1
|
Low ZY, Yip AJW, Chan AML, Choo WS. 14-3-3 Family of Proteins: Biological Implications, Molecular Interactions, and Potential Intervention in Cancer, Virus and Neurodegeneration Disorders. J Cell Biochem 2024; 125:e30624. [PMID: 38946063 DOI: 10.1002/jcb.30624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The 14-3-3 family of proteins are highly conserved acidic eukaryotic proteins (25-32 kDa) abundantly present in the body. Through numerous binding partners, the 14-3-3 is responsible for many essential cellular pathways, such as cell cycle regulation and gene transcription control. Hence, its dysregulation has been linked to the onset of critical illnesses such as cancers, neurodegenerative diseases and viral infections. Interestingly, explorative studies have revealed an inverse correlation of 14-3-3 protein in cancer and neurodegenerative diseases, and the direct manipulation of 14-3-3 by virus to enhance infection capacity has dramatically extended its significance. Of these, COVID-19 has been linked to the 14-3-3 proteins by the interference of the SARS-CoV-2 nucleocapsid (N) protein during virion assembly. Given its predisposition towards multiple essential host signalling pathways, it is vital to understand the holistic interactions between the 14-3-3 protein to unravel its potential therapeutic unit in the future. As such, the general structure and properties of the 14-3-3 family of proteins, as well as their known biological functions and implications in cancer, neurodegeneration, and viruses, were covered in this review. Furthermore, the potential therapeutic target of 14-3-3 proteins in the associated diseases was discussed.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
2
|
Koyama D, Kikuchi J, Kuroda Y, Ohta M, Furukawa Y. AMP-activated protein kinase activation primes cytoplasmic translocation and autophagic degradation of the BCR-ABL protein in CML cells. Cancer Sci 2020; 112:194-204. [PMID: 33070465 PMCID: PMC7780059 DOI: 10.1111/cas.14698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/14/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
Chronic myeloid leukemia is driven by the BCR‐ABL oncoprotein, a constitutively active protein tyrosine kinase. Although tyrosine kinase inhibitors (TKIs) have greatly improved the prognosis of CML patients, the emergence of TKI resistance is an important clinical problem, which deserves additional treatment options based on unique biological properties to CML cells. In this study, we show that metabolic homeostasis is critical for survival of CML cells, especially when the disease is in advanced stages. The BCR‐ABL protein activates AMP‐activated protein kinase (AMPK) for ATP production and the mTOR pathway to suppress autophagy. BCR‐ABL is detected in the nuclei of advanced‐stage CML cells, in which ATP is sufficiently supplied by enhanced glucose metabolism. AMP‐activated protein kinase is further activated under energy‐deprived conditions and triggers autophagy through ULK1 phosphorylation and mTOR inhibition. In addition, AMPK phosphorylates 14‐3‐3 and Beclin 1 to facilitate cytoplasmic translocation of nuclear BCR‐ABL in a BCR‐ABL/14‐3‐3τ/Beclin1/XPO1 complex. Cytoplasmic BCR‐ABL protein undergoes autophagic degradation when intracellular ATP is exhausted by disruption of the energy balance or forced autophagy flux with AMP mimetics, mTOR inhibitors, or arsenic trioxide, leading to apoptotic cell death. This pathway represents a novel therapeutic vulnerability that could be useful for treating TKI‐resistant CML.
Collapse
Affiliation(s)
- Daisuke Koyama
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan.,Department of Internal Medicine, Fukushima Prefectural Miyashita Hospital, Mishima, Japan
| | - Jiro Kikuchi
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yoshiaki Kuroda
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Masatsugu Ohta
- Department of Hematology, Fukushima Medical University Aizu Medical Center, Aizuwakamatsu, Japan
| | - Yusuke Furukawa
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
3
|
Pennington KL, Chan TY, Torres MP, Andersen JL. The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein-protein interactions. Oncogene 2018; 37:5587-5604. [PMID: 29915393 PMCID: PMC6193947 DOI: 10.1038/s41388-018-0348-3] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
14-3-3 proteins are a family of structurally similar phospho-binding proteins that regulate essentially every major cellular function. Decades of research on 14-3-3s have revealed a remarkable network of interacting proteins that demonstrate how 14-3-3s integrate and control multiple signaling pathways. In particular, these interactions place 14-3-3 at the center of the signaling hub that governs critical processes in cancer, including apoptosis, cell cycle progression, autophagy, glucose metabolism, and cell motility. Historically, the majority of 14-3-3 interactions have been identified and studied under nutrient-replete cell culture conditions, which has revealed important nutrient driven interactions. However, this underestimates the reach of 14-3-3s. Indeed, the loss of nutrients, growth factors, or changes in other environmental conditions (e.g., genotoxic stress) will not only lead to the loss of homeostatic 14-3-3 interactions, but also trigger new interactions, many of which are likely stress adaptive. This dynamic nature of the 14-3-3 interactome is beginning to come into focus as advancements in mass spectrometry are helping to probe deeper and identify context-dependent 14-3-3 interactions-providing a window into adaptive phosphorylation-driven cellular mechanisms that orchestrate the tumor cell's response to a variety of environmental conditions including hypoxia and chemotherapy. In this review, we discuss emerging 14-3-3 regulatory mechanisms with a focus on post-translational regulation of 14-3-3 and dynamic protein-protein interactions that illustrate 14-3-3's role as a stress-adaptive signaling hub in cancer.
Collapse
Affiliation(s)
- K L Pennington
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - T Y Chan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - M P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - J L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
4
|
Tilli TM, Carels N, Tuszynski JA, Pasdar M. Validation of a network-based strategy for the optimization of combinatorial target selection in breast cancer therapy: siRNA knockdown of network targets in MDA-MB-231 cells as an in vitro model for inhibition of tumor development. Oncotarget 2018; 7:63189-63203. [PMID: 27527857 PMCID: PMC5325356 DOI: 10.18632/oncotarget.11055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/10/2016] [Indexed: 12/14/2022] Open
Abstract
Network-based strategies provided by systems biology are attractive tools for cancer therapy. Modulation of cancer networks by anticancer drugs may alter the response of malignant cells and/or drive network re-organization into the inhibition of cancer progression. Previously, using systems biology approach and cancer signaling networks, we identified top-5 highly expressed and connected proteins (HSP90AB1, CSNK2B, TK1, YWHAB and VIM) in the invasive MDA-MB-231 breast cancer cell line. Here, we have knocked down the expression of these proteins, individually or together using siRNAs. The transfected cell lines were assessed for in vitro cell growth, colony formation, migration and invasion relative to control transfected MDA-MB-231, the non-invasive MCF-7 breast carcinoma cell line and the non-tumoral mammary epithelial cell line MCF-10A. The knockdown of the top-5 upregulated connectivity hubs successfully inhibited the in vitro proliferation, colony formation, anchorage independence, migration and invasion in MDA-MB-231 cells; with minimal effects in the control transfected MDA-MB-231 cells or MCF-7 and MCF-10A cells. The in vitro validation of bioinformatics predictions regarding optimized multi-target selection for therapy suggests that protein expression levels together with protein-protein interaction network analysis may provide an optimized combinatorial target selection for a highly effective anti-metastatic precision therapy in triple-negative breast cancer. This approach increases the ability to identify not only druggable hubs as essential targets for cancer survival, but also interactions most susceptible to synergistic drug action. The data provided in this report constitute a preliminary step toward the personalized clinical application of our strategy to optimize the therapeutic use of anti-cancer drugs.
Collapse
Affiliation(s)
- Tatiana M Tilli
- Laboratory of Biological System Modeling, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Nicolas Carels
- Laboratory of Biological System Modeling, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Jack A Tuszynski
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Manijeh Pasdar
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Epilepsy-associated gene Nedd4-2 mediates neuronal activity and seizure susceptibility through AMPA receptors. PLoS Genet 2017; 13:e1006634. [PMID: 28212375 PMCID: PMC5338825 DOI: 10.1371/journal.pgen.1006634] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/06/2017] [Accepted: 02/14/2017] [Indexed: 12/11/2022] Open
Abstract
The neural precursor cell expressed developmentally down-regulated gene 4–2, Nedd4-2, is an epilepsy-associated gene with at least three missense mutations identified in epileptic patients. Nedd4-2 encodes a ubiquitin E3 ligase that has high affinity toward binding and ubiquitinating membrane proteins. It is currently unknown how Nedd4-2 mediates neuronal circuit activity and how its dysfunction leads to seizures or epilepsies. In this study, we provide evidence to show that Nedd4-2 mediates neuronal activity and seizure susceptibility through ubiquitination of GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, (AMPAR). Using a mouse model, termed Nedd4-2andi, in which one of the major forms of Nedd4-2 in the brain is selectively deficient, we found that the spontaneous neuronal activity in Nedd4-2andi cortical neuron cultures, measured by a multiunit extracellular electrophysiology system, was basally elevated, less responsive to AMPAR activation, and much more sensitive to AMPAR blockade when compared with wild-type cultures. When performing kainic acid-induced seizures in vivo, we showed that elevated seizure susceptibility in Nedd4-2andi mice was normalized when GluA1 is genetically reduced. Furthermore, when studying epilepsy-associated missense mutations of Nedd4-2, we found that all three mutations disrupt the ubiquitination of GluA1 and fail to reduce surface GluA1 and spontaneous neuronal activity when compared with wild-type Nedd4-2. Collectively, our data suggest that impaired GluA1 ubiquitination contributes to Nedd4-2-dependent neuronal hyperactivity and seizures. Our findings provide critical information to the future development of therapeutic strategies for patients who carry mutations of Nedd4-2. Many patients with neurological disorders suffer from an imbalance in neuronal and circuit excitability and present with seizure or epilepsy as the common comorbidity. Human genetic studies have identified many epilepsy-associated genes, but the pathways by which those genes are connected to brain circuit excitability are largely unknown. Our study focused on one of the epilepsy-associated genes, Nedd4-2, and aimed to dissect the molecular mechanism underlying Nedd4-2-associated epilepsy. Nedd4-2 encodes a ubiquitin E3 ligase. Several neuronal ion channels have been identified as its substrates, including the GluA1 subunit of AMPAR. Our results first demonstrate up-regulation of spontaneous neuronal activity and seizure susceptibility when Nedd4-2 is reduced in a mouse model. These deficits can be corrected when GluA1/AMPAR is pharmacologically or genetically inhibited. In addition, we found that three epilepsy-associated missense mutations of Nedd4-2 inhibit the ubiquitination of GluA1 and fail to reduce GluA1 surface expression or spontaneous neuronal activity when compared to wild-type Nedd4-2. These findings suggest the reduction of GluA1 ubiquitination as a crucial deficit underlying insufficient function of Nedd4-2 and provide critical information to the development of therapies for patients who carry mutations of Nedd4-2.
Collapse
|
6
|
Over-expression of miR-451a can enhance the sensitivity of breast cancer cells to tamoxifen by regulating 14-3-3ζ, estrogen receptor α, and autophagy. Life Sci 2016; 149:104-13. [PMID: 26896688 DOI: 10.1016/j.lfs.2016.02.059] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 02/05/2023]
Abstract
AIM To investigate the effects and mechanisms of miR-451a in the tamoxifen (TAM) resistance of breast cancer cells. MATERIALS AND METHODS TAM sensitive cells (MCF-7) and resistant cells (LCC2) were employed in the study. The lentivirus vectors of Lv-miR-451a, Lv-miR-451a sponge, and Lv-miR-451a NC were employed to increase or decrease the expression of miR-451a, respectively. SiRNA to 14-3-3ζ was used to inhibit expression of 14-3-3ζ. MTT assay was utilized to detect breast cancer cell proliferation. AnnexinV-FITC binding assay was used to detect apoptosis. Expression of ERα, 14-3-3ζ and miR-451a were measured by qRT-PCR and Western blot analysis. Interactions between 14-3-3ζ and ERα were investigated by co-immunoprecipitation. LC3-II surface expression and intracellular autophagosomes were observed by Western blot and electron microscopy. KEY FINDINGS Over-expression of miR-451a can enhance MCF-7 and LCC2 cell sensitivity to TAM. Opposite effects were elicited by knocking down miR-451a. TAM treatment can up-regulate 14-3-3ζ expression, and down-regulate ERα expression. 14-3-3ζ and ERα were shown to interact. Over-expression of miR-451a decreased 14-3-3ζ expression and increased ERα expression, suppressing cell proliferation, increasing apoptosis, and reducing activation of p-AKT and p-mTOR. R18 can significantly decrease cell proliferation and increase apoptosis. R18 and 14-3-3ζ siRNA can rescue the effects of down-regulation of ERα by knocking down miR-451a. Over-expression of miR-451a inhibits autophagy, knocking-down miR-451a stimulates autophagy. SIGNIFICANCE MiR-451a functions as a suppressor of resistance to TAM through regulating autophagy, the expression of 14-3-3ζ and ERα. This suggests miR-451a to be a potential target for reversing resistance to TAM.
Collapse
|
7
|
Wang C, Zhu X, Feng W, Yu Y, Jeong K, Guo W, Lu Y, Mills GB. Verteporfin inhibits YAP function through up-regulating 14-3-3σ sequestering YAP in the cytoplasm. Am J Cancer Res 2015; 6:27-37. [PMID: 27073720 PMCID: PMC4759394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023] Open
Abstract
Yes-associated protein (YAP), the central mediator of Hippo pathway, not only regulates a diversity of cellular processes during development but also plays a pivotal role in tumorigenesis. YAP is overexpressed in many types of human cancers with its expression level being associated with patient outcomes. Thus, inhibiting YAP function could provide a novel therapeutic approach. Verteporfin, a photosensitizer, which has been used in photodynamic therapy (PDT), was recently identified as an inhibitor of the interaction of YAP with TEAD, which, in turn, blocks transcriptional activation of targets downstream of YAP. However, the mechanism by which Verteporfin inhibits YAP activity remains to be elucidated. We demonstrate that overexpression of YAP stimulates cell proliferation whereas knocking down YAP or treating cells with Verteporfin inhibited cell proliferation, even in the presence of growth factors. Protoporphyrin IX, another photosensitizer, did not have similar activity demonstrating specificity to Verteporfin. Verteporfin induced sequestration of YAP in cytoplasm through increasing levels of 14-3-3σ, a YAP chaperon protein that retains YAP in cytoplasm and targets it for degradation in the proteosome. Interestingly, while knockdown of YAP had no effect on the ability of Verteporfin to induce 14-3-3σ, p53 is required for this effect of Verteporfin. This provides potential approaches to select patients likely to benefit from Verteporfin.
Collapse
Affiliation(s)
- Chao Wang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan UniversityShanghai 200011, China
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston 77030, TX, USA
| | - Xiaoyong Zhu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan UniversityShanghai 200011, China
| | - Weiwei Feng
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan UniversityShanghai 200011, China
| | - Yinhua Yu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan UniversityShanghai 200011, China
| | - Kangjin Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston 77030, TX, USA
| | - Wei Guo
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston 77030, TX, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston 77030, TX, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston 77030, TX, USA
| |
Collapse
|
8
|
Inhibition of Ras-mediated signaling pathways in CML stem cells. Cell Oncol (Dordr) 2015; 38:407-18. [PMID: 26458816 DOI: 10.1007/s13402-015-0248-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by the presence of the BCR-ABL1 oncoprotein in cells with a hematopoietic stem cell (HSC) origin. BCR-ABL1 tyrosine kinase activity leads to constitutive activation of Ras, which in turn acts as a branch point to initiate multiple downstream signaling pathways governing proliferation, self-renewal, differentiation and apoptosis. As aberrant regulation of these cellular processes causes transformation and disease progression particularly in advanced stages of CML, investigation of these signaling pathways may uncover new therapeutic targets for the selective eradication of CML stem cells. Transcription factors play a crucial role in unbalancing the Ras signaling network and have recently been investigated as potential modulators in this regard. In this review, we first briefly summarize the Ras-associated molecular pathways that are involved in the regulation of CML stem cell properties. Next we discuss the relevance of Ras-associated transcription factors as nuclear targets in combination treatment strategies for CML. CONCLUSIONS A closer investigation of the influence of Ras-mediated signaling pathways on CML progression to blast crisis is warranted to uncover new directions for targeted therapies, particularly in cases that are resistant to current tyrosine kinase inhibitors.
Collapse
|
9
|
Babula JJ, Liu JY. Integrate Omics Data and Molecular Dynamics Simulations toward Better Understanding of Human 14-3-3 Interactomes and Better Drugs for Cancer Therapy. J Genet Genomics 2015; 42:531-547. [PMID: 26554908 DOI: 10.1016/j.jgg.2015.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Abstract
The 14-3-3 protein family is among the most extensively studied, yet still largely mysterious protein families in mammals to date. As they are well recognized for their roles in apoptosis, cell cycle regulation, and proliferation in healthy cells, aberrant 14-3-3 expression has unsurprisingly emerged as instrumental in the development of many cancers and in prognosis. Interestingly, while the seven known 14-3-3 isoforms in humans have many similar functions across cell types, evidence of isoform-specific functions and localization has been observed in both healthy and diseased cells. The strikingly high similarity among 14-3-3 isoforms has made it difficult to delineate isoform-specific functions and for isoform-specific targeting. Here, we review our knowledge of 14-3-3 interactome(s) generated by high-throughput techniques, bioinformatics, structural genomics and chemical genomics and point out that integrating the information with molecular dynamics (MD) simulations may bring us new opportunity to the design of isoform-specific inhibitors, which can not only be used as powerful research tools for delineating distinct interactomes of individual 14-3-3 isoforms, but also can serve as potential new anti-cancer drugs that selectively target aberrant 14-3-3 isoform.
Collapse
Affiliation(s)
- JoAnne J Babula
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 980 W. Walnut Street, Indianapolis, IN 46202, USA
| | - Jing-Yuan Liu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 980 W. Walnut Street, Indianapolis, IN 46202, USA; Department of Computer and Information Science, Indiana University Purdue University Indianapolis, 723 W. Michigan St., Indianapolis, IN 46202, USA.
| |
Collapse
|
10
|
A computational strategy to select optimized protein targets for drug development toward the control of cancer diseases. PLoS One 2015; 10:e0115054. [PMID: 25625699 PMCID: PMC4308075 DOI: 10.1371/journal.pone.0115054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/21/2014] [Indexed: 12/18/2022] Open
Abstract
In this report, we describe a strategy for the optimized selection of protein targets suitable for drug development against neoplastic diseases taking the particular case of breast cancer as an example. We combined human interactome and transcriptome data from malignant and control cell lines because highly connected proteins that are up-regulated in malignant cell lines are expected to be suitable protein targets for chemotherapy with a lower rate of undesirable side effects. We normalized transcriptome data and applied a statistic treatment to objectively extract the sub-networks of down- and up-regulated genes whose proteins effectively interact. We chose the most connected ones that act as protein hubs, most being in the signaling network. We show that the protein targets effectively identified by the combination of protein connectivity and differential expression are known as suitable targets for the successful chemotherapy of breast cancer. Interestingly, we found additional proteins, not generally targeted by drug treatments, which might justify the extension of existing formulation by addition of inhibitors designed against these proteins with the consequence of improving therapeutic outcomes. The molecular alterations observed in breast cancer cell lines represent either driver events and/or driver pathways that are necessary for breast cancer development or progression. However, it is clear that signaling mechanisms of the luminal A, B and triple negative subtypes are different. Furthermore, the up- and down-regulated networks predicted subtype-specific drug targets and possible compensation circuits between up- and down-regulated genes. We believe these results may have significant clinical implications in the personalized treatment of cancer patients allowing an objective approach to the recycling of the arsenal of available drugs to the specific case of each breast cancer given their distinct qualitative and quantitative molecular traits.
Collapse
|
11
|
Zhou L, Bai H, Deng C, Wang C, Xu R, Shao S. MicroRNA-21 is involved in X-ray irradiation resistance in K562 leukaemia cells. ACTA ACUST UNITED AC 2014; 20:343-8. [PMID: 25242444 DOI: 10.1179/1607845414y.0000000201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Many studies have demonstrated that microRNA-21 (miR-21) acts as an oncogene in the tumourigenesis of a variety of tumours and may be involved in the chemotherapeutic drug resistance of tumour cells. In this study, we utilized the leukaemia cell line K562 as an in vitro cell model to investigate whether miR-21 is involved in X-ray irradiation resistance. METHODS Retroviral transduction and antisense oligonucleotide transfection were used to overexpress or knock down miR-21 expression, respectively. An MTT assay was used to measure cell viability, and western blotting was performed to detect the expression of the miR-21 target gene, PTEN (phosphatase and tensin homologue), and its downstream signalling components, phosphatidylinositol 3-kinase (PI3K), and AKT. RESULTS The overexpression of miR-21 decreased the protein expression levels of PTEN, increased the phosphorylation level of AKT, and enhanced the X-ray irradiation resistance in K562 cells. In contrast, the knockdown of miR-21 increased the PTEN protein expression, reduced the phosphorylation levels of the AKT, and increased the sensitivity of K562 cells to X-ray irradiation. The overexpression of PTEN or the knockdown of AKT also increased the sensitivity of K562 cells to X-ray irradiation. CONCLUSION By regulating the expression of its target gene PTEN, which subsequently affects the PI3K/AKT signalling pathway, miR-21 exerts its regulatory role on the radiation sensitivity of K562 cells. These results may help to provide the basis for microRNA-based targeted therapies to overcome radiation resistance in tumour cells.
Collapse
|
12
|
Tanaka R, Kimura S. Abl tyrosine kinase inhibitors for overriding Bcr–Abl/T315I: from the second to third generation. Expert Rev Anticancer Ther 2014; 8:1387-98. [DOI: 10.1586/14737140.8.9.1387] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Yam PT, Kent CB, Morin S, Farmer WT, Alchini R, Lepelletier L, Colman DR, Tessier-Lavigne M, Fournier AE, Charron F. 14-3-3 proteins regulate a cell-intrinsic switch from sonic hedgehog-mediated commissural axon attraction to repulsion after midline crossing. Neuron 2013. [PMID: 23177959 DOI: 10.1016/j.neuron.2012.09.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Axons must switch responsiveness to guidance cues during development for correct pathfinding. Sonic Hedgehog (Shh) attracts spinal cord commissural axons ventrally toward the floorplate. We show that after crossing the floorplate, commissural axons switch their response to Shh from attraction to repulsion, so that they are repelled anteriorly by a posterior-high/anterior-low Shh gradient along the longitudinal axis. This switch is recapitulated in vitro with dissociated commissural neurons as they age, indicating that the switch is intrinsic and time dependent. 14-3-3 protein inhibition converted Shh-mediated repulsion of aged dissociated neurons to attraction and prevented the correct anterior turn of postcrossing commissural axons in vivo, an effect mediated through PKA. Conversely, overexpression of 14-3-3 proteins was sufficient to drive the switch from Shh-mediated attraction to repulsion both in vitro and in vivo. Therefore, we identify a 14-3-3 protein-dependent mechanism for a cell-intrinsic temporal switch in the polarity of axon turning responses.
Collapse
Affiliation(s)
- Patricia T Yam
- Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal, 110 Pine Avenue West, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mancini M, Veljkovic N, Leo E, Aluigi M, Borsi E, Galloni C, Iacobucci I, Barbieri E, Santucci MA. Cytoplasmatic compartmentalization by Bcr-Abl promotes TET2 loss-of-function in chronic myeloid leukemia. J Cell Biochem 2012; 113:2765-74. [DOI: 10.1002/jcb.24154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Jiang J, Balcerek J, Rozenova K, Cheng Y, Bersenev A, Wu C, Song Y, Tong W. 14-3-3 regulates the LNK/JAK2 pathway in mouse hematopoietic stem and progenitor cells. J Clin Invest 2012; 122:2079-91. [PMID: 22546852 DOI: 10.1172/jci59719] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 03/09/2012] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) functions are governed by intricate signaling networks. The tyrosine kinase JAK2 plays an essential role in cytokine signaling during hematopoiesis. The adaptor protein LNK is a critical determinant of this process through its inhibitory interaction with JAK2, thereby limiting HSPC self-renewal. LNK deficiency promotes myeloproliferative neoplasm (MPN) development in mice, and LNK loss-of-function mutations are found in human MPNs, emphasizing its pivotal role in normal and malignant HSPCs. Here, we report the identification of 14-3-3 proteins as LNK binding partners. 14-3-3 interfered with the LNK-JAK2 interaction, thereby alleviating LNK inhibition of JAK2 signaling and cell proliferation. Binding of 14-3-3 required 2 previously unappreciated serine phosphorylation sites in LNK, and we found that their phosphorylation is mediated by glycogen synthase kinase 3 and PKA kinases. Mutations of these residues abrogated the interaction and augmented the growth inhibitory function of LNK. Conversely, forced 14-3-3 binding constrained LNK function. Furthermore, interaction with 14-3-3 sequestered LNK in the cytoplasm away from the plasma membrane-proximal JAK2. Importantly, bone marrow transplantation studies revealed an essential role for 14-3-3 in HSPC reconstitution that can be partially mitigated by LNK deficiency. We believe that, together, this work implicates 14-3-3 proteins as novel and positive HSPC regulators by impinging on the LNK/JAK2 pathway.
Collapse
Affiliation(s)
- Jing Jiang
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Matta A, Siu KWM, Ralhan R. 14-3-3 zeta as novel molecular target for cancer therapy. Expert Opin Ther Targets 2012; 16:515-23. [DOI: 10.1517/14728222.2012.668185] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
|
18
|
Zhao J, Meyerkord CL, Du Y, Khuri FR, Fu H. 14-3-3 proteins as potential therapeutic targets. Semin Cell Dev Biol 2011; 22:705-12. [PMID: 21983031 DOI: 10.1016/j.semcdb.2011.09.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 02/05/2023]
Abstract
The 14-3-3 family of phosphoserine/phosphothreonine-binding proteins dynamically regulates the activity of client proteins in various signaling pathways that control diverse physiological and pathological processes. In response to environmental cues, 14-3-3 proteins orchestrate the highly regulated flow of signals through complex networks of molecular interactions to achieve well-controlled physiological outputs, such as cell proliferation or differentiation. Accumulating evidence now supports the concept that either an abnormal state of 14-3-3 protein expression, or dysregulation of 14-3-3/client protein interactions, contributes to the development of a large number of human diseases. In particular, clinical investigations in the field of oncology have demonstrated a correlation between upregulated 14-3-3 levels and poor survival of cancer patients. These studies highlight the rapid emergence of 14-3-3 proteins as a novel class of molecular target for potential therapeutic intervention. The current status of 14-3-3 modulator discovery is discussed.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
19
|
Mancini M, Corradi V, Petta S, Barbieri E, Manetti F, Botta M, Santucci MA. A new nonpeptidic inhibitor of 14-3-3 induces apoptotic cell death in chronic myeloid leukemia sensitive or resistant to imatinib. J Pharmacol Exp Ther 2011; 336:596-604. [PMID: 21041536 DOI: 10.1124/jpet.110.172536] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Resistance of chronic myeloid leukemia (CML) to tyrosine kinase inhibitor imatinib mesylate (IM) is most often due to point mutations in the Bcr-Abl fusion gene. T315I mutation (resulting in substitution of Ile for a Thr residue at the "gatekeeper" position 315) raises particular concern, because it also provides resistance to second-generation kinase inhibitors already approved for clinical use (nilotinib and dasatinib). Much effort is therefore focused on alternative molecular-based strategies. Previous studies proved that binding to 14-3-3 scaffolding proteins leads to cytoplasmic compartmentalization and suppression of proapoptotic and antiproliferative signals associated with Bcr-Abl protein kinase, hence contributing to leukemic clone expansion. Here we investigated the effect of 14-3-3 inhibition disruption on hematopoietic cells expressing the IM-sensitive wild type Bcr-Abl and the IM-resistant T315I mutation. Using a virtual screening protocol and docking simulations, we identified a nonpeptidic inhibitor of 14-3-3, named BV02, that exhibits a remarkable cytotoxicity against both cell types. c-Abl release from 14-3-3σ, promoting its relocation to nuclear compartment (where it triggers transcription of p73-dependent proapoptotic genes) and to mitochondrial membranes (where it induces the loss of mitochondrial transmembrane potential) combined with c-Abl enhanced association with caspase 9 (a critical step of sequential caspase activation further contributing to c-Abl pro-apoptotic function) has a prominent role in the effect of BV02 on Bcr-Abl-expressing cells. In conclusion, BV02 may be considered as a treatment option for CML and, in particular, for more advanced phases of the disease that developed IM resistance as a consequence of Bcr-Abl point mutations.
Collapse
MESH Headings
- 14-3-3 Proteins/antagonists & inhibitors
- 14-3-3 Proteins/chemistry
- Amino Acid Sequence
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/physiology
- Benzamides/chemistry
- Benzamides/pharmacology
- Benzamides/therapeutic use
- Binding Sites/drug effects
- Binding Sites/physiology
- Cell Death/drug effects
- Cell Death/physiology
- Cell Line
- Cell Line, Tumor
- Crystallography, X-Ray
- Drug Resistance, Neoplasm/physiology
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Molecular Sequence Data
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Pyrazoles/chemistry
- Pyrazoles/pharmacology
- Pyrazoles/therapeutic use
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
Collapse
Affiliation(s)
- Manuela Mancini
- Dipartimento di Ematologia e Scienze Oncologiche Lorenzo e Ariosto Seràgnoli, Policlinico S. Orsola, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Burke AC, Swords RT, Kelly K, Giles FJ. Current status of agents active against the T315I chronic myeloid leukemia phenotype. Expert Opin Emerg Drugs 2011; 16:85-103. [DOI: 10.1517/14728214.2011.531698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Bai H, Xu R, Cao Z, Wei D, Wang C. Involvement of miR-21 in resistance to daunorubicin by regulating PTEN expression in the leukaemia K562 cell line. FEBS Lett 2010; 585:402-8. [PMID: 21187093 DOI: 10.1016/j.febslet.2010.12.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 01/04/2023]
Abstract
Recent studies have shown microRNA-21 (miR-21) is overexpressed in several types of cancer and contributes to tumor resistance to chemotherapy. In this study, we investigated whether miR-21 mediated resistance of the leukaemia cell line K562 to the chemotherapeutic agent daunorubicin (DNR). miR-21 expression was upregulated in the DNR resistant cell line K562/DNR compared to its parental line K562. Stable transfection of miR-21 induced drug resistance in K562, while suppression of miR-21 in K562/DNR led to enhanced DNR cytotoxicity. Additional experiments indicate that the mechanism of miR-21 drug resistance involves the PI3K/Akt pathway and changes following PTEN protein expression. This study provides a novel mechanism for understanding leukaemia drug resistance.
Collapse
Affiliation(s)
- Haitao Bai
- Department of Haematology, Shanghai Jiaotong University Affiliated Shanghai First People's Hospital, Shanghai, China.
| | | | | | | | | |
Collapse
|
22
|
Abstract
IMPORTANCE OF THE FIELD The ubiquitously expressed 14-3-3ζ protein is involved in numerous important cellular pathways involved in cancer. Recent research suggests 14-3-3ζ may play a central role regulating multiple pathways responsible for cancer initiation and progression. This review will provide an overview of 14-3-3 proteins and address the role of 14-3-3ζ overexpression in cancer. AREAS COVERED IN THIS REVIEW The review covers the basic role of 14-3-3 in regulation of multiple pathways with a focus on 14-3-3ζ as a clinically relevant biomarker for cancer recurrence. WHAT THE READER WILL GAIN 14-3-3ζ overexpression has been found in multiple cancers; however, the clinical implications were unclear. Recently, 14-3-3ζ has been identified as a biomarker for poor prognosis and chemoresistance in multiple tumor types, indicating a potential clinical application for using 14-3-3ζ in selecting treatment options and predicting cancer patients' outcome. TAKE HOME MESSAGE 14-3-3ζ is a potential prognostic marker of cancer recurrence and predictive marker for therapeutic resistance. The overexpression of 14-3-3ζ in multiple cancers suggests that it may be a common target to intervene tumor progression; therefore, more efforts are needed for the development of 14-3-3 inhibitors.
Collapse
Affiliation(s)
- Christopher L. Neal
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
23
|
Matta A, DeSouza LV, Ralhan R, Siu KWM. Small interfering RNA targeting 14-3-3ζ increases efficacy of chemotherapeutic agents in head and neck cancer cells. Mol Cancer Ther 2010; 9:2676-88. [PMID: 20924126 DOI: 10.1158/1535-7163.mct-10-0312] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients diagnosed in advanced stages of head and neck squamous cell carcinoma often show limited response to chemotherapeutic agents. Recently, we reported the overexpression of 14-3-3ζ protein in head and neck premalignant and cancer tissues using liquid chromatography-tandem mass spectrometry with isotopic labeling and revealed its significance as a prognostic marker using immunohistochemical analysis. In this study, we determined the potential of 14-3-3ζ as a therapeutic target for head and neck cancer. Small interfering RNA (siRNA) targeting 14-3-3ζ was used to downregulate its expression in head and neck cancer cells in culture. Cell cycle analysis showed that head and neck cancer cells transfected with siRNA targeting 14-3-3ζ showed G(2)-M arrest. These siRNA transfectants also showed increased cell death on treatment with any one of the following chemotherapeutic agents: cisplatin, 5-fluorouracil, paclitaxel, or doxorubicin in comparison with the no transfection controls. Flow cytometric analysis using propidium iodide staining showed increased sub-G(0) fraction in siRNA-transfected cells treated with any of these chemotherapeutic agents, suggesting cell death; in addition, Annexin V staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay revealed increased apoptosis. Taken together, our results strongly showed that downregulation of 14-3-3ζ expression may serve to improve the sensitivity of head and neck cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Ajay Matta
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Corradi V, Mancini M, Manetti F, Petta S, Santucci MA, Botta M. Identification of the first non-peptidic small molecule inhibitor of the c-Abl/14-3-3 protein-protein interactions able to drive sensitive and Imatinib-resistant leukemia cells to apoptosis. Bioorg Med Chem Lett 2010; 20:6133-7. [PMID: 20832303 DOI: 10.1016/j.bmcl.2010.08.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 01/11/2023]
Abstract
An in silico structure-based ligand design approach resulted in the identification of the first non-peptidic small molecule able to inhibit protein-protein interactions between 14-3-3 and c-Abl. This compound shows an anti-proliferative effect on human leukemia cells either sensitive or resistant to Imatinib, in consequence of the T315I mutation. It also mediates c-Abl release from 14-3-3 in a way similar to that found in response to Imatinib treatment.
Collapse
Affiliation(s)
- Valentina Corradi
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Siena, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Zhang W, Konopleva M, Burks JK, Dywer KC, Schober WD, Yang JY, McQueen TJ, Hung MC, Andreeff M. Blockade of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase and murine double minute synergistically induces Apoptosis in acute myeloid leukemia via BH3-only proteins Puma and Bim. Cancer Res 2010; 70:2424-34. [PMID: 20215498 PMCID: PMC2840060 DOI: 10.1158/0008-5472.can-09-0878] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular aberrations of the Ras/Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK and/or Murine double minute (MDM2)/p53 signaling pathways have been reported in 80% and 50% of primary acute myeloid leukemia (AML) samples and confer poor outcome. In this study, antileukemic effects of combined MEK inhibition by AZD6244 and nongenotoxic p53 activation by MDM2 antagonist Nutlin-3a were investigated. Simultaneous blockade of MEK and MDM2 signaling by AZD6244 and Nutlin-3a triggered synergistic proapoptotic responses in AML cell lines [combination index (CI) = 0.06 +/- 0.03 and 0.43 +/- 0.03 in OCI/AML3 and MOLM13 cells, respectively] and in primary AML cells (CI = 0.52 +/- 0.01). Mechanistically, the combination upregulated levels of BH3-only proteins Puma and Bim, in part via transcriptional upregulation of the FOXO3a transcription factor. Suppression of Puma and Bim by short interfering RNA rescued OCI/AML3 cells from AZD/Nutlin-induced apoptosis. These results strongly indicate the therapeutic potential of combined MEK/MDM2 blockade in AML and implicate Puma and Bim as major regulators of AML cell survival.
Collapse
Affiliation(s)
- Weiguo Zhang
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center
| | - Marina Konopleva
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center
| | - Jared K. Burks
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center
| | - Karen C. Dywer
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center
| | - Wendy D. Schober
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center
| | - Jer-Yen Yang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, and Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung, Taiwan
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| | - Teresa J. McQueen
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, and Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung, Taiwan
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center
| |
Collapse
|
26
|
Maxwell SA, Li Z, Jaya D, Ballard S, Ferrell J, Fu H. 14-3-3zeta mediates resistance of diffuse large B cell lymphoma to an anthracycline-based chemotherapeutic regimen. J Biol Chem 2009; 284:22379-22389. [PMID: 19525224 DOI: 10.1074/jbc.m109.022418] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Patients presenting with diffuse large B cell lymphoma (DLBCL) are treated with a standard anthracycline-based chemotherapeutic mixture consisting of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP). Half of DLBCL patients will develop chemo-refractory tumors due to the emergence of CHOP-resistant DLBCL cells. We isolated DLBCL cells that were resistant to CHOP as a model system to investigate the molecular basis of CHOP resistance. Resistant cells emerged from CHOP-sensitive DLBCL populations after repeated cycles of on-off exposure to stepwise increased dosages of CHOP. A proteomic analysis of CHOP-sensitive and -resistant DLBCL cells identified the zeta isoform of the 14-3-3 family as a differentially expressed protein. CHOP-sensitive cells showed reduced expression of 14-3-3zeta protein in the presence of high-dose CHOP relative to control cells. In contrast, CHOP-resistant cells expressed markedly higher levels of 14-3-3zeta regardless the presence of high-dose CHOP. Because 14-3-3zeta is known to exert anti-apoptotic influences and chemoresistance in lung, colon, and prostate carcinoma, we hypothesized that 14-3-3zeta promotes survival of DLBCL cells in CHOP. In support of our hypothesis, knockdown of 14-3-3zeta by small interfering RNA restored the sensitivity of resistant DLBCL to CHOP-induce apoptosis. In addition, 14-3-3zeta expression was highly up-regulated in a resected DLBCL lymph node relative to a normal lymph node by Western blot analysis. Furthermore, more than half of 35 DLBCL tissues showed elevated 14-3-3zeta expression relative to normal lymph tissue by immunohistochemical analysis. Our study implicates 14-3-3zeta in the pathogenesis of DLBCL and suggests a promising combination strategy with a 14-3-3 inhibitor for the treatment of refractory DLBCL.
Collapse
Affiliation(s)
- Steve A Maxwell
- Department of Molecular and Cellular Medicine, The Texas A&M Health Science Center, College Station, Texas 77840-1114
| | - Zenggang Li
- Department of Pharmacology, Emory School of Medicine, Atlanta, Georgia 30322
| | - David Jaya
- Department of Pharmacology, Emory School of Medicine, Atlanta, Georgia 30322
| | - Scott Ballard
- Department of Molecular and Cellular Medicine, The Texas A&M Health Science Center, College Station, Texas 77840-1114
| | - Jay Ferrell
- Department of Molecular and Cellular Medicine, The Texas A&M Health Science Center, College Station, Texas 77840-1114
| | - Haian Fu
- Department of Pharmacology, Emory School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
27
|
Mancini M, Veljkovic N, Corradi V, Zuffa E, Corrado P, Pagnotta E, Martinelli G, Barbieri E, Santucci MA. 14-3-3 ligand prevents nuclear import of c-ABL protein in chronic myeloid leukemia. Traffic 2009; 10:637-47. [PMID: 19220809 DOI: 10.1111/j.1600-0854.2009.00897.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Here we demonstrated that the 'loss of function' of not-rearranged c-ABL in chronic myeloid leukemia (CML) is promoted by its cytoplasmic compartmentalization bound to 14-3-3 sigma scaffolding protein. In particular, constitutive tyrosine kinase (TK) activity of p210 BCR-ABL blocks c-Jun N-terminal kinase (JNK) phosphorylation leading to 14-3-3 sigma phosphorylation at a critical residue (Ser(186)) for c-ABL binding in response to DNA damage. Moreover, it is associated with 14-3-3 sigma over-expression arising from epigenetic mechanisms (promoter hyper-acetylation). Accordingly, p210 BCR-ABL TK inhibition by the TK inhibitor Imatinib mesylate (IM) evokes multiple events, including JNK phosphorylation at Thr(183), p38 mitogen-activated protein kinase (MAPK) phosphorylation at Thr(180), c-ABL de-phosphorylation at Ser residues involved in 14-3-3 binding and reduction of 14-3-3 sigma expression, that let c-ABL release from 14-3-3 sigma and nuclear import, and address BCR-ABL-expressing cells towards apoptotic death. Informational spectrum method (ISM), a virtual spectroscopy method for analysis of protein interactions based on their structure, and mathematical filtering in cross spectrum (CS) analysis identified 14-3-3 sigma/c-ABL binding sites. Further investigation on CS profiles of c-ABL- and p210 BCR-ABL-containing complexes revealed the mechanism likely involved 14-3-3 precluded phosphorylation in CML cells.
Collapse
Affiliation(s)
- Manuela Mancini
- Istituto di Ematologia e Oncologia Medica Lorenzo e Ariosto Serágnoli, University of Bologna-Medical School, Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lessene G, Czabotar PE, Colman PM. BCL-2 family antagonists for cancer therapy. Nat Rev Drug Discov 2008; 7:989-1000. [DOI: 10.1038/nrd2658] [Citation(s) in RCA: 484] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 2008; 22:708-22. [PMID: 18337766 DOI: 10.1038/leu.2008.27] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways are frequently activated in leukemia and other hematopoietic disorders by upstream mutations in cytokine receptors, aberrant chromosomal translocations as well as other genetic mechanisms. The Jak2 kinase is frequently mutated in many myeloproliferative disorders. Effective targeting of these pathways may result in suppression of cell growth and death of leukemic cells. Furthermore it may be possible to combine various chemotherapeutic and antibody-based therapies with low molecular weight, cell membrane-permeable inhibitors which target the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to ultimately suppress the survival pathways, induce apoptosis and inhibit leukemic growth. In this review, we summarize how suppression of these pathways may inhibit key survival networks important in leukemogenesis and leukemia therapy as well as the treatment of other hematopoietic disorders. Targeting of these and additional cascades may also improve the therapy of chronic myelogenous leukemia, which are resistant to BCR-ABL inhibitors. Furthermore, we discuss how targeting of the leukemia microenvironment and the leukemia stem cell are emerging fields and challenges in targeted therapies.
Collapse
|