1
|
Golzari-Sorkheh M, Yoganathan K, Chen ELY, Singh J, Zúñiga-Pflücker JC. T Cell Development: From T-Lineage Specification to Intrathymic Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:81-137. [PMID: 40067585 DOI: 10.1007/978-3-031-77921-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
T cell development occurs in the thymus in both mice and humans. Upon entry into the thymus, bone marrow-derived blood-borne progenitors receive instructive signals, including Notch signaling, to eliminate their potential to develop into alternative immune lineages while committing to the T cell fate. Upon T-lineage commitment, developing T cells receive further instructional cues to generate different T cell sublineages, which together possess diverse immunological functions to provide host immunity. Over the years, numerous studies have contributed to a greater understanding of key thymic signals that govern T cell differentiation and subset generation. Here, we review these critical signaling factors that govern the different stages of both mouse and human T cell development, while also focusing on the transcriptional changes that mediate T cell identity and diversity.
Collapse
Affiliation(s)
- Mahdieh Golzari-Sorkheh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kogulan Yoganathan
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Edward L Y Chen
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jastaranpreet Singh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | | |
Collapse
|
2
|
Sun X, Liu X, Wang C, Ren Z, Yang X, Liu Y. Deciphering Mechanisms of Adipocyte Differentiation in Abdominal Fat of Broilers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25403-25413. [PMID: 39483088 PMCID: PMC11565640 DOI: 10.1021/acs.jafc.4c06867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
The excessive deposition of abdominal fat tissue (AFT) in broilers has emerged as a major concern in the poultry industry. Despite some progress in recent years, the molecular mechanisms underlying AFT development remain ambiguous. The current study combined RNA-seq with transposase-accessible chromatin sequencing (ATAC-seq) to map the dynamic profiling of chromatin accessibility and transcriptional reprogramming in AFT adipocyte differentiation in broilers at day 3 (D3) and D14. Our results found that the levels of CDK1 and PCNA were down-regulated at D14, D28, and D42 compared to D3, while the levels of C/EBPα and FABP4 were up-regulated at D14 and D42 compared to D3. Meanwhile, PPARγ was significantly up-regulated at D28 and D42. RNA-seq of AFT identified 1705 up-regulated and 1112 down-regulated differential expression genes (DEGs) between D3 and D14. Pathways based on up-regulated DEGs mainly enriched some pathways related to adipocyte differentiation, while down-regulated DEGs pointed to DNA replication, cell cycle, and gap junction. Gene set enrichment analysis (GSEA) revealed that DNA replication and the cell cycle were down-regulated at D14, while the insulin signaling pathway was up-regulated. In the OA-induced immortalized chicken preadipocyte (ICP2) model, protein dynamic changes were consistent with AFT from D3 to D14. Same pathways were enriched in ICP2. In addition, based on overlapped DEGs from AFT and ICP2, enriched pathways related to adipocyte differentiation or proliferation mentioned above were all involved. A total of 1600 gain and 16727 loss differential peaks (DPs) were identified in ICP2 by ATAC-seq. Predicted genes from DPs at the promoter regions were enriched in glycerophospholipid metabolism, TGF-β signaling, FoxO signaling, and ubiquitin-mediated proteolysis. DNA motifs predicted 159 transcription factors (TFs) based on gain and loss peaks from the promoter regions, where 1 and 10 TFs were overlapped with up or down TFs from DEGs. Overall, this study presents a framework for the comprehension of the epigenetic regulatory mechanisms of adipocyte differentiation and identifies candidate genes and potential TFs involved in AFT adipocyte differentiation in broilers.
Collapse
Affiliation(s)
- Xi Sun
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoying Liu
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Chaohui Wang
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhouzheng Ren
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaojun Yang
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Yanli Liu
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
3
|
Srinivasan J, Vasudev A, Shasha C, Selden HJ, Perez E, LaFleur B, Sinari SA, Krueger A, Richie ER, Ehrlich LIR. The initial age-associated decline in early T-cell progenitors reflects fewer pre-thymic progenitors and altered signals in the bone marrow and thymus microenvironments. Aging Cell 2023; 22:e13870. [PMID: 37221658 PMCID: PMC10410006 DOI: 10.1111/acel.13870] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
Age-related thymus involution results in decreased T-cell production, contributing to increased susceptibility to pathogens and reduced vaccine responsiveness. Elucidating mechanisms underlying thymus involution will inform strategies to restore thymopoiesis with age. The thymus is colonized by circulating bone marrow (BM)-derived thymus seeding progenitors (TSPs) that differentiate into early T-cell progenitors (ETPs). We find that ETP cellularity declines as early as 3 months (3MO) of age in mice. This initial ETP reduction could reflect changes in thymic stromal niches and/or pre-thymic progenitors. Using a multicongenic progenitor transfer approach, we demonstrate that the number of functional TSP/ETP niches does not diminish with age. Instead, the number of pre-thymic lymphoid progenitors in the BM and blood is substantially reduced by 3MO, although their intrinsic ability to seed and differentiate in the thymus is maintained. Additionally, Notch signaling in BM lymphoid progenitors and in ETPs diminishes by 3MO, suggesting reduced niche quality in the BM and thymus contribute to the early decline in ETPs. Together, these findings indicate that diminished BM lymphopoiesis and thymic stromal support contribute to an initial reduction in ETPs in young adulthood, setting the stage for progressive age-associated thymus involution.
Collapse
Affiliation(s)
- Jayashree Srinivasan
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTexasUnited States
| | - Anusha Vasudev
- Department of Epigenetics and Molecular CarcinogenesisThe University of Texas MD Anderson Cancer CenterHoustonTexasUnited States
| | - Carolyn Shasha
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer CenterSeattleWashingtonUnited States
| | - Hilary J. Selden
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTexasUnited States
| | - Encarnacion Perez
- Department of Epigenetics and Molecular CarcinogenesisThe University of Texas MD Anderson Cancer CenterHoustonTexasUnited States
| | - Bonnie LaFleur
- Center for Biomedical Informatics and StatisticsThe University of ArizonaTucsonArizonaUnited States
| | - Shripad A. Sinari
- Center for Biomedical Informatics and StatisticsThe University of ArizonaTucsonArizonaUnited States
| | - Andreas Krueger
- Molecular ImmunologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Ellen R. Richie
- Department of Epigenetics and Molecular CarcinogenesisThe University of Texas MD Anderson Cancer CenterHoustonTexasUnited States
| | - Lauren I. R. Ehrlich
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTexasUnited States
- Department of OncologyLivestrong Cancer Institutes, Dell Medical School at The University of Texas at AustinAustinTexasUnited States
| |
Collapse
|
4
|
Li Y, Azmi AS, Mohammad RM. Deregulated transcription factors and poor clinical outcomes in cancer patients. Semin Cancer Biol 2022; 86:122-134. [PMID: 35940398 DOI: 10.1016/j.semcancer.2022.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 01/27/2023]
Abstract
Transcription factors are a group of proteins, which possess DNA-binding domains, bind to DNA strands of promoters or enhancers, and initiate transcription of genes with cooperation of RNA polymerase and other co-factors. They play crucial roles in regulating transcription during embryogenesis and development. Their physiological status in different cell types is also important to maintain cellular homeostasis. Therefore, any deregulation of transcription factors will lead to the development of cancer cells and tumor progression. Based on their functions in cancer cells, transcription factors could be either oncogenic or tumor suppressive. Furthermore, transcription factors have been shown to modulate cancer stem cells, epithelial-mesenchymal transition (EMT) and drug response; therefore, measuring deregulated transcription factors is hypothesized to predict treatment outcomes of patients with cancers and targeting deregulated transcription factors could be an encouraging strategy for cancer therapy. Here, we summarize the current knowledge of major deregulated transcription factors and their effects on causing poor clinical outcome of patients with cancer. The information presented here will help to predict the prognosis and drug response and to design novel drugs and therapeutic strategies for the treatment of cancers by targeting deregulated transcription factors.
Collapse
Affiliation(s)
- Yiwei Li
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Asfar S Azmi
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramzi M Mohammad
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
5
|
Axin2/Conductin Is Required for Normal Haematopoiesis and T Lymphopoiesis. Cells 2022; 11:cells11172679. [PMID: 36078085 PMCID: PMC9454631 DOI: 10.3390/cells11172679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
The development of T lymphocytes in the thymus and their stem cell precursors in the bone marrow is controlled by Wnt signaling in strictly regulated, cell-type specific dosages. In this study, we investigated levels of canonical Wnt signaling during hematopoiesis and T cell development within the Axin2-mTurquoise2 reporter. We demonstrate active Wnt signaling in hematopoietic stem cells (HSCs) and early thymocytes, but also in more mature thymic subsets and peripheral T lymphocytes. Thymic epithelial cells displayed particularly high Wnt signaling, suggesting an interesting crosstalk between thymocytes and thymic epithelial cells (TECs). Additionally, reporter mice allowed us to investigate the loss of Axin2 function, demonstrating decreased HSC repopulation upon transplantation and the partial arrest of early thymocyte development in Axin2Tg/Tg full mutant mice. Mechanistically, loss of Axin2 leads to supraphysiological Wnt levels that disrupt HSC differentiation and thymocyte development.
Collapse
|
6
|
Heydari T, A. Langley M, Fisher CL, Aguilar-Hidalgo D, Shukla S, Yachie-Kinoshita A, Hughes M, M. McNagny K, Zandstra PW. IQCELL: A platform for predicting the effect of gene perturbations on developmental trajectories using single-cell RNA-seq data. PLoS Comput Biol 2022; 18:e1009907. [PMID: 35213533 PMCID: PMC8906617 DOI: 10.1371/journal.pcbi.1009907] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/09/2022] [Accepted: 02/08/2022] [Indexed: 01/03/2023] Open
Abstract
The increasing availability of single-cell RNA-sequencing (scRNA-seq) data from various developmental systems provides the opportunity to infer gene regulatory networks (GRNs) directly from data. Herein we describe IQCELL, a platform to infer, simulate, and study executable logical GRNs directly from scRNA-seq data. Such executable GRNs allow simulation of fundamental hypotheses governing developmental programs and help accelerate the design of strategies to control stem cell fate. We first describe the architecture of IQCELL. Next, we apply IQCELL to scRNA-seq datasets from early mouse T-cell and red blood cell development, and show that the platform can infer overall over 74% of causal gene interactions previously reported from decades of research. We will also show that dynamic simulations of the generated GRN qualitatively recapitulate the effects of known gene perturbations. Finally, we implement an IQCELL gene selection pipeline that allows us to identify candidate genes, without prior knowledge. We demonstrate that GRN simulations based on the inferred set yield results similar to the original curated lists. In summary, the IQCELL platform offers a versatile tool to infer, simulate, and study executable GRNs in dynamic biological systems.
Collapse
Affiliation(s)
- Tiam Heydari
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew A. Langley
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Cynthia L. Fisher
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Aguilar-Hidalgo
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shreya Shukla
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Notch Therapeutics, Vancouver, British Columbia, Canada
| | - Ayako Yachie-Kinoshita
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Michael Hughes
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M. McNagny
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Peter W. Zandstra
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Signalling dynamics in embryonic development. Biochem J 2021; 478:4045-4070. [PMID: 34871368 PMCID: PMC8718268 DOI: 10.1042/bcj20210043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023]
Abstract
In multicellular organisms, cellular behaviour is tightly regulated to allow proper embryonic development and maintenance of adult tissue. A critical component in this control is the communication between cells via signalling pathways, as errors in intercellular communication can induce developmental defects or diseases such as cancer. It has become clear over the last years that signalling is not static but varies in activity over time. Feedback mechanisms present in every signalling pathway lead to diverse dynamic phenotypes, such as transient activation, signal ramping or oscillations, occurring in a cell type- and stage-dependent manner. In cells, such dynamics can exert various functions that allow organisms to develop in a robust and reproducible way. Here, we focus on Erk, Wnt and Notch signalling pathways, which are dynamic in several tissue types and organisms, including the periodic segmentation of vertebrate embryos, and are often dysregulated in cancer. We will discuss how biochemical processes influence their dynamics and how these impact on cellular behaviour within multicellular systems.
Collapse
|
8
|
Galán-Martínez J, Stamatakis K, Sánchez-Gómez I, Vázquez-Cuesta S, Gironés N, Fresno M. Isoform-specific effects of transcription factor TCFL5 on the pluripotency-related genes SOX2 and KLF4 in colorectal cancer development. Mol Oncol 2021; 16:1876-1890. [PMID: 34623757 PMCID: PMC9067154 DOI: 10.1002/1878-0261.13085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/21/2021] [Accepted: 07/17/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a very common life‐threatening malignancy. Transcription factor‐like 5 (TCFL5) has been suggested to be involved in CRC. Here, we describe the expression of four alternative transcripts of TCFL5 and their relevance in CRC. Complete deletion of all isoforms drastically decreased pro‐tumoural properties such as spheroids formation and in vivo tumour growth, although increased migration in CRC cell lines. Overexpression of the two main isoforms, TCFL5_E8 and CHA, had opposite effects: TCFL5_E8 reduced proliferation and spheroids formation, while CHA increased them. TCFL5_E8 reduced in vivo tumour formation, while CHA had no effect. In addition, TCFL5_E8 and CHA have different roles in the regulation of the pluripotency‐related genes SOX2 and KLF4. Both isoforms bind directly to their promoters; however, TCFL5_E8 induced SOX2 and reduced KLF4 mRNA levels, whereas CHA did the opposite. Together, our results show that TCFL5 plays an important role in the development of CRC, being however isoform‐specific. This work also points to the need to analyse separately TCFL5 isoforms in cancer, due to their different and opposite functions.
Collapse
Affiliation(s)
- Javier Galán-Martínez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
| | - Inés Sánchez-Gómez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | | | - Núria Gironés
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| |
Collapse
|
9
|
Edwards A, Brennan K. Notch Signalling in Breast Development and Cancer. Front Cell Dev Biol 2021; 9:692173. [PMID: 34295896 PMCID: PMC8290365 DOI: 10.3389/fcell.2021.692173] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
The Notch signalling pathway is a highly conserved developmental signalling pathway, with vital roles in determining cell fate during embryonic development and tissue homeostasis. Aberrant Notch signalling has been implicated in many disease pathologies, including cancer. In this review, we will outline the mechanism and regulation of the Notch signalling pathway. We will also outline the role Notch signalling plays in normal mammary gland development and how Notch signalling is implicated in breast cancer tumorigenesis and progression. We will cover how Notch signalling controls several different hallmarks of cancer within epithelial cells with sections focussed on its roles in proliferation, apoptosis, invasion, and metastasis. We will provide evidence for Notch signalling in the breast cancer stem cell phenotype, which also has implications for therapy resistance and disease relapse in breast cancer patients. Finally, we will summarise the developments in therapeutic targeting of Notch signalling, and the pros and cons of this approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- Abigail Edwards
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Keith Brennan
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
10
|
Zhu Y, Hryniuk A, Foley T, Hess B, Lohnes D. Cdx2 Regulates Intestinal EphrinB1 through the Notch Pathway. Genes (Basel) 2021; 12:genes12020188. [PMID: 33525395 PMCID: PMC7911442 DOI: 10.3390/genes12020188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 01/07/2023] Open
Abstract
The majority of colorectal cancers harbor loss-of-function mutations in APC, a negative regulator of canonical Wnt signaling, leading to intestinal polyps that are predisposed to malignant progression. Comparable murine APC alleles also evoke intestinal polyps, which are typically confined to the small intestine and proximal colon, but do not progress to carcinoma in the absence of additional mutations. The Cdx transcription factors Cdx1 and Cdx2 are essential for homeostasis of the intestinal epithelium, and loss of Cdx2 has been associated with more aggressive subtypes of colorectal cancer in the human population. Consistent with this, concomitant loss of Cdx1 and Cdx2 in a murine APC mutant background leads to an increase in polyps throughout the intestinal tract. These polyps also exhibit a villous phenotype associated with the loss of EphrinB1. However, the basis for these outcomes is poorly understood. To further explore this, we modeled Cdx2 loss in SW480 colorectal cancer cells. We found that Cdx2 impacted Notch signaling in SW480 cells, and that EphrinB1 is a Notch target gene. As EphrinB1 loss also leads to a villus tumor phenotype, these findings evoke a mechanism by which Cdx2 impacts colorectal cancer via Notch-dependent EphrinB1 signaling.
Collapse
Affiliation(s)
- Yalun Zhu
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
| | - Alexa Hryniuk
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Tanya Foley
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
| | - Bradley Hess
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
- Correspondence: ; Tel.: +1-613-562-5800 (ext. 8684)
| |
Collapse
|
11
|
Notch blockade overcomes endothelial cell-mediated resistance of FLT3/ITD-positive AML progenitors to AC220 treatment. Leukemia 2020; 35:601-605. [PMID: 32513964 DOI: 10.1038/s41375-020-0893-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 11/09/2022]
|
12
|
Abstract
Specification of multipotent blood precursor cells in postnatal mice to become committed T-cell precursors involves a gene regulatory network of several interacting but functionally distinct modules. Many links of this network have been defined by perturbation tests and by functional genomics. However, using the network model to predict real-life kinetics of the commitment process is still difficult, partly due to the tenacity of repressive chromatin states, and to the ability of transcription factors to affect each other's binding site choices through competitive recruitment to alternative sites ("coregulator theft"). To predict kinetics, future models will need to incorporate mechanistic information about chromatin state change dynamics and more sophisticated understanding of the proteomics and cooperative DNA site choices of transcription factor complexes.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
13
|
Ye Y, Kang X, Bailey J, Li C, Hong T. An enriched network motif family regulates multistep cell fate transitions with restricted reversibility. PLoS Comput Biol 2019; 15:e1006855. [PMID: 30845219 PMCID: PMC6424469 DOI: 10.1371/journal.pcbi.1006855] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/19/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Multistep cell fate transitions with stepwise changes of transcriptional profiles are common to many developmental, regenerative and pathological processes. The multiple intermediate cell lineage states can serve as differentiation checkpoints or branching points for channeling cells to more than one lineages. However, mechanisms underlying these transitions remain elusive. Here, we explored gene regulatory circuits that can generate multiple intermediate cellular states with stepwise modulations of transcription factors. With unbiased searching in the network topology space, we found a motif family containing a large set of networks can give rise to four attractors with the stepwise regulations of transcription factors, which limit the reversibility of three consecutive steps of the lineage transition. We found that there is an enrichment of these motifs in a transcriptional network controlling the early T cell development, and a mathematical model based on this network recapitulates multistep transitions in the early T cell lineage commitment. By calculating the energy landscape and minimum action paths for the T cell model, we quantified the stochastic dynamics of the critical factors in response to the differentiation signal with fluctuations. These results are in good agreement with experimental observations and they suggest the stable characteristics of the intermediate states in the T cell differentiation. These dynamical features may help to direct the cells to correct lineages during development. Our findings provide general design principles for multistep cell linage transitions and new insights into the early T cell development. The network motifs containing a large family of topologies can be useful for analyzing diverse biological systems with multistep transitions. The functions of cells are dynamically controlled in many biological processes including development, regeneration and disease progression. Cell fate transition, or the switch of cellular functions, often involves multiple steps. The intermediate stages of the transition provide the biological systems with the opportunities to regulate the transitions in a precise manner. These transitions are controlled by key regulatory genes of which the expression shows stepwise patterns, but how the interactions of these genes can determine the multistep processes was unclear. Here, we present a comprehensive analysis on the design principles of gene circuits that govern multistep cell fate transition. We found a large network family with common structural features that can generate systems with the ability to control three consecutive steps of the transition. We found that this type of networks is enriched in a gene circuit controlling the development of T lymphocyte, a crucial type of immune cells. We performed mathematical modeling using this gene circuit and we recapitulated the stepwise and irreversible loss of stem cell properties of the developing T lymphocytes. Our findings can be useful to analyze a wide range of gene regulatory networks controlling multistep cell fate transitions.
Collapse
Affiliation(s)
- Yujie Ye
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Xin Kang
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.,School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Jordan Bailey
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Chunhe Li
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America.,National Institute for Mathematical and Biological Synthesis, Knoxville, Tennessee, United States of America
| |
Collapse
|
14
|
Alsayegh K, Cortés-Medina LV, Ramos-Mandujano G, Badraiq H, Li M. Hematopoietic Differentiation of Human Pluripotent Stem Cells: HOX and GATA Transcription Factors as Master Regulators. Curr Genomics 2019; 20:438-452. [PMID: 32194342 PMCID: PMC7062042 DOI: 10.2174/1389202920666191017163837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
Numerous human disorders of the blood system would directly or indirectly benefit from therapeutic approaches that reconstitute the hematopoietic system. Hematopoietic stem cells (HSCs), either from matched donors or ex vivo manipulated autologous tissues, are the most used cellular source of cell therapy for a wide range of disorders. Due to the scarcity of matched donors and the difficulty of ex vivo expansion of HSCs, there is a growing interest in harnessing the potential of pluripotent stem cells (PSCs) as a de novo source of HSCs. PSCs make an ideal source of cells for regenerative medicine in general and for treating blood disorders in particular because they could expand indefinitely in culture and differentiate to any cell type in the body. However, advancement in deriving functional HSCs from PSCs has been slow. This is partly due to an incomplete understanding of the molecular mechanisms underlying normal hematopoiesis. In this review, we discuss the latest efforts to generate human PSC (hPSC)-derived HSCs capable of long-term engraftment. We review the regulation of the key transcription factors (TFs) in hematopoiesis and hematopoietic differentiation, the Homeobox (HOX) and GATA genes, and the interplay between them and microRNAs. We also propose that precise control of these master regulators during the course of hematopoietic differentiation is key to achieving functional hPSC-derived HSCs.
Collapse
Affiliation(s)
- Khaled Alsayegh
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lorena V Cortés-Medina
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Gerardo Ramos-Mandujano
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heba Badraiq
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mo Li
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
15
|
Elian FA, Yan E, Walter MA. FOXC1, the new player in the cancer sandbox. Oncotarget 2018; 9:8165-8178. [PMID: 29487724 PMCID: PMC5814291 DOI: 10.18632/oncotarget.22742] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/28/2017] [Indexed: 01/01/2023] Open
Abstract
In recent years, rapidly accumulating evidence implicates forkhead box C1 (FOXC1) in cancer, especially in studies of basal-like breast cancer (BLBC). Other studies have followed suit, demonstrating that FOXC1 is not only a major player in this breast cancer subtype, but also in hepatocellular carcinoma (HCC), endometrial cancer, Hodgkin's lymphoma (HL), and non-Hodgkin's lymphoma (NHL). The FOXC1 gene encodes a transcription factor that is crucial to mesodermal, neural crest, and ocular development, and mutations found in FOXC1 have been found to cause dominantly inherited Axenfeld-Rieger Syndrome (ARS). Interestingly, while FOXC1 missense mutations that are associated with ARS usually reduce gene activity, increased FOXC1 function now appears to be often linked to more aggressive cancer phenotypes in BLBC, HCC, HL, and NHL. This review discusses not only the role of FOXC1 in cancer cell progression, proliferation, differentiation, and metastasis, but also the underlying mechanisms of how FOXC1 can contribute to aggressive cancer phenotypes.
Collapse
Affiliation(s)
- Fahed A. Elian
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Elizabeth Yan
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael A. Walter
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Sugimura R, Jha DK, Han A, Soria-Valles C, da Rocha EL, Lu YF, Goettel JA, Serrao E, Rowe RG, Malleshaiah M, Wong I, Sousa P, Zhu TN, Ditadi A, Keller G, Engelman AN, Snapper SB, Doulatov S, Daley GQ. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature 2017; 545:432-438. [PMID: 28514439 PMCID: PMC5872146 DOI: 10.1038/nature22370] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
Abstract
A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders.
Collapse
Affiliation(s)
- Ryohichi Sugimura
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - Deepak Kumar Jha
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - Areum Han
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Clara Soria-Valles
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - Edroaldo Lummertz da Rocha
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - Yi-Fen Lu
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - Jeremy A Goettel
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Erik Serrao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts, 02215, USA
| | - R Grant Rowe
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Mohan Malleshaiah
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Irene Wong
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Patricia Sousa
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - Ted N Zhu
- Program in Computer Science, Harvard University, Cambridge, Massachusetts, USA
| | - Andrea Ditadi
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts, 02215, USA
| | - Scott B Snapper
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sergei Doulatov
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - George Q Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
17
|
Manesso E, Kueh HY, Freedman G, Rothenberg EV, Peterson C. Irreversibility of T-Cell Specification: Insights from Computational Modelling of a Minimal Network Architecture. PLoS One 2016; 11:e0161260. [PMID: 27551921 PMCID: PMC4995000 DOI: 10.1371/journal.pone.0161260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/02/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND/OBJECTIVES A cascade of gene activations under the control of Notch signalling is required during T-cell specification, when T-cell precursors gradually lose the potential to undertake other fates and become fully committed to the T-cell lineage. We elucidate how the gene/protein dynamics for a core transcriptional module governs this important process by computational means. METHODS We first assembled existing knowledge about transcription factors known to be important for T-cell specification to form a minimal core module consisting of TCF-1, GATA-3, BCL11B, and PU.1 aiming at dynamical modeling. Model architecture was based on published experimental measurements of the effects on each factor when each of the others is perturbed. While several studies provided gene expression measurements at different stages of T-cell development, pure time series are not available, thus precluding a straightforward study of the dynamical interactions among these genes. We therefore translate stage dependent data into time series. A feed-forward motif with multiple positive feed-backs can account for the observed delay between BCL11B versus TCF-1 and GATA-3 activation by Notch signalling. With a novel computational approach, all 32 possible interactions among Notch signalling, TCF-1, and GATA-3 are explored by translating combinatorial logic expressions into differential equations for BCL11B production rate. RESULTS Our analysis reveals that only 3 of 32 possible configurations, where GATA-3 works as a dimer, are able to explain not only the time delay, but very importantly, also give rise to irreversibility. The winning models explain the data within the 95% confidence region and are consistent with regard to decay rates. CONCLUSIONS This first generation model for early T-cell specification has relatively few players. Yet it explains the gradual transition into a committed state with no return. Encoding logics in a rate equation setting allows determination of binding properties beyond what is possible in a Boolean network.
Collapse
Affiliation(s)
- Erica Manesso
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, SE-223 62 Lund, Sweden
| | - Hao Yuan Kueh
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, United States of America
| | - George Freedman
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, United States of America
| | - Ellen V. Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, United States of America
- * E-mail: (EVR); (CP)
| | - Carsten Peterson
- Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, SE-223 62 Lund, Sweden
- * E-mail: (EVR); (CP)
| |
Collapse
|
18
|
TNF-alpha and Notch signaling regulates the expression of HOXB4 and GATA3 during early T lymphopoiesis. In Vitro Cell Dev Biol Anim 2016; 52:920-934. [PMID: 27251160 DOI: 10.1007/s11626-016-0055-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
During the early thymus colonization, Notch signaling activation on hematopoietic progenitor cells (HPCs) drives proliferation and T cell commitment. Although these processes are driven by transcription factors such as HOXB4 and GATA3, there is no evidence that Notch directly regulates their transcription. To evaluate the role of NOTCH and TNF signaling in this process, human CD34+ HPCs were cocultured with OP9-DL1 cells, in the presence or absence of TNF. The use of a Notch signaling inhibitor and a protein synthesis inhibitor allowed us to distinguish primary effects, mediated by direct signaling downstream Notch and TNF, from secondary effects, mediated by de novo synthesized proteins. A low and physiologically relevant concentration of TNF promoted T lymphopoiesis in OP9-DL1 cocultures. TNF positively modulated the expression of both transcripts in a Notch-dependent manner; however, GATA3 induction was mediated by a direct mechanism, while HOXB4 induction was indirect. Induction of both transcripts was repressed by a GSK3β inhibitor, indicating that activation of canonical Wnt signaling inhibits rather than induces their expression. Our study provides novel evidences of the mechanisms integrating Notch and TNF-alpha signaling in the transcriptional induction of GATA3 and HOXB4. This mechanism has direct implications in the control of self-renewal, proliferation, commitment, and T cell differentiation.
Collapse
|
19
|
Kamstrup MR, Biskup E, Manfè V, Savorani C, Liszewski W, Wirèn J, Specht L, Gniadecki R. Chemotherapeutic treatment is associated with Notch1 induction in cutaneous T-cell lymphoma. Leuk Lymphoma 2016; 58:171-178. [PMID: 27181628 DOI: 10.1080/10428194.2016.1180681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Notch pathway is important for survival of cutaneous T-cell lymphoma (CTCL) cells. We investigated the effect of chemotherapy (doxorubicin, etoposide, and gemcitabine) and radiation modalities on Notch signaling in CTCL cell lines. Chemotherapy induced Notch1 expression at the mRNA and protein level in MyLa2000 and Hut78. Upregulation of well-established Notch targets supported the functional activity of Notch1. Transfection of Notch1 siRNA into MyLa2000 cells was not able to suppress the effects of chemotherapy on Notch1 activation significantly. Notch1 knockdown in combination with doxorubicin, etoposide, or gemcitabine compared to chemotherapy alone decreased cell viability by 12, 20, and 26%, respectively (p < 0.05). Additionally, X-rays (in MyLa2000 but not SeAx) and psoralen plus UVA (PUVA) (in MyLa2000, Hut78, and SeAx) increased the expression of Notch1 family members. Our results indicate that CTCL cells activate the Notch pathway in vitro in response to chemotherapy and radiation modalities as a possible protective mechanism.
Collapse
Affiliation(s)
- Maria R Kamstrup
- a Department of Dermatology , Bispebjerg Hospital , Copenhagen , Denmark
| | - Edyta Biskup
- a Department of Dermatology , Bispebjerg Hospital , Copenhagen , Denmark
| | - Valentina Manfè
- a Department of Dermatology , Bispebjerg Hospital , Copenhagen , Denmark
| | - Cecilia Savorani
- a Department of Dermatology , Bispebjerg Hospital , Copenhagen , Denmark
| | - Walter Liszewski
- a Department of Dermatology , Bispebjerg Hospital , Copenhagen , Denmark
| | - Johan Wirèn
- b Department of Oncology , Skaane University Hospital , Lund , Sweden
| | - Lena Specht
- c Department of Oncology , Rigshospitalet , Copenhagen , Denmark
| | - Robert Gniadecki
- a Department of Dermatology , Bispebjerg Hospital , Copenhagen , Denmark.,d Division of Dermatology , University of Alberta , Edmonton , Canada
| |
Collapse
|
20
|
GATA3 induces human T-cell commitment by restraining Notch activity and repressing NK-cell fate. Nat Commun 2016; 7:11171. [PMID: 27048872 PMCID: PMC4823830 DOI: 10.1038/ncomms11171] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/25/2016] [Indexed: 01/03/2023] Open
Abstract
The gradual reprogramming of haematopoietic precursors into the T-cell fate is characterized by at least two sequential developmental stages. Following Notch1-dependent T-cell lineage specification during which the first T-cell lineage genes are expressed and myeloid and dendritic cell potential is lost, T-cell specific transcription factors subsequently induce T-cell commitment by repressing residual natural killer (NK)-cell potential. How these processes are regulated in human is poorly understood, especially since efficient T-cell lineage commitment requires a reduction in Notch signalling activity following T-cell specification. Here, we show that GATA3, in contrast to TCF1, controls human T-cell lineage commitment through direct regulation of three distinct processes: repression of NK-cell fate, upregulation of T-cell lineage genes to promote further differentiation and restraint of Notch activity. Repression of the Notch1 target gene DTX1 hereby is essential to prevent NK-cell differentiation. Thus, GATA3-mediated positive and negative feedback mechanisms control human T-cell lineage commitment. Strong Notch signalling promotes initial T cell lineage specification of lymphoid progenitors but is also permissive for thymic natural killer (NK) cell development. Here the authors show that GATA3 directs human T-lineage commitment by modulating Notch activity and repressing the NK programme.
Collapse
|
21
|
Schwanbeck R. The role of epigenetic mechanisms in Notch signaling during development. J Cell Physiol 2015; 230:969-81. [PMID: 25336183 DOI: 10.1002/jcp.24851] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/16/2014] [Indexed: 12/16/2022]
Abstract
The Notch pathway is a highly conserved cell-cell communication pathway in metazoan involved in numerous processes during embryogenesis, development, and adult organisms. Ligand-receptor interaction of Notch components on adjacent cells facilitates controlled sequential proteolytic cleavage resulting in the nuclear translocation of the intracellular domain of Notch (NICD). There it binds to the Notch effector protein RBP-J, displaces a corepressor complex and enables the induction of target genes by recruitment of coactivators in a cell-context dependent manner. Both, the gene-specific repression and the context dependent activation require an intense communication with the underlying chromatin of the regulatory regions. Since the epigenetic landscape determines the function of the genome, processes like cell fate decision, differentiation, and self-renewal depend on chromatin structure and its remodeling during development. In this review, structural features enabling the Notch pathway to read these epigenetic marks by proteins interacting with RBP-J/Notch will be discussed. Furthermore, mechanisms of the Notch pathway to write and erase chromatin marks like histone acetylation and methylation are depicted as well as ATP-dependent chromatin remodeling during the activation of target genes. An additional fine-tuning of transcriptional regulation upon Notch activation seems to be controlled by the commitment of miRNAs. Since cells within an organism have to react to environmental changes, and developmental and differentiation cues in a proper manner, different signaling pathways have to crosstalk to each other. The chromatin status may represent one major platform to integrate these different pathways including the canonical Notch signaling.
Collapse
Affiliation(s)
- Ralf Schwanbeck
- Institute of Biochemistry, Medical Faculty, University of Kiel, Kiel, Germany
| |
Collapse
|
22
|
Suresh S, Irvine AE. The NOTCH signaling pathway in normal and malignant blood cell production. J Cell Commun Signal 2015; 9:5-13. [PMID: 25711903 PMCID: PMC4414835 DOI: 10.1007/s12079-015-0271-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/10/2015] [Indexed: 12/23/2022] Open
Abstract
The NOTCH pathway is an evolutionarily conserved signalling network, which is fundamental in regulating developmental processes in invertebrates and vertebrates (Gazave et al. in BMC Evol Biol 9:249, 2009). It regulates self-renewal (Butler et al. in Cell Stem Cell 6:251-264, 2010), differentiation (Auderset et al. in Curr Top Microbiol Immunol 360:115-134, 2012), proliferation (VanDussen et al. in Development 139:488-497, 2012) and apoptosis (Cao et al. in APMIS 120:441-450, 2012) of diverse cell types at various stages of their development. NOTCH signalling governs cell-cell interactions and the outcome of such responses is highly context specific. This makes it impossible to generalize about NOTCH functions as it stimulates survival and differentiation of certain cell types, whereas inhibiting these processes in others (Meier-Stiegen et al. in PLoS One 5:e11481, 2010). NOTCH was first identified in 1914 in Drosophila and was named after the indentations (notches) present in the wings of the mutant flies (Bigas et al. in Int J Dev Biol 54:1175-1188, 2010). Homologs of NOTCH in vertebrates were initially identified in Xenopus (Coffman et al. in Science 249:1438-1441, 1990) and in humans NOTCH was first identified in T-Acute Lymphoblastic Leukaemia (T-ALL) (Ellisen et al. in Cell 66:649-61, 1991). NOTCH signalling is integral in neurogenesis (Mead and Yutzey in Dev Dyn 241:376-389, 2012), myogenesis (Schuster-Gossler et al. in Proc Natl Acad Sci U S A 104:537-542, 2007), haematopoiesis (Bigas et al. in Int J Dev Biol 54:1175-1188, 2010), oogenesis (Xu and Gridley in Genet Res Int 2012:648207, 2012), differentiation of intestinal cells (Okamoto et al. in Am J Physiol Gastrointest Liver Physiol 296:G23-35, 2009) and pancreatic cells (Apelqvist et al. in Nature 400:877-881, 1999). The current review will focus on NOTCH signalling in normal and malignant blood cell production or haematopoiesis.
Collapse
Affiliation(s)
- Sukanya Suresh
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | |
Collapse
|
23
|
Matulic M, Skelin J, Radic-Kristo D, Kardum-Skelin I, Grcevic D, Antica M. Notch affects the prodifferentiating effect of retinoic acid and PMA on leukemic cells. Cytometry A 2014; 87:129-36. [PMID: 25393162 DOI: 10.1002/cyto.a.22582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/15/2014] [Accepted: 10/07/2014] [Indexed: 12/13/2022]
Abstract
Notch proteins determine cell fate decisions in the development of diverse tissues. Notch has been initially found in T-ALL but its role has been also studied in myelopoiesis and myeloid leukemias. Studies in different model systems have led to a widespread controversy as to whether Notch promotes or blocks myeloid differentiation. In this work, we evaluated the influence of Notch activation on leukemic cell differentiation along the monocytic and myelocytic pathway induced by phorbol 12-myristate 13-acetate (PMA) or all-trans retinoic acid (ATRA). We observed that differentiation of the human myeloblastic cell line HL-60 can be retarded or blocked by Delta/Notch interaction. ATRA induces complete remission in patients with acute promyelocytic leukemia, but it cannot completely eliminate the leukemic clone and to be effective it should be combined with chemotherapy. Our findings suggest that Notch signaling may contribute to the incomplete elimination of the leukemic cells after PMA or ATRA treatment and the blockage of Notch pathway may be beneficial in the treatment of myeloid leukemia. © 2014 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Maja Matulic
- Department of Molecular Biology, Faculty of Science, Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
24
|
Xie G, Yu Z, Jia D, Jiao R, Deng WM. E(y)1/TAF9 mediates the transcriptional output of Notch signaling in Drosophila. J Cell Sci 2014; 127:3830-9. [PMID: 25015288 DOI: 10.1242/jcs.154583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transcriptional activation of Notch signaling targets requires the formation of a ternary complex that involves the intracellular domain of the Notch receptor (NICD), DNA-binding protein Suppressor of Hairless [Su(H), RPBJ in mammals] and coactivator Mastermind (Mam). Here, we report that E(y)1/TAF9, a component of the transcription factor TFIID complex, interacts specifically with the NICD-Su(H)-Mam complex to facilitate the transcriptional output of Notch signaling. We identified E(y)1/TAF9 in a large-scale in vivo RNA interference (RNAi) screen for genes that are involved in a Notch-dependent mitotic-to-endocycle transition in Drosophila follicle cells. Knockdown of e(y)1/TAF9 displayed Notch-mutant-like phenotypes and defects in target gene and activity reporter expression in both the follicle cells and wing imaginal discs. Epistatic analyses in these two tissues indicated that E(y)1/TAF9 functions downstream of Notch cleavage. Biochemical studies in S2 cells demonstrated that E(y)1/TAF9 physically interacts with the transcriptional effectors of Notch signaling Su(H) and NICD. Taken together, our data suggest that the association of the NICD-Su(H)-Mastermind complex with E(y)1/TAF9 in response to Notch activation recruits the transcription initiation complex to induce Notch target genes, coupling Notch signaling with the transcription machinery.
Collapse
Affiliation(s)
- Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, FL 32304-4295, USA
| | - Zhongsheng Yu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China
| | - Dongyu Jia
- Department of Biological Science, Florida State University, Tallahassee, FL 32304-4295, USA
| | - Renjie Jiao
- Department of Biological Science, Florida State University, Tallahassee, FL 32304-4295, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL 32304-4295, USA
| |
Collapse
|
25
|
Tong G, Wang JS, Sverdlov O, Huang SP, Slemmon R, Croop R, Castaneda L, Gu H, Wong O, Li H, Berman RM, Smith C, Albright CF, Dockens R. A contrast in safety, pharmacokinetics and pharmacodynamics across age groups after a single 50 mg oral dose of the γ-secretase inhibitor avagacestat. Br J Clin Pharmacol 2013; 75:136-45. [PMID: 22616739 DOI: 10.1111/j.1365-2125.2012.04339.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM To evaluate the single dose pharmacokinetics, pharmacodynamics, and preliminary tolerability of the γ-secretase inhibitor BMS-708163 (avagacestat) in young and elderly men and women. METHODS All subjects received double-blinded administration of a single 50 mg dose of avagacestat in capsule form or matching placebo. Main evaluations included pharmacokinetics, safety, plasma amyloid-β (Aβ)(1-40) concentratios and exploration of Notch biomarkers. RESULTS Avagacestat 50 mg capsule was well tolerated and rapidly absorbed among young and elderly subjects, with a median t(max) between 1 and 2 h post dose and an average half-life between 41 and 71 h. In general, subjects aged 75 years or more had higher AUC(0,∞) values than those aged less than 75 years. An exploratory analysis of Aβ(1-40) serum concentrations showed a pattern of decreasing concentrations over the first 4-6 h followed by a rise above baseline that was maintained until the end of the assessment period. Adverse events were generally mild, occurring more frequently in elderly subjects, with no observed difference between subjects receiving avagacestat and placebo. No dose limiting gastrointestinal effects of avagacestat were observed and exploratory biomarkers of Notch inhibition did not change significantly. CONCLUSIONS The favourable safety profile and pharmacokinetic effects of avagacestat in this study support its continued development, especially in the target population of elderly subjects with mild cognitive impairment or Alzheimer's disease.
Collapse
Affiliation(s)
- Gary Tong
- Research and Development, Bristol-Myers Squibb, Hopewell, NJ, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
GATA-3 promotes T-cell specification by repressing B-cell potential in pro-T cells in mice. Blood 2013; 121:1749-59. [PMID: 23287858 DOI: 10.1182/blood-2012-06-440065] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription factors orchestrate T-lineage differentiation in the thymus. One critical checkpoint involves Notch1 signaling that instructs T-cell commitment at the expense of the B-lineage program. While GATA-3 is required for T-cell specification, its mechanism of action is poorly understood. We show that GATA-3 works in concert with Notch1 to commit thymic progenitors to the T-cell lineage via 2 distinct pathways. First, GATA-3 orchestrates a transcriptional “repertoire” that is required for thymocyte maturation up to and beyond the pro-T-cell stage. Second, GATA-3 critically suppresses a latent B-cell potential in pro–T cells. As such, GATA-3 is essential to sealing in Notch-induced T-cell fate in early thymocyte precursors by promoting T-cell identity through the repression of alternative developmental options.
Collapse
|
27
|
Human ESC-derived hemogenic endothelial cells undergo distinct waves of endothelial to hematopoietic transition. Blood 2012; 121:770-80. [PMID: 23169780 DOI: 10.1182/blood-2012-07-444208] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Several studies have demonstrated that hematopoietic cells originate from endotheliumin early development; however, the phenotypic progression of progenitor cells during human embryonic hemogenesis is not well described. Here, we define the developmental hierarchy among intermediate populations of hematopoietic progenitor cells (HPCs) derived from human embryonic stem cells (hESCs). We genetically modified hESCs to specifically demarcate acquisition of vascular (VE-cadherin) and hematopoietic (CD41a) cell fate and used this dual-reporting transgenic hESC line to observe endothelial to hematopoietic transition by real-time confocal microscopy. Live imaging and clonal analyses revealed a temporal bias in commitment of HPCs that recapitulates discrete waves of lineage differentiation noted during mammalian hemogenesis. Specifically, HPCs isolated at later time points showed reduced capacity to form erythroid/ megakaryocytic cells and exhibited a tendency toward myeloid fate that was enabled by expression of the Notch ligand Dll4 on hESC-derived vascular feeder cells. These data provide a framework for defining HPC lineage potential, elucidate a molecular contribution from the vascular niche in promoting hematopoietic lineage progression, and distinguish unique subpopulations of hemogenic endothelium during hESC differentiation. KEY POINTS Live imaging of endothelial to hematopoietic conversion identifies distinct subpopulations of hESC-derived hemogenic endothelium. Expression of the Notch ligand DII4 on vascular ECs drives induction of myeloid fate from hESC-derived hematopoietic progenitors.
Collapse
|
28
|
A Placebo-Controlled, Multiple Ascending Dose Study to Evaluate the Safety, Pharmacokinetics and Pharmacodynamics of Avagacestat (BMS-708163) in Healthy Young and Elderly Subjects. Clin Pharmacokinet 2012; 51:681-93. [DOI: 10.1007/s40262-012-0005-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Lineage switching in acute leukemias: a consequence of stem cell plasticity? BONE MARROW RESEARCH 2012; 2012:406796. [PMID: 22852088 PMCID: PMC3407598 DOI: 10.1155/2012/406796] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/08/2012] [Indexed: 01/26/2023]
Abstract
Acute leukemias are the most common cancer in childhood and characterized by the uncontrolled production of hematopoietic precursor cells of the lymphoid or myeloid series within the bone marrow. Even when a relatively high efficiency of therapeutic agents has increased the overall survival rates in the last years, factors such as cell lineage switching and the rise of mixed lineages at relapses often change the prognosis of the illness. During lineage switching, conversions from lymphoblastic leukemia to myeloid leukemia, or vice versa, are recorded. The central mechanisms involved in these phenomena remain undefined, but recent studies suggest that lineage commitment of plastic hematopoietic progenitors may be multidirectional and reversible upon specific signals provided by both intrinsic and environmental cues. In this paper, we focus on the current knowledge about cell heterogeneity and the lineage switch resulting from leukemic cells plasticity. A number of hypothetical mechanisms that may inspire changes in cell fate decisions are highlighted. Understanding the plasticity of leukemia initiating cells might be fundamental to unravel the pathogenesis of lineage switch in acute leukemias and will illuminate the importance of a flexible hematopoietic development.
Collapse
|
30
|
Tong G, Wang JS, Sverdlov O, Huang SP, Slemmon R, Croop R, Castaneda L, Gu H, Wong O, Li H, Berman RM, Smith C, Albright CF, Dockens RC. Multicenter, randomized, double-blind, placebo-controlled, single-ascending dose study of the oral γ-secretase inhibitor BMS-708163 (Avagacestat): tolerability profile, pharmacokinetic parameters, and pharmacodynamic markers. Clin Ther 2012; 34:654-67. [PMID: 22381714 DOI: 10.1016/j.clinthera.2012.01.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/11/2012] [Accepted: 01/26/2012] [Indexed: 01/26/2023]
Abstract
BACKGROUND γ-Secretase inhibitors (GSIs) are being investigated for their potential to modify the progression of Alzheimer disease based on their ability to regulate amyloid-β (Aβ) accumulation. BMS-708163 (avagacestat) is an oral GSI designed for selective inhibition of Aβ synthesis currently in development for the treatment of mild to moderate and predementia AD. In addition to the desired effect on Aβ synthesis, GSIs affect Notch processing, which is thought to mediate some toxic adverse effects reported with this drug class. Avagacestat produced up to 190-fold greater selectivity for Aβ synthesis than Notch processing in preclinical studies and may therefore produce less toxic adverse events than other less selective compounds. Presented here are the results of the first in-human study for this new GSI compound. OBJECTIVE The goal of this study was to assess the tolerability profile, pharmacokinetic properties, and effects on pharmacodynamic markers (Aβ, trefoil factor family 3 protein, dual specificity phosphatase 6, and hairy and enhancer of split-1) of single, oral doses of avagacestat in healthy, young, male volunteers. METHODS This was a multicenter, randomized, double-blind, placebo-controlled, single-ascending dose study in 8 healthy young men (age, 18-45 years) per dosing panel. Each study participant was randomized to receive a single dose of placebo (n = 2) or avagacestat (n = 6 for each dose) as an oral solution in 1 of 9 sequential dose panels (0.3, 1.5, 5, 15, 50, 100, 200, 400, and 800 mg). For determination of avagacestat, blood samples were obtained before dosing and for up to 144 hours after dosing. For participants in the 800-mg avagacestat dose panel, additional samples were obtained at 216, 312, and 648 hours. For 40-amino acid isoform of Aβ (Aβ(1-40)) assessment, plasma samples were collected before avagacestat administration and up to 72 hours after dosing. RESULTS Avagacestat concentrations peaked quickly after oral administration and then had a biphasic decrease in concentrations with a prolonged terminal phase. Exposures were proportional with doses up to 200 mg. Avagacestat was well tolerated at single oral doses up to 800 mg, with a biphasic effect on plasma Aβ(1-40). Adverse events were predominately mild to moderate in severity with no evidence of dose dependence up to 200 mg. CONCLUSIONS Results from this single-ascending dose study suggest that avagacestat was tolerated at a single-dose range of 0.3 to 800 mg and suitable for further clinical development.
Collapse
Affiliation(s)
- Gary Tong
- Bristol-Myers Squibb Research and Development, Hopewell, New Jersey, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011; 138:3593-612. [PMID: 21828089 DOI: 10.1242/dev.063610] [Citation(s) in RCA: 724] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling is evolutionarily conserved and operates in many cell types and at various stages during development. Notch signaling must therefore be able to generate appropriate signaling outputs in a variety of cellular contexts. This need for versatility in Notch signaling is in apparent contrast to the simple molecular design of the core pathway. Here, we review recent studies in nematodes, Drosophila and vertebrate systems that begin to shed light on how versatility in Notch signaling output is generated, how signal strength is modulated, and how cross-talk between the Notch pathway and other intracellular signaling systems, such as the Wnt, hypoxia and BMP pathways, contributes to signaling diversity.
Collapse
Affiliation(s)
- Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
32
|
Kueh HY, Rothenberg EV. Regulatory gene network circuits underlying T cell development from multipotent progenitors. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 4:79-102. [PMID: 21976153 DOI: 10.1002/wsbm.162] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regulatory gene circuits enable stem and progenitor cells to detect and process developmental signals and make irreversible fate commitment decisions. To gain insight into the gene circuits underlying T cell fate decision making in progenitor cells, we generated an updated T-lymphocyte developmental gene regulatory network from genes and connections found in the literature. This reconstruction allowed us to identify candidate regulatory gene circuit elements underlying T cell fate decision making. Here, we examine the roles of these circuits in facilitating different aspects of the decision making process, and discuss experiments to further probe their structure and function.
Collapse
Affiliation(s)
- Hao Yuan Kueh
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | | |
Collapse
|
33
|
Nagel S, Schneider B, Rosenwald A, Meyer C, Kaufmann M, Drexler HG, MacLeod RAF. t(4;8)(q27;q24) in Hodgkin lymphoma cells targets phosphodiesterase PDE5A and homeobox gene ZHX2. Genes Chromosomes Cancer 2011; 50:996-1009. [PMID: 21987443 DOI: 10.1002/gcc.20920] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 01/02/2023] Open
Abstract
Hodgkin/Reed-Sternberg (HRS) cells represent the malignant fraction of infiltrated lymph nodes in Hodgkin lymphoma (HL). Although HRS cells display multiple chromosomal aberrations, few are recurrent and the targeted genes unknown. However, understanding the pathology of HL and developing rational therapies may well require identifying putative deregulated genes. Here, we analyzed the karyotype of the well-defined HL cell line L-1236 by spectral karyotyping and identified multiple abnormalities, therein, notably t(4;8)(q27;q24) which includes two breakpoint regions previously highlighted in HL. Target genes at 4q27 and 8q24 were shortlisted by high density genomic arrays and fluorescence in situ hybridization. Expression analysis of candidate target genes revealed conspicuous activation of phosphodiesterase PDE5A at 4q27 and inhibition of homeobox gene ZHX2 at 8q24. Treatment of L-1236 with PDE5A-inhibitor sildenafil or with siRNA directed against PDE5A and concomitant stimulation with cyclic guanosine monophosphate (cGMP) resulted in enhanced apoptosis, indicating PDE5A as an oncogene. Expression profiling of L-1236 cells following siRNA-mediated knockdown of ZHX2 showed inhibition of genes regulating differentiation and apoptosis, suggesting tumor suppressor activity of ZHX2. Downstream genes included STAT1 and several STAT1-target genes, indicating activation of STAT1-signaling by ZHX2 as analyzed by RQ-PCR and western blot. Taken together, we have identified a novel aberration with recurrent breakpoints in HL, t(4;8)(q27;q24), which activate PDE5A and repress ZHX2, deregulating apoptosis, differentiation, and STAT1-signaling in HL cells.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, DSMZ--German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124 Braunschweig, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Klein Wolterink RGJ, García-Ojeda ME, Vosshenrich CAJ, Hendriks RW, Di Santo JP. The intrathymic crossroads of T and NK cell differentiation. Immunol Rev 2010; 238:126-37. [DOI: 10.1111/j.1600-065x.2010.00960.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Staal FJT, van Dongen JJM, Langerak AW. Novel insights into the development of T-cell acute lymphoblastic leukemia. Curr Hematol Malig Rep 2010; 2:176-82. [PMID: 20425367 DOI: 10.1007/s11899-007-0024-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) results from malignant transformation of immature cells of the T-cell lineage. T-ALL is a heterogeneous disease both clinically and genetically. It is generally accepted that T-ALL cells are the malignant counterpart of normally developing T cells in the thymus (thymocytes). Recent data using genome-wide gene expression profiling and assessment of the rearrangement status of the T-cell receptor loci confirm this notion. T-ALL cells differ from normal thymocytes in the overexpression of oncogenes that arise either from chromosomal translocations or via other mechanisms. In addition, signaling pathways that control the very first stages of thymocyte development (of note, the Notch and Wnt pathways) are involved in development of T-ALL in mice and humans when constitutively expressed. In particular, the activating mutations in the Notch pathways are believed to occur in a large proportion of human T-ALL. These findings on genetic events open up new therapeutic possibilities.
Collapse
Affiliation(s)
- Frank J T Staal
- Department of Immunology, Erasmus MC, Dr. Molewaterplein 50, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
36
|
Wakabayashi N, Shin S, Slocum SL, Agoston ES, Wakabayashi J, Kwak MK, Misra V, Biswal S, Yamamoto M, Kensler TW. Regulation of notch1 signaling by nrf2: implications for tissue regeneration. Sci Signal 2010; 3:ra52. [PMID: 20628156 DOI: 10.1126/scisignal.2000762] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Keap1-Nrf2-ARE signaling pathway elicits an adaptive response for cell survival after endogenous and exogenous stresses, such as inflammation and carcinogens, respectively. Keap1 inhibits the transcriptional activation activity of Nrf2 (p45 nuclear factor erythroid-derived 2-related factor 2) in unstressed cells by facilitating its degradation. Through transcriptional analyses in Keap1- or Nrf2-disrupted mice, we identified interactions between the Keap1-Nrf2-ARE and the Notch1 signaling pathways. We found that Nrf2 recognized a functional antioxidant response element (ARE) in the promoter of Notch1. Notch1 regulates processes such as proliferation and cell fate decisions. We report a functional role for this cross talk between the two pathways and show that disruption of Nrf2 impeded liver regeneration after partial hepatectomy and was rescued by reestablishment of Notch1 signaling.
Collapse
Affiliation(s)
- Nobunao Wakabayashi
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The proteolytic cleavages elicited by activation of the Notch receptor release an intracellular fragment, Notch intracellular domain, which enters the nucleus to activate the transcription of targets. Changes in transcription are therefore a major output of this pathway. However, the Notch outputs clearly differ from cell type to cell type. In this review we discuss current understanding of Notch targets, the mechanisms involved in their transcriptional regulation, and what might underlie the activation of different sets of targets in different cell types.
Collapse
Affiliation(s)
- Sarah Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
38
|
Gendronneau G, Lemieux M, Morneau M, Paradis J, Têtu B, Frenette N, Aubin J, Jeannotte L. Influence of Hoxa5 on p53 tumorigenic outcome in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:995-1005. [PMID: 20042682 DOI: 10.2353/ajpath.2010.090499] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hox genes encode transcription factors of crucial importance in the pattern formation of a large spectrum of species. Several studies have now proposed a role for these developmental genes in cancer biology. It has been suggested that HOXA5 possesses growth-suppressive properties through activation of p53 expression in human breast tissue. To assess the genetic cooperation that may exist between Hoxa5 and p53 in tumorigenesis, we generated Hoxa5/p53 compound mutant mice. The presence of Hoxa5 null alleles increased the susceptibility of p53(-/-) mice to develop tumors with a high prevalence for thymic lymphoma, suggesting that the loss of function of the two genes collaborate in tumor formation. To extend our analysis to mammary tumorigenesis, we performed Hoxa5/p53 whole mammary gland transplantations into wild-type hosts. In the p53(-/-) background, the presence of one Hoxa5 mutant allele had no impact on mammary tumor formation. In contrast, the complete loss of Hoxa5 function influenced the tumorigenic outcome of p53(+/-) mammary glands. However, the collaborative nature of this interaction did not depend on the transcriptional regulation of p53 by Hoxa5. Altogether, our data establish that Hoxa5 and p53 cooperate in mammary tumorigenesis in vivo.
Collapse
Affiliation(s)
- Gaëlle Gendronneau
- Centre de Recherche en Cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, Canada G1R 2J6
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hes1 potentiates T cell lymphomagenesis by up-regulating a subset of notch target genes. PLoS One 2009; 4:e6678. [PMID: 19688092 PMCID: PMC2722736 DOI: 10.1371/journal.pone.0006678] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 07/21/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hairy/Enhancer of Split (Hes) proteins are targets of the Notch signaling pathway and make up a class of basic helix-loop-helix (bHLH) proteins that function to repress transcription. Data from Hes1 deficient mice suggested that Hes1, like Notch1, is necessary for the progression of early T cell progenitors. Constitutive activation of Notch is known to cause T cell leukemia or lymphoma but whether Hes1 has any oncogenic activity is not known. METHODOLOGY/PRINCIPAL FINDINGS We generated mice carrying a Hes1 transgene under control of the proximal promote of the lck gene. Hes1 expression led to a reduction in numbers of total thymocytes, concomitant with the increased percentage and number of immature CD8+ (ISP) T cells and sustained CD25 expression in CD4+CD8+ double positive (DP) thymocytes. Hes1 transgenic mice develop thymic lymphomas at about 20 weeks of age with a low penetrance. However, expression of Hes1 significantly shortens the latency of T cell lymphoma developed in Id1 transgenic mice, where the function of bHLH E proteins is inhibited. Interestingly, Hes1 increased expression of a subset of Notch target genes in pre-malignant ISP and DP thymocytes, which include Notch1, Notch3 and c-myc, thus suggesting a possible mechanism for lymphomagenesis. CONCLUSIONS/SIGNIFICANCE We have demonstrated for the first time that Hes1 potentiates T cell lymphomagenesis, by up-regulating a subset of Notch target genes and by causing an accumulation of ISP thymocytes particularly vulnerable to oncogenic transformation.
Collapse
|
40
|
Wang AM, Ku HH, Liang YC, Chen YC, Hwu YM, Yeh TS. The autonomous notch signal pathway is activated by baicalin and baicalein but is suppressed by niclosamide in K562 cells. J Cell Biochem 2009; 106:682-92. [PMID: 19160421 PMCID: PMC7166476 DOI: 10.1002/jcb.22065] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Notch signaling pathway plays important roles in a variety of cellular processes. Aberrant transduction of Notch signaling contributes to many diseases and cancers in humans. The Notch receptor intracellular domain, the activated form of Notch receptor, is extremely difficult to detect in normal cells. However, it can activate signaling at very low protein concentration to elicit its biological effects. In the present study, a cell based luciferase reporter gene assay was established in K562 cells to screen drugs which could modulate the endogenous CBF1‐dependent Notch signal pathway. Using this system, we found that the luciferase activity of CBF1‐dependent reporter gene was activated by baicalin and baicalein but suppressed by niclosamide in both dose‐ and time‐dependent manners. Treatment with these drugs modulated endogenous Notch signaling and affected mRNA expression levels of Notch1 receptor and Notch target genes in K562 cells. Additionally, erythroid differentiation of K562 cells was suppressed by baicalin and baicalein yet was promoted by niclosamide. Colony‐forming ability in soft agar was decreased after treatment with baicalin and baicalein, but was not affected in the presence of niclosamide. Thus, modulation of Notch signaling after treatment with any of these three drugs may affect tumorigenesis of K562 cells suggesting that these drugs may have therapeutic potential for those tumors associated with Notch signaling. Taken together, this system could be beneficial for screening of drugs with potential to treat Notch signal pathway‐associated diseases. J. Cell. Biochem. 106: 682–692, 2009. © 2009 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- An-Ming Wang
- Institute of Biopharmaceutical Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
41
|
Characterization in vitro and engraftment potential in vivo of human progenitor T cells generated from hematopoietic stem cells. Blood 2009; 114:972-82. [PMID: 19491395 DOI: 10.1182/blood-2008-10-187013] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
T-cell development follows a defined set of stage-specific differentiation steps. However, molecular and cellular events occurring at early stages of human T-cell development remain to be fully elucidated. To address this, human umbilical cord blood (UCB) hematopoietic stem cells (HSCs) were induced to differentiate to the T lineage in OP9-DL1 cocultures. A developmental program involving a sequential and temporally discrete expression of key differentiation markers was revealed. Quantitative clonal analyses demonstrated that CD34(+)CD38(-) and CD34(+)CD38(lo) subsets of UCB contain a similarly high T-lineage progenitor frequency, whereas the frequency in CD34(+)CD38(+/hi) cells was 5-fold lower. Delta-like/Notch-induced signals increased the T-cell progenitor frequency of CD34(+)CD38(-/lo) cells differentiated on OP9-DL1, and 2 distinct progenitor subsets, CD34(+)CD45RA(+)CD7(++)CD5(-)CD1a(-) (proT1) and CD34(+)CD45RA(+)CD7(++)CD5(+)CD1a(-) (proT2), were identified and their thymus engrafting capacity was examined, with proT2 cells showing a 3-fold enhanced reconstituting capacity compared with the proT1 subset. Furthermore, in vitro-generated CD34(+)CD7(++) progenitors effectively engrafted the thymus of immunodeficient mice, which was enhanced by the addition of an IL-7/IL-7 antibody complex. Taken together, the identification of T-progenitor subsets readily generated in vitro may offer important avenues to improve cellular-based immune-reconstitution approaches.
Collapse
|
42
|
Mercher T, Raffel GD, Moore SA, Cornejo MG, Baudry-Bluteau D, Cagnard N, Jesneck JL, Pikman Y, Cullen D, Williams IR, Akashi K, Shigematsu H, Bourquin JP, Giovannini M, Vainchenker W, Levine RL, Lee BH, Bernard OA, Gilliland DG. The OTT-MAL fusion oncogene activates RBPJ-mediated transcription and induces acute megakaryoblastic leukemia in a knockin mouse model. J Clin Invest 2009; 119:852-64. [PMID: 19287095 DOI: 10.1172/jci35901] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 02/04/2009] [Indexed: 12/30/2022] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) is a form of acute myeloid leukemia (AML) associated with a poor prognosis. The genetics and pathophysiology of AMKL are not well understood. We generated a knockin mouse model of the one twenty-two-megakaryocytic acute leukemia (OTT-MAL) fusion oncogene that results from the t(1;22)(p13;q13) translocation specifically associated with a subtype of pediatric AMKL. We report here that OTT-MAL expression deregulated transcriptional activity of the canonical Notch signaling pathway transcription factor recombination signal binding protein for immunoglobulin kappa J region (RBPJ) and caused abnormal fetal megakaryopoiesis. Furthermore, cooperation between OTT-MAL and an activating mutation of the thrombopoietin receptor myeloproliferative leukemia virus oncogene (MPL) efficiently induced a short-latency AMKL that recapitulated all the features of human AMKL, including megakaryoblast hyperproliferation and maturation block, thrombocytopenia, organomegaly, and extensive fibrosis. Our results establish that concomitant activation of RBPJ (Notch signaling) and MPL (cytokine signaling) transforms cells of the megakaryocytic lineage and suggest that specific targeting of these pathways could be of therapeutic value for human AMKL.
Collapse
Affiliation(s)
- Thomas Mercher
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Andaloussi AE, Han Y, Lesniak MS. Progression of intracranial glioma disrupts thymic homeostasis and induces T-cell apoptosis in vivo. Cancer Immunol Immunother 2008; 57:1807-16. [PMID: 18392618 PMCID: PMC11030257 DOI: 10.1007/s00262-008-0508-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 03/24/2008] [Indexed: 12/01/2022]
Abstract
The thymus is the site where all T-cell precursors develop, mature, and subsequently leave as mature T-cells. Since the mechanisms that mediate and regulate thymic apoptosis are not fully understood, we utilized a syngenic GL261 murine glioma model to further elucidate the fate of T-cells in tumor bearing C57BL/6 mice. First, we found a dramatic reduction in the size of the thymus accompanied by a decrease in thymic cellularity in response to glioma growth in the brains of affected mice. There was a marked reduction of double positive subset and an increase in the frequency of CD4(+) and CD8(+) single positive T-cell subsets. Analysis of double negative thymocytes showed an increase in the accumulation of CD44(+) cells. In contrast, there was a marked loss of CD44 and CD122 expression in CD4(+) and CD8(+) subsets. The growth of intracranial tumors was also associated with decreased levels of HO-1, a mediator of anti-apoptotic function, and increased levels of Notch-1 and its ligand, Jagged-1. To determine whether thymic atrophy could be due to the effect of Notch and its ligand expression by glioma in vivo, we performed a bone marrow transplant experiment. Our results suggest that Notch-1 and its ligand Jagged-1 can induce apoptosis of thymocytes, thereby influencing thymic development, immune system homeostasis, and function of the immune cells in a model of experimental glioma.
Collapse
Affiliation(s)
- Abdeljabar El Andaloussi
- The Brain Tumor Center, The University of Chicago, 5841 S. Maryland Ave MC 3026, Chicago, IL 60637 USA
- Division of Neurosurgery and Neuro-oncology, Faculty of Medicine and Health Science, The University of Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4 Canada
| | - Yu Han
- The Brain Tumor Center, The University of Chicago, 5841 S. Maryland Ave MC 3026, Chicago, IL 60637 USA
| | - Maciej S. Lesniak
- The Brain Tumor Center, The University of Chicago, 5841 S. Maryland Ave MC 3026, Chicago, IL 60637 USA
| |
Collapse
|
44
|
Abstract
Multipotent blood progenitor cells enter the thymus and begin a protracted differentiation process in which they gradually acquire T-cell characteristics while shedding their legacy of developmental plasticity. Notch signalling and basic helix-loop-helix E-protein transcription factors collaborate repeatedly to trigger and sustain this process throughout the period leading up to T-cell lineage commitment. Nevertheless, the process is discontinuous with separately regulated steps that demand roles for additional collaborating factors. This Review discusses new evidence on the coordination of specification and commitment in the early T-cell pathway; effects of microenvironmental signals; the inheritance of stem-cell regulatory factors; and the ensemble of transcription factors that modulate the effects of Notch and E proteins, to distinguish individual stages and to polarize T-cell-lineage fate determination.
Collapse
|
45
|
Schwanbeck R, Schroeder T, Henning K, Kohlhof H, Rieber N, Erfurth ML, Just U. Notch Signaling in Embryonic and Adult Myelopoiesis. Cells Tissues Organs 2008; 188:91-102. [DOI: 10.1159/000113531] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
46
|
Abstract
Like all hematopoietic cells, T lymphocytes are derived from bone-marrow-resident stem cells. However, whereas most blood lineages are generated within the marrow, the majority of T cell development occurs in a specialized organ, the thymus. This distinction underscores the unique capacity of the thymic microenvironment to support T lineage restriction and differentiation. Although the identity of many of the contributing thymus-derived signals is well established and rooted in highly conserved pathways involving Notch, morphogenetic, and protein tyrosine kinase signals, the manner in which the ensuing cascades are integrated to orchestrate the underlying processes of T cell development remains under investigation. This review focuses on the current definition of the early stages of T cell lymphopoiesis, with an emphasis on the nature of thymus-derived signals delivered to T cell progenitors that support the commitment and differentiation of T cells toward the alphabeta and gammadelta T cell lineages.
Collapse
Affiliation(s)
- Maria Ciofani
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
47
|
Guo Z, Dose M, Kovalovsky D, Chang R, O'Neil J, Look AT, von Boehmer H, Khazaie K, Gounari F. Beta-catenin stabilization stalls the transition from double-positive to single-positive stage and predisposes thymocytes to malignant transformation. Blood 2007; 109:5463-72. [PMID: 17317856 PMCID: PMC1890819 DOI: 10.1182/blood-2006-11-059071] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 02/15/2007] [Indexed: 11/20/2022] Open
Abstract
Activation of beta-catenin has been causatively linked to the etiology of colon cancer. Conditional stabilization of this molecule in pro-T cells promotes thymocyte development without the requirement for pre-TCR signaling. We show here that activated beta-catenin stalls the developmental transition from the double-positive (DP) to the single-positive (SP) thymocyte stage and predisposes DP thymocytes to transformation. beta-Catenin-induced thymic lymphomas have a leukemic arrest at the early DP stage. Lymphomagenesis requires Rag activity, which peaks at this developmental stage, as well as additional secondary genetic events. A consistent secondary event is the transcriptional up-regulation of c-Myc, whose activity is required for transformation because its conditional ablation abrogates lymphomagenesis. In contrast, the expression of Notch receptors as well as targets is reduced in DP thymocytes with stabilized beta-catenin and remains low in the lymphomas, indicating that Notch activation is not required or selected for in beta-catenin-induced lymphomas. Thus, beta-catenin activation may provide a mechanism for the induction of T-cell-acute lymphoblastic leukemia (T-ALL) that does not depend on Notch activation.
Collapse
Affiliation(s)
- Zhuyan Guo
- Molecular Oncology Research Institute, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|