1
|
López AJ, Johnson AR, Euston TJ, Wilson R, Nolan SO, Brady LJ, Thibeault KC, Kelly SJ, Kondev V, Melugin P, Kutlu MG, Chuang E, Lam TT, Kiraly DD, Calipari ES. Cocaine self-administration induces sex-dependent protein expression in the nucleus accumbens. Commun Biol 2021; 4:883. [PMID: 34272455 PMCID: PMC8285523 DOI: 10.1038/s42003-021-02358-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Substance use disorder (SUD) is a chronic neuropsychiatric condition characterized by long-lasting alterations in the neural circuitry regulating reward and motivation. Substantial work has focused on characterizing the molecular substrates that underlie these persistent changes in neural function and behavior. However, this work has overwhelmingly focused on male subjects, despite mounting clinical and preclinical evidence that females demonstrate dissimilar progression to SUD and responsivity to stimulant drugs of abuse, such as cocaine. Here, we show that sex is a critical biological variable that defines drug-induced plasticity in the nucleus accumbens (NAc). Using quantitative mass spectrometry, we assessed the protein expression patterns induced by cocaine self-administration and demonstrated unique molecular profiles between males and females. We show that 1. Cocaine self-administration induces non-overlapping protein expression patterns in significantly regulated proteins in males and females and 2. Critically, cocaine-induced protein regulation differentially interacts with sex to eliminate basal sexual dimorphisms in the proteome. Finally, eliminating these baseline differences in the proteome is concomitant with the elimination of sex differences in behavior for non-drug rewards. Together, these data suggest that cocaine administration is capable of rewriting basal proteomic function and reward-associated behaviors.
Collapse
Affiliation(s)
- Alberto J López
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Amy R Johnson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Tanner J Euston
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rashaun Wilson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- WM Keck Biotechnology Resource Laboratory, Yale University, New Haven, CT, USA
| | - Suzanne O Nolan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Lillian J Brady
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Kimberly C Thibeault
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Shannon J Kelly
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Veronika Kondev
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Patrick Melugin
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - M Gunes Kutlu
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Emily Chuang
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- WM Keck Biotechnology Resource Laboratory, Yale University, New Haven, CT, USA
- Yale/NIDA Neuroproteomics Center, New Haven, CT, USA
| | - Drew D Kiraly
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Center for Autism, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Abstract
Heroin addiction is a complex psychiatric disorder with a chronic course and a high relapse rate, which results from the interaction between genetic and environmental factors. Heroin addiction has a substantial heritability in its etiology; hence, identification of individuals with a high genetic propensity to heroin addiction may help prevent the occurrence and relapse of heroin addiction and its complications. The study aimed to identify a small set of genetic signatures that may reliably predict the individuals with a high genetic propensity to heroin addiction. We first measured the transcript level of 13 genes (RASA1, PRKCB, PDK1, JUN, CEBPG, CD74, CEBPB, AUTS2, ENO2, IMPDH2, HAT1, MBD1, and RGS3) in lymphoblastoid cell lines in a sample of 124 male heroin addicts and 124 male control subjects using real-time quantitative PCR. Seven genes (PRKCB, PDK1, JUN, CEBPG, CEBPB, ENO2, and HAT1) showed significant differential expression between the 2 groups. Further analysis using 3 statistical methods including logistic regression analysis, support vector machine learning analysis, and a computer software BIASLESS revealed that a set of 4 genes (JUN, CEBPB, PRKCB, ENO2, or CEBPG) could predict the diagnosis of heroin addiction with the accuracy rate around 85% in our dataset. Our findings support the idea that it is possible to identify genetic signatures of heroin addiction using a small set of expressed genes. However, the study can only be considered as a proof-of-concept study. As the establishment of lymphoblastoid cell line is a laborious and lengthy process, it would be more practical in clinical settings to identify genetic signatures for heroin addiction directly from peripheral blood cells in the future study.
Collapse
Affiliation(s)
- Shaw-Ji Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien
- Department of Psychiatry, Mackay Memorial Hospital, Taitung Branch
| | - Ding-Lieh Liao
- Department of Health Executive Yuan, Bali Psychiatric Center
| | - Tsu-Wang Shen
- Institute of Medical Sciences, Tzu Chi University, Hualien
| | - Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei
| | - Kuang-Chi Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou
- Department and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Correspondence: Chia-Hsiang Chen, Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, No. 5 Fusing Street, Kueishan, Taoyuan, 333 Taiwan (e-mail: )
| |
Collapse
|
3
|
Chakrabarty S, DeLeeuw JL, Woodall DW, Jooss K, Narayan SB, Trimpin S. Reproducibility and Quantification of Illicit Drugs Using Matrix-Assisted Ionization (MAI) Mass Spectrometry. Anal Chem 2015; 87:8301-6. [DOI: 10.1021/acs.analchem.5b01436] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Shubhashis Chakrabarty
- MS,
LLC., 28 Tenby Chase Drive, Newark, Delaware 19711, United States
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Jessica L. DeLeeuw
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Daniel W. Woodall
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Kevin Jooss
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Srinivas B. Narayan
- Detroit Medical
Center: Detroit Hospital, 4201 St.
Antoine Street, Detroit, Michigan 48201, United States
| | - Sarah Trimpin
- MS,
LLC., 28 Tenby Chase Drive, Newark, Delaware 19711, United States
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Cardiovascular
Research Institute, Wayne State University School of Medicine, 421
East Canfield, Detroit, Michigan 48201, United States
| |
Collapse
|
4
|
Barr JL, Deliu E, Brailoiu GC, Zhao P, Yan G, Abood ME, Unterwald EM, Brailoiu E. Mechanisms of activation of nucleus accumbens neurons by cocaine via sigma-1 receptor-inositol 1,4,5-trisphosphate-transient receptor potential canonical channel pathways. Cell Calcium 2015; 58:196-207. [PMID: 26077147 PMCID: PMC4501893 DOI: 10.1016/j.ceca.2015.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/05/2015] [Accepted: 05/17/2015] [Indexed: 01/22/2023]
Abstract
Cocaine promotes addictive behavior primarily by blocking the dopamine transporter, thus increasing dopamine transmission in the nucleus accumbens (nAcc); however, additional mechanisms are continually emerging. Sigma-1 receptors (σ1Rs) are known targets for cocaine, yet the mechanisms underlying σ1R-mediated effects of cocaine are incompletely understood. The present study examined direct effects of cocaine on dissociated nAcc neurons expressing phosphatidylinositol-linked D1 receptors. Endoplasmic reticulum-located σ1Rs and inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) were targeted using intracellular microinjection. IP3 microinjection robustly elevated intracellular Ca(2+) concentration, [Ca(2+)]i. While cocaine alone was devoid of an effect, the IP3-induced response was σ1R-dependently enhanced by cocaine co-injection. Likewise, cocaine augmented the [Ca(2+)]i increase elicited by extracellularly applying an IP3-generating molecule (ATP), via σ1Rs. The cocaine-induced enhancement of the IP3/ATP-mediated Ca(2+) elevation occurred at pharmacologically relevant concentrations and was mediated by transient receptor potential canonical channels (TRPC). IP3 microinjection elicited a slight, transient depolarization, further converted to a greatly enhanced, prolonged response, by cocaine co-injection. The cocaine-triggered augmentation was σ1R-dependent, TRPC-mediated and contingent on [Ca(2+)]i elevation. ATP-induced depolarization was similarly enhanced by cocaine. Thus, we identify a novel mechanism by which cocaine promotes activation of D1-expressing nAcc neurons: enhancement of IP3R-mediated responses via σ1R activation at the endoplasmic reticulum, resulting in augmented Ca(2+) release and amplified depolarization due to subsequent stimulation of TRPC. In vivo, intra-accumbal blockade of σ1R or TRPC significantly diminished cocaine-induced hyperlocomotion and locomotor sensitization, endorsing a physio-pathological significance of the pathway identified in vitro.
Collapse
Affiliation(s)
- Jeffrey L Barr
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Elena Deliu
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, PA 19107, USA
| | - Pingwei Zhao
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Guang Yan
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, PA 19107, USA
| | - Mary E Abood
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
5
|
Recent updates on drug abuse analyzed by neuroproteomics studies: Cocaine, Methamphetamine and MDMA. TRANSLATIONAL PROTEOMICS 2014. [DOI: 10.1016/j.trprot.2014.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
6
|
Matsumoto I, Alexander-Kaufman K, Iwazaki T, Kashem MA, Matsuda-Matsumoto H. CNS proteomes in alcohol and drug abuse and dependence. Expert Rev Proteomics 2014; 4:539-52. [PMID: 17705711 DOI: 10.1586/14789450.4.4.539] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Drugs of abuse, including alcohol, can induce dependency formation and/or brain damage in brain regions important for cognition. 'High-throughput' approaches, such as cDNA microarray and proteomics, allow the analysis of global expression profiles of genes and proteins. These technologies have recently been applied to human brain tissue from patients with psychiatric illnesses, including substance abuse/dependence and appropriate animal models to help understand the causes and secondary effects of these complex disorders. Although these types of studies have been limited in number and by proteomics techniques that are still in their infancy, several interesting hypotheses have been proposed. Focusing on CNS proteomics, we aim to review and update current knowledge in this rapidly advancing area.
Collapse
Affiliation(s)
- Izuru Matsumoto
- University of Sydney, Discipline of Pathology, NSW, Australia.
| | | | | | | | | |
Collapse
|
7
|
Matsumoto H, Matsumoto I. Alcoholism: protein expression profiles in a human hippocampal model. Expert Rev Proteomics 2014; 5:321-31. [DOI: 10.1586/14789450.5.2.321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Liao DL, Cheng MC, Lai CH, Tsai HJ, Chen CH. Comparative gene expression profiling analysis of lymphoblastoid cells reveals neuron-specific enolase gene (ENO2) as a susceptibility gene of heroin dependence. Addict Biol 2014; 19:102-10. [PMID: 21995595 DOI: 10.1111/j.1369-1600.2011.00390.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heroin dependence is a complex mental disorder resulting from interactions between genetic and environmental factors. Identifying the susceptibility genes of heroin dependence is the basis for understanding the pathogenesis of heroin dependence. Using a total gene expression microarray, we detected 924 differentially expressed gene transcripts in lymphoblastoid cell lines (LCLs) between 19 male heroin-dependent individuals and 20 male control subjects, including 279 upregulated and 645 downregulated gene transcripts in heroin-dependent individuals. We verified the reduced expression of the neuron-specific enolase gene (ENO2) in heroin-dependent individuals using real-time quantitative polymerase chain reaction and Western blot analysis. We further compared the allele and genotype frequencies of three single nucleotide polymorphisms (SNPs, rs11064464, rs3213433 and rs10849541) of the ENO2 gene between 532 male heroin-dependent individuals and 369 male controls. No significant differences in the allele or genotype frequencies of these three SNPs were detected between these two groups. Nevertheless, we identified a haplotype (T-C-G) derived from these three SNPs significantly underrepresented in heroin-dependent individuals compared with the control group (72.7% versus 75.9%, P<0.032), while two other rare haplotypes (C-A-G and T-C-A) significantly overrepresented in heroin-dependent individuals compared with the control group (P<0.001). Further study, however, did not detect significant differences of the plasma concentration of neuron-specific enolase between these two groups. Our data suggest that the ENO2 gene might be associated with heroin dependence, and reduced ENO2 gene expression may confer increased risk to heroin dependence.
Collapse
Affiliation(s)
- Ding-Lieh Liao
- Bali Psychiatric Center, Department of Health, Executive Yuan, Taiwan Department of Psychiatry, Yuli Mental Health Research Center, Yuli Veterans Hospital, Taiwan Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Taiwan Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Taiwan Department of Psychiatry, Chang Gung Memorial Hospital at Linkou and Chang Gung University School of Medicine, Taiwan Institute of Medical Sciences, Tzu-Chi University, Taiwan
| | | | | | | | | |
Collapse
|
9
|
Craft GE, Chen A, Nairn AC. Recent advances in quantitative neuroproteomics. Methods 2013; 61:186-218. [PMID: 23623823 PMCID: PMC3891841 DOI: 10.1016/j.ymeth.2013.04.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/29/2013] [Accepted: 04/13/2013] [Indexed: 01/07/2023] Open
Abstract
The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- George E Craft
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
| | - Anshu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
- Yale/NIDA Neuroproteomics Center, Yale University School of Medicine, New Haven, CT, 06508
| |
Collapse
|
10
|
McIntosh S, Howell L, Hemby SE. Dopaminergic dysregulation in prefrontal cortex of rhesus monkeys following cocaine self-administration. Front Psychiatry 2013; 4:88. [PMID: 23970867 PMCID: PMC3748374 DOI: 10.3389/fpsyt.2013.00088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/29/2013] [Indexed: 01/20/2023] Open
Abstract
Chronic cocaine administration regulates the expression of several proteins related to dopaminergic signaling and synaptic function in the mesocorticolimbic pathway, including the prefrontal cortex. Functional abnormalities in the prefrontal cortex are hypothesized to be due in part to the expression of proteins involved in dopamine signaling and plasticity. Adult male rhesus monkeys self-administered cocaine (i.v.) under limited (n = 4) and extended access conditions (n = 6). The abundance of surrogate markers of dopamine signaling and plasticity in the dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC) were examined: glycosylated and non-glycosylated forms of the dopamine transporter (efficiency of dopamine transport), tyrosine hydroxylase (TH; marker of dopamine synthesis) and phosphorylated TH at Serine 30 and 40 (markers of enzyme activity), extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK 2), and phosphorylated ERK1 and ERK2 (phosphorylates TH Serine 31; markers of synaptic plasticity), and markers of synaptic integrity, spinophilin and post-synaptic density protein 95 (roles in dopamine signaling and response to cocaine). Extended cocaine access increased non-glycosylated and glycosylated DAT in DLPFC and OFC. While no differences in TH expression were observed between groups for any of the regions, extended access induced significant elevations in pTH(Ser31) in all regions. In addition, a slight but significant reduction in phosphorylated pTH(Ser40) was found in the DLPFC. Phosphorylated ERK2 was increased in all regions; however, pERK1 was decreased in ACC and OFC but increased in DLPFC. PSD-95 was increased in the OFC but not in DLPFC or ACC. Furthermore, extended cocaine self-administration elicited significant increases in spinophilin protein expression in all regions. Results from the study provide insight into the biochemical alterations occurring in primate prefrontal cortex.
Collapse
Affiliation(s)
- Scot McIntosh
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine , Winston-Salem, NC , USA ; Center for Neurobiology of Addiction Treatment, Wake Forest University School of Medicine , Winston-Salem, NC , USA
| | | | | |
Collapse
|
11
|
Effects of chronic tramadol exposure on the zebrafish brain: A proteomic study. J Proteomics 2012; 75:3351-64. [DOI: 10.1016/j.jprot.2012.03.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/12/2012] [Accepted: 03/26/2012] [Indexed: 11/18/2022]
|
12
|
Privitera D, Corti V, Alessio M, Volontè MA, Volontè A, Lampasona V, Comi G, Martino G, Franciotta D, Furlan R, Fazio R. Proteomic identification of aldolase A as an autoantibody target in patients with atypical movement disorders. Neurol Sci 2012; 34:313-20. [PMID: 22391679 DOI: 10.1007/s10072-012-0996-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 02/20/2012] [Indexed: 01/31/2023]
Abstract
We tried to identify the target/s of autoantibodies to basal ganglia neurons found in a patient with hyperkinetic movement disorders (HMD) characterized by rapid, rhythmic involuntary movements or spasms in both face and neck. Patient and control sera were used in Western blot to probe mouse brain homogenates. Two-dimensional gel electrophoresis (2-DE) SDS-PAGE protein spots recognized by the patient's antibodies were excised and sequenced by mass spectrometry analysis, and the glycolytic enzyme aldolase A was identified as the antigen recognized by the patient's autoantibodies. To assess relevance and specificity of these antibodies to the identified targets as biomarkers of autoimmunity in movement disorders, autoantibody responses to the identified target were then measured by ELISA in various diseases of the central nervous system. Anti-aldolase A autoantibodies were associated mainly with HMD (7/17, 41%) and Parkinson's disease (4/30, 13%) patients, and undetectable in subjects with other inflammatory and non-inflammatory central nervous system diseases. We, thus, identified aldolase A as an autoantigen in a sub-group of patients with HMD, a clinically ill-defined syndrome. Anti-aldolase A antibodies may represent a useful biomarker of autoimmunity in HMD patients.
Collapse
Affiliation(s)
- Daniela Privitera
- Division of Neuroscience, Institute for Experimental Neurology, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Proteomic analysis of the nucleus accumbens in rhesus monkeys of morphine dependence and withdrawal intervention. J Proteomics 2011; 75:1330-42. [PMID: 22123079 DOI: 10.1016/j.jprot.2011.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/31/2011] [Accepted: 11/06/2011] [Indexed: 02/05/2023]
Abstract
It has been known that the reinforcing effects and long-term consequences of morphine are closely associated with nucleus accumbens (NAc) in the brain, a key region of the mesolimbic dopamine pathway. However, the proteins involved in neuroadaptive processes and withdrawal symptom in primates of morphine dependence have not been well explored. In the present study, we performed proteomes in the NAc of rhesus monkeys of morphine dependence and withdrawal intervention with clonidine or methadone. Two-dimensional electrophoresis was used to compare changes in cytosolic protein abundance in the NAc. We found a total of 46 proteins differentially expressed, which were further identified by mass spectrometry analysis. The identified proteins can be classified into 6 classes: metabolism and mitochondrial function, synaptic transmission, cytoskeletal proteins, oxidative stress, signal transduction and protein synthesis and degradation. Importantly, we discovered 14 proteins were significantly but similarly altered after withdrawal therapy with clonidine or methadone, revealing potential pharmacological strategies or targets for the treatment of morphine addiction. Our study provides a comprehensive understanding of the neuropathophysiology associated with morphine addiction and withdrawal therapy in primate, which is helpful for the development of opiate withdrawal pharmacotherapies.
Collapse
|
14
|
Wang J, Yuan W, Li MD. Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: a review of proteomics analyses. Mol Neurobiol 2011; 44:269-86. [PMID: 21922273 DOI: 10.1007/s12035-011-8202-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
Abstract
Drug addiction is a chronic neuronal disease. In recent years, proteomics technology has been widely used to assess the protein expression in the brain tissues of both animals and humans exposed to addictive drugs. Through this approach, a large number of proteins potentially involved in the etiology of drug addictions have been identified, which provide a valuable resource to study protein function, biochemical pathways, and networks related to the molecular mechanisms underlying drug dependence. In this article, we summarize the recent application of proteomics to profiling protein expression patterns in animal or human brain tissues after the administration of alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine/heroin/butorphanol, or nicotine. From available reports, we compiled a list of 497 proteins associated with exposure to one or more addictive drugs, with 160 being related to exposure to at least two abused drugs. A number of biochemical pathways and biological processes appear to be enriched among these proteins, including synaptic transmission and signaling pathways related to neuronal functions. The data included in this work provide a summary and extension of the proteomics studies on drug addiction. Furthermore, the proteins and biological processes highlighted here may provide valuable insight into the cellular activities and biological processes in neurons in the development of drug addiction.
Collapse
Affiliation(s)
- Ju Wang
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22911, USA
| | | | | |
Collapse
|
15
|
Abstract
To identify candidate proteins in the nucleus accumbens (NAc) as potential pharmacotherapeutic targets for treating cocaine addition, an 8-plex iTRAQ (isobaric tag for relative and absolute quantitation) proteomic screen was performed using NAc tissue obtained from rats trained to self-administer cocaine followed by extinction training. Compared with yoked-saline controls, 42 proteins in a postsynaptic density (PSD)-enriched subfraction of the NAc from cocaine-trained animals were identified as significantly changed. Among proteins of interest whose levels were identified as increased was AKAP79/150, the rat ortholog of human AKAP5, a PSD scaffolding protein that localizes signaling molecules to the synapse. Functional downregulation of AKAP79/150 by microinjecting a cell-permeable synthetic AKAP (A-kinase anchor protein) peptide into the NAc to disrupt AKAP-dependent signaling revealed that inhibition of AKAP signaling impaired the reinstatement of cocaine seeking. Reinstatement of cocaine seeking is thought to require upregulated surface expression of AMPA glutamate receptors, and the inhibitory AKAP peptide reduced the PSD content of protein kinase A (PKA) as well as surface expression of GluR1 in NAc. However, reduced surface expression was not associated with changes in PKA phosphorylation of GluR1. This series of experiments demonstrates that proteomic analysis provides a useful tool for identifying proteins that can regulate cocaine relapse and that AKAP proteins may contribute to relapse vulnerability by promoting increased surface expression of AMPA receptors in the NAc.
Collapse
|
16
|
Zill P, Vielsmeier V, Büttner A, Eisenmenger W, Siedler F, Scheffer B, Möller HJ, Bondy B. Postmortem proteomic analysis in human amygdala of drug addicts: possible impact of tubulin on drug-abusing behavior. Eur Arch Psychiatry Clin Neurosci 2011; 261:121-31. [PMID: 20686780 DOI: 10.1007/s00406-010-0129-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
Abstract
Besides the ventral tegmental area and the nucleus accumbens as the most investigated brain reward structures, several reports about the relation between volume and activity of the amygdala and drug-seeking behavior have emphasized the central role of the amygdala in the etiology of addiction. Considering its proposed important role and the limited number of human protein expression studies with amygdala in drug addiction, we performed a human postmortem proteomic analysis of amygdala tissue obtained from 8 opiate addicts and 7 control individuals. Results were validated by Western blot in an independent postmortem replication sample from 12 opiate addicts compared to 12 controls and 12 suicide victims, as a second "control sample". Applying 2D-electrophoresis and MALDI-TOF-MS analysis, we detected alterations of beta-tubulin expression and decreased levels of the heat-shock protein HSP60 in drug addicts. Western blot analysis in the additional sample demonstrated significantly increased alpha- and beta-tubulin concentrations in the amygdala of drug abusers versus controls (P = 0.021, 0.029) and to suicide victims (P = 0.006, 0.002). Our results suggest that cytoskeletal alterations in the amygdala determined by tubulin seem to be involved in the pathophysiology of drug addiction, probably via a relation to neurotransmission and cellular signaling. Moreover, the loss of neuroprotection against stressors by chaperons as HSP60 might also contribute to structural alteration in the brain of drug addicts. Although further studies have to confirm our results, this might be a possible pathway that may increase our understanding of drug addiction.
Collapse
Affiliation(s)
- P Zill
- Department of Psychiatry, Division of Psychiatric Genetics and Neurochemistry, Ludwig-Maximilians-University Munich, Nussbaumstrasse 7, 80336 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Taurines R, Dudley E, Grassl J, Warnke A, Gerlach M, Coogan AN, Thome J. Proteomic research in psychiatry. J Psychopharmacol 2011; 25:151-96. [PMID: 20142298 DOI: 10.1177/0269881109106931] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Psychiatric disorders such as Alzheimer's disease, schizophrenia and mood disorders are severe and disabling conditions of largely unknown origin and poorly understood pathophysiology. An accurate diagnosis and treatment of these disorders is often complicated by their aetiological and clinical heterogeneity. In recent years proteomic technologies based on mass spectrometry have been increasingly used, especially in the search for diagnostic and prognostic biomarkers in neuropsychiatric disorders. Proteomics enable an automated high-throughput protein determination revealing expression levels, post-translational modifications and complex protein-interaction networks. In contrast to other methods such as molecular genetics, proteomics provide the opportunity to determine modifications at the protein level thereby possibly being more closely related to pathophysiological processes underlying the clinical phenomenology of specific psychiatric conditions. In this article we review the theoretical background of proteomics and its most commonly utilized techniques. Furthermore the current impact of proteomic research on diverse psychiatric diseases, such as Alzheimer's disease, schizophrenia, mood and anxiety disorders, drug abuse and autism, is discussed. Proteomic methods are expected to gain crucial significance in psychiatric research and neuropharmacology over the coming decade.
Collapse
Affiliation(s)
- Regina Taurines
- Academic Unit of Psychiatry, The School of Medicine, Institute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Romanova EV, Lee JE, Kelleher NL, Sweedler JV, Gulley JM. Mass spectrometry screening reveals peptides modulated differentially in the medial prefrontal cortex of rats with disparate initial sensitivity to cocaine. AAPS JOURNAL 2010; 12:443-54. [PMID: 20490734 DOI: 10.1208/s12248-010-9204-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 05/03/2010] [Indexed: 01/06/2023]
Abstract
To better understand why certain individuals are more vulnerable to cocaine abuse and addiction, we identify peptide markers associated with individual variation in sensitivity to the behavioral effects of cocaine. Previous studies in rats show that low, compared to high, cocaine responders are more sensitive to cocaine-induced behavioral plasticity (sensitization), exhibit enhanced conditioning to cocaine's rewarding effects, and are more motivated to self administer cocaine. In the current study, we combine matrix-assisted laser desorption/ionization mass spectrometry with multivariate statistical methods to analyze tissue extracts from rat dorsal striatum, nucleus accumbens, and medial prefrontal cortex (mPFC) to examine trends in peptide changes that coincide with behavioral phenotype. Peptide profiles of these three regions from individual animals were characterized via mass spectrometry. Resulting mass peaks that were statistically different between these groups were identified using principal component analysis. The mass peaks were then identified in pooled samples via multistage liquid chromatography mass spectrometry. A total of 74 peptides from 28 proteins were sequenced from defined brain regions. Statistically significant changes in peak intensities for seven peptides were found in the mPFC of rats given a single injection of 10 mg/kg cocaine, with low cocaine responders showing approximately 2-fold increase in peak intensities for the acetylated N terminus peptides of stathmin and Hint 1, as well as truncated ATP synthase. These results suggest that distinct peptide profiles in the mPFC are associated with individuals that exhibit reduced sensitivity to the behavioral effects of cocaine.
Collapse
Affiliation(s)
- Elena V Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Alcohol intake at levels posing an acute heath risk is common amongst teenagers. Alcohol abuse is the second most common mental disorder worldwide. The incidence of smoking is decreasing in the Western world but increasing in developing countries and is the leading cause of preventable death worldwide. Considering the longstanding history of alcohol and tobacco consumption in human societies, it might be surprising that the molecular mechanisms underlying alcohol and smoking dependence are still incompletely understood. Effective treatments against the risk of relapse are lacking. Drugs of abuse exert their effect manipulating the dopaminergic mesocorticolimbic system. In this brain region, alcohol has many potential targets including membranes and several ion channels, while other drugs, for example nicotine, act via specific receptors or binding proteins. Repeated consumption of drugs of abuse mediates adaptive changes within this region, resulting in addiction. The high incidence of alcohol and nicotine co-abuse complicates analysis of the molecular basis of the disease. Gene expression profiling is a useful approach to explore novel drug targets in the brain. Several groups have utilised this technology to reveal drug-sensitive pathways in the mesocorticolimbic system of animal models and in human subjects. These studies are the focus of the present review.
Collapse
|
20
|
Hemby SE. Cocainomics: new insights into the molecular basis of cocaine addiction. J Neuroimmune Pharmacol 2010; 5:70-82. [PMID: 20084466 PMCID: PMC3255087 DOI: 10.1007/s11481-009-9189-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/21/2009] [Indexed: 02/06/2023]
Abstract
Until recently, knowledge of the impact of abused drugs on gene and protein expression in the brain was limited to less than 100 targets. With the advent of high-throughput genomic and proteomic techniques, investigators are now able to evaluate changes across the entire genome and across thousands of proteins in defined brain regions and generate expression profiles of vulnerable neuroanatomical substrates in rodent and nonhuman primate drug abuse models and in human post-mortem brain tissue from drug abuse victims. The availability of gene and protein expression profiles will continue to expand our understanding of the short- and long-term consequences of drug addiction and other addictive disorders and may provide new approaches or new targets for pharmacotherapeutic intervention. This review summarizes several important genomic and proteomic studies of cocaine abuse/addiction from rodent, nonhuman primate, and human postmortem studies of cocaine abuse and explores how these studies have advanced our understanding of addiction.
Collapse
Affiliation(s)
- Scott E Hemby
- Department of Physiology and Pharmacology, Center for the Neurobiology of Addiction and Treatment, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
21
|
Lull ME, Freeman WM, VanGuilder HD, Vrana KE. The use of neuroproteomics in drug abuse research. Drug Alcohol Depend 2010; 107:11-22. [PMID: 19926406 PMCID: PMC3947580 DOI: 10.1016/j.drugalcdep.2009.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 09/21/2009] [Accepted: 10/15/2009] [Indexed: 01/08/2023]
Abstract
The number of discovery proteomic studies of drug abuse has begun to increase in recent years, facilitated by the adoption of new techniques such as 2D-DIGE and iTRAQ. For these new tools to provide the greatest insight into the neurobiology of addiction, however, it is important that the addiction field has a clear understanding of the strengths, limitations, and drug abuse-specific research factors of neuroproteomic studies. This review outlines approaches for improving animal models, protein sample quality and stability, proteome fractionation, data analysis, and data sharing to maximize the insights gained from neuroproteomic studies of drug abuse. For both the behavioral researcher interested in what proteomic study results mean, and for biochemists joining the drug abuse research field, a careful consideration of these factors is needed. Similar to genomic, transcriptomic, and epigenetic methods, appropriate use of new proteomic technologies offers the potential to provide a novel and global view of the neurobiological changes underlying drug addiction. Proteomic tools may be an enabling technology to identify key proteins involved in drug abuse behaviors, with the ultimate goal of understanding the etiology of drug abuse and identifying targets for the development of therapeutic agents.
Collapse
Affiliation(s)
- Melinda E. Lull
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Willard M. Freeman
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA, Functional Genomics Facility, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA,Corresponding author at: Department of Pharmacology, R130, Penn State College of Medicine, 500 University Drive, P.O. Box 850, Hershey, PA 17033, USA. Tel.: +1 717 531 8285; fax: +1 717 531 0419. (K.E. Vrana)
| |
Collapse
|
22
|
Tannu NS, Howell LL, Hemby SE. Integrative proteomic analysis of the nucleus accumbens in rhesus monkeys following cocaine self-administration. Mol Psychiatry 2010; 15:185-203. [PMID: 18504425 PMCID: PMC3272768 DOI: 10.1038/mp.2008.53] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/12/2008] [Accepted: 04/10/2008] [Indexed: 11/09/2022]
Abstract
The reinforcing effects and long-term consequences of cocaine self-administration have been associated with brain regions of the mesolimbic dopamine pathway, namely the nucleus accumbens (NAc). Studies of cocaine-induced biochemical adaptations in rodent models have advanced our knowledge; however, unbiased detailed assessments of intracellular alterations in the primate brain are scarce, yet essential, to develop a comprehensive understanding of cocaine addiction. To this end, two-dimensional difference in gel electrophoresis (2D-DIGE) was used to compare changes in cytosolic protein abundance in the NAc between rhesus monkeys self-administering cocaine and controls. Following image normalization, spots with significantly differential image intensities (P<0.05) were identified, excised, trypsin digested and analyzed by matrix-assisted laser-desorption ionization time-of-flight time-of-flight (MALDI-TOF-TOF). In total, 1098 spots were subjected to statistical analysis with 22 spots found to be differentially abundant of which 18 proteins were positively identified by mass spectrometry. In addition, approximately 1000 protein spots were constitutively expressed of which 21 proteins were positively identified by mass spectrometry. Increased levels of proteins in the cocaine-exposed monkeys include glial fibrillary acidic protein, syntaxin-binding protein 3, protein kinase C isoform, adenylate kinase isoenzyme 5 and mitochondrial-related proteins, whereas decreased levels of proteins included beta-soluble N-ethylmaleimide-sensitive factor attachment protein and neural and non-neural enolase. Using a complimentary proteomics approach, the differential expression of phosphorylated proteins in the cytosolic fraction of these subjects was examined. Two-dimensional gel electrophoresis (2DGE) was followed by gel staining with Pro-Q Diamond phosphoprotein gel stain, enabling differentiation of approximately 150 phosphoprotein spots between the groups. Following excision and trypsin digestions, MALDI-TOF-TOF was used to confirm the identity of 15 cocaine-altered phosphoproteins. Significant increased levels were detected for gamma-aminobutyric acid type A receptor-associated protein 1, 14-3-3 gamma-protein, glutathione S-transferase and brain-type aldolase, whereas significant decreases were observed for beta-actin, Rab GDP-dissociation inhibitor, guanine deaminase, peroxiredoxin 2 isoform b and several mitochondrial proteins. Results from these studies indicate coordinated dysregulation of proteins related to cell structure, signaling, metabolism and mitochondrial function. These data extend and compliment previous studies of cocaine-induced biochemical alterations in human postmortem brain tissue, using an animal model that closely recapitulates the human condition and provide new insight into the molecular basis of the disease and potential targets for pharmacotherapeutic intervention.
Collapse
Affiliation(s)
- NS Tannu
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - LL Howell
- Neuroscience Division, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - SE Hemby
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Psychiatry and Behavioral Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
23
|
Characterization of proteins in the rat striatum following acute cocaine administration. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0204-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
del Castillo C, Morales L, Alguacil LF, Salas E, Garrido E, Alonso E, Pérez-García C. Proteomic analysis of the nucleus accumbens of rats with different vulnerability to cocaine addiction. Neuropharmacology 2009; 57:41-8. [DOI: 10.1016/j.neuropharm.2009.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 02/27/2009] [Accepted: 04/09/2009] [Indexed: 01/24/2023]
|
25
|
Li Q, Zhao X, Zhong LJ, Yang HY, Wang Q, Pu XP. Effects of chronic morphine treatment on protein expression in rat dorsal root ganglia. Eur J Pharmacol 2009; 612:21-8. [DOI: 10.1016/j.ejphar.2009.03.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 03/17/2009] [Accepted: 03/23/2009] [Indexed: 01/23/2023]
|
26
|
Abstract
The ability to model aspects of human addictive behaviors in laboratory animals provides an important avenue for gaining insight into the biochemical alterations associated with drug intake and the identification of targets for medication development to treat addictive disorders. The intravenous self-administration procedure provides the means to model the reinforcing effects of abused drugs and to correlate biochemical alterations with drug reinforcement. In this chapter, we provide a detailed methodology for rodent intravenous self-administration and the isolation and preparation of proteins from dissected brain regions for Western blot analysis and high-throughput proteomic analysis. Examples of cocaine-induced alterations in the abundances of ionotropic glutamate receptor subunits in reinforcement-related brain regions are provided.
Collapse
Affiliation(s)
- Scott E Hemby
- Department of Physiology & Pharmacology and Psychiatry, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | | |
Collapse
|
27
|
Characterizing intercellular signaling peptides in drug addiction. Neuropharmacology 2008; 56 Suppl 1:196-204. [PMID: 18722391 DOI: 10.1016/j.neuropharm.2008.07.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/23/2008] [Accepted: 07/28/2008] [Indexed: 11/23/2022]
Abstract
Intercellular signaling peptides (SPs) coordinate the activity of cells and influence organism behavior. SPs, a chemically and structurally diverse group of compounds responsible for transferring information between neurons, are broadly involved in neural plasticity, learning and memory, as well as in drug addiction phenomena. Historically, SP discovery and characterization has tracked advances in measurement capabilities. Today, a suite of analytical technologies is available to investigate individual SPs, as well as entire intercellular signaling complements, in samples ranging from individual cells to entire organisms. Immunochemistry and in situ hybridization are commonly used for following preselected SPs. Discovery-type investigations targeting the transcriptome and proteome are accomplished using high-throughput characterization technologies such as microarrays and mass spectrometry. By integrating directed approaches with discovery approaches, multiplatform studies fill critical gaps in our knowledge of drug-induced alterations in intercellular signaling. Throughout the past 35 years, the National Institute on Drug Abuse has made significant resources available to scientists that study the mechanisms of drug addiction. The roles of SPs in the addiction process are highlighted, as are the analytical approaches used to detect and characterize them.
Collapse
|
28
|
Tannu NS, Hemby SE. Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling. Nat Protoc 2007; 1:1732-42. [PMID: 17487156 PMCID: PMC2001252 DOI: 10.1038/nprot.2006.256] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Quantitative proteomics is the workhorse of the modern proteomics initiative. The gel-based and MuDPIT approaches have facilitated vital advances in the measurement of protein expression alterations in normal and disease phenotypic states. The methodological advance in two-dimensional gel electrophoresis (2DGE) has been the multiplexing fluorescent two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). 2D-DIGE is based on direct labeling of lysine groups on proteins with cyanine CyDye DIGE Fluor minimal dyes before isoelectric focusing, enabling the labeling of 2-3 samples with different dyes and electrophoresis of all the samples on the same 2D gel. This capability minimizes spot pattern variability and the number of gels in an experiment while providing simple, accurate and reproducible spot matching. This protocol can be completed in 3-5 weeks depending on the sample size of the experiment and the level of expertise of the investigator.
Collapse
Affiliation(s)
- Nilesh S Tannu
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
29
|
Li MD, Wang J. Neuroproteomics and its applications in research on nicotine and other drugs of abuse. Proteomics Clin Appl 2007; 1:1406-27. [PMID: 21136639 DOI: 10.1002/prca.200700321] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Indexed: 12/24/2022]
Abstract
The rapidly growing field of neuroproteomics is able to track changes in protein expression and protein modifications underlying various physiological conditions, including the neural diseases related to drug addiction. Thus, it presents great promise in characterizing protein function, biochemical pathways, and networks to understand the mechanisms underlying drug dependence. In this article, we first provide an overview of proteomics technologies and bioinformatics tools available to analyze proteomics data. Then we summarize the recent applications of proteomics to profile the protein expression pattern in animal or human brain tissues after the administration of nicotine, alcohol, amphetamine, butorphanol, cocaine, and morphine. By comparing the protein expression profiles in response to chronic nicotine exposure with those appearing in response to treatment with other drugs of abuse, we identified three biological processes that appears to be regulated by multiple drugs of abuse: energy metabolism, oxidative stress response, and protein degradation and modification. Such similarity indicates that despite the obvious differences among their chemical properties and the receptors with which they interact, different substances of abuse may cause some similar changes in cellular activities and biological processes in neurons.
Collapse
Affiliation(s)
- Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA.
| | | |
Collapse
|
30
|
Andrade EC, Krueger DD, Nairn AC. Recent advances in neuroproteomics. CURRENT OPINION IN MOLECULAR THERAPEUTICS 2007; 9:270-81. [PMID: 17608026 PMCID: PMC3373961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The last few years have seen a rapid growth in the use of proteomic methods to study normal brain function. In addition, such methods have been used to analyze changes in protein expression associated with the onset and progression of neuronal disease. The field of neuroproteomics faces special challenges given the complex cellular and sub-cellular architecture of the central nervous system. This article presents a review of recent progress in studies of neuroproteomics, and highlights the strengths and limitations of current proteomic profiling technologies used in studies of neuronal protein expression.
Collapse
Affiliation(s)
- Erika C Andrade
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA
| | | | | |
Collapse
|