimed to evaluate whether there is an association between the heterozygous p.I171V, c.657del5 and p.R215W variants of the NBN gene and the risk of developing lung cancer. The frequency of these variants was estimated in a group of 453 adults diagnosed with non-small cell lung cancer (NSCLC) and in healthy controls (2,400 for p.I171V, 2,090 for c.657del5 and 498 for p.R215W). The p.I171V variant was assessed by restriction fragment length polymorphism analysis of polymerase chain reaction (PCR) products, using MunI (MfeI) restriction enzyme, whereas the c.657del5 and p.R215W variants were assessed by the PCR single-strand conformation polymorphism method. A significantly increased risk of developing lung cancer was observed for the p.I171V variant, which was present in 17 (3.75%) of the 453 cases of lung cancer and in 12 (0.5%) of the 2,400 healthy individuals (odds ratio, 7.759; P<0.0001). The results obtained indicated an association between the p.I171V mutation and the development of lung cancer. Therefore, this variant may be considered a risk factor for NSCLC. Prospective studies with larger groups of patients may reveal the potential impact of the p.I171V variant in the occurrence of lung cancer.
Collapse
Affiliation(s)
- Ewelina Maria Kałużna
- Department of Molecular Pathology, Institute of Human Genetics of the Polish Academy of Sciences, Poznań 60-479, Poland
| | - Jolanta Rembowska
- Department of Molecular Pathology, Institute of Human Genetics of the Polish Academy of Sciences, Poznań 60-479, Poland
| | - Iwona Ziółkowska-Suchanek
- Department of Molecular Pathology, Institute of Human Genetics of the Polish Academy of Sciences, Poznań 60-479, Poland
| | - Bogna Świątek-Kościelna
- Department of Molecular Pathology, Institute of Human Genetics of the Polish Academy of Sciences, Poznań 60-479, Poland
| | - Piotr Gabryel
- Department of Thoracic Surgery, University of Medical Sciences, Poznań 60-569, Poland
| | - Wojciech Dyszkiewicz
- Department of Thoracic Surgery, University of Medical Sciences, Poznań 60-569, Poland
| | - Jerzy Stanisław Nowak
- Department of Molecular Pathology, Institute of Human Genetics of the Polish Academy of Sciences, Poznań 60-479, Poland
| |
Collapse
|
16
|
Robles-Espinoza CD, Velasco-Herrera MDC, Hayward NK, Adams DJ. Telomere-regulating genes and the telomere interactome in familial cancers. Mol Cancer Res 2015; 13:211-22. [PMID: 25244922 PMCID: PMC4278843 DOI: 10.1158/1541-7786.mcr-14-0305] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Telomeres are repetitive sequence structures at the ends of linear chromosomes that consist of double-stranded DNA repeats followed by a short single-stranded DNA protrusion. Telomeres need to be replicated in each cell cycle and protected from DNA-processing enzymes, tasks that cells execute using specialized protein complexes such as telomerase (that includes TERT), which aids in telomere maintenance and replication, and the shelterin complex, which protects chromosome ends. These complexes are also able to interact with a variety of other proteins, referred to as the telomere interactome, to fulfill their biological functions and control signaling cascades originating from telomeres. Given their essential role in genomic maintenance and cell-cycle control, germline mutations in telomere-regulating proteins and their interacting partners have been found to underlie a variety of diseases and cancer-predisposition syndromes. These syndromes can be characterized by progressively shortening telomeres, in which carriers can present with organ failure due to stem cell senescence among other characteristics, or can also present with long or unprotected telomeres, providing an alternative route for cancer formation. This review summarizes the critical roles that telomere-regulating proteins play in cell-cycle control and cell fate and explores the current knowledge on different cancer-predisposing conditions that have been linked to germline defects in these proteins and their interacting partners.
Collapse
Affiliation(s)
| | | | - Nicholas K Hayward
- Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
17
|
DNA Double-Strand Break Repair Inhibitors as Cancer Therapeutics. ACTA ACUST UNITED AC 2015; 22:17-29. [DOI: 10.1016/j.chembiol.2014.11.013] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/26/2014] [Accepted: 11/10/2014] [Indexed: 12/29/2022]
|
18
|
Smolkova B, Dusinska M, Hemminki K. NBN and XRCC3 genetic variants in childhood acute lymphoblastic leukaemia. Cancer Epidemiol 2014; 38:563-8. [PMID: 25176580 DOI: 10.1016/j.canep.2014.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 08/03/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022]
Abstract
Nibrin and DNA repair protein XRCC3 are involved in DNA double-strand break repair. We genotyped seven tagging SNPs in these genes (rs1805794, rs709816; rs1063054; rs7141928, rs1799794, rs861530, rs861539) with the aim to analyse their association with acute lymphoblastic leukaemia (ALL), a disease, that is characterised by elevated genetic instability. Study consisted of 460 paediatric ALL cases and 552 healthy controls. For selection of DNA sequence variants we employed SNP-tagging approach, incorporating the HAPMAP CEU reference panel data. We did not find association of analysed and tagged SNPs and derived haplotypes with the ALL risk thus did not confirm the hypothesis that analysed DNA recombination repair variants account for increased susceptibility to ALL.
Collapse
Affiliation(s)
- Bozena Smolkova
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany.
| | - Maria Dusinska
- Health Effects Laboratory MILK, NILU-Norwegian Institute for Air Research, Kjeller, Norway.
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
19
|
Wessendorf P, Vijg J, Nussenzweig A, Digweed M. Deficiency of the DNA repair protein nibrin increases the basal but not the radiation induced mutation frequency in vivo. Mutat Res 2014; 769:11-6. [PMID: 25771721 DOI: 10.1016/j.mrfmmm.2014.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 11/18/2022]
Abstract
Nibrin (NBN) is a member of a DNA repair complex together with MRE11 and RAD50. The complex is associated particularly with the repair of DNA double strand breaks and with the regulation of cell cycle check points. Hypomorphic mutation of components of the complex leads to human disorders characterised by radiosensitivity and increased tumour occurrence, particularly of the lymphatic system. We have examined here the relationship between DNA damage, mutation frequency and mutation spectrum in vitro and in vivo in mouse models carrying NBN mutations and a lacZ reporter plasmid. We find that NBN mutation leads to increased spontaneous DNA damage in fibroblasts in vitro and high basal mutation rates in lymphatic tissue of mice in vivo. The characteristic mutation spectrum is dominated by single base transitions rather than the deletions and complex rearrangements expected after abortive repair of DNA double strand breaks. We conclude that in the absence of wild type nibrin, the repair of spontaneous errors, presumably arising during DNA replication, makes a major contribution to the basal mutation rate. This applies also to cells heterozygous for an NBN null mutation. Mutation frequencies after irradiation in vivo were not increased in mice with nibrin mutations as might have been expected considering the radiosensitivity of NBS patient cells in vitro. Evidently apoptosis is efficient, even in the absence of wild type nibrin.
Collapse
Affiliation(s)
- Petra Wessendorf
- Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Jan Vijg
- Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, 37 Convent Drive, Room 1106, Bethesda, MD 20892, USA
| | - Martin Digweed
- Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany.
| |
Collapse
|
20
|
Yamamoto Y, Miyamoto M, Tatsuda D, Kubo M, Nakagama H, Nakamura Y, Satoh H, Matsuda K, Watanabe T, Ohta T. A Rare Polymorphic Variant of NBS1 Reduces DNA Repair Activity and Elevates Chromosomal Instability. Cancer Res 2014; 74:3707-15. [DOI: 10.1158/0008-5472.can-13-3037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Gao P, Ma N, Li M, Tian QB, Liu DW. Functional variants in NBS1 and cancer risk: evidence from a meta-analysis of 60 publications with 111 individual studies. Mutagenesis 2013; 28:683-97. [PMID: 24113799 DOI: 10.1093/mutage/get048] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Several potentially functional variants of Nijmegen breakage syndrome 1 (NBS1) have been implicated in cancer risk, but individually studies showed inconclusive results. In this study, a meta-analysis based on 60 publications with a total of 39 731 cancer cases and 64 957 controls was performed. The multivariate method and the model-free method were adopted to determine the best genetic model. It was found that rs2735383 variant genotypes were associated with significantly increased overall risk of cancer under the recessive genetic model [odds ratio (OR) =1.12, 95% confidence interval (CI): 1.02-1.22, P = 0.013]. Similar results were found for rs1063054 under the dominant model effect (OR = 1.12, 95% CI: 1.01-1.23, P = 0.024). The I171V mutation, 657del5 mutation and R215W mutation also contribute to the development of cancer (for I171V, OR = 3.93, 95% CI: 1.68-9.20, P = 0.002; for 657del5, OR = 2.79, 95% CI: 2.17-3.68, P < 0.001; for R215W, OR = 1.77, 95% CI: 1.07-2.91, P = 0.025). From stratification analyses, an effect modification of cancer risks was found in the subgroups of tumour site and ethnicity for rs2735383, whereas the I171V, 657del5 and R215W showed a deleterious effect of cancer susceptibility in the subgroups of tumour site. However, rs1805794, D95N and P266L did not appear to have an effect on cancer risk. These results suggest that rs2735383, rs1063054, I171V, 657del5 and R215W are low-penetrance risk factors for cancer development.
Collapse
Affiliation(s)
- Ping Gao
- Department of Social Medicine and
| | | | | | | | | |
Collapse
|
22
|
Mosor M, Ziółkowska-Suchanek I, Nowicka K, Dzikiewicz-Krawczyk A, Januszkiewicz–Lewandowska D, Nowak J. Germline variants in MRE11/RAD50/NBN complex genes in childhood leukemia. BMC Cancer 2013; 13:457. [PMID: 24093751 PMCID: PMC3851537 DOI: 10.1186/1471-2407-13-457] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 09/18/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The MRE11, RAD50, and NBN genes encode proteins of the MRE11-RAD50-NBN (MRN) complex involved in cellular response to DNA damage and the maintenance of genome stability. In our previous study we showed that the germline p.I171V mutation in NBN may be considered as a risk factor in the development of childhood acute lymphoblastic leukemia (ALL) and some specific haplotypes of that gene may be associated with childhood leukemia. These findings raise important questions about the role of mutations in others genes of the MRN complex in childhood leukemia. The aim of this study was to answer the question whether MRE11 and RAD50 alterations may be associated with childhood ALL or AML. METHODS We estimated the frequency of constitutional mutations and polymorphisms in selected regions of MRE11, RAD50, and NBN in the group of 220 children diagnosed with childhood leukemias and controls (n=504/2200). The analysis was performed by specific amplification of region of interest by PCR and followed by multi-temperature single-strand conformation polymorphism (PCR-MSSCP) technique. We performed two molecular tests to examine any potential function of the detected the c.551+19G>A SNP in RAD50 gene. To our knowledge, this is the first analysis of the MRE11, RAD50 and NBN genes in childhood leukemia. RESULTS The frequency of either the AA genotype or A allele of RAD50_rs17166050 were significantly different in controls compared to leukemia group (ALL+AML) (p<0.0019 and p<0.0019, respectively). The cDNA analysis of AA or GA genotypes carriers has not revealed evidence of splicing abnormality of RAD50 pre-mRNA. We measured the allelic-specific expression of G and A alleles at c.551+19G>A and the statistically significant overexpression of the G allele has been observed. Additionally we confirmed the higher incidence of the p.I171V mutation in the leukemia group (7/220) than among controls (12/2400) (p<0.0001). CONCLUSION The formerly reported sequence variants in the RAD50 and MRE11 gene may not constitute a risk factor of childhood ALL in Polish population. The RAD50_rs17166050 variant allele is linked to decreased ALL risk (p<0.0009, OR=0.6358 (95%CI: 0.4854-0.8327)). Despite the fact that there is no splicing abnormality in carriers of the variant allele but an excess of the G over the A allele was consistently observed. This data demonstrate that some specific alternations of the RAD50 gene may be associated with childhood ALL.
Collapse
Affiliation(s)
- Maria Mosor
- Department of Molecular Pathology, Institute of Human Genetics Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
| | - Iwona Ziółkowska-Suchanek
- Department of Molecular Pathology, Institute of Human Genetics Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
| | - Karina Nowicka
- Department of Molecular Pathology, Institute of Human Genetics Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
| | - Agnieszka Dzikiewicz-Krawczyk
- Department of Molecular Pathology, Institute of Human Genetics Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
| | - Danuta Januszkiewicz–Lewandowska
- Department of Molecular Pathology, Institute of Human Genetics Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
- Pediatric Oncology, Hematology and Bone Marrow Transplantation Department, Poznań University of Medical Sciences, Poznań, Poland
| | - Jerzy Nowak
- Department of Molecular Pathology, Institute of Human Genetics Polish Academy of Sciences, Strzeszyńska 32, 60-479, Poznań, Poland
| |
Collapse
|
23
|
Ziółkowska-Suchanek I, Mosor M, Wierzbicka M, Rydzanicz M, Baranowska M, Nowak J. The MRN protein complex genes: MRE11 and RAD50 and susceptibility to head and neck cancers. Mol Cancer 2013; 12:113. [PMID: 24079363 PMCID: PMC3856607 DOI: 10.1186/1476-4598-12-113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The members of MRE11/RAD50/NBN (MRN) protein complex participates in DNA double-strand break repair and DNA-damage checkpoint activation. We have previously shown that the p.I171V NBN gene mutation may contribute to the development of laryngeal cancer. This study tested the hypothesis that variants of the MRE11 and RAD50 genes, previously described as cancer risk factors, predispose to increased susceptibility to head and neck cancer. FINDINGS In this study we analyzed the RAD50 and MRE11 genes in 358 patients: 175 with a single laryngeal cancer (LC), 115 with multiple primary tumors but one malignancy (primary or second) localized in the larynx (MPT-LC), 68 patients with multiple primary tumors localized in the head or neck (MPT) and 506 controls. No carriers of previously reported mutation in the MRE11 or RAD50 gene (particularly the pathogenic c.687delT) were detected in the present study. We identified the p.V127I variant (2/175 LC, 2/506 controls; OR=2.91; 95% CI 0.41-20.85) and p.V315L variant (2/115 MPT-LC, 1/506 controls; OR=8.96; 95% CI 0.81-99.68) of the RAD50 gene. CONCLUSIONS Our data indicated that previously described common genetic variations in the MRE11 and RAD50 genes do not contribute to an increased risk of laryngeal cancer and second primary tumors localized in the head and neck. Prospective studies with larger groups of patients may reveal the possible impact of these genes in tumor occurrence.
Collapse
Affiliation(s)
- Iwona Ziółkowska-Suchanek
- Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 St, 60-479 Poznań, Poland
| | - Maria Mosor
- Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 St, 60-479 Poznań, Poland
| | - Małgorzata Wierzbicka
- Department of Otolaryngology and Laryngeal Oncology, K. Marcinkowski University of Medical Sciences, Przybyszewskiego 49 St, 60-355, Poznań, Poland
| | - Małgorzata Rydzanicz
- Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 St, 60-479 Poznań, Poland
| | - Marta Baranowska
- Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 St, 60-479 Poznań, Poland
| | - Jerzy Nowak
- Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 St, 60-479 Poznań, Poland
| |
Collapse
|
24
|
Zhang ZH, Yang LS, Huang F, Hao JH, Su PY, Sun YH. Current Evidence on the Relationship Between Two Polymorphisms in the NBS1 Gene and Breast Cancer Risk: a Meta-analysis. Asian Pac J Cancer Prev 2012; 13:5375-9. [DOI: 10.7314/apjcp.2012.13.11.5375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
Dzikiewicz-Krawczyk A, Mosor M, Januszkiewicz D, Nowak J. Impact of heterozygous c.657-661del, p.I171V and p.R215W mutations in NBN on nibrin functions. Mutagenesis 2011; 27:337-43. [PMID: 22131123 DOI: 10.1093/mutage/ger084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nibrin, product of the NBN gene, together with MRE11 and RAD50 is involved in DNA double-strand breaks (DSBs) sensing and repair, induction of apoptosis and cell cycle control. Biallelic NBN mutations cause the Nijmegen breakage syndrome, a chromosomal instability disorder characterised by, among other things, radiosensitivity, immunodeficiency and an increased cancer risk. Several studies have shown an association of heterozygous c.657-661del, p.I171V and p.R215W mutations in the NBN gene with a variety of malignancies but the data are controversial. Little is known, however, whether and to what extent do these mutations in heterozygous state affect nibrin functions. We examined frequency of chromatid breaks, DSB repair, defects in S-phase checkpoint and radiosensitivity in X-ray-irradiated cells from control individuals, NBS patients and heterozygous carriers of the c.657-661del, p.I171V and p.R215W mutations. While cells homozygous for c.657-661del displayed a significantly increased number of chromatid breaks and residual γ-H2AX foci, as well as abrogation of the intra-S-phase checkpoint following irradiation, which resulted in increased radiosensitivity, cells with heterozygous c.657-661del, p.I171V and p.R215W mutations behaved similarly to control cells. Significant differences in the frequency of spontaneous and ionising radiation-induced chromatid breaks and the level of persistent γ-H2AX foci were observed when comparing control and mutant cells heterozygous for c.657-661del. However, it is still possible that heterozygous NBN mutations may contribute to cancer development.
Collapse
|
26
|
Abstract
NBN gene is considered as one of the low-to-moderate cancer susceptibility gene. At least 4 germline NBN mutations have been found in several malignancies in adults. In our studies, we observed the high incidence of germline mutation I171V of NBN gene in breast, colorectal, larynx cancer, and in multiple primary tumors. In this study, we would like to answer the question whether I171V germline mutation of NBN gene may constitute risk factor for solid tumors in children. The frequency of this mutation has been analyzed in patients with neuroblastoma (n=66), Wilms tumor (n=54), medulloblastoma (n=57), and rhabdomyosarcoma (n=82) hospitalized in Pediatric Oncology, Hematology and Bone Marrow Transplantation Department in the years between 1987 and 2010. About 2947 anonymous blood samples collected on Guthrie cards drawn from the newborn screening program of the Wielkopolska region have been used as controls. All the patients and controls came from the same geographical region. I171V mutation of the NBN gene has been observed in 5 controls. Among children with solid tumors only in 1 child with medulloblastoma I171V variant has been found. In conclusion, I171V germline mutation in contrary to adults cannot be considered as a risk factor for children malignancies. However, owing to low number of patients with solid tumors the possibility of a Type II error may exist.
Collapse
|
27
|
Ziółkowska-Suchanek I, Mosor M, Wierzbicka M, Fichna M, Rydzanicz M, Nowak J. Association of polymorphisms and haplotypes of the NBN gene with laryngeal cancer and multiple primary tumors of the head and neck. Head Neck 2011; 34:376-83. [DOI: 10.1002/hed.21741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2011] [Indexed: 11/06/2022] Open
|
28
|
Mosor M, Ziółkowska-Suchanek I, Roznowski K, Baranowska M, Januszkiewicz-Lewandowska D, Nowak J. RAD50 gene mutations are not likely a risk factor for breast cancer in Poland. Breast Cancer Res Treat 2010; 123:607-9. [PMID: 20571869 DOI: 10.1007/s10549-010-0992-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
|
29
|
Ciara E, Piekutowska-Abramczuk D, Popowska E, Grajkowska W, Barszcz S, Perek D, Dembowska-Bagińska B, Perek-Polnik M, Kowalewska E, Czajńska A, Syczewska M, Czornak K, Krajewska-Walasek M, Roszkowski M, Chrzanowska KH. Heterozygous germ-line mutations in the NBN gene predispose to medulloblastoma in pediatric patients. Acta Neuropathol 2010; 119:325-34. [PMID: 19908051 DOI: 10.1007/s00401-009-0608-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/30/2009] [Accepted: 10/31/2009] [Indexed: 01/23/2023]
Abstract
The NBN (NBS1) gene belongs to a group of double-strand break repair genes. Mutations in any of these genes cause genome instability syndromes and contribute to carcinogenesis. NBN gene mutations cause increased tumor risk in Nijmegen breakage syndrome (NBS) homozygotes as well as in NBN heterozygotes. NBS patients develop different types of malignancies; among solid tumors, medulloblastoma (MB), an embryonal tumor of the cerebellum, has been reported most frequently. The majority of medulloblastomas occur sporadically, some of them manifest within familial cancer syndromes. Several signaling pathways are known to be engaged in hereditary and sporadic MB. The aim of our study was to identify mutations in selected exons of the NBN gene and to determine the frequency of the most common NBN gene mutations in pediatric patients with different types of medulloblastoma. We screened a total of 104 patients with MB and identified 7 heterozygous carriers (6.7%) of two different germ-line mutations of NBN gene; all of them had classic MB. Our results indicate that heterozygous carriers of the germ-line NBN gene mutations (c.511A>G and c.657_661del5) may exhibit increased susceptibility to developing MB. The risk of medulloblastoma is estimated to be 3.0 (for c.511A>G) and 4.86 (for c.657_661del5) times higher than in the general Polish population (p<0.05). These results suggest that heterozygous NBN germ-line mutations may contribute to the etiology of medulloblastoma.
Collapse
Affiliation(s)
- Elżbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Schuetz JM, MacArthur AC, Leach S, Lai AS, Gallagher RP, Connors JM, Gascoyne RD, Spinelli JJ, Brooks-Wilson AR. Genetic variation in the NBS1, MRE11, RAD50 and BLM genes and susceptibility to non-Hodgkin lymphoma. BMC MEDICAL GENETICS 2009; 10:117. [PMID: 19917125 PMCID: PMC2788526 DOI: 10.1186/1471-2350-10-117] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 11/16/2009] [Indexed: 11/30/2022]
Abstract
BACKGROUND Translocations are hallmarks of non-Hodgkin lymphoma (NHL) genomes. Because lymphoid cell development processes require the creation and repair of double stranded breaks, it is not surprising that disruption of this type of DNA repair can cause cancer. The members of the MRE11-RAD50-NBS1 (MRN) complex and BLM have central roles in maintenance of DNA integrity. Severe mutations in any of these genes cause genetic disorders, some of which are characterized by increased risk of lymphoma. METHODS We surveyed the genetic variation in these genes in constitutional DNA of NHL patients by means of gene re-sequencing, then conducted genetic association tests for susceptibility to NHL in a population-based collection of 797 NHL cases and 793 controls. RESULTS 114 SNPs were discovered in our sequenced samples, 61% of which were novel and not previously reported in dbSNP. Although four variants, two in RAD50 and two in NBS1, showed association results suggestive of an effect on NHL, they were not significant after correction for multiple tests. CONCLUSION These results suggest an influence of RAD50 and NBS1 on susceptibility to diffuse large B-cell lymphoma and marginal zone lymphoma. Larger association and functional studies could confirm such a role.
Collapse
Affiliation(s)
- Johanna M Schuetz
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Amy C MacArthur
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Stephen Leach
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Agnes S Lai
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
| | | | - Joseph M Connors
- Division of Medical Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Randy D Gascoyne
- Pathology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - John J Spinelli
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Angela R Brooks-Wilson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
31
|
Piekutowska-Abramczuk D, Ciara E, Popowska E, Grajkowska W, Dembowska-Bagińska B, Kowalewska E, Czajńska A, Perek-Polnik M, Roszkowski M, Syczewska M, Krajewska-Walasek M, Perek D, Chrzanowska KH. The frequency of NBN molecular variants in pediatric astrocytic tumors. J Neurooncol 2009; 96:161-8. [PMID: 19629396 DOI: 10.1007/s11060-009-9958-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
Abstract
Gliomas, particularly those of astrocytic origin, are the most frequent primary central nervous system tumors that develop in children. The majority of them are benign and slow growing, with relatively good prognosis. Several genomic and gene alterations are known to be involved in astrocytoma development, but the precise mechanisms remain poorly understood. The NBN gene, which participates in DNA double-strand break repair and maintenance of genome stability, has been postulated to be a susceptibility factor for a number of cancers. Here we report the results of NBN gene analyses performed in 127 children with various astrocytic tumors. PCR-SSCP analysis followed by DNA sequencing was used for molecular variant screening. Three carriers (2.37%) of different germline mutations on one NBN allele were found. The common Slavic deletion c.657_661del5 (p.K219fsX19) was detected in a patient with pilocytic astrocytoma; a known mutation, c.643C>T (p.R215W), and a new substitution, c.565C>G (p.Q189E), were identified in two patients with primary glioblastoma. The risk of developing astrocytic malignancies is estimated to be 1.33 times higher for c.657_661del5 and 3.2 times higher for c.643C>T than in the general Polish population (P > 0.05). Because of the low frequency of the mutations identified in the studied group, we were unable to determine the exact role of NBN in the development of astrocytoma in children. The presence of two potentially pathogenic NBN molecular variants among 16 glioblastoma cases (12.5%) could be a remarkable finding in our study. We thus cannot exclude a possible role of NBN in the tumorigenesis of a certain type of astrocytic tumors.
Collapse
Affiliation(s)
- Dorota Piekutowska-Abramczuk
- Department of Medical Genetics, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Desjardins S, Beauparlant JC, Labrie Y, Ouellette G, Durocher F. Variations in the NBN/NBS1 gene and the risk of breast cancer in non-BRCA1/2 French Canadian families with high risk of breast cancer. BMC Cancer 2009; 9:181. [PMID: 19523210 PMCID: PMC2702391 DOI: 10.1186/1471-2407-9-181] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 06/12/2009] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The Nijmegen Breakage Syndrome is a chromosomal instability disorder characterized by microcephaly, growth retardation, immunodeficiency, and increased frequency of cancers. Familial studies on relatives of these patients indicated that they also appear to be at increased risk of cancer. METHODS In a candidate gene study aiming at identifying genetic determinants of breast cancer susceptibility, we undertook the full sequencing of the NBN gene in our cohort of 97 high-risk non-BRCA1 and -BRCA2 breast cancer families, along with 74 healthy unrelated controls, also from the French Canadian population. In silico programs (ESEfinder, NNSplice, Splice Site Finder and MatInspector) were used to assess the putative impact of the variants identified. The effect of the promoter variant was further studied by luciferase gene reporter assay in MCF-7, HEK293, HeLa and LNCaP cell lines. RESULTS Twenty-four variants were identified in our case series and their frequency was further evaluated in healthy controls. The potentially deleterious p.Ile171Val variant was observed in one case only. The p.Arg215Trp variant, suggested to impair NBN binding to histone gamma-H2AX, was observed in one breast cancer case and one healthy control. A promoter variant c.-242-110delAGTA displayed a significant variation in frequency between both sample sets. Luciferase reporter gene assay of the promoter construct bearing this variant did not suggest a variation of expression in the MCF-7 breast cancer cell line, but indicated a reduction of luciferase expression in both the HEK293 and LNCaP cell lines. CONCLUSION Our analysis of NBN sequence variations indicated that potential NBN alterations are present, albeit at a low frequency, in our cohort of high-risk breast cancer cases. Further analyses will be needed to fully ascertain the exact impact of those variants on breast cancer susceptibility, in particular for variants located in NBN promoter region.
Collapse
Affiliation(s)
- Sylvie Desjardins
- Cancer Genomics Laboratory, Oncology and Molecular Endocrinology Research Centre, Centre Hospitalier Universitaire de Québec and Laval University, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
33
|
Mosor M, Ziółkowska I, Januszkiewicz-Lewandowska D, Nowak J. Polymorphisms and haplotypes of the NBS1 gene in childhood acute leukaemia. Eur J Cancer 2008; 44:2226-32. [PMID: 18691878 DOI: 10.1016/j.ejca.2008.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/04/2008] [Accepted: 06/20/2008] [Indexed: 11/26/2022]
Abstract
DNA repair gene polymorphisms and mutations may influence cancer risk. The product of the NBS1 gene, nibrin, is functionally involved in the double-strand DNA break repair system. Heterozygous, germline mutations of the NBS1 gene are associated with an increased risk of tumours. Thus, common polymorphism and haplotypes of NBS1 may contribute to the risk of cancer. This study verified whether polymorphisms of the NBS1 gene may influence susceptibility to the development of childhood acute leukaemia. We genotyped six polymorphisms of the NBS1 gene in 157 children with acute leukaemia and 275 controls. The TT genotype of c.2071-30A>T polymorphism was higher in leukaemia patients than in controls. Genotyping data from the six polymorphic loci in NBS1 in leukaemia patients and controls were used to impute haplotypes. Two of the evaluated haplotypes were associated with significantly increased leukaemia risk (P=0.0038 and P<0.0001). Our results suggest that some specific haplotypes of the NBS1 gene may be associated with childhood leukaemia.
Collapse
Affiliation(s)
- Maria Mosor
- Institute of Human Genetics, Polish Academy of Sciences, Department of Molecular Pathology, ul. Strzeszyńska 32, Poznań, Poland.
| | | | | | | |
Collapse
|
34
|
Nowak J, Mosor M, Ziółkowska I, Wierzbicka M, Pernak-Schwarz M, Przyborska M, Roznowski K, Pławski A, Słomski R, Januszkiewicz D. Heterozygous carriers of the I171V mutation of the NBS1 gene have a significantly increased risk of solid malignant tumours. Eur J Cancer 2008; 44:627-30. [PMID: 18280732 DOI: 10.1016/j.ejca.2008.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 01/08/2008] [Indexed: 11/24/2022]
Abstract
Homozygous mutation 657del5 within the NBS1 gene is responsible for the majority of Nijmegen breakage syndrome (NBS) cases. NBS patients are characterised by increased susceptibility to malignancies mainly of lymphoid origin. Recently it has been postulated that heterozygous carriers of 657del5 NBS1 mutation are at higher risk of cancer development. The aim of the study was to analyse the frequency of I171V mutation in NBS1 gene in 270 women with breast cancer, 176 patients with larynx cancer, 81 with second primary tumours of head and neck, 131 with colorectal carcinoma and 600 healthy individuals. I171V mutation was present in 17 cancer patients compared with only one in healthy individuals. This constitutes 2.58% in studied patients with malignancies and 0.17% in the control group (P=0.0002; relative risk 1.827; odds ratio 15.886; 95% confidence interval 2.107-119.8). Since DNA was isolated from non malignant cells, all mutations found in cancer patients appeared to be of germinal origin. It can be concluded that NBS1 allele I171V may be a general susceptibility gene in solid tumours.
Collapse
Affiliation(s)
- Jerzy Nowak
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań Strzeszyńska 32, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
NBS1 variant I171V and breast cancer risk. Breast Cancer Res Treat 2007; 112:75-9. [PMID: 18049891 DOI: 10.1007/s10549-007-9820-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 11/08/2007] [Indexed: 01/31/2023]
Abstract
The NBS1/p95 protein has a pivotal role in the sensing and repair of chromosome breaks. A missense mutation in the NBS1 gene, I171V, has recently been associated with a ninefold increased risk of breast cancer in Polish patients. Positive associations have also been reported for leukaemia and larynx cancer suggesting that I171V could be a more general susceptibility factor for malignancies. We investigated the prevalence of this mutation in two large hospital-based case-control series from Germany and from the Republic of Belarus. The I171V substitution was detected in 20/1,636 Byelorussian breast cancer patients and in 18/1,014 Byelorussian controls (OR: 0.68; 95%CI: 0.36-1.30, P=0.3). The I171V substitution was furthermore detected in 10/1,048 German breast cancer patients and in 7/1,017 German controls (OR: 1.39; 95%CI: 0.53-3.67, P=0.7). There were no significant differences between I171V carriers and non-carriers among the cases with regard to age at diagnosis, family history or bilateral occurrence of disease. A meta-analysis of all hitherto available studies did not reveal a difference in the prevalence of I171V between breast cancer cases and controls (OR: 1.05; 95%CI: 0.64-1.74, P=0.9). We conclude that the I171V substitution is unlikely to constitute a strong risk factor for breast cancer in our study populations.
Collapse
|
36
|
Ziólkowska I, Mosor M, Wierzbicka M, Rydzanicz M, Pernak-Schwarz M, Nowak J. Increased risk of larynx cancer in heterozygous carriers of the I171V mutation of the NBS1 gene. Cancer Sci 2007; 98:1701-5. [PMID: 17894553 PMCID: PMC11158328 DOI: 10.1111/j.1349-7006.2007.00594.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The high incidence of multiple primary tumors (MPT) is a significant problem in head and neck tumor treatment. Recent studies suggest that carriers of heterozygous mutations in the NBS1 gene have an increased risk of malignant tumor development. The aim of our research was to assess the frequency of NBS1 mutations in patients with larynx cancer only (LC) and with MPT. The MPT group consisted of patients with one cancer localized to the larynx (primary or second) and another at another site. DNA from 175 patients with LC and 93 patients with MPT was analyzed using the single-strand conformation polymorphism method and direct sequencing. We found nine carriers of the I171V mutation among these 268 cancer patients and only one carrier among 500 population controls (0.2%). Four carriers of the I171V mutation were detected among 175 LC patients (2.3%) and five among 93 patients with MPT (5.4%). The frequencies of the I171V mutation carriers in LC and MPT patients were significantly higher than in controls (odds ratio [OR] = 11.7, confidence interval [CI] 1.3-105.2, P = 0.0175 and OR = 28.35, CI 3.27-245.7, P = 0.0005, respectively). In one individual with LC, a novel molecular variant, c.1222 A > G (p.K408E), was identified. No carriers of R215W or 657del5 NBS1 mutations were found in the present study. These findings imply that heterozygous carriers of the I171V mutation are prone to the development of larynx cancer and may, in addition, display an increased risk of second tumors at other sites.
Collapse
Affiliation(s)
- Iwona Ziólkowska
- Department of Molecular Pathology, Institute of Human Genetics, Polish Academy of Sciences, Strzeszyñska St 32, Poznan 60-479, Poland.
| | | | | | | | | | | |
Collapse
|
37
|
Roznowski K, Januszkiewicz-Lewandowska D, Mosor M, Pernak M, Litwiniuk M, Nowak J. I171V germline mutation in the NBS1 gene significantly increases risk of breast cancer. Breast Cancer Res Treat 2007; 110:343-8. [PMID: 17899368 DOI: 10.1007/s10549-007-9734-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 08/09/2007] [Indexed: 10/22/2022]
Abstract
Nijmegen Breakage Syndrome (NBS) is a rare autosomal, recessive disease caused by homozygous mutations in the NBS1 gene. The most common deletion of 5 bp (657del5) in exon 6, which affects mostly the population of Central Europe is observed. Among the typical features of this disorder is that NBS patients experience a high incidence of lymphoid malignancies as well. An increased risk of solid tumors development for 657del5 carriers was the reason to investigate the role of NBS1 gene as a susceptible one for the breast cancer. The purpose of this work is to identify mutations in all 16 exons of the NBS1 gene in the group of the patients with diagnosed breast cancer and the control group of healthy individuals. In the group of 270 women with breast cancer, seven cases of mutated NBS1 gene were revealed. In the subgroup presenting mutated NBS1 gene, the mutation I171V in 5th exon occurred in five cases. It is the first such a discovery concerning breast cancer patients because this mutation had been previously observed only in the course of lymphoid or hematological malignancies. The rate of I171V mutation in the group of breast cancer patients was significantly higher than in the controls (OR: 9.42; 95% CI: 1.09-81.05; P = 0.02). The conclusion is that heterozygous germline mutation I171V in NBS1 gene is a significant risk factor for breast cancer development. It concerns especially the women whose first degree relatives had a previously diagnosed breast cancer (OR: 6.00; 95% CI: 0.98-38.07; P = 0.04). The histopathological and clinical features of breast cancer with I171V mutation suggest accumulation of the negative prognostic factors. The treatment's results however were unexpectedly satisfactory, that is why further investigations are necessary to assess the role of I171V mutation in NBS1 gene as a prognostic and predictive factor for breast cancer.
Collapse
|