1
|
Friedenson B. Identifying Safeguards Disabled by Epstein-Barr Virus Infections in Genomes From Patients With Breast Cancer: Chromosomal Bioinformatics Analysis. JMIRX MED 2025; 6:e50712. [PMID: 39885374 PMCID: PMC11796484 DOI: 10.2196/50712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 02/01/2025]
Abstract
Background The causes of breast cancer are poorly understood. A potential risk factor is Epstein-Barr virus (EBV), a lifelong infection nearly everyone acquires. EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce. If this model applies to human breast cancers, then they should have genome damage characteristic of EBV infection. Objective This study tests the hypothesis that EBV infection predisposes one to breast cancer by causing permanent genome damage that compromises cancer safeguards. Methods Publicly available genome data from approximately 2100 breast cancers and 25 ovarian cancers were compared to cancers with proven associations to EBV, including 70 nasopharyngeal cancers, 90 Burkitt lymphomas, 88 diffuse large B-cell lymphomas, and 34 gastric cancers. Calculation algorithms to make these comparisons were developed. Results Chromosome breakpoints in breast and ovarian cancer clustered around breakpoints in EBV-associated cancers. Breakpoint distributions in breast and EBV-associated cancers on some chromosomes were not confidently distinguished (P>.05), but differed from controls unrelated to EBV infection. Viral breakpoint clusters occurred in high-risk, sporadic, and other breast cancer subgroups. Breakpoint clusters disrupted gene functions essential for cancer protection, which remain compromised even if EBV infection disappears. As CRISPR (clustered regularly interspaced short palindromic repeats)-like reminders of past infection during evolution, EBV genome fragments were found regularly interspaced between Piwi-interacting RNA (piRNA) genes on chromosome 6. Both breast and EBV-associated cancers had inactivated genes that guard piRNA defenses and the major histocompatibility complex (MHC) locus. Breast and EBV-associated cancer breakpoints and other variations converged around the highly polymorphic MHC. Not everyone develops cancer because MHC differences produce differing responses to EBV infection. Chromosome shattering and mutation hot spots in breast cancers preferentially occurred at incorporated viral sequences. On chromosome 17, breast cancer breakpoints that clustered around those in EBV-mediated cancers were linked to estrogen effects. Other breast cancer breaks affected sites where EBV inhibits JAK-STAT and SWI-SNF signaling pathways. A characteristic EBV-cancer gene deletion that shifts metabolism to favor tumors was also found in breast cancers. These changes push breast cancer into metastasis and then favor survival of metastatic cells. Conclusions EBV infection predisposes one to breast cancer and metastasis, even if the virus disappears. Identifying this pathogenic viral damage may improve screening, treatment, and prevention. Immunizing children against EBV may protect against breast, ovarian, other cancers, and potentially even chronic unexplained diseases.
Collapse
Affiliation(s)
- Bernard Friedenson
- Department of Biochemistry and Medical Genetics, Cancer Center, University of Illinois Chicago, 900 s Ashland, Chicago, IL, 60617, United States, 1 8479124216
| |
Collapse
|
2
|
Bordone R, Ivy DM, D'Amico R, Barba M, Gaggianesi M, Di Pastena F, Cesaro B, Bufalieri F, Balzerano A, De Smaele E, Giannini G, Di Marcotullio L, Fatica A, Stassi G, Di Magno L, Coni S, Canettieri G. MYC upstream region orchestrates resistance to PI3K inhibitors in cancer cells through FOXO3a-mediated autophagic adaptation. Oncogene 2024; 43:3349-3365. [PMID: 39306615 DOI: 10.1038/s41388-024-03170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
The MYC oncogene is frequently overexpressed in tumors and inhibition of its translation is considered an attractive therapeutic opportunity. Despite numerous reports proposing an internal ribosome entry site (IRES) within the MYC Upstream Region (MYC UR) to sustain MYC translation during cellular stress or chemotherapy, conflicting evidence remains regarding the validity of such a mechanism. Through comprehensive investigations in MYC-driven Colorectal Cancer (CRC) and Burkitt Lymphoma (BL) cells, we demonstrate that MYC UR does not facilitate cap-independent translation, but instead orchestrates resistance to PI3K inhibitors. Genomic deletion of MYC UR neither impacts MYC protein levels nor viability in CRC cells, either untreated or exposed to cellular stress. However, in response to PI3K inhibitors, MYC UR drives a FOXO3a-dependent transcriptional upregulation of MYC, conferring drug resistance. This resistance is mediated by enhanced autophagic flux, governed by MYC, and blockade of autophagy sensitizes CRC cells to PI3K inhibition in vitro and in vivo. Remarkably, BL cells lacking the translocation of MYC UR exhibit sensitivity to PI3K inhibitors, whereas MYC UR-translocated cells respond to these drugs only when autophagy is inhibited. These findings challenge previous notions regarding IRES-mediated translation and highlight a promising strategy to overcome resistance to PI3K inhibitors in MYC-driven malignancies, offering potential clinical implications for CRC and BL treatment. In response to BKM120, the upstream region of MYC (UR) enhances MYC expression, via FOXO3a, leading to increased autophagic flux and resistance to PI3K inhibitors (left). Pharmacological blockade of autophagy (center) or lack of translocated MYC UR along with MYC CDS in BL (right) overcome resistance and induces cells death. Image created in BioRender.
Collapse
Affiliation(s)
- Rosa Bordone
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Devon Michael Ivy
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Rodrigo D'Amico
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Martina Barba
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127, Palermo, Italy
| | - Fiorella Di Pastena
- McMaster University, Faculty of Health Sciences, Department of Medicine, 1200, Main St W, Hamilton, ON, Canada
| | - Bianca Cesaro
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Bufalieri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Alessio Balzerano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127, Palermo, Italy
| | - Laura Di Magno
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Sonia Coni
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
- Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| |
Collapse
|
3
|
Kumari N, Das K, Sharma S, Dahal S, Desai SS, Roy U, Sharma A, Manjunath M, Gopalakrishnan V, Retheesh ST, Javadekar SM, Choudhary B, Raghavan SC. Evaluation of potential role of R-loop and G-quadruplex DNA in the fragility of c-MYC during chromosomal translocation associated with Burkitt's lymphoma. J Biol Chem 2023; 299:105431. [PMID: 37926284 PMCID: PMC10704377 DOI: 10.1016/j.jbc.2023.105431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
t(8;14) translocation is the hallmark of Burkitt's lymphoma and results in c-MYC deregulation. During the translocation, c-MYC gene on chromosome 8 gets juxtaposed to the Ig switch regions on chromosome 14. Although the promoter of c-MYC has been investigated for its mechanism of fragility, little is known about other c-MYC breakpoint regions. We have analyzed the translocation break points at the exon 1/intron 1 of c-MYC locus from patients with Burkitt's lymphoma. Results showed that the breakpoint region, when present on a plasmid, could fold into an R-loop confirmation in a transcription-dependent manner. Sodium bisulfite modification assay revealed significant single-strandedness on chromosomal DNA of Burkitt's lymphoma cell line, Raji, and normal lymphocytes, revealing distinct R-loops covering up to 100 bp region. Besides, ChIP-DRIP analysis reveals that the R-loop antibody can bind to the breakpoint region. Further, we show the formation of stable parallel intramolecular G-quadruplex on non-template strand of the genome. Finally, incubation of purified AID in vitro or overexpression of AID within the cells led to enhanced mutation frequency at the c-MYC breakpoint region. Interestingly, anti-γH2AX can bind to DSBs generated at the c-MYC breakpoint region within the cells. The formation of R-loop and G-quadruplex was found to be mutually exclusive. Therefore, our results suggest that AID can bind to the single-stranded region of the R-loop and G4 DNA, leading to the deamination of cytosines to uracil and induction of DNA breaks in one of the DNA strands, leading to double-strand break, which could culminate in t(8;14) chromosomal translocation.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Kohal Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India; Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Anju Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India; Department of Zoology, St Joseph's College, Irinjalakuda, Kerala, India
| | - S T Retheesh
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
4
|
Canoy RJ, Shmakova A, Karpukhina A, Lomov N, Tiukacheva E, Kozhevnikova Y, André F, Germini D, Vassetzky Y. Specificity of cancer-related chromosomal translocations is linked to proximity after the DNA double-strand break and subsequent selection. NAR Cancer 2023; 5:zcad049. [PMID: 37750169 PMCID: PMC10518054 DOI: 10.1093/narcan/zcad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Most cancer-related chromosomal translocations appear to be cell type specific. It is currently unknown why different chromosomal translocations occur in different cells. This can be due to either the occurrence of particular translocations in specific cell types or adaptive survival advantage conferred by translocations only in specific cells. We experimentally addressed this question by double-strand break (DSB) induction at MYC, IGH, AML and ETO loci in the same cell to generate chromosomal translocations in different cell lineages. Our results show that any translocation can potentially arise in any cell type. We have analyzed different factors that could affect the frequency of the translocations, and only the spatial proximity between gene loci after the DSB induction correlated with the resulting translocation frequency, supporting the 'breakage-first' model. Furthermore, upon long-term culture of cells with the generated chromosomal translocations, only oncogenic MYC-IGH and AML-ETO translocations persisted over a 60-day period. Overall, the results suggest that chromosomal translocation can be generated after DSB induction in any type of cell, but whether the cell with the translocation would persist in a cell population depends on the cell type-specific selective survival advantage that the chromosomal translocation confers to the cell.
Collapse
Affiliation(s)
- Reynand Jay Canoy
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila, 1000 Manila, The Philippines
| | - Anna Shmakova
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization ‘National Cardiology Research Center’ of the Ministry of Health of the Russian Federation, 127994 Moscow, Russia
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Anna Karpukhina
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Nikolai Lomov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugenia Tiukacheva
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Yana Kozhevnikova
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Franck André
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Diego Germini
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Yegor Vassetzky
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| |
Collapse
|
5
|
Tang G, Li S, Toruner GA, Jain P, Tang Z, Hu S, Xu J, Cheng J, Robinson M, Vega F, Medeiros LJ. Clinical impact of 5 'MYC or 3 'MYC gain/loss detected by FISH in patients with aggressive B-cell lymphomas. Cancer Genet 2023; 272-273:1-8. [PMID: 36566629 DOI: 10.1016/j.cancergen.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
FISH analysis using MYC break-apart probes is a widely used technique to assess for MYC rearrangement (MYC-R). Occasionally, FISH results in atypical signal patterns, such as gain or loss of 5'MYC or 3'MYC. The clinical impact and/or relationship of these atypical signal patterns to MYC-R are unknown. In this study, we assessed 35 patients who had aggressive B-cell lymphomas and exhibited atypical FISH signal patterns: 3'MYC deletion (n = 16) or 3'MYC deletion plus 5'MYC amplification (n = 5), 5'MYC gain (n = 10), 5'MYC deletion (n = 3), and 3'MYC gain (n = 1). For comparison, we also included 9 patients who showed an unbalanced MYC-R. Patients with 5'MYC gain showed MYC expression and were often refractory to chemotherapy (n = 7) or had early relapse (n = 2). By contrast, lymphomas with 3'MYC deletion were negative or had low expression of MYC (16 of 18), and patients often responded to chemotherapy (16 of 19). The median event-free survival was 24, 6, and 4 months for patients with 3'MYC deletion, 5'MYC gain and unbalanced MYC-R, respectively (p = 0.0048). We conclude that 5'MYC gain is associated with MYC expression and a poorer prognosis and likely represents an unbalanced MYC-R. By contrast, 3'MYC deletions are not associated with MYC expression or a poorer prognosis and this finding may be unrelated to MYC-R.
Collapse
Affiliation(s)
- Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gokce A Toruner
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joanne Cheng
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa Robinson
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Bomken S, Enshaei A, Schwalbe EC, Mikulasova A, Dai Y, Zaka M, Fung KTM, Bashton M, Lim H, Jones L, Karataraki N, Winterman E, Ashby C, Attarbaschi A, Bertrand Y, Bradtke J, Buldini B, Burke GAA, Cazzaniga G, Gohring G, De Groot-Kruseman HA, Haferlach C, Nigro LL, Parihar M, Plesa A, Seaford E, Sonneveld E, Strehl S, Van der Velden VHJ, Rand V, Hunger SP, Harrison CJ, Bacon CM, Van Delft FW, Loh ML, Moppett J, Vormoor J, Walker BA, Moorman AV, Russell LJ. Molecular characterization and clinical outcome of B-cell precursor acute lymphoblastic leukemia with IG-MYC rearrangement. Haematologica 2023; 108:717-731. [PMID: 35484682 PMCID: PMC9973471 DOI: 10.3324/haematol.2021.280557] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
Rarely, immunophenotypically immature B-cell precursor acute lymphoblastic leukemia (BCP-ALL) carries an immunoglobulin- MYC rearrangement (IG-MYC-r). This can result in diagnostic confusion with Burkitt lymphoma/leukemia and use of individualized treatment schedules of unproven efficacy. Here we compare the molecular characteristics of these conditions and investigate historic clinical outcome data. We identified 90 cases registered in a national BCP-ALL clinical trial/registry. When present, diagnostic material underwent cytogenetic, exome, methylome and transcriptome analyses. The outcomes analyzed were 3-year event-free survival and overall survival. IG-MYC-r was identified in diverse cytogenetic backgrounds, co-existing with either established BCP-ALL-specific abnormalities (high hyperdiploidy, n=3; KMT2A-rearrangement, n=6; iAMP21, n=1; BCR-ABL1, n=1); BCL2/BCL6-rearrangements (n=15); or, most commonly, as the only defining feature (n=64). Within this final group, precursor-like V(D)J breakpoints predominated (8/9) and KRAS mutations were common (5/11). DNA methylation identified a cluster of V(D)J-rearranged cases, clearly distinct from Burkitt leukemia/lymphoma. Children with IG-MYC-r within that subgroup had a 3-year event-free survival of 47% and overall survival of 60%, representing a high-risk BCP-ALL. To develop effective management strategies this group of patients must be allowed access to contemporary, minimal residual disease-adapted, prospective clinical trial protocols.
Collapse
Affiliation(s)
- Simon Bomken
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne.
| | - Amir Enshaei
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Edward C Schwalbe
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne
| | - Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne
| | - Yunfeng Dai
- Department of Biostatistics, Colleges of Medicine, Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Masood Zaka
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK; National Horizons Centre, Teesside University, Darlington
| | - Kent T M Fung
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Matthew Bashton
- The Hub for Biotechnology in the Built Environment, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne
| | - Huezin Lim
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Lisa Jones
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Nefeli Karataraki
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Emily Winterman
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Cody Ashby
- Department of Biomedical Informatics / Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Yves Bertrand
- Department of Institute of Hematology Oncology Pediatric (IHOP), Hospices Civils de Lyon, Lyon
| | - Jutta Bradtke
- Institute of Pathology, Department Cytogenetics, University Hospital Giessen and Marburg
| | | | - G A Amos Burke
- Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge
| | - Giovanni Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Centro Ricerca Tettamanti, University of Milano-Bicocca, Monza
| | - Gudrun Gohring
- Department of Human Genetics, Hannover Medical School, Hannover
| | - Hesta A De Groot-Kruseman
- Dutch Childhood Oncology Group (DCOG), Utrecht, The Netherlands; Princess Maxima Center for Pediatric Oncology, Utrecht
| | | | - Luca Lo Nigro
- Head of Cytogenetic-Cytofluorimetric-Molecular Biology Laboratory, Center of Pediatric Hematology Oncology, Azienda Policlinico "G. Rodolico - San Marco", Catania
| | - Mayur Parihar
- Department of Cytogenetics and Laboratory Haematology, Tata Medical Centre, Kolkata, India
| | - Adriana Plesa
- Hematology and Flow cytometry Laboratory, Lyon Sud University Hospital, Hospices Civils de Lyon, Lyon
| | - Emma Seaford
- Department of Paediatric Oncology, Bristol Royal Hospital for Children, Bristol
| | | | - Sabine Strehl
- St. Anna Children's Cancer Research Institute, Vienna
| | | | - Vikki Rand
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK; National Horizons Centre, Teesside University, Darlington
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christine J Harrison
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Chris M Bacon
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| | - Frederik W Van Delft
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - John Moppett
- Department of Paediatric Oncology, Bristol Royal Hospital for Children, Bristol
| | - Josef Vormoor
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Princess Maxima Center for Pediatric Oncology, Utrecht
| | - Brian A Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University, Indianapolis, IN
| | - Anthony V Moorman
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Lisa J Russell
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne.
| |
Collapse
|
7
|
López C, Burkhardt B, Chan JKC, Leoncini L, Mbulaiteye SM, Ogwang MD, Orem J, Rochford R, Roschewski M, Siebert R. Burkitt lymphoma. Nat Rev Dis Primers 2022; 8:78. [PMID: 36522349 DOI: 10.1038/s41572-022-00404-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/16/2022]
Abstract
Burkitt lymphoma (BL) is an aggressive form of B cell lymphoma that can affect children and adults. The study of BL led to the identification of the first recurrent chromosomal aberration in lymphoma, t(8;14)(q24;q32), and subsequent discovery of the central role of MYC and Epstein-Barr virus (EBV) in tumorigenesis. Most patients with BL are cured with chemotherapy but those with relapsed or refractory disease usually die of lymphoma. Historically, endemic BL, non-endemic sporadic BL and the immunodeficiency-associated BL have been recognized, but differentiation of these epidemiological variants is confounded by the frequency of EBV positivity. Subtyping into EBV+ and EBV- BL might better describe the biological heterogeneity of the disease. Phenotypically resembling germinal centre B cells, all types of BL are characterized by dysregulation of MYC due to enhancer activation via juxtaposition with one of the three immunoglobulin loci. Additional molecular changes commonly affect B cell receptor and sphingosine-1-phosphate signalling, proliferation, survival and SWI-SNF chromatin remodelling. BL is diagnosed on the basis of morphology and high expression of MYC. BL can be effectively treated in children and adolescents with short durations of high dose-intensity multiagent chemotherapy regimens. Adults are more susceptible to toxic effects but are effectively treated with chemotherapy, including modified versions of paediatric regimens. The outcomes in patients with BL are good in high-income countries with low mortality and few late effects, but in low-income and middle-income countries, BL is diagnosed late and is usually treated with less-effective regimens affecting the overall good outcomes in patients with this lymphoma.
Collapse
Affiliation(s)
- Cristina López
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Birgit Burkhardt
- Non-Hodgkin's Lymphoma Berlin-Frankfurt-Münster (NHL-BFM) Study Center and Paediatric Hematology, Oncology and BMT, University Hospital Muenster, Muenster, Germany
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Lorenzo Leoncini
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | | | | | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
8
|
Möker P, zur Stadt U, Zimmermann M, Alawi M, Mueller S, Finger J, Knörr F, Riquelme A, Oschlies I, Klapper W, Bradtke J, Burkhardt B, Woessmann W, Damm-Welk C. Characterization of IG-MYC-breakpoints and their application for quantitative minimal disease monitoring in high-risk pediatric Burkitt-lymphoma and -leukemia. Leukemia 2022; 36:2343-2346. [PMID: 35790817 PMCID: PMC9417994 DOI: 10.1038/s41375-022-01626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022]
|
9
|
Cryptic MYC insertions in Burkitt lymphoma: New data and a review of the literature. PLoS One 2022; 17:e0263980. [PMID: 35167621 PMCID: PMC8846522 DOI: 10.1371/journal.pone.0263980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Abstract
The occurrence of MYC-negative Burkitt lymphoma (BL) has been discussed for many years. The real frequency of the MYC insertion in MYC-negative BL is still unknown. Fine-needle aspiration biopsies of 108 consecutive patients with clinicopathologically suspected BL (suspBL) were evaluated by flow cytometry, classical cytogenetics, and fluorescence in situ hybridization (FISH). We found 12 cases (11%) without the MYC rearrangement by FISH with a MYC breakapart probe: two patients (1.9%) with cryptic MYC/IGH fusion (finally diagnosed as BL) and 10 patients (9.3%) with 11q gain/loss (finally diagnosed as Burkitt-like lymphoma with 11q aberration). The exact breakpoints of the cryptic MYC/IGH were investigated by next-generation sequencing. The MYC insertions’ breakpoints were identified in PVT1 in the first case, and 42 kb upstream of 5′MYC in the second case. To date, a molecular characterization of the MYC insertion in BL has only been reported in one case. Detailed descriptions of our MYC insertions in a routinely and consecutively diagnosed suspBL cohort will contribute to resolving the issue of MYC negativity in BL. In our opinion, the presence of the MYC insertions in BL and other lymphomas might be underestimated, because routine genetic diagnostics are usually based on FISH only, without karyotyping.
Collapse
|
10
|
Elgaafary S, López C, Nagel I, Vater I, Bens S, Szczepanowski M, Aukema SM, Wagener R, Hopp L, Binder H, de Leval L, Klapper W, Siebert R. Molecular characterization of Burkitt lymphoma in the breast or ovary. Leuk Lymphoma 2021; 62:2120-2129. [PMID: 34165048 DOI: 10.1080/10428194.2021.1907374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Breast and ovary have been described as rare but typical sites of presentation of Burkitt lymphoma (BL) in females, particularly after puberty. We revised a historic series of 44 lymphomas of the breast or the ovary in women diagnosed between 1973 and 2014 as BL. Fluorescence in situ hybridization (FISH) was applied to all, and array-based copy number analysis as well as expression profiling to a subset of those cases. Of the 42 cases evaluable for FISH, 19 cases showed an IG-MYC translocation but only 9 of those fulfilled the criteria of the current WHO classification for the diagnosis of BL. Those nine cases resembled BL of other sites with regard to molecular features. Our findings along with literature data suggest that breast and ovarian BL (1) seem to be rarer than hitherto assumed, (2) share typical molecular features with other BL, and (3) predominantly affect women in the fertile age.
Collapse
Affiliation(s)
- Shaymaa Elgaafary
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Human Cytogenetics, National Research centre, Division of Human Genetics and Genome Research, Cairo, Egypt
| | - Cristina López
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inga Nagel
- Institute of Human Genetics, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Institute of Experimental and Clinical Pharmacology, Christian-Albrechts University Kiel and University, Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inga Vater
- Institute of Human Genetics, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Susanne Bens
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Monika Szczepanowski
- Hematopathology Section and Lymph Node Registry, Christian-Albrechts University Kiel and University Hospital, Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Clinic of Internal Medicine II, Laboratory of Hematology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sietse M Aukema
- Institute of Human Genetics, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Hematopathology Section and Lymph Node Registry, Christian-Albrechts University Kiel and University Hospital, Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Rabea Wagener
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Lydia Hopp
- Institute of Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Hans Binder
- Institute of Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Laurence de Leval
- Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Wolfram Klapper
- Hematopathology Section and Lymph Node Registry, Christian-Albrechts University Kiel and University Hospital, Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.,Institute of Human Genetics, Christian-Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
11
|
How Chaotic Is Genome Chaos? Cancers (Basel) 2021; 13:cancers13061358. [PMID: 33802828 PMCID: PMC8002653 DOI: 10.3390/cancers13061358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer genomes can undergo major restructurings involving many chromosomal locations at key stages in tumor development. This restructuring process has been designated “genome chaos” by some authors. In order to examine how chaotic cancer genome restructuring may be, the cell and molecular processes for DNA restructuring are reviewed. Examination of the action of these processes in various cancers reveals a degree of specificity that indicates genome restructuring may be sufficiently reproducible to enable possible therapies that interrupt tumor progression to more lethal forms. Abstract Cancer genomes evolve in a punctuated manner during tumor evolution. Abrupt genome restructuring at key steps in this evolution has been called “genome chaos.” To answer whether widespread genome change is truly chaotic, this review (i) summarizes the limited number of cell and molecular systems that execute genome restructuring, (ii) describes the characteristic signatures of DNA changes that result from activity of those systems, and (iii) examines two cases where genome restructuring is determined to a significant degree by cell type or viral infection. The conclusion is that many restructured cancer genomes display sufficiently unchaotic signatures to identify the cellular systems responsible for major oncogenic transitions, thereby identifying possible targets for therapies to inhibit tumor progression to greater aggressiveness.
Collapse
|
12
|
Mikulasova A, Ashby C, Tytarenko RG, Qu P, Rosenthal A, Dent JA, Ryan KR, Bauer MA, Wardell CP, Hoering A, Mavrommatis K, Trotter M, Deshpande S, Yaccoby S, Tian E, Keats J, Auclair D, Jackson GH, Davies FE, Thakurta A, Morgan GJ, Walker BA. Microhomology-mediated end joining drives complex rearrangements and overexpression of MYC and PVT1 in multiple myeloma. Haematologica 2020; 105:1055-1066. [PMID: 31221783 PMCID: PMC7109748 DOI: 10.3324/haematol.2019.217927] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/13/2019] [Indexed: 12/22/2022] Open
Abstract
MYC is a widely acting transcription factor and its deregulation is a crucial event in many human cancers. MYC is important biologically and clinically in multiple myeloma, but the mechanisms underlying its dysregulation are poorly understood. We show that MYC rearrangements are present in 36.0% of newly diagnosed myeloma patients, as detected in the largest set of next generation sequencing data to date (n=1,267). Rearrangements were complex and associated with increased expression of MYC and PVT1, but not other genes at 8q24. The highest effect on gene expression was detected in cases where the MYC locus is juxtaposed next to super-enhancers associated with genes such as IGH, IGK, IGL, TXNDC5/BMP6, FAM46C and FOXO3 We identified three hotspots of recombination at 8q24, one of which is enriched for IGH-MYC translocations. Breakpoint analysis indicates primary myeloma rearrangements involving the IGH locus occur through non-homologous end joining, whereas secondary MYC rearrangements occur through microhomology-mediated end joining. This mechanism is different to lymphomas, where non-homologous end joining generates MYC rearrangements. Rearrangements resulted in overexpression of key genes and chromatin immunoprecipitation-sequencing identified that HK2, a member of the glucose metabolism pathway, is directly over-expressed through binding of MYC at its promoter.
Collapse
Affiliation(s)
- Aneta Mikulasova
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Cody Ashby
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ruslana G Tytarenko
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Pingping Qu
- Cancer Research and Biostatistics, Seattle, WA, USA
| | | | - Judith A Dent
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Katie R Ryan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael A Bauer
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | - Matthew Trotter
- Celgene Institute for Translational Research Europe, Seville, Spain
| | - Shayu Deshpande
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shmuel Yaccoby
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Erming Tian
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jonathan Keats
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Graham H Jackson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Faith E Davies
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Gareth J Morgan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian A Walker
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Division of Hematology Oncology, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
13
|
Cassidy DP, Chapman JR, Lopez R, White K, Fan YS, Casas C, Severson EA, Vega F. Comparison Between Integrated Genomic DNA/RNA Profiling and Fluorescence In Situ Hybridization in the Detection of MYC, BCL-2, and BCL-6 Gene Rearrangements in Large B-Cell Lymphomas. Am J Clin Pathol 2020; 153:353-359. [PMID: 31872861 DOI: 10.1093/ajcp/aqz172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES To compare fluorescence in situ hybridization (FISH) and a commercially available sequencing assay for comprehensive genomic profiling (CGP) to determine the best approach to identify gene rearrangements (GRs) in large B-cell lymphomas (LBCLs). METHODS Comparison of standard-of-care FISH assays (including a two-probe approach for MYC; break-apart and fusion probes) and an integrated genomic DNA/RNA sequencing CGP approach on a set of 69 consecutive LBCL cases. RESULTS CGP detected GRs, including those involving MYC (1), BCL-2 (3), and BCL-6 (3), not detected by FISH. FISH detected non-IgH-MYC (4) and BCL-6 (2) GRs that were not detected by CGP. In four instances, standalone CGP or FISH testing would have missed a double-hit lymphoma. CONCLUSIONS CGP was superior to FISH in the detection of IgH-MYC rearrangements but was inferior for the detection of non-IgH-MYC rearrangements. Our study demonstrates the rationale for development of a customized approach to identify GRs in LBCLs.
Collapse
Affiliation(s)
- Daniel P Cassidy
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Sylvester Comprehensive Cancer Center, and Jackson Memorial Hospitals, Miami, FL
| | - Jennifer R Chapman
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Sylvester Comprehensive Cancer Center, and Jackson Memorial Hospitals, Miami, FL
| | - Rafael Lopez
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Sylvester Comprehensive Cancer Center, and Jackson Memorial Hospitals, Miami, FL
| | - Kyle White
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Sylvester Comprehensive Cancer Center, and Jackson Memorial Hospitals, Miami, FL
| | - Yao-Shan Fan
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Sylvester Comprehensive Cancer Center, and Jackson Memorial Hospitals, Miami, FL
| | - Carmen Casas
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Sylvester Comprehensive Cancer Center, and Jackson Memorial Hospitals, Miami, FL
| | | | - Francisco Vega
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
14
|
High-resolution architecture and partner genes of MYC rearrangements in lymphoma with DLBCL morphology. Blood Adv 2019; 2:2755-2765. [PMID: 30348671 DOI: 10.1182/bloodadvances.2018023572] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
Genomic rearrangements in the MYC locus occur in ∼12% of lymphomas with diffuse large B-cell lymphoma (DLBCL) morphology and are associated with inferior outcome. Previous studies exploring MYC rearrangements have primarily used fluorescence in situ hybridization (FISH) assays to characterize break-apart status but have rarely examined breakpoint location, and in some cases have not examined partner identity. We performed targeted sequencing of MYC, BCL2, BCL6, and the immunoglobulin (IG) loci in 112 tumors with DLBCL morphology harboring MYC rearrangement. We characterized the location of the MYC rearrangement at base pair resolution and identified the partner in 88 cases. We observed a cluster of breakpoints upstream of the MYC coding region and in intron 1 (the "genic cluster"). Genic cluster rearrangements were enriched for translocations involving IGH (80%), whereas nongenic rearrangements occurred mostly downstream of the MYC gene with a variety of partners, including IGL and IGK Other recurrent partners included BCL6, ZCCHC7, and RFTN1, which has not previously been described as a MYC partner. We compared 2 commercially available FISH break-apart assays for the MYC locus and observed discordant results in 32% of cases examined, including some with MYC-IGL and MYC-IGK rearrangements. In cases of high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangement (HGBL-DH), so-called "double-hit" lymphomas, the majority of MYC rearrangements had non-IG partners (65%), with breakpoints outside the genic cluster (72%). In patients with de novo HGBL-DH of DLBCL morphology, MYC-IG rearrangements showed a trend toward inferior time to progression and overall survival compared with MYC-non-IG rearrangements. Our data reveal clinically relevant architecture of MYC rearrangements in lymphomas with DLBCL morphology.
Collapse
|
15
|
Kaushal S, Freudenreich CH. The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer 2019; 58:270-283. [PMID: 30536896 DOI: 10.1002/gcc.22721] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Alternative non-B form DNA structures, also called secondary structures, can form in certain DNA sequences under conditions that produce single-stranded DNA, such as during replication, transcription, and repair. Direct links between secondary structure formation, replication fork stalling, and genomic instability have been found for many repeated DNA sequences that cause disease when they expand. Common fragile sites (CFSs) are known to be AT-rich and break under replication stress, yet the molecular basis for their fragility is still being investigated. Over the past several years, new evidence has linked both the formation of secondary structures and transcription to fork stalling and fragility of CFSs. How these two events may synergize to cause fragility and the role of nuclease cleavage at secondary structures in rare and CFSs are discussed here. We also highlight evidence for a new hypothesis that secondary structures at CFSs not only initiate fragility but also inhibit healing, resulting in their characteristic appearance.
Collapse
Affiliation(s)
- Simran Kaushal
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, Massachusetts.,Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| |
Collapse
|
16
|
Recurrent 8q24 rearrangement in blastic plasmacytoid dendritic cell neoplasm: association with immunoblastoid cytomorphology, MYC expression, and drug response. Leukemia 2018; 32:2590-2603. [PMID: 29795241 DOI: 10.1038/s41375-018-0154-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/21/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare skin-tropic hematological malignancy of uncertain pathogenesis and poor prognosis. We examined 118 BPDCN cases for cytomorphology, MYC locus rearrangement, and MYC expression. Sixty-two (53%) and 41 (35%) cases showed the classic and immunoblastoid cytomorphology, respectively. Forty-one (38%) MYC+BPDCN (positive for rearrangement and expression) and 59 (54%) MYC-BPDCN (both negative) cases were identified. Immunoblastoid cytomorphology was significantly associated with MYC+BPDCN. All examined MYC+BPDCNs were negative for MYB/MYBL1 rearrangement (0/36). Clinically, MYC+BPDCN showed older onset, poorer outcome, and localized skin tumors more commonly than MYC-BPDCN. MYC was demonstrated by expression profiling as one of the clearest discriminators between CAL-1 (MYC+BPDCN) and PMDC05 (MYC-BPDCN) cell lines, and its shRNA knockdown suppressed CAL-1 viability. Inhibitors for bromodomain and extra-terminal protein (BETis), and aurora kinases (AKis) inhibited CAL-1 growth more effectively than PMDC05. We further showed that a BCL2 inhibitor was effective in both CAL-1 and PMDC05, indicating that this inhibitor can be used to treat MYC-BPDCN, to which BETis and AKis are probably less effective. Our data will provide a rationale for the development of new treatment strategies for patients with BPDCN, in accordance with precision medicine.
Collapse
|
17
|
Double-stranded DNA break polarity skews repair pathway choice during intrachromosomal and interchromosomal recombination. Proc Natl Acad Sci U S A 2018; 115:2800-2805. [PMID: 29472448 DOI: 10.1073/pnas.1720962115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) inflicts DNA damage at Ig genes to initiate class switch recombination (CSR) and chromosomal translocations. However, the DNA lesions formed during these processes retain an element of randomness, and thus knowledge of the relationship between specific DNA lesions and AID-mediated processes remains incomplete. To identify necessary and sufficient DNA lesions in CSR, the Cas9 endonuclease and nickase variants were used to program DNA lesions at a greater degree of predictability than is achievable with conventional induction of CSR. Here we show that Cas9-mediated nicks separated by up to 250 nucleotides on opposite strands can mediate CSR. Staggered double-stranded breaks (DSBs) result in more end resection and junctional microhomology than blunt DSBs. Moreover, Myc-Igh chromosomal translocations, which are carried out primarily by alternative end joining (A-EJ), were preferentially induced by 5' DSBs. These data indicate that DSBs with 5' overhangs skew intrachromosomal and interchromosomal end-joining toward A-EJ. In addition to lending potential insight to AID-mediated phenomena, this work has broader carryover implications in DNA repair and lymphomagenesis.
Collapse
|
18
|
High-throughput sequencing reveals novel features of immunoglobulin gene rearrangements in Burkitt lymphoma. Blood Adv 2017; 1:1261-1262. [PMID: 29296767 DOI: 10.1182/bloodadvances.2017008060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Harada S, Sizzle E, Lin MT, Gocke CD. Detection of Chromosomal Translocation in Hematologic Malignancies by a Novel DNA-Based Looped Ligation Assay (LOLA). Clin Chem 2017; 63:1278-1287. [DOI: 10.1373/clinchem.2016.270140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/10/2017] [Indexed: 12/20/2022]
Abstract
Abstract
BACKGROUND
Disease-defining chromosomal translocations are seen in various neoplasms, especially in lymphomas and leukemias. Translocation detection at the DNA level is often complicated by chromosomal breakpoints that are distributed over very large regions. We have developed a ligation-based assay [the looped ligation assay (LOLA)] to detect translocations from diseases with multiple widely spaced breakpoint hot spots.
METHODS
Oligonucleotide sets that probe breakpoints of IGH-BCL2 (immunoglobulin heavy–apoptosis regulator) in follicular lymphoma (FL), MYC-IGH (MYC proto-oncogene, bHLH transcription factor–immunoglobulin heavy) in Burkitt lymphoma (BL) and BCR-ABL1 (RhoGEF and GTPase activating protein–ABL proto-oncogene 1, non-receptor tyrosine kinase) in chronic myelogenous leukemia (CML) were designed. DNA from cell lines with these translocations was mixed with oligonucleotides in a single-step ligation reaction followed by PCR amplification. Detection was by capillary electrophoresis. We also tested peripheral blood from 16 CML patients and frozen tissue from 17 FL cases, and the results were compared to reverse transcription (RT)-PCR (CML) or fluorescent in situ hybridization (FISH) and δ-PCR (FL).
RESULTS
LOLA produced signals of the expected sizes for the cell lines. Normal control DNA yielded no signals. A dilution series yielded translocation-specific peaks at dilutions as low as 1%. Signal intensity was log linear to the DNA concentration (R2 = 0.94). Furthermore, we were able to detect a LOLA peak in DNA from 53.3% of FL patients and 87.5% of CML patients. The concordance between LOLA, FISH, and δ-PCR in FL was also excellent.
CONCLUSIONS
Our results indicate that LOLA is a simple method that is useful for DNA-based detection of translocations in challenging situations, particularly where the breakpoints are not tightly clustered. The assay also has the added benefit of permitting rapid mapping of the breakpoints.
Collapse
Affiliation(s)
- Shuko Harada
- Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Current affiliation: Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Emily Sizzle
- Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ming-Tseh Lin
- Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christopher D Gocke
- Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
20
|
Yin Q, Sides M, Parsons CH, Flemington EK, Lasky JA. Arsenic trioxide inhibits EBV reactivation and promotes cell death in EBV-positive lymphoma cells. Virol J 2017. [PMID: 28637474 PMCID: PMC5480106 DOI: 10.1186/s12985-017-0784-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Epstein-Barr Virus (EBV) is associated with hematopoietic malignancies, such as Burkitt’s lymphoma, post-transplantation lymphoproliferative disorder, and diffuse large B-cell lymphoma. The current approach for EBV-associated lymphoma involves chemotherapy to eradicate cancer cells, however, normal cells may be injured and organ dysfunction may occur with currently employed regimens. This research is focused on employing arsenic trioxide (ATO) as EBV-specific cancer therapy takes advantage of the fact the EBV resides within the malignant cells. Methods and results Our research reveals that low ATO inhibits EBV gene expression and genome replication. EBV spontaneous reactivation starts as early as 6 h after re-suspending EBV-positive Mutu cells in RPMI media in the absence of ATO, however this does not occur in Mutu cells cultured with ATO. ATO’s inhibition of EBV spontaneous reactivation is dose dependent. The expression of the EBV immediate early gene Zta and early gene BMRF1 is blocked with low concentrations of ATO (0.5 nM – 2 nM) in EBV latency type I cells and EBV-infected PBMC cells. The combination of ATO and ganciclovir further diminishes EBV gene expression. ATO-mediated reduction of EBV gene expression can be rescued by co-treatment with the proteasome inhibitor MG132, indicating that ATO promotes ubiquitin conjugation and proteasomal degradation of EBV genes. Co-immunoprecipitation assays with antibodies against Zta pulls down more ubiquitin in ATO treated cell lysates. Furthermore, MG132 reverses the inhibitory effect of ATO on anti-IgM-, PMA- and TGF-β-mediated EBV reactivation. Thus, mechanistically ATO’s inhibition of EBV gene expression occurs via the ubiquitin pathway. Moreover, ATO treatment results in increased cell death in EBV-positive cells compared to EBV-negative cells, as demonstrated by both MTT and trypan blue assays. ATO-induced cell death in EBV-positive cells is dose dependent. ATO and ganciclovir in combination further enhances cell death specifically in EBV-positive cells. Conclusion ATO-mediated inhibition of EBV lytic gene expression results in cell death selectively in EBV-positive lymphocytes, suggesting that ATO may potentially serve as a drug to treat EBV-related lymphomas in the clinical setting.
Collapse
Affiliation(s)
- Qinyan Yin
- Department of Medicine, Section of Pulmonary Disease, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Mark Sides
- Department of Medicine, Section of Pulmonary Disease, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.,Department of Internal Medicine, University of Texas Medical Branch, 300 University Blvd, Galveston, TX, 77550, USA
| | - Christopher H Parsons
- Department of Internal Medicine, Louisiana University School of Medicine, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Erik K Flemington
- Department of Pathology and Laboratory, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Joseph A Lasky
- Department of Medicine, Section of Pulmonary Disease, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
| |
Collapse
|
21
|
Wood CD, Veenstra H, Khasnis S, Gunnell A, Webb HM, Shannon-Lowe C, Andrews S, Osborne CS, West MJ. MYC activation and BCL2L11 silencing by a tumour virus through the large-scale reconfiguration of enhancer-promoter hubs. eLife 2016; 5:e18270. [PMID: 27490482 PMCID: PMC5005034 DOI: 10.7554/elife.18270] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022] Open
Abstract
Lymphomagenesis in the presence of deregulated MYC requires suppression of MYC-driven apoptosis, often through downregulation of the pro-apoptotic BCL2L11 gene (Bim). Transcription factors (EBNAs) encoded by the lymphoma-associated Epstein-Barr virus (EBV) activate MYC and silence BCL2L11. We show that the EBNA2 transactivator activates multiple MYC enhancers and reconfigures the MYC locus to increase upstream and decrease downstream enhancer-promoter interactions. EBNA2 recruits the BRG1 ATPase of the SWI/SNF remodeller to MYC enhancers and BRG1 is required for enhancer-promoter interactions in EBV-infected cells. At BCL2L11, we identify a haematopoietic enhancer hub that is inactivated by the EBV repressors EBNA3A and EBNA3C through recruitment of the H3K27 methyltransferase EZH2. Reversal of enhancer inactivation using an EZH2 inhibitor upregulates BCL2L11 and induces apoptosis. EBV therefore drives lymphomagenesis by hijacking long-range enhancer hubs and specific cellular co-factors. EBV-driven MYC enhancer activation may contribute to the genesis and localisation of MYC-Immunoglobulin translocation breakpoints in Burkitt's lymphoma.
Collapse
Affiliation(s)
- C David Wood
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | | | - Sarika Khasnis
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Andrea Gunnell
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Helen M Webb
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Claire Shannon-Lowe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge, United Kingdom
| | - Cameron S Osborne
- Department of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London, United Kingdom
| | - Michelle J West
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
22
|
Ji MH, Kim SK, Kim CY, Phi JH, Jun HJ, Blume SW, Choi HS. Physiological Expression and Accumulation of the Products of Two Upstream Open Reading Frames mrtl and MycHex1 Along With p64 and p67 Myc From the Human c-myc Locus. J Cell Biochem 2015; 117:1407-18. [PMID: 26552949 DOI: 10.1002/jcb.25431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/09/2015] [Indexed: 11/05/2022]
Abstract
In addition to the canonical c-Myc p64 and p67 proteins, the human c-myc locus encodes two distinct proteins, mrtl (myc-related translation/localization regulatory factor) and MycHex1 (Myc Human Exon 1), from the upstream open reading frames within the 5'-untranslated region of the c-myc P0 mRNA. The aim of this study is to examine simultaneously, for the first time, mrtl, MycHex1, c-Myc p64, and p67 in human tumor cell lines and pediatric brain tumor tissues. Western blot analysis demonstrated endogenous mrtl, MycHex1, c-Myc p64, and p67 simultaneously. The relative abundance of mrtl and MycHex1 were consistent among a variety of human tumor cell lines, and the relative intensities of mrtl and MycHex1 correlated positively. Confocal imaging revealed mrtl predominantly localized to the nuclear envelope, along with prominent reticular pattern in the cytoplasm. MycHex1 was observed as a series of bright foci located within the nucleus, a subset of which colocalized with fibrillarin. mrtl and MycHex1 co-immunoprecipitated with RACK1, c-Myc, fibrillarin, coilin, and with each other. These findings suggest that mrtl and MycHex1 have multiple interaction partners in both the nucleus and cytoplasm. Sequence analyses confirmed a known polymorphism of mrtl at base 1965 (G>T) and new mutations at bases 1900 (C>G) and 1798 (C>G). Evidence is presented for expression and stable accumulation of all four proteins encoded by three distinct non-overlapping open reading frames within the human c-myc locus. Additional work is warranted to further elucidate the functional or regulatory roles of these molecules in regulation of c-Myc and in oncogenesis.
Collapse
Affiliation(s)
- Mi Hong Ji
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Phi
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jin Jun
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Scott W Blume
- Department of Medicine and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Hyoung Soo Choi
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
23
|
Zhang J, Li B, Wu H, Ou J, Wei R, Liu J, Cai W, Liu X, Zhao S, Yang J, Zhou L, Liu S, Liang A. Synergistic action of 5Z-7-oxozeaenol and bortezomib in inducing apoptosis of Burkitt lymphoma cell line Daudi. Tumour Biol 2015; 37:531-9. [PMID: 26227222 DOI: 10.1007/s13277-015-3832-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/21/2015] [Indexed: 01/30/2023] Open
Abstract
Treatment failure in cancer chemotherapy is largely due to the toxic effects of chemotherapeutic agents on normal cells/tissues. The proteasome inhibitor bortezomib has been successfully applied to treat multiple myeloma (MM), but there are some common adverse reactions in the clinic including peripheral neuropathy (PN). The TAK1 selective inhibitor 5Z-7-oxozeaenol has been widely studied in cancer therapy. Here, we investigated the potential synergy of bortezomib and 5Z-7-oxozeaenol in Burkitt's lymphoma (BL) cell lines. Cell viability assay showed that co-treatment of bortezomib at 8 nM, representing a one-eighth concentration for growth arrest, and 5Z-7-oxozeaenol at 2 μM, a dose that exhibited insignificant cytotoxic effects, synergistically induced apoptosis in the cell line Daudi. In parallel with the increasing dose of the bortezomib, and 5Z-7-oxozeaenol at 0.5 μM, lower colony formation efficiencies were seen in the cell line Daudi. Western blotting analysis verified that TAK1 inhibition by 5Z-7-oxozeaenol completely blocked JNK, p38, Erk, IKK, and IκB phosphorylation, which was almost instantly activated by TAK1 both directly or indirectly. Both agents synergistically prevented nuclear translocation of NF-κB, a characteristic of NF-κB inactivation. Moreover, a synergistic effect of bortezomib and 5Z-7-oxozeaenol on Western blotting analysis and flow cytometry was disclosed. Collectively, our results indicated that the proteasome inhibitor bortezomib and the TAK1 inhibitor 5Z-7-oxozeaenol displayed synergy on inhibiting BL cell apoptosis by inhibiting NF-κB activity.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.,College of life sciences, Guizhou University, Guiyang, 550025, China.,Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Bing Li
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Haixia Wu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jiayao Ou
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Rongbin Wei
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Junjun Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wenping Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaodong Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jianhua Yang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lili Zhou
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Shangfeng Liu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
24
|
Macchia G, Nord KH, Zoli M, Purgato S, D'Addabbo P, Whelan CW, Carbone L, Perini G, Mertens F, Rocchi M, Storlazzi CT. Ring chromosomes, breakpoint clusters, and neocentromeres in sarcomas. Genes Chromosomes Cancer 2014; 54:156-67. [PMID: 25421174 DOI: 10.1002/gcc.22228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/03/2014] [Indexed: 01/04/2023] Open
Abstract
Gene amplification is relatively common in tumors. In certain subtypes of sarcoma, it often occurs in the form of ring and/or giant rod-shaped marker (RGM) chromosomes whose mitotic stability is frequently rescued by ectopic novel centromeres (neocentromeres). Little is known about the origin and structure of these RGM chromosomes, including how they arise, their internal organization, and which sequences underlie the neocentromeres. To address these questions, 42 sarcomas with RGM chromosomes were investigated to detect regions prone to double strand breaks and possible functional or structural constraints driving the amplification process. We found nine breakpoint cluster regions potentially involved in the genesis of RGM chromosomes, which turned out to be significantly enriched in poly-pyrimidine traits. Some of the clusters were located close to genes already known to be relevant for sarcomas, thus indicating a potential functional constraint, while others mapped to transcriptionally inactive chromatin domains enriched in heterochromatic sites. Of note, five neocentromeres were identified after analyzing 13 of the cases by fluorescent in situ hybridization. ChIP-on-chip analysis with antibodies against the centromeric protein CENP-A showed that they were a patchwork of small genomic segments derived from different chromosomes, likely joint to form a contiguous sequence during the amplification process.
Collapse
Affiliation(s)
- Gemma Macchia
- Department of Biology, University of Bari, Bari, Italy; Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Silva IT, Rosales RA, Holanda AJ, Nussenzweig MC, Jankovic M. Identification of chromosomal translocation hotspots via scan statistics. ACTA ACUST UNITED AC 2014; 30:2551-8. [PMID: 24860160 DOI: 10.1093/bioinformatics/btu351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
MOTIVATION The detection of genomic regions unusually rich in a given pattern is an important undertaking in the analysis of next-generation sequencing data. Recent studies of chromosomal translocations in activated B lymphocytes have identified regions that are frequently translocated to c-myc oncogene. A quantitative method for the identification of translocation hotspots was crucial to this study. Here we improve this analysis by using a simple probabilistic model and the framework provided by scan statistics to define the number and location of translocation breakpoint hotspots. A key feature of our method is that it provides a global chromosome-wide nominal control level to clustering, as opposed to previous methods based on local criteria. While being motivated by a specific application, the detection of unusual clusters is a widespread problem in bioinformatics. We expect our method to be useful in the analysis of data from other experimental approaches such as of ChIP-seq and 4C-seq. RESULTS The analysis of translocations from B lymphocytes with the method described here reveals the presence of longer hotspots when compared with those defined previously. Further, we show that the hotspot size changes substantially in the absence of DNA repair protein 53BP1. When 53BP1 deficiency is combined with overexpression of activation-induced cytidine deaminase, the hotspot length increases even further. These changes are not detected by previous methods that use local significance criteria for clustering. Our method is also able to identify several exclusive translocation hotspots located in genes of known tumor supressors. AVAILABILITY AND IMPLEMENTATION The detection of translocation hotspots is done with hot_scan, a program implemented in R and Perl. Source code and documentation are freely available for download at https://github.com/itojal/hot_scan.
Collapse
Affiliation(s)
- Israel T Silva
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA, Departamento de Computação e Matemática, Universidade de São Paulo. Av. Bandeirantes, 3900, Ribeirão Preto, CEP 14049-901 and National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy. Rua Catão Roxo, 2501, Ribeirão Preto, CEP 14051-140, SP, Brazil Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA, Departamento de Computação e Matemática, Universidade de São Paulo. Av. Bandeirantes, 3900, Ribeirão Preto, CEP 14049-901 and National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy. Rua Catão Roxo, 2501, Ribeirão Preto, CEP 14051-140, SP, Brazil
| | - Rafael A Rosales
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA, Departamento de Computação e Matemática, Universidade de São Paulo. Av. Bandeirantes, 3900, Ribeirão Preto, CEP 14049-901 and National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy. Rua Catão Roxo, 2501, Ribeirão Preto, CEP 14051-140, SP, Brazil
| | - Adriano J Holanda
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA, Departamento de Computação e Matemática, Universidade de São Paulo. Av. Bandeirantes, 3900, Ribeirão Preto, CEP 14049-901 and National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy. Rua Catão Roxo, 2501, Ribeirão Preto, CEP 14051-140, SP, Brazil
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA, Departamento de Computação e Matemática, Universidade de São Paulo. Av. Bandeirantes, 3900, Ribeirão Preto, CEP 14049-901 and National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy. Rua Catão Roxo, 2501, Ribeirão Preto, CEP 14051-140, SP, Brazil
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA, Departamento de Computação e Matemática, Universidade de São Paulo. Av. Bandeirantes, 3900, Ribeirão Preto, CEP 14049-901 and National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy. Rua Catão Roxo, 2501, Ribeirão Preto, CEP 14051-140, SP, Brazil
| |
Collapse
|
26
|
Sklyar IV, Iarovaia OV, Lipinski M, Vassetzky YS. Translocations affecting human immunoglobulin heavy chain locus. ACTA ACUST UNITED AC 2014. [DOI: 10.7124/bc.000886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- I. V. Sklyar
- CNRS UMR8126, Paris-Sud University, Gustave Roussy Institute
- Institute of Gene Biology, Russian Academy of Sciences
- LIA 1066 French-Russian Joint Cancer Research Laboratory
| | - O. V. Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences
- LIA 1066 French-Russian Joint Cancer Research Laboratory
| | - M. Lipinski
- CNRS UMR8126, Paris-Sud University, Gustave Roussy Institute
- LIA 1066 French-Russian Joint Cancer Research Laboratory
| | - Y. S. Vassetzky
- Institute of Gene Biology, Russian Academy of Sciences
- LIA 1066 French-Russian Joint Cancer Research Laboratory
| |
Collapse
|
27
|
Muñoz-Mármol AM, Sanz C, Tapia G, Marginet R, Ariza A, Mate JL. MYCstatus determination in aggressive B-cell lymphoma: the impact of FISH probe selection. Histopathology 2013; 63:418-24. [DOI: 10.1111/his.12178] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/30/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Ana M Muñoz-Mármol
- Department of Pathology; Hospital Universitari Germans Trias i Pujol; Badalona; Barcelona; Spain
| | | | | | - Ruth Marginet
- Department of Pathology; Hospital Universitari Germans Trias i Pujol; Badalona; Barcelona; Spain
| | | | | |
Collapse
|
28
|
Song A, Ye J, Zhang K, Sun L, Zhao Y, Yu H. Lentiviral vector-mediated siRNA knockdown of c-MYC: cell growth inhibition and cell cycle arrest at G2/M phase in Jijoye cells. Biochem Genet 2013; 51:603-17. [PMID: 23657834 DOI: 10.1007/s10528-013-9590-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 10/16/2012] [Indexed: 12/25/2022]
Abstract
Inhibition of c-MYC has been considered as a potential therapy for lymphoma treatment. We explored a lentiviral vector-mediated small interfering RNA (siRNA) expression vector to stably reduce c-MYC expression in B cell line Jijoye cells and investigated the effects of c-MYC downregulation on cell growth, cell cycle, and apoptosis in vitro. The expression of c-MYC mRNA and protein levels were inhibited significantly by c-MYC siRNA. The c-MYC downregulation resulted in the inhibition of cell proliferation and cell cycle arrest at G2/M phase, which was associated with decreased expression of cyclin B and cyclin-dependent kinase 1 (CDK1) and increased expression of CDK inhibitor p21 proteins. In addition, downregulation of c-MYC induced cell apoptosis characterized by DNA fragmentation and caspase-3 activation. Taken together, these results suggest that lentiviral vector-mediated siRNA for c-MYC may be a promising approach for targeting c-MYC in the treatment of Burkitt lymphoma.
Collapse
Affiliation(s)
- Aiqin Song
- Department of Pediatric Hematology, Affiliated Hospital of Qingdao University Medical College, 16 Jiangsu Road, Qingdao, 266001 Shandong, China.
| | | | | | | | | | | |
Collapse
|
29
|
Burmeister T, Molkentin M, Schwartz S, Gökbuget N, Hoelzer D, Thiel E, Reinhardt R. Erroneous class switching and false VDJ recombination: molecular dissection of t(8;14)/MYC-IGH translocations in Burkitt-type lymphoblastic leukemia/B-cell lymphoma. Mol Oncol 2013; 7:850-8. [PMID: 23673335 DOI: 10.1016/j.molonc.2013.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/04/2013] [Accepted: 04/16/2013] [Indexed: 12/30/2022] Open
Abstract
The chromosomal translocation t(8;14)(q24;q32) with juxtaposition of MYC to enhancer elements in the immunoglobulin heavy chain (IGH) gene locus is the genetic hallmark of the majority of Burkitt lymphoma and a subset of Diffuse large B-cell lymphoma patients. Around 3% of adult B-lineage acute lymphoblastic leukemia (ALL) patients show this aberration. Flow cytometry mostly reveals a "mature B-ALL" or "Burkitt-type" ALL immunophenotype. Using long-distance PCR for t(8;14)/MYC-IGH fusion, we investigated bone marrow, peripheral blood and a few other samples with suspected Burkitt-ALL or mature B-ALL and identified 133 MYC-IGH-positive cases. The location of the chromosomal breaks in the IGH joining and the 8 different switch regions was determined using a set of long-distance PCRs. The chromosomal breakpoints with the adjacent MYC regions on 8q24 were characterized by direct sequencing in 49 cases. The distribution of chromosomal breaks among the IGH joining and switch regions was the following: JH 23.3%, M 21.8%, G1 15.0%, G2 7.5%, G3 3.8%, G4 4.5%, A1 12.8%, A2 3.8%, E 7.5%. Two breakpoint clusters near MYC were delineated. There was no clear correlation between the degree of somatic hypermutation and the chromosomal break locations. Epstein Barr virus was detected in 5 cases (4%). This detailed and extensive molecular analysis illustrates the molecular complexity of the MYC-IGH translocations and the detected distribution of breakpoints provides additional evidence that this translocation results from failed switch and VDJ recombinations. This study may serve as a model for the analysis of other IGH translocations in B-cell lymphoma.
Collapse
Affiliation(s)
- Thomas Burmeister
- Charité, Med. Klinik für Hämatologie, Onkologie und Tumorimmunologie, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Amarillo I, Bui PH, Kantarci S, Rao N, Shackley BS, García R, Tirado CA. Atypical rearrangement involving 3'-IGH@ and a breakpoint at least 400 Kb upstream of an intact MYC in a CLL patient with an apparently balanced t(8;14)(q24.1;q32) and negative MYC expression. Mol Cytogenet 2013; 6:5. [PMID: 23369149 PMCID: PMC3599416 DOI: 10.1186/1755-8166-6-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/13/2012] [Indexed: 12/25/2022] Open
Abstract
The t(8;14)(q24.1;q32), the cytogenetic hallmark of Burkitt's lymphoma, is also found, but rarely, in cases of chronic lymphocytic leukemia (CLL). Such translocation typically results in a MYC-IGH@ fusion subsequently deregulating and overexpressing MYC on der 14q32. In CLL, atypical rearrangements resulting in its gain or loss, within or outside of IGH@ or MYC locus, have been reported, but their clinical significance remains uncertain. Herein, we report a 67 year-old male with complex cytogenetic findings of apparently balanced t(8;14) and unreported complex rearrangements of IGH@ and MYC loci. His clinical, morphological and immunophenotypic features were consistent with the diagnosis of CLL.Interphase FISH studies revealed deletions of 11q22.3 and 13q14.3, and an extra copy of IGH@, indicative of rearrangement. Karyotype analysis showed an apparently balanced t(8;14)(q24.1;q32). Sequential GPG-metaphase FISH studies revealed abnormal signal patterns: rearrangement of IGH break apart probe with the 5'-IGH@ on derivative 8q24.1 and the 3'-IGH@ retained on der 14q; absence of MYC break apart-specific signal on der 8q; and, the presence of unsplit 5'-MYC-3' break apart probe signals on der 14q. The breakpoint on 8q24.1 was found to be at least 400 Kb upstream of 5' of MYC. In addition, FISH studies revealed two abnormal clones; one with 13q14.3 deletion, and the other, with concurrent 11q deletion and atypical rearrangements. Chromosome microarray analysis (CMA) detected a 7.1 Mb deletion on 11q22.3-q23.3 including ATM, a finding consistent with FISH results. While no significant copy number gain or loss observed on chromosomes 8, 12 and 13, a 455 Kb microdeletion of uncertain clinical significance was detected on 14q32.33. Immunohistochemistry showed co-expression of CD19, CD5, and CD23, positive ZAP-70 expression and absence of MYC expression. Overall findings reveal an apparently balanced t(8;14) and atypical complex rearrangements involving 3'-IGH@ and a breakpoint at least 400 Kb upstream of MYC, resulting in the relocation of the intact 5'-MYC-3' from der 8q, and apposition to 3'-IGH@ at der 14q. This case report provides unique and additional cytogenetic data that may be of clinical significance in such a rare finding in CLL. It also highlights the utility of conventional and sequential metaphase FISH in understanding complex chromosome anomalies and their association with other clinical findings in patients with CLL. To the best of our knowledge, this is the first CLL reported case with such an atypical rearrangement in a patient with a negative MYC expression.
Collapse
Affiliation(s)
- Ina Amarillo
- Clinical Molecular Cytogenetics Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA.,Department of Pathology & Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Peter H Bui
- Clinical Molecular Cytogenetics Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA.,Department of Pathology & Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Sibel Kantarci
- Clinical Molecular Cytogenetics Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA.,Department of Pathology & Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Nagesh Rao
- Clinical Molecular Cytogenetics Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA.,Department of Pathology & Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Brit S Shackley
- Department of Pathology & Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Rolando García
- Cytogenetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carlos A Tirado
- Clinical Molecular Cytogenetics Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA.,Department of Pathology & Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
31
|
Krumbholz M, Karl M, Tauer JT, Thiede C, Rascher W, Suttorp M, Metzler M. Genomic BCR-ABL1 breakpoints in pediatric chronic myeloid leukemia. Genes Chromosomes Cancer 2012; 51:1045-53. [PMID: 22887688 DOI: 10.1002/gcc.21989] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/01/2012] [Indexed: 12/16/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a rare disease in children and adolescents and various aspects-from molecular genesis to therapy regimen-have been taken over from studies on the more prevalent adult CML. However, differences have been observed between malignancies with identical underlying chromosomal translocations, but occurring at different age groups, suggesting some diversity in the mechanisms of formation and leukemogenesis. A multiplex long-range PCR-based assay was developed to allow fast and reliable amplification of patient-specific BCR-ABL1 fusion sequences from genomic DNA. The localization of breakpoints was analyzed with respect to distribution within the breakpoint cluster regions, sequence features, and association to repetitive elements or motifs associated with DNA recombination. The genomic fusion sites of 59 pediatric CML patients showed a bimodal breakpoint distribution in BCR that was different from the distribution in adult CML cases, but with similarities to BCR-ABL1-positive, acute lymphoblastic leukemia in adults. BCR breakpoints were found more frequently positioned within, or close to, Alu repeats than would be expected based on their overall sequence proportion. Technical aspects of the highly sensitive DNA-based quantification of residual CML cells by specific fusion sequence during tyrosine kinase inhibitor therapy are exemplified in a subcohort of pediatric CML patients.
Collapse
|
32
|
Greisman HA, Hoffman NG, Yi HS. Rapid high-resolution mapping of balanced chromosomal rearrangements on tiling CGH arrays. J Mol Diagn 2011; 13:621-33. [PMID: 21907824 DOI: 10.1016/j.jmoldx.2011.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 07/01/2011] [Accepted: 07/12/2011] [Indexed: 01/27/2023] Open
Abstract
The diagnosis and classification of many cancers depends in part on the identification of large-scale genomic aberrations such as chromosomal deletions, duplications, and balanced translocations. Array-based comparative genomic hybridization (array CGH) can detect chromosomal imbalances on a genome-wide scale but cannot reliably identify balanced chromosomal rearrangements. We describe a simple modification of array CGH that enables simultaneous identification of recurrent balanced rearrangements and genomic imbalances on the same microarray. Using custom tiling oligonucleotide arrays and gene-specific linear amplification primers, translocation CGH (tCGH) maps balanced rearrangements to ∼100-base resolution and facilitates the rapid cloning and sequencing of novel rearrangement breakpoints. As proof of principle, we used tCGH to characterize nine of the most common gene fusions in mature B-cell neoplasms and myeloid leukemias. Because tCGH can be performed in any CGH-capable laboratory and can screen for multiple recurrent translocations and genome-wide imbalances, it should be of broad utility in the diagnosis and classification of various types of lymphomas, leukemias, and solid tumors.
Collapse
Affiliation(s)
- Harvey A Greisman
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.
| | | | | |
Collapse
|
33
|
Burkitt lymphoma: pathogenesis and immune evasion. JOURNAL OF ONCOLOGY 2010; 2010. [PMID: 20953370 PMCID: PMC2952908 DOI: 10.1155/2010/516047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/02/2010] [Indexed: 12/21/2022]
Abstract
B-cell lymphomas arise at distinct stages of cellular development and maturation, potentially influencing antigen (Ag) presentation and T-cell recognition. Burkitt lymphoma (BL) is a highly malignant B-cell tumor associated with Epstein-Barr Virus (EBV) infection. Although BL can be effectively treated in adults and children, leading to high survival rates, its ability to mask itself from the immune system makes BL an intriguing disease to study. In this paper, we will provide an overview of BL and its association with EBV and the c-myc oncogene. The contributions of EBV and c-myc to B-cell transformation, proliferation, or attenuation of cellular network and immune recognition or evasion will be summarized. We will also discuss the various pathways by which BL escapes immune detection by inhibiting both HLA class I- and II-mediated Ag presentation to T cells. Finally, we will provide an overview of recent developments suggesting the existence of BL-associated inhibitory molecules that may block HLA class II-mediated Ag presentation to CD4+ T cells, facilitating immune escape of BL.
Collapse
|
34
|
Tsai AG, Engelhart AE, Hatmal MM, Houston SI, Hud NV, Haworth IS, Lieber MR. Conformational variants of duplex DNA correlated with cytosine-rich chromosomal fragile sites. J Biol Chem 2008; 284:7157-64. [PMID: 19106104 DOI: 10.1074/jbc.m806866200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We found that several major chromosomal fragile sites in human lymphomas, including the bcl-2 major breakpoint region, bcl-1 major translocation cluster, and c-Myc exon 1-intron 1 boundary, contain distinctive sequences of consecutive cytosines exhibiting a high degree of reactivity with the structure-specific chemical probe bisulfite. To assess the inherent structural variability of duplex DNA in these regions and to determine the range of structures reactive to bisulfite, we have performed bisulfite probing on genomic DNA in vitro and in situ; on duplex DNA in supercoiled and linearized plasmids; and on oligonucleotide DNA/DNA and DNA/2'-O-methyl RNA duplexes. Bisulfite is significantly more reactive at the frayed ends of DNA duplexes, which is expected given that bisulfite is an established probe of single-stranded DNA. We observed that bisulfite also distinguishes between more subtle sequence/structural differences in duplex DNA. Supercoiled plasmids are more reactive than linear DNA; and sequences containing consecutive cytosines, namely GGGCCC, are more reactive than those with alternating guanine and cytosine, namely GCGCGC. Circular dichroism and x-ray crystallography show that the GGGCCC sequence forms an intermediate B/A structure. Molecular dynamics simulations also predict an intermediate B/A structure for this sequence, and probe calculations suggest greater bisulfite accessibility of cytosine bases in the intermediate B/A structure over canonical B- or A-form DNA. Electrostatic calculations reveal that consecutive cytosine bases create electropositive patches in the major groove, predicting enhanced localization of the bisulfite anion at homo-C tracts over alternating G/C sequences. These characteristics of homo-C tracts in duplex DNA may be associated with DNA-protein interactions in vivo that predispose certain genomic regions to chromosomal fragility.
Collapse
Affiliation(s)
- Albert G Tsai
- Department of Biochemistry, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California 90089-9176, USA
| | | | | | | | | | | | | |
Collapse
|