1
|
Cong E, Zhong Y, Wu M, Chen H, Cai Y, Ling Z, Wang Y, Wen H, Hu Y, Zhang H, Li Y, Liu X, Zhong P, Lai W, Xu Y, Wu Y. Hippocampal subfield morphology from first episodes of bipolar disorder type II and major depressive disorder in a drug naïve Chinese cohort. Front Psychiatry 2024; 15:1438144. [PMID: 39119073 PMCID: PMC11306163 DOI: 10.3389/fpsyt.2024.1438144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION Symptoms during the onset of major depressive disorder [MDD] and bipolar disorder type II [BD-II] are similar. The difference of hippocampus subregion could be a biological marker to distinguish MDD from BD-II. METHODS We recruited 61 drug-naïve patients with a first-episode MDD and BD-II episode and 30 healthy controls (HC) to participate in a magnetic resonance imaging [MRI] study. We built a general linear model (one-way analysis of covariance) with 22 hippocampal subfields and two total hippocampal volumes as dependent variables, and the diagnosis of MDD, BD-II, and HC as independent variables. We performed pair-wise comparisons of hippocampal subfield volumes between MDD and HC, BD-II and MDD, BD-II and HC with post hoc for primary analysis. RESULTS We identified three regions that differed significantly in size between patients and controls. The left hippocampal fissure, the hippocampal-amygdaloid transition area (HATA), and the right subiculum body were all significantly larger in patients with MDD compared with the HC. In the onset of first-episode of MDD, the hippocampal volume increased significantly, especially on the left side comparing to HC. However, we found differences between MDD and BD-II were not statistically significant. The volume of the left HATA and right subiculum body in BD-II was larger. CONCLUSIONS The sample size of this study is relatively small, as it is a cross-sectional comparative study. In both MDD and BD-II groups, the volume of more left subregions appeared to increase. The left subregions were severely injured in the development of depressive disorder.
Collapse
Affiliation(s)
- Enzhao Cong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingyan Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyue Wu
- X-LANCE Lab, Department of Computer Science and Engineering, MoE Key Lab of Artificial Intelligence, AI Institute Shanghai Jiao Tong University, Shanghai, China
| | - Haiying Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyun Cai
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Ling
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifeng Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingfang Zhong
- Affective Disorder Department, Lincang Psychiatric Hospital, Lincang, China
| | - Weijie Lai
- Psychiatric Department, Zhangzhou Fukang Hospital, Zhangzhou, China
| | - Yifeng Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Sun L, Qu K, Liu Y, Ma X, Chen N, Zhang J, Huang B, Lei C. Assessing genomic diversity and selective pressures in Bashan cattle by whole-genome sequencing data. Anim Biotechnol 2023; 34:835-846. [PMID: 34762022 DOI: 10.1080/10495398.2021.1998094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Specific ecological environments and domestication have continuously influenced the physiological characteristics of Chinese indigenous cattle. Among them, Bashan cattle belongs to one of the indigenous breeds. However, the genomic diversity of Bashan cattle is still unknown. Published whole-genome sequencing (WGS) data of 13 Bashan cattle and 48 worldwide cattle were used to investigate the genetic composition and selection characteristics of Bashan cattle. The population structure analysis revealed that Bashan cattle harbored ancestries with East Asian taurine and Chinese indicine. Genetic diversity analysis implied the relatively high genomic diversity in Bashan cattle. Through the identification of containing >5 nsSNPs or frameshift mutations genes in Bashan cattle, a large number of pathways related to sensory perception were discovered. CLR, θπ ratio, FST, and XP-EHH methods were used to detect the candidate signatures of positive selection in Bashan cattle. Among the identified genes, most of the enriched signal pathways were related to environmental information processing, biological systems, and metabolism. We mainly reported genes related to the nervous system (HCN1, KATNA1, FSTL1, GRIK2, and CPLX2), immune (CD244, SLAMF1, LY9, and CD48), and reproduction (AKR1C1, AKR1C3, AKR1C4, and TUSC3). Our findings will be significant in understanding the molecular basis underlying phenotypic variation of breed-related traits and improving productivity in Bashan cattle.
Collapse
Affiliation(s)
- Luyang Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, China
| | - Yangkai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaohui Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ningbo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Liu H, Gao W, Cao W, Meng Q, Xu L, Kuang L, Guo Y, Cui D, Qiu J, Jiao Q, Su L, Lu G. Immediate visual reproduction negatively correlates with brain entropy of parahippocampal gyrus and inferior occipital gyrus in bipolar II disorder adolescents. BMC Psychiatry 2023; 23:515. [PMID: 37464363 DOI: 10.1186/s12888-023-05012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Brain entropy reveals complexity and irregularity of brain, and it has been proven to reflect brain complexity alteration in disease states. Previous studies found that bipolar disorder adolescents showed cognitive impairment. The relationship between complexity of brain neural activity and cognition of bipolar II disorder (BD-II) adolescents remains unclear. METHODS Nineteen BD-II patients (14.63 ±1.57 years old) and seventeen age-gender matched healthy controls (HCs) (14.18 ± 1.51 years old) were enlisted. Entropy values of all voxels of the brain in resting-state functional MRI data were calculated and differences of them between BD-II and HC groups were evaluated. After that, correlation analyses were performed between entropy values of brain regions showing significant entropy differences and clinical indices in BD-II adolescents. RESULTS Significant differences were found in scores of immediate visual reproduction subtest (VR-I, p = 0.003) and Stroop color-word test (SCWT-1, p = 0.015; SCWT-2, p = 0.004; SCWT-3, p = 0.003) between the two groups. Compared with HCs, BD-II adolescents showed significant increased brain entropy in right parahippocampal gyrus and right inferior occipital gyrus. Besides, significant negative correlations between brain entropy values of right parahippocampal gyrus, right inferior occipital gyrus and immediate visual reproduction subtest scores were observed in BD-II adolescents. CONCLUSIONS The findings of the present study suggested that the disrupted function of corticolimbic system is related with cognitive abnormality of BD-II adolescents. And from the perspective temporal dynamics of brain system, the current study, brain entropy may provide available evidences for understanding the underlying neural mechanism in BD-II adolescents.
Collapse
Affiliation(s)
- Haiqin Liu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Weijia Gao
- Department of Child Psychology, The Children' s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weifang Cao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Qingmin Meng
- Department of interventional radiology, Taian Central Hospital, Tai'an, China
| | - Longchun Xu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Liangfeng Kuang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Yongxin Guo
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Dong Cui
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Jianfeng Qiu
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Qing Jiao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China.
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China.
| | - Linyan Su
- Key Laboratory of Psychiatry and Mental Health of Hunan Province, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Bahrami S, Nordengen K, Shadrin AA, Frei O, van der Meer D, Dale AM, Westlye LT, Andreassen OA, Kaufmann T. Distributed genetic architecture across the hippocampal formation implies common neuropathology across brain disorders. Nat Commun 2022; 13:3436. [PMID: 35705537 PMCID: PMC9200849 DOI: 10.1038/s41467-022-31086-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Despite its major role in complex human functions across the lifespan, most notably navigation, learning and memory, much of the genetic architecture of the hippocampal formation is currently unexplored. Here, through multivariate genome-wide association analysis in volumetric data from 35,411 white British individuals, we reveal 177 unique genetic loci with distributed associations across the hippocampal formation. We identify genetic overlap with eight brain disorders with typical onset at different stages of life, where common genes suggest partly age- and disorder-independent mechanisms underlying hippocampal pathology.
Collapse
Affiliation(s)
- Shahram Bahrami
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Kaja Nordengen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Alexey A Shadrin
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Anders M Dale
- Department of Radiology, School of Medicine, University of California, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Center for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, CA, USA
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Sun F, Liu Z, Yang J, Fan Z, Yang J. Differential Dynamical Pattern of Regional Homogeneity in Bipolar and Unipolar Depression: A Preliminary Resting-State fMRI Study. Front Psychiatry 2021; 12:764932. [PMID: 34966303 PMCID: PMC8710770 DOI: 10.3389/fpsyt.2021.764932] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Bipolar depression (BD) and unipolar depression (UD) are both characterized by depressive moods, which are difficult to distinguish in clinical practice. Human brain activity is time-varying and dynamic. Investigating dynamical pattern alterations of depressed brains can provide deep insights into the pathophysiological features of depression. This study aimed to explore similar and different abnormal dynamic patterns between BD and UD. Methods: Brain resting-state functional magnetic resonance imaging data were acquired from 36 patients with BD type I (BD-I), 38 patients with UD, and 42 healthy controls (HCs). Analysis of covariance was adopted to examine the differential pattern of the dynamical regional homogeneity (dReHo) temporal variability across 3 groups, with gender, age, and education level as covariates. Post-hoc analyses were employed to obtain the different dynamic characteristics between any 2 groups. We further applied the machine-learning methods to classify BD-I from UD by using the detected distinct dReHo pattern. Results: Compared with patients with UD, patients with BD-I demonstrated decreased dReHo variability in the right postcentral gyrus and right parahippocampal gyrus. By using the dReHo variability pattern of these two regions as features, we achieved the 91.89% accuracy and 0.92 area under curve in classifying BD-I from UD. Relative to HCs, patients with UD showed increased dReHo variability in the right postcentral gyrus, while there were no dReHo variability differences in patients with BD-I. Conclusions: The results of this study mainly report the differential dynamic pattern of the regional activity between BD-I and UD, particular in the mesolimbic system, and show its promising potential in assisting the diagnosis of these two depression groups.
Collapse
Affiliation(s)
| | | | | | | | - Jie Yang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
6
|
Kuang L, Gao W, Wang L, Guo Y, Cao W, Cui D, Jiao Q, Qiu J, Su L, Lu G. Increased resting-state brain entropy of parahippocampal gyrus and dorsolateral prefrontal cortex in manic and euthymic adolescent bipolar disorder. J Psychiatr Res 2021; 143:106-112. [PMID: 34479001 DOI: 10.1016/j.jpsychires.2021.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/01/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Alterations of brain signal complexity may reflect brain functional abnormalities. In adolescent bipolar disorder (ABD) distribution of brain regions showing abnormal complexity in different mood states remains unclear. We aimed to analyze brain entropy (BEN) alteration of functional magnetic resonance imaging (fMRI) signal to observe spatial distribution of complexity in ABD patients, as well as the relationship between this variation and clinical variables. METHODS Resting-state fMRI data were acquired from adolescents with bipolar disorder (BD) who were in manic (n = 19) and euthymic (n = 20) states, and from healthy controls (HCs, n = 17). The differences in BEN among the three groups, and their associations with clinical variables, were examined. RESULTS Compared to HCs, manic and euthymic ABD patients showed increased BEN in right parahippocampal gyrus (PHG) and left dorsolateral prefrontal cortex (DLPFC). There was no significant difference of BEN between the manic and the euthymic ABD groups. In manic ABD patients, right PHG BEN exhibited significantly positive relationship with episode times. CONCLUSIONS Increased BEN in right PHG and left DLPFC in ABD patients may cause dysfunction of corticolimbic circuitry which is important to emotional processing and cognitive control. The positive correlation between PHG BEN and episode times of manic ABD patients further expressed a close association between brain complexity and clinical symptoms. From the perspective of brain temporal dynamics, the present study complements previous findings that have reported corticolimbic dysfunction as an important contributor to the pathophysiology of BD. BEN may provide valuable evidences for understanding the underlying mechanism of ABD.
Collapse
Affiliation(s)
- Liangfeng Kuang
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Weijia Gao
- Department of Child Psychology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luoyu Wang
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China; Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongxin Guo
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Weifang Cao
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Dong Cui
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Qing Jiao
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Linyan Su
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Hajszan T. Stress and remodeling of hippocampal spine synapses. VITAMINS AND HORMONES 2020; 114:257-279. [DOI: 10.1016/bs.vh.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Xu Y, Zhao XM, Liu J, Wang YY, Xiong LL, He XY, Wang TH. Complexin I knockout rats exhibit a complex neurobehavioral phenotype including profound ataxia and marked deficits in lifespan. Pflugers Arch 2019; 472:117-133. [PMID: 31875236 DOI: 10.1007/s00424-019-02337-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Complexin I (CPLX1), a presynaptic small molecule protein, forms SNARE complex in the central nervous system involved in the anchoring, pre-excitation, and fusion of axonal end vesicles. Abnormal expression of CPLX1 occurs in several neurodegenerative and psychiatric disorders that exhibit disrupted neurobehaviors. CPLX1 gene knockout induces severe ataxia and social behavioral deficits in mice, which has been poorly demonstrated. Here, to address the limitations of single-species models and to provide translational insights relevant to human diseases, we used CPLX1 knockout rats to further explore the function of the CPLX1 gene. The CRISPR/Cas9 gene editing system was adopted to generate CPLX1 knockout rats (CPLX1-/-). Then, we characterized the survival rate and behavioral phenotype of CPLX1-/- rats using behavioral analysis. To further explain this phenomenon, we performed blood glucose testing, Nissl staining, hematoxylin-eosin staining, and Golgi staining. We found that CPLX1-/- rats showed profound ataxia, dystonia, movement and exploratory deficits, and increased anxiety and sensory deficits but had normal cognitive function. Nevertheless, CPLX1-/- rats could swim without training. The abnormal histomorphology of the stomach and intestine were related to decreased weight and early death in these rats. Decreased dendritic branching was also found in spinal motor neurons in CPLX1-/- rats. In conclusion, CPLX1 gene knockout induced the abnormal histomorphology of the stomach and intestine and decreased dendritic branching in spinal motor neurons, causing different phenotypes between CPLX1-/- rats and mice, even though both of these phenotypes showed profound ataxia. These findings provide a new perspective for understanding the role of CPLX1.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University & The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Xiao-Ming Zhao
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University & The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, 610041, China.,Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jia Liu
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, 650500, China
| | - Yang-Yang Wang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University & The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Liu-Lin Xiong
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University & The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Xiu-Ying He
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University & The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University & The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, 610041, China. .,Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
9
|
Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry 2019; 24:549-561. [PMID: 29511299 PMCID: PMC6004314 DOI: 10.1038/s41380-018-0041-5] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Abstract
Although synaptic loss is thought to be core to the pathophysiology of schizophrenia, the nature, consistency and magnitude of synaptic protein and mRNA changes has not been systematically appraised. Our objective was thus to systematically review and meta-analyse findings. The entire PubMed database was searched for studies from inception date to the 1st of July 2017. We selected case-control postmortem studies in schizophrenia quantifying synaptic protein or mRNA levels in brain tissue. The difference in protein and mRNA levels between cases and controls was extracted and meta-analysis conducted. Among the results, we found a significant reduction in synaptophysin in schizophrenia in the hippocampus (effect size: -0.65, p < 0.01), frontal (effect size: -0.36, p = 0.04), and cingulate cortices (effect size: -0.54, p = 0.02), but no significant changes for synaptophysin in occipital and temporal cortices, and no changes for SNAP-25, PSD-95, VAMP, and syntaxin in frontal cortex. There were insufficient studies for meta-analysis of complexins, synapsins, rab3A and synaptotagmin and mRNA measures. Findings are summarised for these, which generally show reductions in SNAP-25, PSD-95, synapsin and rab3A protein levels in the hippocampus but inconsistency in other regions. Our findings of moderate-large reductions in synaptophysin in hippocampus and frontal cortical regions, and a tendency for reductions in other pre- and postsynaptic proteins in the hippocampus are consistent with models that implicate synaptic loss in schizophrenia. However, they also identify potential differences between regions and proteins, suggesting synaptic loss is not uniform in nature or extent.
Collapse
|
10
|
Tannous J, Amaral-Silva H, Cao B, Wu MJ, Zunta-Soares GB, Kazimi I, Zeni C, Mwangi B, Soares JC. Hippocampal subfield volumes in children and adolescents with mood disorders. J Psychiatr Res 2018; 101:57-62. [PMID: 29550609 DOI: 10.1016/j.jpsychires.2018.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/01/2018] [Accepted: 03/09/2018] [Indexed: 01/04/2023]
Abstract
The hippocampus has been implicated in various mood disorders, with global volume deficits consistently found in patient populations. The hippocampus, however, consists of anatomically distinct subfields, and examination of specific subfield differences may elucidate the possible molecular mechanisms behind psychiatric pathologies. Indeed, adult studies have reported smaller hippocampal subfield volumes in regions within the cornu ammonis (CA1 and CA4), dentate gyrus (DG), and hippocampal tails in both patients with Major Depressive Disorder (MDD) and Bipolar Disorder (BD) compared to healthy controls. Subfield differences in pediatric patients with mood disorders, on the other hand, have not been extensively investigated. In the current study, magnetic resonance imaging scans were acquired for 141 children and adolescents between the ages of eight and eighteen (57 with BD, 30 with MDD, and 54 healthy controls). An automated segmentation method was then used to assess differences in hippocampal subfield volumes. Children and adolescents with BD were found to have significantly smaller volumes in the right CA1, CA4, and right subiculum, as well as the bilateral granule cell layer (GCL), molecular layer (ML), and hippocampal tails. The volume of the right subiculum in BD patients was also found to be negatively correlated with illness duration. Overall, the findings from this cross-sectional study provide evidence for specific hippocampal subfield volume differences in children and adolescents with BD compared to healthy controls and suggest progressive reductions with increased illness duration.
Collapse
Affiliation(s)
- Jonika Tannous
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA.
| | - Henrique Amaral-Silva
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Bo Cao
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Mon-Ju Wu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Giovana B Zunta-Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Iram Kazimi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Cristian Zeni
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Benson Mwangi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, TX, USA
| |
Collapse
|
11
|
Averill CL, Satodiya RM, Scott JC, Wrocklage KM, Schweinsburg B, Averill LA, Akiki TJ, Amoroso T, Southwick SM, Krystal JH, Abdallah CG. Posttraumatic Stress Disorder and Depression Symptom Severities Are Differentially Associated With Hippocampal Subfield Volume Loss in Combat Veterans. ACTA ACUST UNITED AC 2017. [PMID: 29520395 PMCID: PMC5839647 DOI: 10.1177/2470547017744538] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Two decades of human neuroimaging research have associated volume reductions
in the hippocampus with posttraumatic stress disorder. However, little is
known about the distribution of volume loss across hippocampal subfields.
Recent advances in neuroimaging methods have made it possible to accurately
delineate 10 gray matter hippocampal subfields. Here, we apply a volumetric
analysis of hippocampal subfields to data from a group of combat-exposed
Veterans. Method Veterans (total, n = 68, posttraumatic stress disorder, n = 36; combat
control, n = 32) completed high-resolution structural magnetic resonance
imaging. Based on previously validated methods, hippocampal subfield volume
measurements were conducted using FreeSurfer 6.0. The Clinician-Administered
PTSD Scale assessed posttraumatic stress disorder symptom severity; Beck
Depression Inventory assessed depressive symptom severity. Controlling for
age and intracranial volume, partial correlation analysis examined the
relationship between hippocampal subfields and symptom severity. Correction
for multiple comparisons was performed using false discovery rate. Gender,
intelligence, combat severity, comorbid anxiety, alcohol/substance use
disorder, and medication status were investigated as potential
confounds. Results In the whole sample, total hippocampal volume
negatively correlated with Clinician-Administered PTSD Scale and Beck Depression Inventory scores. Of the 10
hippocampal subfields, Clinician-Administered PTSD Scale symptom severity
negatively correlated with the hippocampus–amygdala
transition area (HATA). Beck Depression Inventory scores
negatively correlated with dentate gyrus, cornu ammonis 4 (CA4), HATA,
CA2/3, molecular layer, and CA1. Follow-up analysis limited to the
posttraumatic stress disorder group showed a negative correlation between
Clinician-Administered PTSD Scale symptom severity and each of HATA, CA2/3,
molecular layer, and CA4. Conclusion This study provides the first evidence relating posttraumatic stress disorder
and depression symptoms to abnormalities in the HATA, an anterior
hippocampal region highly connected to prefrontal-amygdala circuitry.
Notably, dentate gyrus abnormalities were associated with depression
severity but not posttraumatic stress disorder symptoms. Future confirmatory
studies should determine the extent to which dentate gyrus volume can
differentiate between posttraumatic stress disorder- and depression-related
pathophysiology.
Collapse
Affiliation(s)
- Christopher L Averill
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ritvij M Satodiya
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - J Cobb Scott
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,VISN4 Mental Illness Research, Education, and Clinical Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Kristen M Wrocklage
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Gaylord Specialty Healthcare, Department of Psychology, Wallingford, CT, USA
| | - Brian Schweinsburg
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lynnette A Averill
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Teddy J Akiki
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Timothy Amoroso
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Steven M Southwick
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - John H Krystal
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Chadi G Abdallah
- National Center for PTSD, Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Cao B, Passos IC, Mwangi B, Amaral-Silva H, Tannous J, Wu MJ, Zunta-Soares GB, Soares JC. Hippocampal subfield volumes in mood disorders. Mol Psychiatry 2017; 22:1352-1358. [PMID: 28115740 PMCID: PMC5524625 DOI: 10.1038/mp.2016.262] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 12/08/2016] [Accepted: 12/19/2016] [Indexed: 01/01/2023]
Abstract
Volume reduction and shape abnormality of the hippocampus have been associated with mood disorders. However, the hippocampus is not a uniform structure and consists of several subfields, such as the cornu ammonis (CA) subfields CA1-4, the dentate gyrus (DG) including a granule cell layer (GCL) and a molecular layer (ML) that continuously crosses adjacent subiculum (Sub) and CA fields. It is known that cellular and molecular mechanisms associated with mood disorders may be localized to specific hippocampal subfields. Thus, it is necessary to investigate the link between the in vivo hippocampal subfield volumes and specific mood disorders, such as bipolar disorder (BD) and major depressive disorder (MDD). In the present study, we used a state-of-the-art hippocampal segmentation approach, and we found that patients with BD had reduced volumes of hippocampal subfields, specifically in the left CA4, GCL, ML and both sides of the hippocampal tail, compared with healthy subjects and patients with MDD. The volume reduction was especially severe in patients with bipolar I disorder (BD-I). We also demonstrated that hippocampal subfield volume reduction was associated with the progression of the illness. For patients with BD-I, the volumes of the right CA1, ML and Sub decreased as the illness duration increased, and the volumes of both sides of the CA2/3, CA4 and hippocampal tail had negative correlations with the number of manic episodes. These results indicated that among the mood disorders the hippocampal subfields were more affected in BD-I compared with BD-II and MDD, and manic episodes had focused progressive effect on the CA2/3 and CA4 and hippocampal tail.
Collapse
Affiliation(s)
- Bo Cao
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, Texas, USA
| | - Ives Cavalcante Passos
- Graduation Program in Psychiatry and Laboratory of Molecular Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Benson Mwangi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, Texas, USA
| | - Henrique Amaral-Silva
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, Texas, USA
| | - Jonika Tannous
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, Texas, USA
| | - Mon-Ju Wu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, Texas, USA
| | - Giovana B. Zunta-Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, Texas, USA
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
13
|
Maternal alterations in the proteome of the medial prefrontal cortex in rat. J Proteomics 2016; 153:65-77. [PMID: 27233742 DOI: 10.1016/j.jprot.2016.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 12/14/2022]
Abstract
Proteomic differences between rat dams and control mothers deprived of their pups immediately after delivery were investigated in the medial prefrontal cortex (mPFC). A 2-D DIGE minimal dye technique combined with LC-MS/MS identified 32 different proteins that showed significant changes in expression in the mPFC, of which, 25 were upregulated and 7 were downregulated in dams. The identity of one significantly increased protein, the small heat-shock protein alpha-crystallin B chain (Cryab), was confirmed via Western blot analysis. Alpha-crystallin B chain was distributed in scattered cells in the mPFC, as demonstrated by immunohistochemistry. Furthermore, it was found to be localized in parvalbumin-containing neurons using double labeling. The elevation of its mRNA level in rat dams was also demonstrated via RT-PCR. The functional classification of the altered proteins was conducted using the UniProt and Gene Ontology protein databases. The identified proteins predominantly participate in synaptic transport and plasticity, neuron development, oxidative stress and apoptosis, and cytoskeleton organization. A common regulator and target analysis of these proteins determined using the Elsevier Pathway Studio Platform suggests that protein level changes associated with pup nursing are driven by growth factors and cytokines, while the MAP kinase pathway was identified as a common target. A high proportion of the proteins that were found to be altered in the mPFC are associated with depression. BIOLOGICAL SIGNIFICANCE The behavior and emotional state of females change robustly when they become mothers. The brain, which governs these changes, may also undergo molecular alterations in mothers. As no proteomics approaches have been applied regarding maternal changes in the brain, we addressed this issue in the mPFC as this brain area is the uppermost cortical center of maternal control and the associated mood changes. The high number of protein-level alterations found between mothers taking care of their litter and those without pups indicates that pup nursing is associated with cortical protein-level changes. Alterations in proteins participating in synaptic transport, plasticity and neuron development suggest neuroplastic changes in the maternal brain. In turn, the relatively high number of altered proteins in the mPFC associated with depression suggests that the physiological effects of the protein-level alterations in the maternal mPFC could promote the incidence of postpartum depression. Cryab, a protein confirmed to be increased during maternal behaviors, was selectively found in parvalbumin cells, which, as fast-spiking interneurons, are associated with depression. The function of Cryab should be further investigated to establish whether it can be used to identify drug targets for future drug development.
Collapse
|
14
|
Kim S, Hwang Y, Webster MJ, Lee D. Differential activation of immune/inflammatory response-related co-expression modules in the hippocampus across the major psychiatric disorders. Mol Psychiatry 2016; 21:376-85. [PMID: 26077692 DOI: 10.1038/mp.2015.79] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/13/2015] [Accepted: 05/06/2015] [Indexed: 02/06/2023]
Abstract
The Stanley Neuropathology Consortium Integrative Database (SNCID, http://sncid.stanleyresearch.org) is a data-mining tool that includes 379 neuropathology data sets from hippocampus, as well as RNA-Seq data measured in 15 well-matched cases in each of four groups: schizophrenia, bipolar disorder (BPD), major depression (MD) and unaffected controls. We analyzed the neuropathology data from the hippocampus to identify those abnormalities that are shared between psychiatric disorders and those that are specific to each disorder. Of the 379 data sets, 20 of them showed a significant abnormality in at least one disorder as compared with unaffected controls. GABAergic markers and synaptic proteins were mainly abnormal in schizophrenia and the two mood disorders, respectively. Two immune/inflammation-related co-expression modules built from RNA-seq data from both schizophrenia and controls combined were associated with disease status, as well as negatively correlated with the GABAergic markers. The correlation between immune-related modules and schizophrenia was replicated using microarray data from an independent tissue collection. Immune/inflammation-related co-expression modules were also built from RNA-seq data from BPD cases or from MD cases but were not preserved when using data from control cases. Moreover, there was no overlap in the genes that comprise the immune/inflammation response-related modules across the different disorders. Thus, there appears to be differential activation of the immune/inflammatory response, as determined by co-expression of genes, which is associated with the major psychiatric disorders and which is also associated with the abnormal neuropathology in the disorders.
Collapse
Affiliation(s)
- S Kim
- Stanley Brain Research Laboratory, Stanley Medical Research Institute, Rockville, MD, USA
| | - Y Hwang
- Department of Bio and Brain Engineering, KAIST, Yuseong-gu, Daejeon, Korea
| | - M J Webster
- Stanley Brain Research Laboratory, Stanley Medical Research Institute, Rockville, MD, USA
| | - D Lee
- Department of Bio and Brain Engineering, KAIST, Yuseong-gu, Daejeon, Korea
| |
Collapse
|
15
|
Savitz J, Morris HM, Drevets WC. Neuroimaging Studies of Bipolar Depression: Therapeutic Implications. BIPOLAR DEPRESSION: MOLECULAR NEUROBIOLOGY, CLINICAL DIAGNOSIS, AND PHARMACOTHERAPY 2016. [DOI: 10.1007/978-3-319-31689-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Wolff AR, Bilkey DK. Prenatal immune activation alters hippocampal place cell firing characteristics in adult animals. Brain Behav Immun 2015; 48:232-43. [PMID: 25843370 DOI: 10.1016/j.bbi.2015.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/12/2015] [Accepted: 03/24/2015] [Indexed: 12/27/2022] Open
Abstract
Prenatal maternal immune activation (MIA) is a risk factor for several developmental neuropsychiatric disorders, including autism, bipolar disorder and schizophrenia. Adults with these disorders display alterations in memory function that may result from changes in the structure and function of the hippocampus. In the present study we use an animal model to investigate the effect that a transient prenatal maternal immune activation episode has on the spatially-modulated firing activity of hippocampal neurons in adult animals. MIA was induced in pregnant rat dams with a single injection of the synthetic cytokine inducer polyinosinic:polycytidylic acid (poly I:C) on gestational day 15. Control dams were given a saline equivalent. Firing activity and local field potentials (LFPs) were recorded from the CA1 region of the adult male offspring of these dams as they moved freely in an open arena. Most neurons displayed characteristic spatially-modulated 'place cell' firing activity and while there was no between-group difference in mean firing rate between groups, place cells had smaller place fields in MIA-exposed animals when compared to control-group cells. Cells recorded in MIA-group animals also displayed an altered firing-phase synchrony relationship to simultaneously recorded LFPs. When the floor of the arena was rotated, the place fields of MIA-group cells were more likely to shift in the same direction as the floor rotation, suggesting that local cues may have been more salient for these animals. In contrast, place fields in control group cells were more likely to shift firing position to novel spatial locations suggesting an altered response to contextual cues. These findings show that a single MIA intervention is sufficient to change several important characteristics of hippocampal place cell activity in adult offspring. These changes could contribute to the memory dysfunction that is associated with MIA, by altering the encoding of spatial context and by disrupting plasticity mechanisms that are dependent on spike timing synchrony.
Collapse
Affiliation(s)
- Amy R Wolff
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - David K Bilkey
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
17
|
Exercise prevents downregulation of hippocampal presynaptic proteins following olanzapine-elicited metabolic dysregulation in rats: Distinct roles of inhibitory and excitatory terminals. Neuroscience 2015; 301:298-311. [PMID: 26086543 DOI: 10.1016/j.neuroscience.2015.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 12/22/2022]
Abstract
Schizophrenia patients treated with olanzapine, or other second-generation antipsychotics, frequently develop metabolic side-effects, such as glucose intolerance and increased adiposity. We previously observed that modeling these adverse effects in rodents also resulted in hippocampal shrinkage. Here, we investigated the impact of olanzapine treatment, and the beneficial influence of routine exercise, on the neurosecretion machinery of the hippocampus. Immunodensities and interactions of three soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins (syntaxin-1, synaptosome-associated protein of 25kDa (SNAP-25) and vesicle-associated membrane protein (VAMP)), synaptotagmin and complexins-1/2 were quantified in the hippocampus of sedentary and exercising rats exposed over 9weeks to vehicle (n=28) or olanzapine (10mg/kg/day, n=28). In addition, brain sections from subgroups of sedentary animals (n=8) were co-immunolabeled with antibodies against vesicular GABA (VGAT) and glutamate (VGLUT1) transporters, along with syntaxin-1, and examined by confocal microscopy to detect selective olanzapine effects within inhibitory or excitatory terminals. Following olanzapine treatment, sedentary, but not exercising rats showed downregulated (33-50%) hippocampal densities of SNARE proteins and synaptotagmin, without altering complexin levels. Strikingly, these effects had no consequences on the amount of SNARE protein-protein interactions. Lower immunodensity of presynaptic proteins was associated with reduced CA1 volume and glucose intolerance. Syntaxin-1 depletion appeared more prominent in VGAT-positive terminals within the dentate gyrus, and in non-VGAT/VGLUT1-overlapping areas of CA3. The present findings suggest that chronic exposure to olanzapine may alter hippocampal connectivity, especially in inhibitory terminals within the dentate gyrus, and along the mossy fibers of CA3. Together with previous studies, we propose that exercise-based therapies might be beneficial for patients being treated with olanzapine.
Collapse
|
18
|
Narayanan B, Ethridge LE, O'Neil K, Dunn S, Mathew I, Tandon N, Calhoun VD, Ruaño G, Kocherla M, Windemuth A, Clementz BA, Tamminga CA, Sweeney JA, Keshavan MS, Pearlson GD. Genetic Sources of Subcomponents of Event-Related Potential in the Dimension of Psychosis Analyzed From the B-SNIP Study. Am J Psychiatry 2015; 172:466-78. [PMID: 25615564 PMCID: PMC4455958 DOI: 10.1176/appi.ajp.2014.13101411] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Biological risk factors underlying psychosis are poorly understood. Biological underpinnings of the dimension of psychosis can be derived using genetic associations with intermediate phenotypes such as subcomponents of auditory event-related potentials (ERPs). Various ERP subcomponent abnormalities in schizophrenia and psychotic bipolar disorder are heritable and are expressed in unaffected relatives, although studies investigating genetic contributions to ERP abnormalities are limited. The authors used a novel parallel independent component analysis (para-ICA) to determine which empirically derived gene clusters are associated with data-driven ERP subcomponents, assuming a complex etiology underlying psychosis. METHOD The authors examined the multivariate polygenic association of ERP subcomponents from 64-channel auditory oddball data in 144 individuals with schizophrenia, 210 psychotic bipolar disorder probands, and 95 healthy individuals from the multisite Bipolar-Schizophrenia Network on Intermediate Phenotypes study. Data were reduced by principal components analysis to two target and one standard ERP waveforms. Multivariate association of compressed ERP waveforms with a set of 20,329 single-nucleotide polymorphisms (SNPs) (reduced from a 1-million-SNP array) was examined using para-ICA. Genes associated with SNPs were further examined using pathway analysis tools. RESULTS Para-ICA identified four ERP components that were significantly correlated with three genetic components. Enrichment analysis revealed complement immune response pathway and multiple processes that significantly mediate ERP abnormalities in psychosis, including synaptic cell adhesion, axon guidance, and neurogenesis. CONCLUSIONS This study identified three genetic components comprising multiple genes mediating ERP subcomponent abnormalities in schizophrenia and psychotic bipolar disorder. The data suggest a possible polygenic structure comprising genes influencing key neurodevelopmental processes, neural circuitry, and brain function mediating biological pathways plausibly associated with psychosis.
Collapse
Affiliation(s)
- Balaji Narayanan
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Lauren E. Ethridge
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - Kasey O'Neil
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Sabra Dunn
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Ian Mathew
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Vince D. Calhoun
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131,The Mind Research Network, Albuquerque, NM-87106,Departments of Psychiatry & Neurobiology, Yale University School of Medicine, New Haven, CT-06520
| | - Gualberto Ruaño
- Genetics Research Center, Hartford Hospital, Hartford, CT-06106,Genomas Inc, Hartford, CT-06106
| | - Mohan Kocherla
- Genetics Research Center, Hartford Hospital, Hartford, CT-06106,Genomas Inc, Hartford, CT-06106
| | | | | | - Carol A. Tamminga
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - John A. Sweeney
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106,Departments of Psychiatry & Neurobiology, Yale University School of Medicine, New Haven, CT-06520
| |
Collapse
|
19
|
Hass J, Walton E, Kirsten H, Turner J, Wolthusen R, Roessner V, Sponheim SR, Holt D, Gollub R, Calhoun VD, Ehrlich S. Complexin2 modulates working memory-related neural activity in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2015; 265:137-45. [PMID: 25297695 PMCID: PMC4342303 DOI: 10.1007/s00406-014-0550-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022]
Abstract
The specific contribution of risk or candidate gene variants to the complex phenotype of schizophrenia is largely unknown. Studying the effects of such variants on brain function can provide insight into disease-associated mechanisms on a neural systems level. Previous studies found common variants in the complexin2 (CPLX2) gene to be highly associated with cognitive dysfunction in schizophrenia patients. Similarly, cognitive functioning was found to be impaired in Cplx2 gene-deficient mice if they were subjected to maternal deprivation or mild brain trauma during puberty. Here, we aimed to study seven common CPLX2 single-nucleotide polymorphisms (SNPs) and their neurogenetic risk mechanisms by investigating their relationship to a schizophrenia-related functional neuroimaging intermediate phenotype. We examined functional MRI and genotype data collected from 104 patients with DSM-IV-diagnosed schizophrenia and 122 healthy controls who participated in the Mind Clinical Imaging Consortium study of schizophrenia. Seven SNPs distributed over the whole CPLX2 gene were tested for association with working memory-elicited neural activity in a frontoparietal neural network. Three CPLX2 SNPs were significantly associated with increased neural activity in the dorsolateral prefrontal cortex and intraparietal sulcus in the schizophrenia sample, but showed no association in healthy controls. Since increased working memory-related neural activity in individuals with or at risk for schizophrenia has been interpreted as 'neural inefficiency,' these findings suggest that certain variants of CPLX2 may contribute to impaired brain function in schizophrenia, possibly combined with other deleterious genetic variants, adverse environmental events, or developmental insults.
Collapse
Affiliation(s)
- Johanna Hass
- Department of Child and Adolescent Psychiatry, School of Medicine, TU Dresden, Dresden, Germany
| | - Esther Walton
- Department of Child and Adolescent Psychiatry, School of Medicine, TU Dresden, Dresden, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany,LIFE (Leipzig Interdisciplinary Research Cluster of Genetic Factors, Phenotypes and Environment), University of Leipzig, Leipzig, Germany
| | | | - Rick Wolthusen
- Department of Child and Adolescent Psychiatry, School of Medicine, TU Dresden, Dresden, Germany,MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, School of Medicine, TU Dresden, Dresden, Germany
| | - Scott R Sponheim
- Department of Psychiatry and the Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN USA
| | - Daphne Holt
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Randy Gollub
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Vince D Calhoun
- The MIND Research Network, Albuquerque, NM USA,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM USA
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry, School of Medicine, TU Dresden, Dresden, Germany,MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| |
Collapse
|
20
|
Antonova E, Kumari V. Where will insights into hippocampal activity in schizophrenia lead us? Expert Rev Neurother 2014; 10:1-4. [DOI: 10.1586/ern.09.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Hýža M, Huttlová J, Keřkovský M, Kašpárek T. Psychosis effect on hippocampal reduction in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:186-92. [PMID: 24140928 DOI: 10.1016/j.pnpbp.2013.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/23/2013] [Accepted: 10/07/2013] [Indexed: 01/05/2023]
Abstract
INTRODUCTION In schizophrenia, disruption of the neurodevelopmental processes may lead to brain changes and subsequent clinical manifestations of the illness. Reports of the progressive nature of these morphological brain changes raise questions about their causes. The possible toxic effects of repeated stressful psychotic episodes may contribute to the disease progression. OBJECTIVES To analyze the influence of illness duration and previous psychotic episodes on hippocampal gray matter volume (GMV) in schizophrenia. METHODS We performed an analysis of hippocampal GMV correlations with illness duration, number of previous psychotic episodes, and age in 24 schizophrenia patients and 24 matched healthy controls. RESULTS We found a cluster of GMV voxels in the left hippocampal tail that negatively correlated with the number of previous psychotic episodes, independent from the effect of age. On the other hand we found no effect of illness duration independent of age on the hippocampal GMV. Finally, we found a cluster of significant group-by-age interaction in the left hippocampal head. CONCLUSIONS We found an additive adverse effect of psychotic episodes on hippocampal morphology in schizophrenia. Our findings support toxicity of psychosis concept, together with etiological heterogeneity of brain changes in schizophrenia.
Collapse
Affiliation(s)
- Martin Hýža
- Department of Psychiatry, University Hospital Brno and Faculty of Medicine, Masaryk University, Czech Republic
| | | | | | | |
Collapse
|
22
|
Crisafulli C, Chiesa A, Han C, Lee SJ, Balzarro B, Andrisano C, Sidoti A, Patkar AA, Pae CU, Serretti A. Case-control association study of 36 single-nucleotide polymorphisms within 10 candidate genes for major depression and bipolar disorder. Psychiatry Res 2013; 209:121-3. [PMID: 23273899 DOI: 10.1016/j.psychres.2012.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/02/2012] [Accepted: 11/09/2012] [Indexed: 01/29/2023]
Abstract
In this study we investigated 36 single nucleotide polymorphisms within 10 genes previously associated with major depression and bipolar disorder, as well as with the response to their treatment (ABCB1, ABCB4, TAP2, CLOCK, CPLX1, CPLX2, SYN2, NRG1, 5HTR1A and GPRIN2). No association with mood disorders and clinical outcomes was observed.
Collapse
Affiliation(s)
- Concetta Crisafulli
- Department of Biomorphology and Biotechnologies, Division of Biology and Genetics, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Daulatzai MA. Neurotoxic Saboteurs: Straws that Break the Hippo’s (Hippocampus) Back Drive Cognitive Impairment and Alzheimer’s Disease. Neurotox Res 2013; 24:407-59. [DOI: 10.1007/s12640-013-9407-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/06/2013] [Accepted: 06/17/2013] [Indexed: 12/29/2022]
|
24
|
Shan D, Lucas EK, Drummond JB, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE. Abnormal expression of glutamate transporters in temporal lobe areas in elderly patients with schizophrenia. Schizophr Res 2013; 144:1-8. [PMID: 23356950 PMCID: PMC3572263 DOI: 10.1016/j.schres.2012.12.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/26/2022]
Abstract
Glutamate transporters facilitate the buffering, clearance and cycling of glutamate and play an important role in maintaining synaptic and extrasynaptic glutamate levels. Alterations in glutamate transporter expression may lead to abnormal glutamate neurotransmission contributing to the pathophysiology of schizophrenia. In addition, alterations in the architecture of the superior temporal gyrus and hippocampus have been implicated in this illness, suggesting that synapses in these regions may be remodeled from a lifetime of severe mental illness and antipsychotic treatment. Thus, we hypothesize that glutamate neurotransmission may be abnormal in the superior temporal gyrus and hippocampus in schizophrenia. To test this hypothesis, we examined protein expression of excitatory amino acid transporter 1-3 and vesicular glutamate transporter 1 and 2 in subjects with schizophrenia (n=23) and a comparison group (n=27). We found decreased expression of EAAT1 and EAAT2 protein in the superior temporal gyrus, and decreased EAAT2 protein in the hippocampus in schizophrenia. We didn't find any changes in expression of the neuronal transporter EAAT3 or the presynaptic vesicular glutamate transporters VGLUT1-2. In addition, we did not detect an effect of antipsychotic medication on expression of EAAT1 and EAAT2 proteins in the temporal association cortex or hippocampus in rats treated with haloperidol for 9 months. Our findings suggest that buffering and reuptake, but not presynaptic release, of glutamate is altered in glutamate synapses in the temporal lobe in schizophrenia.
Collapse
Affiliation(s)
- Dan Shan
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Jana B. Drummond
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - James H. Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
,Evelyn F. McKnight Brain Institute, University of Arizona, Arizona, USA
| | - Robert E. McCullumsmith
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
25
|
Bambico FR, Belzung C. Novel insights into depression and antidepressants: a synergy between synaptogenesis and neurogenesis? Curr Top Behav Neurosci 2013; 15:243-291. [PMID: 23271325 DOI: 10.1007/7854_2012_234] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Major depressive disorder has been associated with manifold pathophysiological changes. These include metabolic abnormalities in discreet brain areas; modifications in the level of stress hormones, neurotransmitters, and neurotrophic factors; impaired spinogenesis and synaptogenesis in crucial brain areas, such as the prefrontal cortex and the hippocampus; and impaired neurogenesis in the hippocampus. Antidepressant therapy facilitates remission by reversing most of these disturbances, indicating that these dysfunctions may participate causally in depressive symptomatology. However, few attempts have been made to integrate these different pathophysiologies into one model. The present chapter endeavors (1) to review the extant literature in the field, with particular focus on the role of neurogenesis and synaptogenesis in depression; (2) and to suggest a possible interplay between these two processes, as well as, describe the ways by which improving both neurogenesis and synaptogenesis may enable effective recovery by acting on a larger neuronal network.
Collapse
Affiliation(s)
- Francis Rodriguez Bambico
- Behavioural Neurobiology Laboratory, Research Neuroimaging Division, Center for Addiction and Mental Health, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada,
| | | |
Collapse
|
26
|
Alawieh A, Zaraket FA, Li JL, Mondello S, Nokkari A, Razafsha M, Fadlallah B, Boustany RM, Kobeissy FH. Systems biology, bioinformatics, and biomarkers in neuropsychiatry. Front Neurosci 2012; 6:187. [PMID: 23269912 PMCID: PMC3529307 DOI: 10.3389/fnins.2012.00187] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 12/06/2012] [Indexed: 11/13/2022] Open
Abstract
Although neuropsychiatric (NP) disorders are among the top causes of disability worldwide with enormous financial costs, they can still be viewed as part of the most complex disorders that are of unknown etiology and incomprehensible pathophysiology. The complexity of NP disorders arises from their etiologic heterogeneity and the concurrent influence of environmental and genetic factors. In addition, the absence of rigid boundaries between the normal and diseased state, the remarkable overlap of symptoms among conditions, the high inter-individual and inter-population variations, and the absence of discriminative molecular and/or imaging biomarkers for these diseases makes difficult an accurate diagnosis. Along with the complexity of NP disorders, the practice of psychiatry suffers from a "top-down" method that relied on symptom checklists. Although checklist diagnoses cost less in terms of time and money, they are less accurate than a comprehensive assessment. Thus, reliable and objective diagnostic tools such as biomarkers are needed that can detect and discriminate among NP disorders. The real promise in understanding the pathophysiology of NP disorders lies in bringing back psychiatry to its biological basis in a systemic approach which is needed given the NP disorders' complexity to understand their normal functioning and response to perturbation. This approach is implemented in the systems biology discipline that enables the discovery of disease-specific NP biomarkers for diagnosis and therapeutics. Systems biology involves the use of sophisticated computer software "omics"-based discovery tools and advanced performance computational techniques in order to understand the behavior of biological systems and identify diagnostic and prognostic biomarkers specific for NP disorders together with new targets of therapeutics. In this review, we try to shed light on the need of systems biology, bioinformatics, and biomarkers in neuropsychiatry, and illustrate how the knowledge gained through these methodologies can be translated into clinical use providing clinicians with improved ability to diagnose, manage, and treat NP patients.
Collapse
Affiliation(s)
- Ali Alawieh
- Department of Biochemistry, College of Medicine, American University of Beirut Beirut, Lebanon
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Schmitt A, Reich-Erkelenz D, Gebicke-Härter P, Falkai P. Estudos transcriptômicos no contexto da conectividade perturbada em esquizofrenia. ACTA ACUST UNITED AC 2012. [DOI: 10.1590/s0101-60832012005000001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Esquizofrenia é uma severa doença neurobiológica com fatores genéticos e ambientais desempenhando um papel na fisiopatologia. Diversas regiões cerebrais têm sido implicadas no processo da doença e estão conectadas em complexos circuitos neuronais. Nos níveis molecular e celular, a conectividade afetada entre essas regiões, envolvendo mielinização disfuncional dos axônios neuronais, bem como as alterações no nível sináptico e metabolismo energético levando a distúrbios na plasticidade sináptica, são os maiores achados em estudos post-mortem. Estudos de microarranjos investigando a expressão gênica contribuíram para os achados de alterações em vias complexas em regiões cerebrais relevantes na esquizofrenia. Além disso, estudos utilizando microdissecção e captura a laser permitiram a investigação da expressão gênica em grupos específicos de neurônios. Entretanto, deve ser mantido em mente que em estudos post-mortem, confusos efeitos de medicação, qualidade de RNAm, bem como capacidade de mecanismos regenerativos neuroplásticos do cérebro em indivíduos com história de vida de esquizofrenia, podem influenciar o complexo padrão de alterações no nível molecular. Apesar dessas limitações, estudos transcriptômicos livres de hipóteses em tecido cerebral de pacientes esquizofrênicos oferecem uma possibilidade única para aprender mais sobre os mecanismos subjacentes, levando a novas ópticas da fisiopatologia da doença.
Collapse
Affiliation(s)
- Andrea Schmitt
- Universidade de Göttingen, Alemanha; Universidade Ludwig Maximilians, Alemanha; Universidade de São Paulo, Brasil
| | | | | | - Peter Falkai
- Universidade de Göttingen, Alemanha; Universidade Ludwig Maximilians, Alemanha
| |
Collapse
|
28
|
Abstract
Neuroimaging and neuropathological studies of major depressive disorder (MDD) and bipolar disorder (BD) have identified abnormalities of brain structure in areas of the prefrontal cortex, amygdala, striatum, hippocampus, parahippocampal gyrus, and raphe nucleus. These structural imaging abnormalities persist across illness episodes, and preliminary evidence suggests they may in some cases arise prior to the onset of depressive episodes in subjects at high familial risk for MDD. In other cases, the magnitude of abnormality is reportedly correlated with time spent depressed. Postmortem histopathological studies of these regions have shown abnormal reductions of synaptic markers and glial cells, and, in rare cases, reductions in neurons in MDD and BD. Many of the regions affected by these structural abnormalities show increased glucose metabolism during depressive episodes. Because the glucose metabolic signal is dominated by glutamatergic transmission, these data support other evidence that excitatory amino acid transmission is elevated in limbic-cortical-striatal-pallidal-thalamic circuits during depression. Some of the subject samples in which these metabolic abnormalities have been demonstrated were also shown to manifest abnormally elevated stressed plasma cortisol levels. The co-occurrence of increased glutamatergic transmission and Cortisol hypersecretion raises the possibility that the gray matter volumetric reductions in these depressed subjects are partly accounted for by processes homologous to the dendritic atrophy induced by chronic stress in adult rodents, which depends upon interactions between elevated glucocorticoid secretion and N-meihyl-D-aspartate (NMDA)-glutamate receptor stimulation. Some mood-stabilizing and antidepressant drugs that exert neurotrophic effects in rodents appear to reverse or attenuate the gray matter volume abnormalities in humans with mood disorders. These neurotrophic effects may be integrally related to the therapeutic effects of such agents, because the regions affected by structural abnormalities in mood disorders are known to play major roles in modulating the endocrine, autonomic, behavioral, and emotional experiential responses to stressors.
Collapse
Affiliation(s)
- Wayne C Drevets
- MD, Mood and Anxiety Disorders Program, NIH NIMH/MIB, 15K North Dr, Bethesda, Md, USA
| |
Collapse
|
29
|
Mood disorders. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
30
|
Ramakrishnan NA, Drescher MJ, Drescher DG. The SNARE complex in neuronal and sensory cells. Mol Cell Neurosci 2012; 50:58-69. [PMID: 22498053 PMCID: PMC3570063 DOI: 10.1016/j.mcn.2012.03.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 11/28/2022] Open
Abstract
Transmitter release at synapses ensures faithful chemical coding of information that is transmitted in the sub-second time frame. The brain, the central unit of information processing, depends upon fast communication for decision making. Neuronal and neurosensory cells are equipped with the molecular machinery that responds reliably, and with high fidelity, to external stimuli. However, neuronal cells differ markedly from neurosensory cells in their signal transmission at synapses. The main difference rests in how the synaptic complex is organized, with active zones in neuronal cells and ribbon synapses in sensory cells (such as photoreceptors and hair cells). In exocytosis/neurosecretion, SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors) and associated proteins play a critical role in vesicle docking, priming, fusion and synchronization of neurotransmitter release. Recent studies suggest differences between neuronal and sensory cells with respect to the molecular components of their synaptic complexes. In this review, we will cover current findings on neuronal and sensory-cell SNARE proteins and their modulators. We will also briefly discuss recent investigations on how deficits in the expression of SNARE proteins in humans impair function in brain and sense organs.
Collapse
Affiliation(s)
| | - Marian J. Drescher
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dennis G. Drescher
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
31
|
Kielar C, Sawiak SJ, Navarro Negredo P, Tse DHY, Morton AJ. Tensor-based morphometry and stereology reveal brain pathology in the complexin1 knockout mouse. PLoS One 2012; 7:e32636. [PMID: 22393426 PMCID: PMC3290572 DOI: 10.1371/journal.pone.0032636] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/28/2012] [Indexed: 11/18/2022] Open
Abstract
Complexins (Cplxs) are small, soluble, regulatory proteins that bind reversibly to the SNARE complex and modulate synaptic vesicle release. Cplx1 knockout mice (Cplx1(-/-)) have the earliest known onset of ataxia seen in a mouse model, although hitherto no histopathology has been described in these mice. Nevertheless, the profound neurological phenotype displayed by Cplx1(-/-) mutants suggests that significant functional abnormalities must be present in these animals. In this study, MRI was used to automatically detect regions where structural differences were not obvious when using a traditional histological approach. Tensor-based morphometry of Cplx1(-/-) mouse brains showed selective volume loss from the thalamus and cerebellum. Stereological analysis of Cplx1(-/-) and Cplx1(+/+) mice brain slices confirmed the volume loss in the thalamus as well as loss in some lobules of the cerebellum. Finally, stereology was used to show that there was loss of cerebellar granule cells in Cplx1(-/-) mice when compared to Cplx1(+/+) animals. Our study is the first to describe pathological changes in Cplx1(-/-) mouse brain. We suggest that the ataxia in Cplx1(-/-) mice is likely to be due to pathological changes in both cerebellum and thalamus. Reduced levels of Cplx proteins have been reported in brains of patients with neurodegenerative diseases. Therefore, understanding the effects of Cplx depletion in brains from Cplx1(-/-) mice may also shed light on the mechanisms underlying pathophysiology in disorders in which loss of Cplx1 occurs.
Collapse
Affiliation(s)
- Catherine Kielar
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J. Sawiak
- Wolfson Brain Imaging Centre, Addenbrooke's Hospital, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Desmond H. Y. Tse
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - A. Jennifer Morton
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
32
|
Bao AM, Ruhé HG, Gao SF, Swaab DF. Neurotransmitters and neuropeptides in depression. HANDBOOK OF CLINICAL NEUROLOGY 2012; 106:107-36. [PMID: 22608619 DOI: 10.1016/b978-0-444-52002-9.00008-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- A-M Bao
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.
| | | | | | | |
Collapse
|
33
|
Bennett M. The prefrontal–limbic network in depression: A core pathology of synapse regression. Prog Neurobiol 2011; 93:457-67. [DOI: 10.1016/j.pneurobio.2011.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/10/2010] [Accepted: 01/03/2011] [Indexed: 01/06/2023]
|
34
|
Fung SJ, Webster MJ, Weickert CS. Expression of VGluT1 and VGAT mRNAs in human dorsolateral prefrontal cortex during development and in schizophrenia. Brain Res 2011; 1388:22-31. [PMID: 21396926 DOI: 10.1016/j.brainres.2011.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/02/2011] [Indexed: 01/16/2023]
Abstract
A balance between excitatory and inhibitory neurotransmission is important in normal brain function, and in schizophrenia a deficit in γ-aminobutyric acid (GABA)ergic inhibitory neurotransmission has been indicated by postmortem studies. We examined the ratio of excitatory to inhibitory vesicular neurotransmitter transporter mRNAs (VGluT1 to VGAT) and their ratio in the dorsolateral prefrontal cortex during normal human development and in people with schizophrenia and controls by quantitative RT-PCR. The ratio of VGluT1/VGAT increased gradually in development to reach a peak at school age (5-12 years), after which levels remained fairly constant into adulthood. The VGluT1 mRNA/VGAT mRNA ratio was unchanged in schizophrenia, as was the ratio of complexin 2 mRNA to complexin 1 mRNA (related to synaptic vesicle fusion in excitatory and inhibitory terminals, respectively). This suggests that the excitatory/inhibitory balance is attained prior to adolescence and is maintained across the rest of the life-span and also indicates that in schizophrenia this balance is not greatly disturbed.
Collapse
Affiliation(s)
- Samantha J Fung
- Schizophrenia Research Institute, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
35
|
Yeganeh-Doost P, Gruber O, Falkai P, Schmitt A. The role of the cerebellum in schizophrenia: from cognition to molecular pathways. Clinics (Sao Paulo) 2011; 66 Suppl 1:71-7. [PMID: 21779725 PMCID: PMC3118440 DOI: 10.1590/s1807-59322011001300009] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 02/01/2023] Open
Abstract
Beside its role in motor coordination, the cerebellum is involved in cognitive function such as attention, working memory, verbal learning, and sensory discrimination. In schizophrenia, a disturbed prefronto-thalamo-cerebellar circuit has been proposed to play a role in the pathophysiology. In addition, a deficit in the glutamatergic N-methyl-D-aspartate (NMDAf) receptor has been hypothesized. The risk gene neuregulin 1 may play a major role in this process. We demonstrated a higher expression of the NMDA receptor subunit 2D in the right cerebellar regions of schizophrenia patients, which may be a secondary upregulation due to a dysfunctional receptor. In contrast, the neuregulin 1 risk variant containing at least one C-allele was associated with decreased expression of NMDA receptor subunit 2C, leading to a dysfunction of the NMDA receptor, which in turn may lead to a dysfunction of the gamma amino butyric acid (GABA) system. Accordingly, from post-mortem studies, there is accumulating evidence that GABAergic signaling is decreased in the cerebellum of schizophrenia patients. As patients in these studies are treated with antipsychotics long term, we evaluated the effect of long-term haloperidol and clozapine treatment in an animal model. We showed that clozapine may be superior to haloperidol in restoring a deficit in NMDA receptor subunit 2C expression in the cerebellum. We discuss the molecular findings in the light of the role of the cerebellum in attention and cognitive deficits in schizophrenia.
Collapse
|
36
|
Fung SJ, Sivagnanasundaram S, Weickert CS. Lack of change in markers of presynaptic terminal abundance alongside subtle reductions in markers of presynaptic terminal plasticity in prefrontal cortex of schizophrenia patients. Biol Psychiatry 2011; 69:71-9. [PMID: 21145444 PMCID: PMC3001685 DOI: 10.1016/j.biopsych.2010.09.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 11/27/2022]
Abstract
BACKGROUND Reduced synaptic connectivity in frontal cortex may contribute to schizophrenia symptoms. While altered messenger RNA (mRNA) and protein expression of various synaptic genes have been found, discrepancies between studies mean a generalizable synaptic pathology has not been identified. METHODS We determined if mRNAs encoding presynaptic proteins enriched in inhibitory (vesicular gamma-aminobutyric acid transporter [VGAT] and complexin 1) and/or excitatory (vesicular glutamate transporter 1 [VGluT1] and complexin 2) terminals are altered in the dorsolateral prefrontal cortex of subjects with schizophrenia (n = 37 patients, n = 37 control subjects). We also measured mRNA expression of markers associated with synaptic plasticity/neurite outgrowth (growth associated protein 43 [GAP43] and neuronal navigators [NAVs] 1 and 2) and mRNAs of other synaptic-associated proteins previously implicated in schizophrenia: dysbindin and vesicle-associated membrane protein 1 (VAMP1) mRNAs using quantitative polymerase chain reaction. RESULTS No significant changes in complexin 1, VGAT, complexin 2, VGluT1, dysbindin, NAV2, or VAMP1 mRNA expression were found; however, expression of mRNAs associated with plasticity/cytoskeletal modification (GAP43 and NAV1) was reduced in schizophrenia. Although dysbindin mRNA did not differ in schizophrenia compared with control subjects, dysbindin mRNA positively correlated with GAP43 and NAV1 in schizophrenia but not in control subjects, suggesting low levels of dysbindin may be linked to reduced plasticity in the disease state. No relationships between three dysbindin genetic polymorphisms previously associated with dysbindin mRNA levels were found. CONCLUSIONS A reduction in the plasticity of synaptic terminals supports the hypothesis that their reduced modifiability may contribute to neuropathology and working memory deficits in schizophrenia.
Collapse
Affiliation(s)
- Samantha J Fung
- Schizophrenia Research Institute, University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
37
|
Oh-Nishi A, Obayashi S, Sugihara I, Minamimoto T, Suhara T. Maternal immune activation by polyriboinosinic-polyribocytidilic acid injection produces synaptic dysfunction but not neuronal loss in the hippocampus of juvenile rat offspring. Brain Res 2010; 1363:170-9. [PMID: 20863817 DOI: 10.1016/j.brainres.2010.09.054] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 10/19/2022]
Abstract
It has been suggested that maternal immune activation increases the risk of psychiatric disorders such as schizophrenia in offspring. There are many reports about hippocampal structural pathology in schizophrenia. Antipsychotic drug administration in adolescence prevented postpubertal hippocampal structural pathology in the maternal immune activation animal model. These findings suggest the possibility that maternal immune activation induces hippocampal dysfunction in juvenile offspring. To test this hypothesis, we investigated hippocampal function in juvenile offspring of maternal immune activation model rat. A synthetic double-stranded RNA polyriboinosinic-polyribocytidilic acid (Poly I:C; 4 mg/kg/day, I.P.) was injected to pregnant rats on gestation days 15 and 17, in order to cause immune activation by stimulating Toll-like receptor 3. Hippocampal synaptic function and morphology in their juvenile offspring (postnatal days 28-31) were compared to those in vehicle-injected control offspring. Field responses were recorded in the hippocampal CA1 region by stimulating commissural/Schaffer collaterals. Pre-synaptic fiber volley amplitudes (mV) and field excitatory post-synaptic potential slopes (mV/ms) were significantly lower in treated offspring. In addition, short-term synaptic plasticity, namely, the paired-pulse facilitation ratio, was significantly higher and long-term synaptic plasticity (long-term potentiation) was significantly impaired in treated offspring. Furthermore, major pre-synaptic protein (synaptophysin) expressions were decreased, but not major post-synaptic proteins (GluR1, GluR2/3, and NR1), in hippocampal CA1 of treated offspring, whereas neuronal loss was not detected in the hippocampal CA1-CA3 regions. These results indicate that maternal immune activation leads to synaptic dysfunction without neuronal loss in the hippocampus of juvenile offspring, and this may be one of the early stages of schizophrenia pathologies.
Collapse
Affiliation(s)
- Arata Oh-Nishi
- Department of Molecular Neuroimaging, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | |
Collapse
|
38
|
McHugh PC, Rogers GR, Glubb DM, Joyce PR, Kennedy MA. Proteomic analysis of rat hippocampus exposed to the antidepressant paroxetine. J Psychopharmacol 2010; 24:1243-51. [PMID: 19346281 DOI: 10.1177/0269881109102786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antidepressant drugs can exert significant effects on the mood of a patient suffering major depression and other disorders. These drugs generally have pharmacological actions on the uptake or metabolism of the neurotransmitters serotonin, noradrenaline and, to a lesser extent, dopamine. However, there are many aspects of antidepressant action we do not understand. We have applied proteomic analysis in a rat hippocampal model in an attempt to identify relevant molecules that operate in pathways functionally relevant to antidepressant action. Rats were administered either 5 mg/kg daily of the antidepressant paroxetine or vehicle for 12 days, then hippocampal protein was recovered and resolved by 2-D gel electrophoresis. After antidepressant exposure, we observed increased expression or modification of cytochrome c oxidase, subunit Va, cyclin-dependent kinase inhibitor 2A interacting protein, dynein, axonemal, heavy polypeptide 3 and RHO GDP-dissociation inhibitor alpha. Decreased expression or modification was observed for complexin 1 (CPLX1), alpha-synuclein, parvalbumin, ribosomal protein large P2, prohibitin, nerve growth factor, beta subunit (NGFB), peroxiredoxin 6 (PRDX6), 1-acylglycerol-3-phosphate O-acyltransferase 2_predicted, cystatin B (CYTB) and lysosomal membrane glycoprotein 1. CPLX1, the most strongly regulated protein observed, mediates the fusion of cellular transport vesicles with their target membranes and has been implicated in the pathophysiology of mood disorders, as well as antidepressant action. CPLX1 and the other proteins identified may represent links into molecular processes of importance to mood dysregulation and control, and their respective genes may represent novel candidates for studies of antidepressant pharmacogenetics.
Collapse
Affiliation(s)
- P C McHugh
- Department of Pathology, University of Otago, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
39
|
Glynn D, Gibson HE, Harte MK, Reim K, Jones S, Reynolds GP, Morton AJ. Clorgyline-mediated reversal of neurological deficits in a Complexin 2 knockout mouse. Hum Mol Genet 2010; 19:3402-12. [PMID: 20584925 DOI: 10.1093/hmg/ddq252] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Complexin 2 is a protein modulator of neurotransmitter release that is downregulated in humans suffering from depression, animal models of depression and neurological disorders such as Huntington's disease in which depression is a major symptom. Although complexin 2 knockout (Cplx2-/-) mice are overtly normal, they show significant abnormalities in cognitive function and synaptic plasticity. Here we show that Cplx2-/- mice also have disturbances in emotional behaviours that include abnormal social interactions and depressive-like behaviour. Since neurotransmitter deficiencies are thought to underlie depression, we examined neurotransmitter levels in Cplx2-/- mice and found a significant decrease in levels of noradrenaline and the serotonin metabolite 5-hydroxyindoleacetic acid in the hippocampus. Chronic treatment with clorgyline, an irreversible inhibitor of monoamine oxidase A, restored hippocampal noradrenaline to normal levels (from 60 to 97% of vehicle-treated Cplx2+/+ mice, P<0.001), and reversed the behavioural deficits seen in Cplx2-/- mice. For example, clorgyline-treated Cplx2-/- mice spent significantly more time interacting with a novel visitor mouse compared with vehicle-treated Cplx2-/- mice in the social recognition test (34 compared with 13%, P<0.01). We were also able to reverse the selective deficit seen in mossy fibre-long-term potentiation (MF-LTP) in Cplx2-/- mice using the noradrenergic agonist isoprenaline. Pre-treatment with isoprenaline in vitro increased MF-LTP by 125% (P<0.001), thus restoring it to control levels. Our data strongly support the idea that complexin 2 is a key player in normal neurological function, and that downregulation of complexin 2 could lead to changes in neurotransmitter release sufficient to cause significant behavioural abnormalities such as depression.
Collapse
Affiliation(s)
- Dervila Glynn
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The hippocampus is abnormal in schizophrenia. Smaller hippocampal volume is the most consistent finding and is present already in the early stages of the illness. The underlying cellular substrate is a subtle, yet functionally significant reduction of hippocampal interneurons. Neuroimaging studies have revealed a pattern of increased hippocampal activity at baseline and decreased recruitment during the performance of memory tasks. Hippocampal lesion models in rodents have replicated some of the pharmacological, anatomical and behavioral phenotype of schizophrenia. Taken together, this pattern of findings points to a disinhibition of hippocampal pyramidal cells and abnormal cortico-hippocampal interactions in schizophrenia.
Collapse
Affiliation(s)
- Stephan Heckers
- Department of Psychiatry, Vanderbilt University, 1601 23rd Avenue South, Room 3060, Nashville, TN 37212, USA.
| | | |
Collapse
|
41
|
Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology 2010; 35:192-216. [PMID: 19693001 PMCID: PMC3055427 DOI: 10.1038/npp.2009.104] [Citation(s) in RCA: 1147] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/26/2009] [Accepted: 07/16/2009] [Indexed: 12/19/2022]
Abstract
This review begins with a brief historical overview of attempts in the first half of the 20th century to discern brain systems that underlie emotion and emotional behavior. These early studies identified the amygdala, hippocampus, and other parts of what was termed the 'limbic' system as central parts of the emotional brain. Detailed connectional data on this system began to be obtained in the 1970s and 1980s, as more effective neuroanatomical techniques based on axonal transport became available. In the last 15 years these methods have been applied extensively to the limbic system and prefrontal cortex of monkeys, and much more specific circuits have been defined. In particular, a system has been described that links the medial prefrontal cortex and a few related cortical areas to the amygdala, the ventral striatum and pallidum, the medial thalamus, the hypothalamus, and the periaqueductal gray and other parts of the brainstem. A large body of human data from functional and structural imaging, as well as analysis of lesions and histological material indicates that this system is centrally involved in mood disorders.
Collapse
Affiliation(s)
- Joseph L Price
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA.
| | | |
Collapse
|
42
|
Abstract
Bipolar disorder (BPD) is increasingly recognized as a neuropathological disorder characterized by reductions in grey matter (GM) volume, as measured by magnetic resonance imaging (MRI) and neuronal and postmortem glial cell changes. Here, we use an anatomical framework to discuss the neurobiology of BPD, focusing on individual components of the "visceromotor network" that regulates bodily homeostasis along with neurophysiological and neuroendocrine responses to stress. MRI-defined reductions in GM volume, combined with neuronal changes, are observed in the perigenual anterior cingulate cortex (ACC) of individuals with BPD, while postmortem glial cell loss is also a characteristic of Brodmann's Area 9. Both postmortem neuronal loss and reduced GM volume have been reported in the amygdala and hippocampus. These structural changes to components of the visceromotor network are associated with increased regional cerebral blood flow (rCBF) or blood oxygenated level-dependent (BOLD) activity in response to affective or rewarding stimuli, raising the possibility that the BPD-associated structural changes are secondary to a glutamate-driven excitotoxic process.
Collapse
|
43
|
Malykhin NV, Lebel RM, Coupland NJ, Wilman AH, Carter R. In vivo quantification of hippocampal subfields using 4.7 T fast spin echo imaging. Neuroimage 2009; 49:1224-30. [PMID: 19786104 DOI: 10.1016/j.neuroimage.2009.09.042] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/05/2009] [Accepted: 09/21/2009] [Indexed: 01/04/2023] Open
Abstract
Several neuropsychiatric disorders involving hippocampal structural changes have been studied extensively using volumetric magnetic resonance imaging (MRI). These studies have mostly measured total hippocampal volume while the present study aimed to delineate and measure hippocampal subfields within the whole hippocampus and subdivisions along its longitudinal axis. Images were acquired at 4.7 T in 11 healthy subjects (5 males and 6 females, aged 23-56 years), using a fast spin echo (FSE) sequence with 0.52 x 0.68 x 1.0 mm(3) native resolution, collecting 90 contiguous coronal slices. Subiculum, cornu ammonis (CA1-3), and dentate gyrus were traced manually within the hippocampal head, body, and tail. We reported volumes for the subfields and demonstrated differences in the distribution within the hippocampus and its parts. The biggest part of the dentate gyrus was located in the hippocampal body, following the hippocampal head and tail. In contrast, the hippocampal head had the largest part of CA1-3, following the hippocampal body and tail. The hippocampal tail had the smallest portion of the subiculum compared to hippocampal head and tail. Subfield volumes were consistent between hemispheres and showed distributions within the longitudinal subdivisions that were consistent with histological data. Direct measurements of subfield distribution along the longitudinal axis of the hippocampus may be more sensitive to detecting disease effects than total volume measures and the differential distribution of subfield volumes may aid in the interpretation of measurements obtained at lower field strength and spatial resolution.
Collapse
Affiliation(s)
- N V Malykhin
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
44
|
Zink M, Araç G, Frank ST, Gass P, Gebicke-Härter PJ, Spanagel R. Perinatal exposure to alcohol reduces the expression of complexins I and II. Neurotoxicol Teratol 2009; 31:400-5. [PMID: 19671442 DOI: 10.1016/j.ntt.2009.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/29/2009] [Accepted: 08/02/2009] [Indexed: 12/19/2022]
Abstract
Perinatal exposure to alcohol (PEA) induces general developmental and specific neuropsychiatric disturbances. Ethanol affects amino acid neurotransmission and synaptic plasticity. We were interested in the transcriptional effects of ethanol on the expression of complexins I and II, two synaptic vesicle proteins (SVP) with relevance for cognition and memory. We exposed pregnant Wistar inbred rats (N=4) and their pups until postnatal day 8 (P8) in vapor chambers and performed in situ-hybridizations regarding complexins I and II at P8 as well as neurobehavioral testing in adult animals of the same litters. At P8, serum ethanol levels of 281+/-58 mg/dl were achieved. PEA animals presented a pronounced retardation of postnatal growth. Significantly lower expression levels of complexin I was observed in CA1, together with trends of reductions in other hippocampal and cortical regions. Complexin II was found reduced in anterior cingulate, prefrontal and fronto-parietal cortex. Adult rats of exposed litters showed worse performance in hippocampus-dependent learning (Morris water maze). The observed suppression of complexins I and II reveals disturbed synaptic plasticity and corresponds with long lasting, ethanol-induced deficits of learning and memory. Further investigations should focus on other synaptic vesicle protein genes in order to unravel the molecular basis of ethanol-induced neurocognitive disabilities.
Collapse
Affiliation(s)
- Mathias Zink
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Jin CY, Anichtchik O, Panula P. Altered histamine H3 receptor radioligand binding in post-mortem brain samples from subjects with psychiatric diseases. Br J Pharmacol 2009; 157:118-29. [PMID: 19413576 DOI: 10.1111/j.1476-5381.2009.00149.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Histamine is a modulatory neurotransmitter in the brain. Auto- and hetero-histamine H3 receptors are present in human brain and are potential targets of antipsychotics. These receptors may also display disease-related abnormalities in psychiatric disorders. Here we have assessed how histamine H3 receptors in human brain may be affected in schizophrenia, bipolar disorder, major depression. EXPERIMENTAL APPROACH Histamine H3 receptor radioligand binding assays were applied to frozen post-mortem prefrontal and temporal cortical sections and anterior hippocampal sections from subjects with schizophrenia, bipolar disorder, major depression and matched controls. KEY RESULTS Compared with the controls, increased H3 receptor radioligand binding was found in dorsolateral prefrontal cortex of schizophrenic subjects (especially the ones who were treated with atypical antipsychotics), and bipolar subjects with psychotic symptoms. No differences in H3 receptor radioligand binding were found in the temporal cortex. In hippocampal formation of control subjects, H3 receptor radioligand binding was prominent in dentate gyrus, subiculum, entorhinal cortex and parasubiculum. Decreased H3 binding was found in the CA4 area of bipolar subjects. Decreased H3 binding in CA2 and presubiculum of medication-free bipolar subjects was also seen. CONCLUSIONS AND IMPLICATIONS The results suggest that histamine H3 receptors in the prefrontal cortex take part in the modulation of cognition, which is impaired in schizophrenic subjects and bipolar subjects with psychotic symptoms. Histamine H3 receptors probably regulate connections between hippocampus and various cortical and subcortical regions and could also be involved in the neuropathology of schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- C Y Jin
- Department of Biology, Abo Akademi University, Biocity, Turku, Finland
| | | | | |
Collapse
|
46
|
Law AJ, Pei Q, Walker M, Gordon-Andrews H, Weickert CS, Feldon J, Pryce CR, Harrison PJ. Early parental deprivation in the marmoset monkey produces long-term changes in hippocampal expression of genes involved in synaptic plasticity and implicated in mood disorder. Neuropsychopharmacology 2009; 34:1381-94. [PMID: 18615010 PMCID: PMC2669475 DOI: 10.1038/npp.2008.106] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In mood disorder, early stressors including parental separation are vulnerability factors, and hippocampal involvement is prominent. In common marmoset monkeys, daily parental deprivation during infancy produces a prodepressive state of increased basal activity and reactivity in stress systems and mild anhedonia that persists at least to adolescence. Here we examined the expression of eight genes, each implicated in neural plasticity and in the pathophysiology of mood disorder, in the hippocampus of these same adolescent marmosets, relative to their normally reared sibling controls. We also measured hippocampal volume. Early deprivation led to decreases in hippocampal growth-associated protein-43 (GAP-43) mRNA, serotonin 1A receptor (5-HT(1A)R) mRNA and binding ([3H]WAY100635), and to increased vesicular GABA transporter mRNA. Brain-derived neurotrophic factor (BDNF), synaptophysin, vesicular glutamate transporter 1 (VGluT1), microtubule-associated protein-2, and spinophilin transcripts were unchanged. There were some correlations with in vivo biochemical and behavioral indices, including VGluT1 mRNA with reward-seeking behavior, and serotonin 1A receptor mRNA with CSF cortisol. Early deprivation did not affect hippocampal volume. We conclude that early deprivation in a nonhuman primate, in the absence of subsequent stressors, has a long-term effect on the hippocampal expression of genes implicated in synaptic function and plasticity. The reductions in GAP-43 and serotonin 1A receptor expressions are comparable with findings in mood disorder, supporting the possibility that the latter reflect an early developmental contribution to disease vulnerability. Equally, the negative results suggest that other features of mood disorder, such as decreased hippocampal volume and BDNF expression, are related to different aspects of the pathophysiological process.
Collapse
Affiliation(s)
- Amanda J. Law
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, U.K
- Clinical Brain Disorders Branch, NIMH, Bethesda, USA
| | - Qi Pei
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, U.K
| | - Mary Walker
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, U.K
| | | | - Cyndi Shannon Weickert
- Clinical Brain Disorders Branch, NIMH, Bethesda, USA
- Schizophrenia Research Laboratory, Prince of Wales Research Institute, University of New South Wales, NSW 2031, Australia
| | - Joram Feldon
- Laboratory for Behavioural Neurobiology, Swiss Federal Institute of Technology, Schwerzenbach, Switzerland
| | - Christopher R. Pryce
- Laboratory for Behavioural Neurobiology, Swiss Federal Institute of Technology, Schwerzenbach, Switzerland
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Paul J. Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, U.K
| |
Collapse
|
47
|
Hajszan T, Dow A, Warner-Schmidt JL, Szigeti-Buck K, Sallam NL, Parducz A, Leranth C, Duman RS. Remodeling of hippocampal spine synapses in the rat learned helplessness model of depression. Biol Psychiatry 2009; 65:392-400. [PMID: 19006787 PMCID: PMC2663388 DOI: 10.1016/j.biopsych.2008.09.031] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 09/04/2008] [Accepted: 09/30/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although it has been postulated for many years that depression is associated with loss of synapses, primarily in the hippocampus, and that antidepressants facilitate synapse growth, we still lack ultrastructural evidence that changes in depressive behavior are indeed correlated with structural synaptic modifications. METHODS We analyzed hippocampal spine synapses of male rats (n=127) with electron microscopic stereology in association with performance in the learned helplessness paradigm. RESULTS Inescapable footshock (IES) caused an acute and persistent loss of spine synapses in each of CA1, CA3, and dentate gyrus, which was associated with a severe escape deficit in learned helplessness. On the other hand, IES elicited no significant synaptic alterations in motor cortex. A single injection of corticosterone reproduced both the hippocampal synaptic changes and the behavioral responses induced by IES. Treatment of IES-exposed animals for 6 days with desipramine reversed both the hippocampal spine synapse loss and the escape deficit in learned helplessness. We noted, however, that desipramine failed to restore the number of CA1 spine synapses to nonstressed levels, which was associated with a minor escape deficit compared with nonstressed control rats. Shorter, 1-day or 3-day desipramine treatments, however, had neither synaptic nor behavioral effects. CONCLUSIONS These results indicate that changes in depressive behavior are associated with remarkable remodeling of hippocampal spine synapses at the ultrastructural level. Because spine synapse loss contributes to hippocampal dysfunction, this cellular mechanism may be an important component in the neurobiology of stress-related disorders such as depression.
Collapse
Affiliation(s)
- Tibor Hajszan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Bennett A O MR. Stress and anxiety in schizophrenia and depression: glucocorticoids, corticotropin-releasing hormone and synapse regression. Aust N Z J Psychiatry 2008; 42:995-1002. [PMID: 19016087 DOI: 10.1080/00048670802512073] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stress during childhood and adolescence has implications for the extent of depression and psychotic disorders in maturity. Stressful events lead to the regression of synapses with the loss of synaptic spines and in some cases whole dendrites of pyramidal neurons in the prefrontal cortex, a process that leads to the malfunctioning of neural networks in the neocortex. Such stress often shows concomitant increases in the activity of the hypothalamic-pituitary-adrenal system, with a consequent elevated release of glucocorticoids such as cortisol as well as of corticotropin-releasing hormone (CRH) from neurons. It is very likely that it is these hormones, acting on neuronal and astrocyte glucocorticoid receptors (GRs) and CRH receptors, respectively, that are responsible for the regression of synapses. The mechanism of such regression involves the loss of synaptic spines, the stability of which is under the direct control of the activity of N-methyl-d-aspartate (NMDA) receptors on the spines. Glutamate activates NMDA receptors, which then, through parallel pathways, control the extent in the spine of the cytoskeletal protein F-actin and so spine stability and growth. Both GR and CRH receptors in the spines can modulate NMDA receptors, reducing their activation by glutamate and hence spine stability. In contrast, glucocorticoids, probably acting on nerve terminal and astrocyte GRs, can release glutamate, so promoting NMDA receptor activation. It is suggested that spine stability is under dual control by glucocorticoids and CRH, released during stress to change the stability of synaptic spines, leading to the malfunctioning of cortical neural networks that are involved in depression and psychoses.
Collapse
Affiliation(s)
- Maxwell R Bennett A O
- Brain and Mind Research Institute, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
49
|
Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM, Wait R, Dunn MJ, Cotter DR. Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry 2008; 13:1102-17. [PMID: 17938637 DOI: 10.1038/sj.mp.4002098] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 07/16/2007] [Accepted: 07/31/2007] [Indexed: 12/15/2022]
Abstract
There is evidence for both similarity and distinction in the presentation and molecular characterization of schizophrenia and bipolar disorder. In this study, we characterized protein abnormalities in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder using two-dimensional gel electrophoresis. Tissue samples were obtained from 35 individuals with schizophrenia, 35 with bipolar disorder and 35 controls. Eleven protein spots in schizophrenia and 48 in bipolar disorder were found to be differentially expressed (P<0.01) in comparison to controls, with 7 additional spots found to be altered in both diseases. Using mass spectrometry, 15 schizophrenia-associated proteins and 51 bipolar disorder-associated proteins were identified. The functional groups most affected included synaptic proteins (7 of the 15) in schizophrenia and metabolic or mitochondrial-associated proteins (25 of the 51) in bipolar disorder. Six of seven synaptic-associated proteins abnormally expressed in bipolar disorder were isoforms of the septin family, while two septin protein spots were also significantly differentially expressed in schizophrenia. This finding represented the largest number of abnormalities from one protein family. All septin protein spots were upregulated in disease in comparison to controls. This study provides further characterization of the synaptic pathology present in schizophrenia and of the metabolic dysfunction observed in bipolar disorder. In addition, our study has provided strong evidence implicating the septin protein family of proteins in psychiatric disorders for the first time.
Collapse
Affiliation(s)
- K Pennington
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
A comparison of the synaptic proteome in human chronic schizophrenia and rat ketamine psychosis suggest that prohibitin is involved in the synaptic pathology of schizophrenia. Mol Psychiatry 2008; 13:878-96. [PMID: 18504422 DOI: 10.1038/mp.2008.60] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many studies in recent years suggest that schizophrenia is a synaptic disease that crucially involves a hypofunction of N-methyl-D-aspartate receptor-mediated signaling. However, at present it is unclear how these pathological processes are reflected in the protein content of the synapse. We have employed two-dimensional gel electrophoresis in conjunction with mass spectrometry to characterize and compare the synaptic proteomes of the human left dorsolateral prefrontal cortex in chronic schizophrenia and of the cerebral cortex of rats treated subchronically with ketamine. We found consistent changes in the synaptic proteomes of human schizophrenics and in rats with induced ketamine psychosis compared to controls. However, commonly regulated proteins between both groups were very limited and only prohibitin was found upregulated in both chronic schizophrenia and the rat ketamine model. Prohibitin, however, could be a new potential marker for the synaptic pathology of schizophrenia and might be causally involved in the disease process.
Collapse
|