1
|
Belelli D, Lambert JJ, Wan MLY, Monteiro AR, Nutt DJ, Swinny JD. From bugs to brain: unravelling the GABA signalling networks in the brain-gut-microbiome axis. Brain 2025; 148:1479-1506. [PMID: 39716883 PMCID: PMC12074267 DOI: 10.1093/brain/awae413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Convergent data across species paint a compelling picture of the critical role of the gut and its resident microbiota in several brain functions and disorders. The chemicals mediating communication along these sophisticated highways of the brain-gut-microbiome (BGM) axis include both microbiota metabolites and classical neurotransmitters. Amongst the latter, GABA is fundamental to brain function, mediating most neuronal inhibition. Until recently, GABA's role and specific molecular targets in the periphery within the BGM axis had received limited attention. Yet, GABA is produced by neuronal and non-neuronal elements of the BGM, and recently, GABA-modulating bacteria have been identified as key players in GABAergic gut systems, indicating that GABA-mediated signalling is likely to transcend physiological boundaries and species. We review the available evidence to better understand how GABA facilitates the integration of molecularly and functionally disparate systems to bring about overall homeostasis and how GABA perturbations within the BGM axis can give rise to multi-system medical disorders, thereby magnifying the disease burden and the challenges for patient care. Analysis of transcriptomic databases revealed significant overlaps between GABAAR subunits expressed in the human brain and gut. However, in the gut, there are notable expression profiles for a select number of subunits that have received limited attention to date but could be functionally relevant for BGM axis homeostasis. GABAergic signalling, via different receptor subtypes, directly regulates BGM homeostasis by modulating the excitability of neurons within brain centres responsible for gastrointestinal (GI) function in a sex-dependent manner, potentially revealing mechanisms underlying the greater prevalence of GI disturbances in females. Apart from such top-down regulation of the BGM axis, a diverse group of cell types, including enteric neurons, glia, enteroendocrine cells, immune cells and bacteria, integrate peripheral GABA signals to influence brain functions and potentially contribute to brain disorders. We propose several priorities for this field, including the exploitation of available technologies to functionally dissect components of these GABA pathways within the BGM, with a focus on GI and brain-behaviour-disease. Furthermore, in silico ligand-receptor docking analyses using relevant bacterial metabolomic datasets, coupled with advances in knowledge of GABAAR 3D structures, could uncover new ligands with novel therapeutic potential. Finally, targeted design of dietary interventions is imperative to advancing their therapeutic potential to support GABA homeostasis across the BGM axis.
Collapse
Affiliation(s)
- Delia Belelli
- GABA Labs (Research) Ltd., Hemel Hempstead HP2 5HD, UK
- Division of Neuroscience, School of Medicine, Medical Sciences Institute, Dundee University, Dundee DD1 5HL, UK
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Jeremy J Lambert
- Division of Neuroscience, School of Medicine, Medical Sciences Institute, Dundee University, Dundee DD1 5HL, UK
| | - Murphy Lam Yim Wan
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Ana Rita Monteiro
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - David J Nutt
- GABA Labs (Research) Ltd., Hemel Hempstead HP2 5HD, UK
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Jerome D Swinny
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
2
|
Markus CR, Keulers EHH. The serotonin gene 5-HTTLPR and brain food-reward responses during sadness: a mood-induction neuroimaging study. J Affect Disord 2025; 384:1-11. [PMID: 40334849 DOI: 10.1016/j.jad.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/17/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND High-calorie foods become particularly rewarding and difficult to resist under affective stressful circumstances. Individuals carrying the short allele variant of the serotonin transporter gene (s-allele 5-HTTLPR) often exhibit enhanced emotional and neuroendocrine stress responsiveness, which increases their risk to gain weight or to develop obesity. OBJECTIVE To explore whether homozygous S-allele 5-HTTLPR carriers are more sensitive to the rewarding effects of high- compared to low-calorie foods during sad mood. METHODS From a large (n = 827) DNA 5-HTTLPR database, a selected subgroup of homozygous S-allele and L-allele carriers were monitored for affective-motivational (mood, wanting-liking) and neural (fMRI) food-reward responsiveness during a food exposure task, before and after sad mood induction. Brain responsiveness was measured for high versus low calorie food pictures in a set of appetitive- and cognitive control ROIs, respectively. RESULTS Mood induction significantly increased sad mood in the majority of participants. Analyses revealed a genotype x mood induction interaction in cognitive control but not in affective ROIs. LL- compared to SS-carriers exhibited greater contrast value in the inferior frontal sulcus, dorsolateral PFC and superior parietal lob when viewing high- compared to low-calorie food pictures, which only in LL-genotypes significantly declined after sad mood induction. CONCLUSION LL- compared to SS-genotypes may have stronger high-calorie food responses in cognitive control brain areas in the absence of stress indicating better capacity to resist the rewarding effects of palatable foods.
Collapse
Affiliation(s)
- C Rob Markus
- Faculty of Psychology and Neuroscience, Dept of Neuropsychology & Psychopharmacology, Maastricht University, Maastricht, the Netherlands.
| | - Esther H H Keulers
- Faculty of Psychology and Neuroscience, Dept of Neuropsychology & Psychopharmacology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
3
|
Kassar O, Farag N, Selim A, Taman L, Alaa M, Elshahat A, Abouelmagd ME. Efficacy, safety and mechanistic insights of pentoxifylline in major depressive disorder: a systematic review and meta-analysis of randomized controlled trials. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03845-1. [PMID: 39985579 DOI: 10.1007/s00210-025-03845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/22/2025] [Indexed: 02/24/2025]
Abstract
Novel treatments that act beyond the conventionally targeted monoamine system are urgently needed to provide more effective relief for patients with major depressive disorder. Pentoxifylline (PTX) is a phosphodiesterase inhibitor with potent anti-inflammatory and antioxidant effects, with additional pleiotropic effects. This is the first systematic review and meta-analysis to examine the role of PTX in major depressive disorder. A comprehensive search of electronic databases, including PubMed, Scopus, Cochrane, and Web of Science, was performed in October 2024. We included only randomized controlled trials (RCTs), and their data were extracted and analyzed using Reman 5.4 software. The primary outcome was the change in Hamilton Depression Rating Scale (HAM-D). Four RCTs with 318 patients were included in the study. PTX showed a statistically significant improvement in HAM-D scores at the primary endpoint compared to the placebo (MD = -3.84, 95% CI [-4.87 to -2.81], P < 0.00001). Moreover, PTX showed a statistically significant increase in serotonin and BDNF levels (MD = 20.76 ng/mL, 95% CI [5.49 to 36.04], P = 0.008; and MD = 10.83 ng/mL, 95% CI [-0.22 to 21.88], P = 0.05, respectively) and a statistically significant decrease in TNF-α and IL-6 levels (MD = -3.24 pg/mL, 95% CI [-4.12 to -2.36], P < 0.00001; and MD = -2.64 pig/mL, 95% CI [-3.79 to -1.48], P < 0.00001, respectively). There was no statistically significant difference between the PTX and placebo in any of the reported side effects. The study findings suggest that PTX may be effective and safe as an adjuvant antidepressant agent in patients with MDD, demonstrating a significant reduction in HAM-D scores. The results of this study need to be interpreted with caution considering several limitations.
Collapse
Affiliation(s)
- Omar Kassar
- Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | | | - Abdullah Selim
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Lamees Taman
- Faculty of Medicine, Tanta University, Tanta, Egypt
- Medical Research Group of Egypt, Neida Academy, Arlington, MA, USA
| | - Menna Alaa
- Shebin Elkom Hospital for Mental Health & Addiction Therapy, Menoufia, Egypt
| | | | | |
Collapse
|
4
|
Gao S, Lu J, Gu Y, Zhang Y, Wang C, Gao F, Dai Z, Xu S, Zhang J, Yang Y, Lei H. Revealing the Mechanism of Hemerocallis citrina Baroni in Depression Treatment Through Integrated Network Pharmacology and Transcriptomic Analysis. Pharmaceuticals (Basel) 2024; 17:1704. [PMID: 39770546 PMCID: PMC11677347 DOI: 10.3390/ph17121704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Hemerocallis citrina Baroni (HCB) is a traditional herb for the treatment of depression in China. However, the active constituents and the underlying mechanisms of its antidepressant effects remain unclear. The aim of this study was to identify the bioactive constituents of HCB and elucidate its underlying mechanism for the treatment of depression. Methods: The constituents of HCB were systematically analyzed using UHPLC-Q-Orbitrap HRMS. Its antidepressant effect was evaluated by chronic unpredictable mild stress (CUMS)-induced depression. The mechanism of HCB in treating depression was investigated through network pharmacology and molecular docking. Subsequently, its potential mechanism for the treatment of depression was carried out by RNA sequencing. Finally, the mechanism was further verified by Western blot. Results: A total of 62 chemical constituents were identified from HCB using UHPLC-Q-Orbitrap HRMS, including 17 flavonoids, 11 anthraquinones, 11 alkaloids, 10 caffeoylquinic acid derivatives, five phenolic acids, five triterpenoids, and three phenylethanosides, 13 of which were identified as potential active constituents targeting 49 depression-associated proteins. Furthermore, HCB was found to significantly reduce cognitive impairment, anxiety-like behavior, and anhedonia-like behavior. The expression levels of 5-hydroxytryptamine (5-HT), dopamine (DA), and brain-derived neurotrophic factor (BDNF) were elevated in the hippocampal CA3 region. Results from network pharmacology and transcriptomics indicated that the PI3K/Akt/CREB signaling pathway is essential for the therapeutic effects of HCB on depression. Research in the field of molecular biology has conclusively demonstrated that HCB is associated with an increase in the expression levels of several important proteins. Specifically, there was a notable upregulation of phosphorylated PI3K (p-PI3K) relative to its unphosphorylated form PI3K, as well as an elevation in the ratio of phosphorylated Akt (p-Akt) to total Akt. Additionally, the study observed increased levels of phosphorylated CREB (p-CREB) compared to its unphosphorylated CREB. Conclusions: This study provides compelling evidence that HCB possesses the ability to mitigate the symptoms of depression through its influence on the PI3K/Akt/CREB signaling pathway. HCB could be developed as a promising therapeutic intervention for individuals struggling with depression, offering new avenues for treatment strategies that target this particular signaling mechanism.
Collapse
Affiliation(s)
- Shan Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
| | - Yixiao Gu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
| | - Yaozhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
| | - Cheng Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
| | - Ziqi Dai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
| | - Shujing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
| | - Jindong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
| | - Yuqin Yang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.G.); (J.L.); (Y.G.); (Y.Z.); (C.W.); (F.G.); (Z.D.); (S.X.); (J.Z.)
| |
Collapse
|
5
|
Zhu Y, Yin L, Liu Q, Guan Y, Nie S, Zhu Y, Mo F. Tryptophan metabolic pathway plays a key role in the stress-induced emotional eating. Curr Res Food Sci 2024; 8:100754. [PMID: 38736909 PMCID: PMC11087915 DOI: 10.1016/j.crfs.2024.100754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Chronic stress disrupts the emotional and energetic balance, which may lead to abnormal behaviors such as binge eating. This overeating behavior alleviating the negative emotions is called emotional eating, which may exacerbate emotional instability and lead to obesity. It is a complex and multifaceted process that has not yet been fully understood. In this study, we constructed an animal model of chronic mild stress (CMS)-induced emotional eating. The emotional eating mice were treated with tryptophan for 21 days to reveal the key role of tryptophan. Furthermore, serum-targeted metabolomics, immunohistochemical staining, qPCR and ELISA were performed. The results showed that CMS led to the binge eating behavior, accompanied by the disturbed intestinal tryptophan-derived serotonin (5-hydroxytryptamine; 5-HT) metabolic pathways. Then we found that tryptophan supplementation improved depression and anxiety-like behaviors as well as abnormal eating behaviors. Tryptophan supplementation improved the abnormal expression of appetite regulators (e.g., AgRP, OX1R, MC4R), and tryptophan supplementation also increased the tryptophan hydroxylase 2 (tph2) and 5-HT receptors in the hypothalamus of CMS mice, which indicates that the 5-HT metabolic pathway influences feeding behavior. In vitro experiments confirmed that 5-HT supplementation ameliorated corticosterone-induced aberrant expression of appetite regulators, such as AgRP and OX1R, in the hypothalamic cell line. In conclusion, our findings revealed that the tryptophan-derived 5-HT pathway plays an important role in emotional eating, especially in providing targeted therapy for stress-induced obesity.
Collapse
Affiliation(s)
- Ying Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Lifeng Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Qing Liu
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Yaoxing Guan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Shuang Nie
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| |
Collapse
|
6
|
Liu H, Wang X, Feng H, Zhou S, Pan J, Ouyang C, Hu X. Obstructive sleep apnea and mental disorders: a bidirectional mendelian randomization study. BMC Psychiatry 2024; 24:304. [PMID: 38654235 PMCID: PMC11040841 DOI: 10.1186/s12888-024-05754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Previous studies have reported associations between obstructive sleep apnea (OSA) and several mental disorders. However, further research is required to determine whether these associations are causal. Therefore, we evaluated the bidirectional causality between the genetic liability for OSA and nine mental disorders by using Mendelian randomization (MR). METHOD We performed two-sample bidirectional MR of genetic variants for OSA and nine mental disorders. Summary statistics on OSA and the nine mental disorders were extracted from the FinnGen study and the Psychiatric Genomics Consortium. The primary analytical approach for estimating causal effects was the inverse-variance weighted (IVW), with the weighted median and MR Egger as complementary methods. The MR Egger intercept test, Cochran's Q test, Rucker's Q test, and the MR pleiotropy residual sum and outlier (MR-PRESSO) test were used for sensitivity analyses. RESULT MR analyses showed that genetic liability for major depressive disorder (MDD) was associated with an increased risk of OSA (odds ratio [OR] per unit increase in the risk of MDD, 1.29; 95% CI, 1.11-1.49; P < 0.001). In addition, genetic liability for OSA may be associated with an increased risk of attention-deficit/hyperactivity disorder (ADHD) (OR = 1.26; 95% CI, 1.02-1.56; p = 0.032). There was no evidence that OSA is associated with other mental disorders. CONCLUSION Our study indicated that genetic liability for MDD is associated with an increased risk of OSA without a bidirectional relationship. Additionally, there was suggestive evidence that genetic liability for OSA may have a causal effect on ADHD. These findings have implications for prevention and intervention strategies targeting OSA and ADHD. Further research is needed to investigate the biological mechanisms underlying our findings and the relationship between OSA and other mental disorders.
Collapse
Affiliation(s)
- Heming Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, 730000, Lanzhou, Gansu Province, China
| | - Xuemei Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, 730000, Lanzhou, Gansu Province, China
| | - Hu Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, 730000, Lanzhou, Gansu Province, China
| | - Shengze Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, 730000, Lanzhou, Gansu Province, China
| | - Jinhua Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, 730000, Lanzhou, Gansu Province, China
| | - Changping Ouyang
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, 730000, Lanzhou, Gansu Province, China
| | - Xiaobin Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, No.199, Donggang West Road, Chengguan District, 730000, Lanzhou, Gansu Province, China.
| |
Collapse
|
7
|
Gao J, Liang Y, Liu P. Along the microbiota-gut-brain axis: Use of plant polysaccharides to improve mental disorders. Int J Biol Macromol 2024; 265:130903. [PMID: 38508549 DOI: 10.1016/j.ijbiomac.2024.130903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
With the development of gut microbiota-specific interventions for mental disorders, the interactions between plant polysaccharides and microbiota in the intestinal and their consequent effects are becoming increasingly important. In this review, we discussed the role of plant polysaccharides in improving various mental disorders via the microbiota-gut-brain axis. The chemical and structural characteristics and metabolites of these plant polysaccharides were summarised. Plant polysaccharides and their metabolites have great potential for reshaping gut microbiota profiles through gut microbiota-dependent fermentation. Along the microbiota-gut-brain axis, the consequent pharmacological processes that lead to the elimination of the symptoms of mental disorders include 1) regulation of the central monoamine neurotransmitters, amino acid transmitters and cholinergic signalling system; 2) alleviation of central and peripheral inflammation mainly through the NLRP3/NF-κB-related signalling pathway; 3) inhibition of neuronal apoptosis; and 4) enhancement of antioxidant activities. According to this review, monosaccharide glucose and structure -4-α-Glcp-(1→ are the most potent compositions of the most reported plant polysaccharides. However, the causal structure-activity relationship remains to be extensively explored. Moreover, mechanistic elucidation, safety verification, and additional rigorous human studies are expected to advance plant polysaccharide-based product development targeting the microbiota-gut-brain axis for people with mental disorders.
Collapse
Affiliation(s)
- Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China.
| | - Ying Liang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, Peking University, Beijing, China.
| | - Pu Liu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China
| |
Collapse
|
8
|
Rodnyy AY, Kondaurova EM, Tsybko AS, Popova NK, Kudlay DA, Naumenko VS. The brain serotonin system in autism. Rev Neurosci 2024; 35:1-20. [PMID: 37415576 DOI: 10.1515/revneuro-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023]
Abstract
Autism spectrum disorders (ASDs) are among the most common neurodevelopmental diseases. These disorders are characterized by lack of social interaction, by repetitive behavior, and often anxiety and learning disabilities. The brain serotonin (5-HT) system is known to be crucially implicated in a wide range of physiological functions and in the control of different kinds of normal and pathological behavior. A growing number of studies indicate the involvement of the brain 5-HT system in the mechanisms underlying both ASD development and ASD-related behavioral disorders. There are some review papers describing the role of separate key players of the 5-HT system in an ASD and/or autistic-like behavior. In this review, we summarize existing data on the participation of all members of the brain 5-HT system, namely, 5-HT transporter, tryptophan hydroxylase 2, MAOA, and 5-HT receptors, in autism in human and various animal models. Additionally, we describe the most recent studies involving modern techniques for in vivo regulation of gene expression that are aimed at identifying exact roles of 5-HT receptors, MAOA, and 5-HT transporter in the mechanisms underlying autistic-like behavior. Altogether, results of multiple research articles show that the brain 5-HT system intimately partakes in the control of some types of ASD-related behavior, and that specific changes in a function of a certain 5-HT receptor, transporter, and/or enzyme may normalize this aberrant behavior. These data give hope that some of clinically used 5-HT-related drugs have potential for ASD treatment.
Collapse
Affiliation(s)
- Alexander Ya Rodnyy
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Elena M Kondaurova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Anton S Tsybko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Nina K Popova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Dmitry A Kudlay
- NRC Institute of Immunology FMBA of Russia, Kashirskoe Highway 24, Moscow 115522, Russia
- Sechenov's University, 8-2 Trubetskaya Str., Moscow 119991, Russia
| | - Vladimir S Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| |
Collapse
|
9
|
Vahid-Ansari F, Zahrai A, Daigle M, Albert PR. Chronic Desipramine Reverses Deficits in Cell Activity, Norepinephrine Innervation, and Anxiety-Depression Phenotypes in Fluoxetine-Resistant cF1ko Mice. J Neurosci 2024; 44:e1147232023. [PMID: 38050173 PMCID: PMC10860653 DOI: 10.1523/jneurosci.1147-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
Selective serotonin (5-HT) reuptake inhibitors are only 30% effective for remission in subjects with major depression, and the best treatments for SSRI-resistant patients remain unclear. To model SSRI resistance, we used cF1ko mice with conditional deletion of the repressor Freud-1/CC2D1A in adult 5-HT neurons. Within weeks, this deletion leads to overexpression of 5-HT1A autoreceptors, reduced serotonergic activity, and fluoxetine-resistant anxiety-depression phenotype. We hypothesized that desipramine (DES), which targets norepinephrine (NE), may be effective in cF1ko mice. The actions of chronic DES treatment on behavior, chronic cellular activation, and NE projections were examined in both sexes of cF1ko and WT mice. In contrast to fluoxetine, chronic DES reversed the behavioral phenotypes in cF1ko mice, while in WT littermates DES slightly increased anxiety and depression-like behaviors. Deficits in FosB+ cell counts were seen in the entorhinal cortex, hippocampal CA2/3 layer, and BLA of cF1ko mice and were reversed by chronic DES treatment, especially in GABAergic neurons. In cF1ko mice, widespread reductions were seen in NE axons, varicosities, and especially 30-60% reductions in NE synaptic and triadic contacts, particularly to inhibitory gephyrin-positive sites. DES treatment also reversed these reductions in NE innervation. These results indicate the dynamic plasticity of the adult noradrenergic system within weeks of altering serotonergic function that can be normalized by DES treatment. Accompanying these changes, DES but not fluoxetine reversed the behavioral alterations in cF1ko mice, suggesting a key role for noradrenergic plasticity in antidepressant response in this model of reduced serotonin activity.
Collapse
Affiliation(s)
- Faranak Vahid-Ansari
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario K1H-8M5, Canada
| | - Amin Zahrai
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario K1H-8M5, Canada
| | - Mireille Daigle
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario K1H-8M5, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, Ontario K1H-8M5, Canada
| |
Collapse
|
10
|
Harkin EF, Nasrallah G, Le François B, Albert PR. Transcriptional Regulation of the Human 5-HT1A Receptor Gene by Lithium: Role of Deaf1 and GSK3β. Int J Mol Sci 2023; 24:15620. [PMID: 37958600 PMCID: PMC10647674 DOI: 10.3390/ijms242115620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Serotonin 1A (5-HT1A) autoreceptors located on serotonin neurons inhibit their activity, and their upregulation has been implicated in depression, suicide and resistance to antidepressant treatment. Conversely, post-synaptic 5-HT1A heteroreceptors are important for antidepressant response. The transcription factor deformed epidermal autoregulatory factor 1 (Deaf1) acts as a presynaptic repressor and postsynaptic enhancer of 5-HT1A transcription, but the mechanism is unclear. Because Deaf1 interacts with and is phosphorylated by glycogen synthase kinase 3β (GSK3β)-a constitutively active protein kinase that is inhibited by the mood stabilizer lithium at therapeutic concentrations-we investigated the role of GSK3β in Deaf1 regulation of human 5-HT1A transcription. In 5-HT1A promoter-reporter assays, human HEK293 kidney and 5-HT1A-expressing SKN-SH neuroblastoma cells, transfection of Deaf1 reduced 5-HT1A promoter activity by ~45%. To identify potential GSK3β site(s) on Deaf1, point mutations of known and predicted phosphorylation sites on Deaf1 were tested. Deaf1 repressor function was not affected by any of the mutants tested except the Y300F mutant, which augmented Deaf1 repression. Both lithium and the selective GSK3 inhibitors CHIR-99021 and AR-014418 attenuated and reversed Deaf1 repression compared to vector. This inhibition was at concentrations that maximally inhibit GSK3β activity as detected by the GSK3β-sensitive TCF/LEF reporter construct. Our results support the hypothesis that GSK3β regulates the activity of Deaf1 to repress 5-HT1A transcription and provide a potential mechanism for actions of GSK3 inhibitors on behavior.
Collapse
Affiliation(s)
| | | | | | - Paul R. Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, 451 Smyth Road, Ottawa, ON K1H-8M5, Canada (B.L.F.)
| |
Collapse
|
11
|
Wang J, Ding L, Yu X, Wu F, Zhang J, Chen P, Qian S, Wang M. Tryptophan improves antioxidant capability and meat quality by reducing responses to stress in nervous Hu sheep. Meat Sci 2023; 204:109267. [PMID: 37392733 DOI: 10.1016/j.meatsci.2023.109267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
In sheep, the effect of tryptophan (Trp) on behavioural traits that are associated with temperament and any effects on production traits is unknown. The hypothesis of this study is that the supplementation of Trp would improve temperament by enhancing serotonin production, which is beneficial to meat production subsequently in sheep. Twelve ewes that had the lowest and 12 ewes that had the highest behavioural responses to human contact were selected into the calm and the nervous groups respectively. Then, the ewes from each group were equally assigned into two treatments that were treated with the basal diet and the diet with extra 90 mg/kg/d Trp for 30 d. The temperament traits, the growth performance, the biochemicals that are related to health the slaughter performance and meat quality were measured at the end of feeding experiment. The findings in this study suggested the Hu sheep with calm temperament would experience less stress during production, resulting in less oxidative stress, better growth performance, slaughter traits and carcass traits, compared to the nervous sheep. Meanwhile, the dietary supplementation of Trp reduced stress responses by enhancing production of 5-HT in sheep from the nervous group which is beneficial to improve the production traits that mentioned above.
Collapse
Affiliation(s)
- Jiasheng Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Luoyang Ding
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; School of Agriculture and Environment, The University of Western Australia, Perth 6009, WA, Australia; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, Xinjiang, China
| | - Xiang Yu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Feifan Wu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jinying Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Peigen Chen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shuhan Qian
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
12
|
Orrico-Sanchez A, Guiard BP, Manta S, Callebert J, Launay JM, Louis F, Paccard A, Gruszczynski C, Betancur C, Vialou V, Gautron S. Organic cation transporter 2 contributes to SSRI antidepressant efficacy by controlling tryptophan availability in the brain. Transl Psychiatry 2023; 13:302. [PMID: 37775532 PMCID: PMC10542329 DOI: 10.1038/s41398-023-02596-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI) are common first-line treatments for major depression. However, a significant number of depressed patients do not respond adequately to these pharmacological treatments. In the present preclinical study, we demonstrate that organic cation transporter 2 (OCT2), an atypical monoamine transporter, contributes to the effects of SSRI by regulating the routing of the essential amino acid tryptophan to the brain. Contrarily to wild-type mice, OCT2-invalidated mice failed to respond to prolonged fluoxetine treatment in a chronic depression model induced by corticosterone exposure recapitulating core symptoms of depression, i.e., anhedonia, social withdrawal, anxiety, and memory impairment. After corticosterone and fluoxetine treatment, the levels of tryptophan and its metabolites serotonin and kynurenine were decreased in the brain of OCT2 mutant mice compared to wild-type mice and reciprocally tryptophan and kynurenine levels were increased in mutants' plasma. OCT2 was detected by immunofluorescence in several structures at the blood-cerebrospinal fluid (CSF) or brain-CSF interface. Tryptophan supplementation during fluoxetine treatment increased brain concentrations of tryptophan and, more discreetly, of 5-HT in wild-type and OCT2 mutant mice. Importantly, tryptophan supplementation improved the sensitivity to fluoxetine treatment of OCT2 mutant mice, impacting chiefly anhedonia and short-term memory. Western blot analysis showed that glycogen synthase kinase-3β (GSK3β) and mammalian/mechanistic target of rapamycin (mTOR) intracellular signaling was impaired in OCT2 mutant mice brain after corticosterone and fluoxetine treatment and, conversely, tryptophan supplementation recruited selectively the mTOR protein complex 2. This study provides the first evidence of the physiological relevance of OCT2-mediated tryptophan transport, and its biological consequences on serotonin homeostasis in the brain and SSRI efficacy.
Collapse
Affiliation(s)
| | - Bruno P Guiard
- Université Paul Sabatier, CNRS, Research Center on Animal Cognition, Toulouse, France
| | - Stella Manta
- Université Paul Sabatier, CNRS, Research Center on Animal Cognition, Toulouse, France
| | - Jacques Callebert
- Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Jean-Marie Launay
- Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Franck Louis
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Antoine Paccard
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | | | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Vincent Vialou
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France.
| | - Sophie Gautron
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France.
| |
Collapse
|
13
|
Gao H, He C, Xin S, Hua R, Du Y, Wang B, Gong F, Yu X, Pan L, Gao L, Xu J. Current Insights into the Use of Probiotics and Fatty Acids in Alleviating Depression. Microorganisms 2023; 11:2018. [PMID: 37630578 PMCID: PMC10459535 DOI: 10.3390/microorganisms11082018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Depression is the most prevalent psychiatric symptom present among individuals of all ages and backgrounds, impacting an estimated 300 million people globally. Therefore, it demands a significant amount of attention when it comes to managing depression. A growing amount of data reveal that probiotics and fatty acids could be beneficial to depression. However, the opposing position maintains that they have no influence on depression. A network meta-analyses of existing datasets aid in the estimation of comparative efficacy as well as in achieving an understanding of the relative merits of different therapies. The purpose of this study was to investigate the current evidence for probiotic or fatty acid depression therapy and to establish a practical alternative for depression patients using a meta-analysis and metagenomic data from a Wistar-Kyoto (WKY) depressed rat model. (2) Methods: Probiotic data were obtained from seven randomized controlled trial studies (n = 394), and fatty acid data were obtained from 24 randomized controlled trial studies (n = 1876). Meanwhile, a metagenomics analysis of data on animal gut flora was also applied to validate the preceding evidence. (3) Results: The fatty acid studies were separated into three sections based on the duration of probiotic delivery: ≤8 weeks, 9-12 weeks, and >12 weeks. The results were as follows: for ≤8 weeks, MD = -1.65 (95% CI: -2.96--0.15), p = 0.01; for 9-12 weeks, MD = -2.22 (95% CI: -3.03--1.22), p < 0.001; for >12 weeks, MD = -1.23 (95% CI: -2.85-0.39), p = 0.14. Regarding the probiotics, the meta-analysis revealed MD = -2.19 (95% CI: -3.38--2.43), p < 0.001. The research presented herein illustrates that probiotics and fatty acids may successfully lower depression scores. Additionally, the probiotics were drastically reduced in the WKY rats. (4) Conclusions: According to the data, a depression intervention utilizing probiotics outperformed the control, implying that the use of probiotics and fatty acids may be a successful strategy for depression treatment.
Collapse
Affiliation(s)
- Han Gao
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing 100049, China;
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.)
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.)
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.)
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (R.H.); (Y.D.); (F.G.); (X.Y.); (L.P.)
| | - Yixuan Du
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (R.H.); (Y.D.); (F.G.); (X.Y.); (L.P.)
| | - Boya Wang
- Department of Digestive Oncology, Peking University Cancer Hospital, Beijing 100044, China;
| | - Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (R.H.); (Y.D.); (F.G.); (X.Y.); (L.P.)
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (R.H.); (Y.D.); (F.G.); (X.Y.); (L.P.)
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (R.H.); (Y.D.); (F.G.); (X.Y.); (L.P.)
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China;
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.)
| |
Collapse
|
14
|
Chen CW, Chou YH, Liou YJ, Yang KC, Hu LY, Hsieh WC, Liu MN. Amygdala substructure volumes and serotonin transporter in first-episode, drug- naïve major depressive disorder: A pilot study. J Psychiatr Res 2023; 160:210-216. [PMID: 36857985 DOI: 10.1016/j.jpsychires.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Amygdala and serotonergic system abnormalities have been documented in major depressive disorder (MDD). However, most studies have been conducted on recurrent MDD, and only a few have assessed their interaction. This study aimed to concurrently examine both the amygdala and serotonergic systems and their clinical relevance in first-episode, drug-naïve MDD. METHODS This study included 27 patients with first-episode, drug-naïve MDD and 27 age- and gender-matched healthy controls (HCs). The amygdala substructure volumes were performed with Freesurfer from a 1.5 T magnetic resonance image. Serotonin transporter (SERT) availability was detected by single-photon emission computed tomography with 123I-ADAM. The Benjamini-Hochberg method was applied to adjust for multiple comparisons. RESULTS No significant difference was found in the amygdala substructure volume and SERT availability between the two groups, respectively. Within MDD patients, the right medial, cortical nucleus, and centromedial volumes were positively associated with caudate SERT availability, respectively. Moreover, the right lateral nucleus volume in the amygdala was positively correlated with depression severity. However, these significances did not survive correction for multiple testing. CONCLUSIONS There were no significant abnormalities in the amygdala substructure volumes and SERT availability in patients with first-episode, drug-naïve MDD. We did not observe an association between amygdala substructure volume and serotonergic dysregulation and their correlations with depression severity in patients with MDD. A larger sample size is warranted to elucidate the actual correlation.
Collapse
Affiliation(s)
- Ching-Wen Chen
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan; Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, 90741, Taiwan
| | - Yuan-Hwa Chou
- Center for Quality Management, Taipei Veterans General Hospital, Taipei, 112201, Taiwan; Department of Psychiatry, Taipei Veterans General Hospital, Taipei, 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Ying-Jay Liou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Li-Yu Hu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Wen-Chi Hsieh
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
| |
Collapse
|
15
|
Pais ML, Martins J, Castelo-Branco M, Gonçalves J. Sex Differences in Tryptophan Metabolism: A Systematic Review Focused on Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:ijms24066010. [PMID: 36983084 PMCID: PMC10057939 DOI: 10.3390/ijms24066010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Tryptophan (Tryp) is an essential amino acid and the precursor of several neuroactive compounds within the central nervous system (CNS). Tryp metabolism, the common denominator linking serotonin (5-HT) dysfunctions and neuroinflammation, is involved in several neuropsychiatric conditions, including neurological, neurodevelopmental, neurodegenerative, and psychiatric diseases. Interestingly, most of those conditions occur and progress in a sex-specific manner. Here, we explore the most relevant observations about the influence of biological sex on Tryp metabolism and its possible relation to neuropsychiatric diseases. Consistent evidence suggests that women have a higher susceptibility than men to suffer serotoninergic alterations due to changes in the levels of its precursor Tryp. Indeed, female sex bias in neuropsychiatric diseases is involved in a reduced availability of this amino acid pool and 5-HT synthesis. These changes in Tryp metabolism could lead to sexual dimorphism on the prevalence and severity of some neuropsychiatric disorders. This review identifies gaps in the current state of the art, thus suggesting future research directions. Specifically, there is a need for further research on the impact of diet and sex steroids, both involved in this molecular mechanism as they have been poorly addressed for this topic.
Collapse
Affiliation(s)
- Mariana Lapo Pais
- Doctoral Program in Biomedical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Gonçalves
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
16
|
On the role of serotonin 5-HT 1A receptor in autistic-like behavior: сross talk of 5-HT and BDNF systems. Behav Brain Res 2023; 438:114168. [PMID: 36280010 DOI: 10.1016/j.bbr.2022.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2022]
Abstract
Autism spectrum disorders (ASDs) are some of the most common neurodevelopmental disorders; however, the mechanisms underlying ASDs are still poorly understood. Serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) are known as key players in brain and behavioral plasticity and interact with each other. 5-HT1A receptor is a principal regulator of the brain 5-HT system, which modulates normal and pathological behavior. Here we investigated effects of adeno-associated-virus-based 5-HT1A receptor overexpression in the hippocampus of BTBR mice (which are a model of autism) on various types of behavior and on the expression of 5-HT7 receptor, proBDNF, mature BDNF, and BDNF receptors (TrkB and p75NTR). The 5-HT1A receptor overexpression in BTBR mice reduced stereotyped behavior in the marble-burying test and extended the time spent in the center in the open field test. Meanwhile, this overexpression failed to affect social behavior in the three-chambered test, immobility time in the tail suspension test, locomotor activity in the open field test, and associative learning within the "operant wall" paradigm. The 5-HT1A receptor overexpression in the hippocampus raised hippocampal 5-HT7 receptor mRNA and protein levels. Additionally, the 5-HT1A receptor overexpression lowered both mRNA and protein levels of TrkB receptor but failed to affect proBDNF, mature BDNF, and p75NTR receptor expression in the hippocampus of BTBR mice. Thus, obtained results suggest the involvement of the 5-HT and BDNF systems' interaction mediated by 5-HT1A and TrkB receptors in the mechanisms underlying autistic-like behavior in BTBR mice.
Collapse
|
17
|
Yuan F, Wu S, Zhou Z, Jiao F, Yin H, Niu Y, Jiang H, Chen S, Guo F. Leucine deprivation results in antidepressant effects via GCN2 in AgRP neurons. LIFE METABOLISM 2023; 2:load004. [PMID: 39872511 PMCID: PMC11748975 DOI: 10.1093/lifemeta/load004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 01/30/2025]
Abstract
Essential amino acids (EAAs) are crucial nutrients, whose levels change in rodents and patients with depression. However, how the levels of a single EAA affects depressive behaviors remains elusive. Here, we demonstrate that although deprivation of the EAA leucine has no effect in unstressed mice, it remarkably reverses the depression-like behaviors induced by chronic restraint stress (CRS). This beneficial effect is independent of feeding and is applicable to the dietary deficiency of other EAAs. Furthermore, the effect of leucine deprivation is suppressed by central injection of leucine or mimicked by central injection of leucinol. Moreover, hypothalamic agouti-related peptide (AgRP) neural activity changes during CRS and leucine deprivation, and chemogenetically inhibiting AgRP neurons eliminates the antidepressant effects of leucine deprivation. Finally, the leucine deprivation-regulated behavioral effects are mediated by amino acid sensor general control non-derepressible 2 (GCN2) in AgRP neurons. Taken together, our results suggest a new drug target and/or dietary intervention for the reduction of depressive symptoms.
Collapse
Affiliation(s)
- Feixiang Yuan
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Shangming Wu
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ziheng Zhou
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fuxin Jiao
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hanrui Yin
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuguo Niu
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Haizhou Jiang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shanghai Chen
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Feifan Guo
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
18
|
Quaglia C, Nettore IC, Palatucci G, Franchini F, Ungaro P, Colao A, Macchia PE. Association between Dietary Habits and Severity of Symptoms in Premenstrual Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1717. [PMID: 36767083 PMCID: PMC9914022 DOI: 10.3390/ijerph20031717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Premenstrual syndrome (PMS) is a set of physical, psychological, and emotional symptoms that occur during the luteal phase of the menstrual cycle. The etiopathogenesis of this condition is not fully understood, and several studies suggest a possible role of environmental factors, such as diet. The aim of this work was to investigate the relationship between dietary habits and the occurrence and severity of PMS. METHODS AND RESULTS Forty-seven women were enrolled in the study. Participants were asked to complete the Daily Record of Severity of Problems (DRSP) to diagnose PMS and to complete a three-day food record during the perimenstrual phase. Thirty women completed the study (16 with PMS and 14 controls). An analysis of the food diaries revealed no differences between the women with PMS and the control subjects in terms of total energy intake (1649 vs. 1570 kcal/day), diet composition, and the consumption of macro- or micronutrients, except for copper, whose consumption was higher in women with PMS than in the control subjects (1.27 ± 0.51 vs. 0.94 ± 0.49 mg/d, p < 0.05). CONCLUSIONS The data presented here are very preliminary, and only a significant difference in copper intake was found when comparing women with PMS and controls. Larger studies are needed to better define how diet may contribute to the exacerbation of the psychological and somatic symptoms associated with PMS and whether PMS itself may influence macro- or micronutrient intake by changing dietary habits.
Collapse
Affiliation(s)
- Cinzia Quaglia
- Dipartimento di Medicina Clinica e Chirurgia, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Immacolata Cristina Nettore
- Dipartimento di Medicina Clinica e Chirurgia, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Giuseppe Palatucci
- Dipartimento di Medicina Clinica e Chirurgia, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Fabiana Franchini
- Dipartimento di Medicina Clinica e Chirurgia, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Paola Ungaro
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “Gaetano Salvatore”, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Paolo Emidio Macchia
- Dipartimento di Medicina Clinica e Chirurgia, Scuola di Medicina e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| |
Collapse
|
19
|
Meccia J, Lopez J, Bagot RC. Probing the antidepressant potential of psilocybin: integrating insight from human research and animal models towards an understanding of neural circuit mechanisms. Psychopharmacology (Berl) 2023; 240:27-40. [PMID: 36564671 DOI: 10.1007/s00213-022-06297-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
Interest in the therapeutic potential of serotonergic psychedelic compounds including psilocybin has surged in recent years. While human clinical research suggests psilocybin holds promise as a rapid and long-lasting antidepressant, little is known about how its acute mechanisms of action mediate enduring alterations in cognition and behavior. Human neuroimaging studies point to both acute and sustained modulation of functional connectivity in key cortically dependent brain networks. Emerging evidence in preclinical models highlights the importance of psilocybin-induced neuroplasticity and alterations in the prefrontal cortex (PFC). Overviewing research in both humans and preclinical models suggests avenues to increase crosstalk between fields. We review how acute modulation of PFC circuits may contribute to long-term structural and functional alterations to mediate antidepressant effects. We highlight the potential for preclinical circuit and behavioral neuroscience approaches to provide basic mechanistic insight into how psilocybin modulates cognitive and affective neural circuits to support further development of psilocybin as a promising new treatment for depression.
Collapse
Affiliation(s)
- Juliet Meccia
- Department of Psychology, McGill University, 1205 Ave Dr. Penfield, Montréal, QC, H3A 1B1, Canada
| | - Joëlle Lopez
- Department of Psychology, McGill University, 1205 Ave Dr. Penfield, Montréal, QC, H3A 1B1, Canada
| | - Rosemary C Bagot
- Department of Psychology, McGill University, 1205 Ave Dr. Penfield, Montréal, QC, H3A 1B1, Canada. .,Ludmer Centre for Neuroinformatics and Mental Health, Montréal, QC, Canada.
| |
Collapse
|
20
|
Liu X, Li X, Teng T, Jiang Y, Xiang Y, Fan L, Yu Y, Zhou X, Xie P. Comparative analysis of gut microbiota and fecal metabolome features among multiple depressive animal models. J Affect Disord 2022; 314:103-111. [PMID: 35780963 DOI: 10.1016/j.jad.2022.06.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUNDS Emerging studies reported that gut microbiota and fecal metabolites take part in major depressive disorder (MDD) pathogenesis. However, the conclusions based on a single depressive animal model seem inconsistent or even controversial. METHODS Multiple depression rat models, including chronic unpredictable mild stress, chronic restraint stress, social defeat, and learned helplessness, were used. Then, the 16S ribosomal RNA gene sequencing and liquid chromatography-mass spectrometry analysis determined the alteration of gut microbiota and fecal metabolites. RESULTS The results of sucrose preference test and forced swimming test suggested that each model successfully established depression-like behavior. A total of 179 discriminative amplicon sequence variants (ASVs) were identified among four models. The overall discriminative ASVs mainly belonged to the family Lachnospiraceae, Muribaculaceae, and Oscillospiraceae. Moreover, the fecal metabolomic analysis identified 468 differential expressed metabolites. Among all the differential metabolites, 11 specific pathways significantly altered, which were mainly belonged to lipid and amino acid metabolism. Finally, co-occurrence network analysis suggested that target differential metabolites were associated with discriminative ASVs mainly assigned to family taxon Lachnospiraceae, Muribaculaceae, and Oscillospiraceae. LIMITATIONS The heterogeneity of MDD in humans cannot be totally imitated by animal models. CONCLUSIONS In multiple depression models, the alterations of family Lachnospiraceae, Muribaculaceae, and Oscillospiraceae with the dysbiosis of lipid and amino acid metabolism were gut microbiota and fecal metabolome features. The findings of our research may help us to have a comprehensive understanding of gut microbiota and fecal metabolome in depression.
Collapse
Affiliation(s)
- Xueer Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Xiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Zhou
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
21
|
Lukić I, Ivković S, Mitić M, Adžić M. Tryptophan metabolites in depression: Modulation by gut microbiota. Front Behav Neurosci 2022; 16:987697. [PMID: 36172468 PMCID: PMC9510596 DOI: 10.3389/fnbeh.2022.987697] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Clinical depression is a multifactorial disorder and one of the leading causes of disability worldwide. The alterations in tryptophan metabolism such as changes in the levels of serotonin, kynurenine, and kynurenine acid have been implicated in the etiology of depression for more than 50 years. In recent years, accumulated evidence has revealed that gut microbial communities, besides being essential players in various aspects of host physiology and brain functioning are also implicated in the etiology of depression, particularly through modulation of tryptophan metabolism. Therefore, the aim of this review is to summarize the evidence of the role of gut bacteria in disturbed tryptophan metabolism in depression. We summed up the effects of microbiota on serotonin, kynurenine, and indole pathway of tryptophan conversion relevant for understanding the pathogenesis of depressive behavior. Moreover, we reviewed data regarding the therapeutic effects of probiotics, particularly through the regulation of tryptophan metabolites. Taken together, these findings can open new possibilities for further improvement of treatments for depression based on the microbiota-mediated modulation of the tryptophan pathway.
Collapse
|
22
|
The regulatory role of AP-2β in monoaminergic neurotransmitter systems: insights on its signalling pathway, linked disorders and theragnostic potential. Cell Biosci 2022; 12:151. [PMID: 36076256 PMCID: PMC9461128 DOI: 10.1186/s13578-022-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractMonoaminergic neurotransmitter systems play a central role in neuronal function and behaviour. Dysregulation of these systems gives rise to neuropsychiatric and neurodegenerative disorders with high prevalence and societal burden, collectively termed monoamine neurotransmitter disorders (MNDs). Despite extensive research, the transcriptional regulation of monoaminergic neurotransmitter systems is not fully explored. Interestingly, certain drugs that act on these systems have been shown to modulate central levels of the transcription factor AP-2 beta (AP-2β, gene: TFAP2Β). AP-2β regulates multiple key genes within these systems and thereby its levels correlate with monoamine neurotransmitters measures; yet, its signalling pathways are not well understood. Moreover, although dysregulation of TFAP2Β has been associated with MNDs, the underlying mechanisms for these associations remain elusive. In this context, this review addresses AP-2β, considering its basic structural aspects, regulation and signalling pathways in the controlling of monoaminergic neurotransmitter systems, and possible mechanisms underpinning associated MNDS. It also underscores the significance of AP-2β as a potential diagnostic biomarker and its potential and limitations as a therapeutic target for specific MNDs as well as possible pharmaceutical interventions for targeting it. In essence, this review emphasizes the role of AP-2β as a key regulator of the monoaminergic neurotransmitter systems and its importance for understanding the pathogenesis and improving the management of MNDs.
Collapse
|
23
|
Sur B, Lee B. Ginsenoside Rg3 modulates spatial memory and fear memory extinction by the HPA axis and BDNF-TrkB pathway in a rat post-traumatic stress disorder. J Nat Med 2022; 76:821-831. [PMID: 35982366 DOI: 10.1007/s11418-022-01636-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/13/2022] [Indexed: 12/01/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a serious mental disorder that can develop after exposure to extreme stress. Korean red ginseng, whose major active component is ginsenoside Rg3 (Rg3), is a widely used traditional antioxidant that has anti-inflammatory, anti-apoptotic and anxiolytics effects. This study investigated whether the administration of Rg3 ameliorated the memory deficit induced by a single prolonged stress (SPS) in rats. Male rats were dosed with Rg3 (25 or 50 mg/kg) once daily for 14 days after exposure to SPS. Rg3 administration improved fear memory and spatial memory might be involved in modulating the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and monoamine imbalance in the medial prefrontal cortex and hippocampus. It also increased the reduction in the brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) mRNAs expression, and the ratio of p-Akt/Akt in the hippocampus. Thus, Rg3 exerted memory-improving actions might be involved in regulating HPA axis and activating BDNF-TrkB pathway. Our findings suggest that Rg3 could be useful for preventing traumatic stress, such as PTSD.
Collapse
Affiliation(s)
- Bongjun Sur
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
- Center for Converging Humanities, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
24
|
Popova NK, Tsybko AS, Naumenko VS. The Implication of 5-HT Receptor Family Members in Aggression, Depression and Suicide: Similarity and Difference. Int J Mol Sci 2022; 23:ijms23158814. [PMID: 35955946 PMCID: PMC9369404 DOI: 10.3390/ijms23158814] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Being different multifactorial forms of psychopathology, aggression, depression and suicidal behavior, which is considered to be violent aggression directed against the self, have principal neurobiological links: preclinical and clinical evidence associates depression, aggression and suicidal behavior with dysregulation in central serotonergic (5-HT) neurotransmission. The implication of different types of 5-HT receptors in the genetic and epigenetic mechanisms of aggression, depression and suicidality has been well recognized. In this review, we consider and compare the orchestra of 5-HT receptors involved in these severe psychopathologies. Specifically, it concentrates on the role of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3 and 5-HT7 receptors in the mechanisms underlying the predisposition to aggression, depression and suicidal behavior. The review provides converging lines of evidence that: (1) depression-related 5-HT receptors include those receptors with pro-depressive properties (5-HT2A, 5-HT3 and 5-HT7) as well as those providing an antidepressant effect (5-HT1A, 5-HT1B, 5-HT2C subtypes). (2) Aggression-related 5-HT receptors are identical to depression-related 5-HT receptors with the exception of 5-HT7 receptors. Activation of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C receptors attenuate aggressiveness, whereas agonists of 5-HT3 intensify aggressive behavior.
Collapse
|
25
|
Alachkar A. Aromatic patterns: Tryptophan aromaticity as a catalyst for the emergence of life and rise of consciousness. Phys Life Rev 2022; 42:93-114. [PMID: 35905538 DOI: 10.1016/j.plrev.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Sunlight held the key to the origin of life on Earth. The earliest life forms, cyanobacteria, captured the sunlight to generate energy through photosynthesis. Life on Earth evolved in accordance with the circadian rhythms tied to sensitivity to sunlight patterns. A unique feature of cyanobacterial photosynthetic proteins and circadian rhythms' molecules, and later of nearly all photon-sensing molecules throughout evolution, is that the aromatic amino acid tryptophan (Trp) resides at the center of light-harvesting active sites. In this perspective, I review the literature and integrate evidence from different scientific fields to explore the role Trp plays in photon-sensing capabilities of living organisms through its resonance delocalization of π-electrons. The observations presented here are the product of apparently unrelated phenomena throughout evolution, but nevertheless share consistent patterns of photon-sensing by Trp-containing and Trp-derived molecules. I posit the unique capacity to transfer electrons during photosynthesis in the earliest life forms is conferred to Trp due to its aromaticity. I propose this ability evolved to assume more complex functions, serving as a host for mechanisms underlying mental aptitudes - a concept which provides a theoretical basis for defining the neural correlates of consciousness. The argument made here is that Trp aromaticity may have allowed for the inception of the mechanistic building blocks used to fabricate complexity in higher forms of life. More specifically, Trp aromatic non-locality may have acted as a catalyst for the emergence of consciousness by instigating long-range synchronization and stabilizing the large-scale coherence of neural networks, which mediate functional brain activity. The concepts proposed in this perspective provide a conceptual foundation that invites further interdisciplinary dialogue aimed at examining and defining the role of aromaticity (beyond Trp) in the emergence of life and consciousness.
Collapse
Affiliation(s)
- Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA; UC Irvine Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
26
|
Shang Y, Wang M, Hao Q, Meng T, Li L, Shi J, Yang G, Zhang Z, Yang K, Wang J. Development of indole-2-carbonyl piperazine urea derivatives as selective FAAH inhibitors for efficient treatment of depression and pain. Bioorg Chem 2022; 128:106031. [DOI: 10.1016/j.bioorg.2022.106031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
|
27
|
Myricetin Inhibited Fear and Anxiety-Like Behaviors by HPA Axis Regulation and Activation of the BDNF-ERK Signaling Pathway in Posttraumatic Stress Disorder Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8320256. [PMID: 35722162 PMCID: PMC9200513 DOI: 10.1155/2022/8320256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a stress-related psychiatric or mental disorder characterized by experiencing a traumatic stress. The cause of such PTSD is dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and imbalance of monoamines. Myricetin (MYR) is a common natural flavonoid that has various pharmacological activities. We investigated the effects of MYR on fear, depression, and anxiety following monoamine imbalance and hyperactivation of HPA axis in rats exposed to a single prolonged stress (SPS). Male rats were dosed with MYR (10 and 20 mg/kg, i.p.) once daily for 14 days after exposure to SPS. Administration of MYR reduced freezing responses to extinction recall, depression, and anxiety-like behaviors and decreased increase of plasma corticosterone and adrenocorticotropic hormone levels. Also, administration of MYR restored decreased serotonin and increased norepinephrine in the fear circuit regions, medial prefrontal cortex, and hippocampus. It also increased the reduction in the brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B mRNA expression and the ratio of p-ERK/extracellular signal-regulated kinase (ERK) in the hippocampus. Thus, MYR exerted antidepressant and anxiolytic effects by regulation of HPA axis and activation of the BDNF-ERK signaling pathway. Finally, we suggest that MYR could be a useful therapeutic agent to prevent traumatic stress such as PTSD.
Collapse
|
28
|
Sur B, Kwon S, Hahm DH, Lee B. The Anxiolytic-Like Effects of Protocatechuic Acid in an Animal Model of Post-Traumatic Stress Disorder. J Med Food 2022; 25:495-502. [PMID: 35561272 DOI: 10.1089/jmf.2021.k.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a serious psychiatric disorder characterized by impaired fear extinction, depression, and anxiety caused by dysregulation of the hypothalamic-pituitary-adrenal axis and an imbalance of monoamines. Protocatechuic acid (PCA; 3,4-dihydroxybenzoic acid), a major polyphenol metabolite, has various pharmacological effects, such as anti-inflammatory, antioxidant, anti-apoptotic, and neuroprotective activities. In this study, the efficacy of PCA for fear extinction, antidepressant, and anxiolytic effects in PTSD-mediated psychiatric disorders, were evaluated by exposing rats to single prolonged stress (SPS). Male rats were administered PCA (100 or 200 mg/kg) once daily for 14 days after exposure to SPS. PCA significantly decreased situational fear, depressive and anxiety-like behaviors, and corticosterone levels. In addition, PCA regulated the imbalance of serotonin and norepinephrine in the fear circuit region (i.e., the medial prefrontal cortex and hippocampus [Hipp]), and suppressed the decrease in brain-derived neurotrophic factor mRNA expression in the Hipp. The results showed that PCA administration improves freezing behavior and has antidepressant and anti-anxiety effects through modulation of the serotonergic nervous system and monoamines in rats. These results indicated that PCA may be useful as a food ingredient to prevent PTSD.
Collapse
Affiliation(s)
- Bongjun Sur
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sunoh Kwon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Sha Z, Banihashemi L. Integrative omics analysis identifies differential biological pathways that are associated with regional grey matter volume changes in major depressive disorder. Psychol Med 2022; 52:924-935. [PMID: 32723400 DOI: 10.1017/s0033291720002676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is accompanied by alterations in grey matter volume. However, the biological processes associated with regional structural perturbations remain elusive. METHODS We applied integrative omics analysis to investigate specialized transcriptome signatures and translational determinants associated with regional grey matter variations in 2737 MDD patients relative to 3098 controls by summarizing the results from gene co-expression network analysis of Allen human brain transcriptome profiles in six donors, enrichment analysis of gene-sets and cellular structure from rodents and mediation analysis of BrainSpan proteome profile in six donors. RESULTS We found convergent alterations of grey matter volume in MDD were associated with transcriptome profiles enriched for synaptic transmission, metabolism, immune processes and transmembrane transport. Genes with abnormal expression in post-mortem tissue in MDD were also associated with transcriptome signatures. Further gene co-expression network and enrichment analysis of MDD-related genes in these signatures revealed the modules with higher neuronal expression were enriched in the medial temporal cortex and temporo-parietal junction with genes differentially associated with neuronal development and metabolism. Also, the modules with higher non-neuronal (e.g. astrocyte and oligodendrocyte) expression were concentrated in the rostral and dorsal anterior cingulate cortex and were separately associated with immune response and transmembrane transport. Moreover, proteins as the gene expression products mediated the association between transcriptome signatures and brain volume changes in the visual and dorsolateral prefrontal cortex. CONCLUSIONS Our multidimensional analyses offer a novel approach to detect specific biological pathways that capture regional structural variations in MDD, which suggests structural endophenotypes associated with MDD.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Miyagishi H, Tsuji M, Miyagawa K, Kurokawa K, Mochida-Saito A, Takahashi K, Kosuge Y, Ishige K, Takeda H. Possible role of transcriptional regulation of 5-HT 1A receptor in the midbrain on unadaptation to stress in mice. Brain Res 2022; 1783:147859. [PMID: 35245487 DOI: 10.1016/j.brainres.2022.147859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022]
Abstract
The ability to adapt to stress is an essential defensive function of a living body, and disturbance of this ability in the brain may contribute to the development of affective illness. Previously, we reported that mice exposed to unadaptable restraint stress show emotional abnormality. Moreover, this emotional abnormality was alleviated by chronic treatment with flesinoxan, a serotonin (5-HT)1A receptor agonist. 5-HT1A receptor expression is regulated by several transcription factors such as nuclear deformed epidermal autoregulatory factor (NUDR/Deaf-1) and five prime repressors under dual repression binding protein 1 (Freud-1). The present study was designed to investigate the expression levels of 5-HT1A receptor and its transcription factors in the midbrain and hippocampus of stress-adaptive and -unadaptive mice. Mice were exposed to 14 days of repeated adaptable (1 h/day) or repeated unadaptable (4 h/day) restraint stress, or were left in their home cage (non-stressed groups). In a western blot analysis, a significant increase in the expression levels of 5HT1A receptor protein were observed in the hippocampal membrane fraction in stress-adaptive mice. In contrast, the expression levels of 5-HT1A receptor protein in stress-unadaptive mice were significantly increased in both cytoplasmic and membrane fraction of the midbrain. Furthermore, real-time PCR analysis revealed that, in the midbrain of stress-unadaptive mice, the expression levels of 5-HT1A receptor mRNA and Freud-1 or NUDR mRNA were significantly increased and decreased, respectively. These results suggest that increased expression of 5-HT1A receptor due to decrease in the expression of Freud-1 and NUDR in the midbrain may play a pivotal role in the emotional abnormality of stress-unadaptive mice.
Collapse
Affiliation(s)
- Hiroko Miyagishi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan; Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan.
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kazuhiro Kurokawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Atsumi Mochida-Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kohei Takahashi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Kumiko Ishige
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| |
Collapse
|
31
|
Zhang ZW, Gao CS, Zhang H, Yang J, Wang YP, Pan LB, Yu H, He CY, Luo HB, Zhao ZX, Zhou XB, Wang YL, Fu J, Han P, Dong YH, Wang G, Li S, Wang Y, Jiang JD, Zhong W. Morinda officinalis oligosaccharides increase serotonin in the brain and ameliorate depression via promoting 5-hydroxytryptophan production in the gut microbiota. Acta Pharm Sin B 2022; 12:3298-3312. [PMID: 35967282 PMCID: PMC9366226 DOI: 10.1016/j.apsb.2022.02.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/23/2022] [Accepted: 02/22/2022] [Indexed: 01/01/2023] Open
Affiliation(s)
- Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Chun-Sheng Gao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100000, China
| | - Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Ya-Ping Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Chi-Yu He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Hainan University, Hainan 570228, China
| | - Zhen-Xiong Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Xin-Bo Zhou
- National Engineering Research Center for the Emergence Drugs, Beijing 100000, China
| | - Yu-Li Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100000, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yu-Hui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Song Li
- School of Pharmaceutical Sciences, Hainan University, Hainan 570228, China
- Corresponding authors.
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
- Corresponding authors.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
- Corresponding authors.
| | - Wu Zhong
- National Engineering Research Center for the Emergence Drugs, Beijing 100000, China
- Corresponding authors.
| |
Collapse
|
32
|
Sun N, You Y, Yang D, Jiang ZX, Xia T, Zhou QG, Zhu DY. Neuronal nitric oxide synthase in dorsal raphe nucleus mediates PTSD-like behaviors induced by single-prolonged stress through inhibiting serotonergic neurons activity. Biochem Biophys Res Commun 2021; 585:139-145. [PMID: 34801934 DOI: 10.1016/j.bbrc.2021.11.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022]
Abstract
The pathogenesis of post-traumatic stress disorder (PTSD) remains largely unclear. A large body of evidence suggests that the abnormal level of serotonin (5-HT) is closely related to the onset of PTSD. Several reports reveal that nitric oxide (NO) affects extracellular 5-HT levels in various brain regions, but no consistent direction of change was found and the underlying mechanisms remain unknown. The most of serotonergic neurons in dorsal raphe nucleus (DRN), a major source of serotonergic input to the forebrain, co-expresses neuronal nitric oxide synthase (nNOS), a synthase derived nitric oxide (NO) in the central nervous system. Here, we found that the excessive expression of nNOS and thereby the high concentration of NO followed by single-prolonged stress (SPS) caused suppression of the activity of DRN 5-HT neurons, inducing PTSD-like phenotype including increased anxiety-like behaviors, enhanced contextual fear memory, and fear generalization. Our study uncovered an important role of DRN nNOS-NO pathway in the pathology of PTSD, which may contribute to new understanding of the molecular mechanism of PTSD.
Collapse
Affiliation(s)
- Nan Sun
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, 221004, China
| | - Yue You
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, 221004, China
| | - Di Yang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Zhi-Xin Jiang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Tian Xia
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Qi-Gang Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China; Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
33
|
Kondaurova EM, Plyusnina AV, Ilchibaeva TV, Eremin DV, Rodnyy AY, Grygoreva YD, Naumenko VS. Effects of a Cc2d1a/Freud-1 Knockdown in the Hippocampus on Behavior, the Serotonin System, and BDNF. Int J Mol Sci 2021; 22:ijms222413319. [PMID: 34948116 PMCID: PMC8707087 DOI: 10.3390/ijms222413319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
The serotonin 5-HT1A receptor is one of the most abundant and widely distributed brain serotonin (5-HT) receptors that play a major role in the modulation of emotions and behavior. The 5-HT1A receptor gene (Htr1a) is under the control of transcription factor Freud-1 (also known as Cc2d1a/Freud-1). Here, using adeno-associated virus (AAV) constructs in vivo, we investigated effects of a Cc2d1a/Freud-1 knockdown in the hippocampus of C57BL/6J mice on behavior, the brain 5-HT system, and brain-derived neurotrophic factor (BDNF). AAV particles carrying the pAAV_H1-2_shRNA-Freud-1_Syn_EGFP plasmid encoding a short-hairpin RNA targeting mouse Cc2d1a/Freud-1 mRNA had an antidepressant effect in the forced swim test 5 weeks after virus injection. The knockdown impaired spatiotemporal memory as assessed in the Morris water maze. pAAV_H1-2_shRNA-Freud-1_Syn_EGFP decreased Cc2d1a/Freud-1 mRNA and protein levels. Furthermore, the Cc2d1a/Freud-1 knockdown upregulated 5-HT and its metabolite 5-hydroxyindoleacetic acid but not their ratio. The Cc2d1a/Freud-1 knockdown failed to increase mRNA and protein levels of Htr1a but diminished a 5-HT1A receptor functional response. Meanwhile, the Cc2d1a/Freud-1 knockdown reduced Creb mRNA expression and CREB phosphorylation and upregulated cFos mRNA. The knockdown enhanced the expression of a BDNF precursor (proBDNF protein), which is known to play a crucial part in neuroplasticity. Our data indicate that transcription factor Cc2d1a/Freud-1 is implicated in the pathogenesis of depressive disorders not only via the 5-HT1A receptor and transcription factor CREB but also through an influence on BDNF.
Collapse
|
34
|
Flores-Burgess A, Millón C, Gago B, García-Durán L, Cantero-García N, Puigcerver A, Narváez JA, Fuxe K, Santín L, Díaz-Cabiale Z. Galanin (1-15) Enhances the Behavioral Effects of Fluoxetine in the Olfactory Bulbectomy Rat, Suggesting a New Augmentation Strategy in Depression. Int J Neuropsychopharmacol 2021; 25:307-318. [PMID: 34891163 PMCID: PMC9017770 DOI: 10.1093/ijnp/pyab089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Selective serotonergic reuptake inhibitors, including fluoxetine (FLX), are the most commonly used for the treatment of major depression. However, they are effective for remission in only 30% of patients. Recently, we observed that Galanin (1-15) [GAL(1-15)] enhanced the antidepressant effects of FLX in naïve animals, suggesting a new augmentation strategy in depression. METHODS We have analyzed in an animal model of depression, the olfactory bulbectomy (OBX) rats, the effect of GAL(1-15) on FLX-mediated responses in the forced swimming test and the sucrose preference test and the involvement of GAL receptor 2 with its antagonist, M871. We have also studied the corticosterone levels in OBX after the coadministration of GAL(1-15) with FLX. Moreover, we studied whether the effects of GAL(1-15) on FLX actions were mediated via auto- and heteroreceptor 5-HT1A (5-HT1AR), analyzing the binding characteristics, mRNA levels, and functionality of 5-HT1AR in the dorsal hippocampus. RESULTS GAL(1-15) enhances the antidepressant-like effects induced by FLX in OBX animals in the forced swimming test and the sucrose preference test. The involvement of the GALR2 was demonstrated with M871. Importantly, the mechanism underlying the GAL(1-15)/FLX interactions in the OBX animals involves the 5-HT1AR in the hippocampus at the plasma membrane (increase of affinity and density of 5HT1AR in the DG) and transcriptional (increase of 5HT1AR mRNA levels in DG and CA1) levels. Besides, the coadministration of GAL(1-15) and FLX also reduced OBX-increased corticosterone levels. CONCLUSIONS The results open the possibility to use GAL(1-15) in combination with FLX as a novel strategy for the treatment of depression.
Collapse
Affiliation(s)
- Antonio Flores-Burgess
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Carmelo Millón
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Belen Gago
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Laura García-Durán
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Noelia Cantero-García
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Araceli Puigcerver
- Faculty of Psychology ,University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - José Angel Narváez
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Luis Santín
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain
| | - Zaida Díaz-Cabiale
- Faculty of Medicine, University of Málaga, Institute of Biomedical Research of Málaga, Málaga, Spain,Correspondence: Z. Díaz-Cabiale, PhD, Department of Physiology, Faculty of Medicine, University of Málaga, Campus de Teatinos s/n. 29080 Málaga, Spain ()
| |
Collapse
|
35
|
Liu X, Teng T, Li X, Fan L, Xiang Y, Jiang Y, Du K, Zhang Y, Zhou X, Xie P. Impact of Inosine on Chronic Unpredictable Mild Stress-Induced Depressive and Anxiety-Like Behaviors With the Alteration of Gut Microbiota. Front Cell Infect Microbiol 2021; 11:697640. [PMID: 34595128 PMCID: PMC8476956 DOI: 10.3389/fcimb.2021.697640] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Current antidepressants do not confer a clear advantage in children and adolescents with major depressive disorder (MDD). Accumulating evidence highlights the potential antidepressant-like effects of inosine on adult MDD, and gut microbiomes are significantly associated with MDD via the microbiota-gut-brain axis. However, few studies have investigated possible associations between inosine and gut microbiota in adolescents with MDD. The current study investigated the potential antidepressant effects of inosine in adolescent male C57BL/6 mice. After 4 weeks of chronic unpredictable mild stress (CUMS) stimulation, the mice were assessed by body weight, the sucrose preference test (SPT), open field test, and the elevated plus maze (EPM). The microbiota compositions of feces were determined by 16S rRNA gene sequencing. Inosine significantly improved CUMS-induced depressive and anxiety-like behaviors in adolescent mice including SPT and EPM results. Fecal microbial composition differed in the CON+saline, CUMS+saline, and CUMS+inosine groups, which were characterized by 126 discriminative amplicon sequence variants belonging to Bacteroidetes and Firmicute at the phylum level and Muribaculaceae and Lachnospiraceae at the family level. Muribaculaceae was positively associated with depressive and anxiety-like behaviors. KEGG functional analysis suggested that inosine might affect gut microbiota through carbohydrate metabolism and lipid metabolism pathways. The results of the study indicated that inosine improved depressive and anxiety-like behaviors in adolescent mice, in conjunction with the alteration of fecal microbial composition. Our findings may provide a novel perspective on the antidepressant effects of inosine in children and adolescents.
Collapse
Affiliation(s)
- Xueer Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Teng Teng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Xuemei Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Li Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yajie Xiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yuanliang Jiang
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kang Du
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqing Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Zhou
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| |
Collapse
|
36
|
Kim HK, Zai G, Hennings JM, Müller DJ, Kloiber S. Changes in RNA expression levels during antidepressant treatment: a systematic review. J Neural Transm (Vienna) 2021; 128:1461-1477. [PMID: 34415438 DOI: 10.1007/s00702-021-02394-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
More than a third of patients treated with antidepressants experience treatment resistance. Furthermore, molecular pathways involved in antidepressant effect have yet to be fully understood. Therefore, we performed a systematic review of clinical studies that examined changes in RNA expression levels produced by antidepressant treatment. Literature search was performed through April 2021 for peer-reviewed studies measuring changes in mRNA or non-coding RNA levels before and after antidepressant treatment in human participants following PRISMA guidelines. Thirty-one studies were included in qualitative synthesis. We identified a large amount of heterogeneity between the studies for genes/RNAs measured, antidepressants used, and treatment duration. Of the six RNAs examined by more than one study, expression of the brain-derived neurotrophic factor (BDNF) gene and genes in the inflammation pathway, particularly IL-1β, were consistently reported to be altered by antidepressant treatment. Limitations of this review include heterogeneity of the studies, possibility of positive publication bias, and risk of false-negative findings secondary to small sample sizes. In conclusion, our systematic review provides an updated synthesis of RNA expression changes produced by antidepressant treatment in human participants, where genes in the BDNF and inflammatory pathways were identified as potential targets of antidepressant effect. Importantly, these findings also highlight the need for replication of the included studies in multiple strong, placebo-controlled studies for the identification of evidence-based markers that can be targeted to improve treatment outcomes.
Collapse
Affiliation(s)
| | - Gwyneth Zai
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6H 1J4, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Daniel J Müller
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6H 1J4, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stefan Kloiber
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada. .,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6H 1J4, Canada. .,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
37
|
Fregoso DR, Hadian Y, Gallegos AC, Degovics D, Maaga J, Keogh CE, Kletenik I, Gareau MG, Isseroff RR. Skin-brain axis signaling mediates behavioral changes after skin wounding. Brain Behav Immun Health 2021; 15:100279. [PMID: 34589779 PMCID: PMC8474598 DOI: 10.1016/j.bbih.2021.100279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/03/2022] Open
Abstract
Patients with chronic wounds often have associated cognitive dysfunction and depression with an as yet unknown mechanism for this association. To address the possible causality of skin wounding inducing these changes, behavior and cognitive functions of female C57BL/6 mice with an excisional skin wound were compared to unwounded animals. At six days post wounding, animals exhibited anxiety-like behaviors, impaired recognition memory, and impaired coping behavior. Wounded animals also had concomitant increased hippocampal expression of Tnfa, the pattern recognition receptor (PRR) Nod2, the glucocorticoid receptors GR/Nr3c1 and Nr3c2. Prefrontal cortex serotonin and dopamine turnover were increased on day six post-wounding. In contrast to the central nervous system (CNS) findings, day six post -wounding serum catecholamines did not differ between wounded and unwounded animals, nor did levels of the stress hormone corticosterone, TNFα, or TGFβ. Serum IL6 levels were, however elevated in the wounded animals. These findings provide evidence of skin-to-brain signaling, mediated either by elevated serum IL6 or a direct neuronal signaling from the periphery to the CNS, independent of systemic mediators. Wounding in the periphery is associated with an altered expression of inflammatory mediators and PRR genes in the hippocampus, which may be responsible for the observed behavioral deficits.
Collapse
Affiliation(s)
- Daniel R. Fregoso
- University of California, School of Medicine, Department of Dermatology, Davis, United States
| | - Yasmin Hadian
- University of California, School of Medicine, Department of Dermatology, Davis, United States
| | - Anthony C. Gallegos
- University of California, School of Medicine, Department of Dermatology, Davis, United States
| | - Doniz Degovics
- University of California, School of Medicine, Department of Dermatology, Davis, United States
| | - John Maaga
- University of California, School of Medicine, Department of Dermatology, Davis, United States
| | - Ciara E. Keogh
- University of California, School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, Davis, United States
| | - Isaiah Kletenik
- Harvard Medical School, Department of Neurology, And Division of Cognitive and Behavioral Neurology, Brigham and Women's Hospital, Department of Neurology, United States
| | - Melanie G. Gareau
- University of California, School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, Davis, United States
| | - R. Rivkah Isseroff
- University of California, School of Medicine, Department of Dermatology, Davis, United States
| |
Collapse
|
38
|
Jeong H, Cho SJ, Jeon S, Lee J, Lee YJ, Kim SJ. Association between snoring and depressive symptoms in adolescents. J Psychiatr Res 2021; 140:165-171. [PMID: 34116442 DOI: 10.1016/j.jpsychires.2021.05.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/13/2021] [Accepted: 05/29/2021] [Indexed: 11/19/2022]
Abstract
While previous studies have suggested that snoring may be associated with depressive symptoms and suicidality in adults and preschool children, there have been no investigations in non-clinical adolescent populations. This study aimed to demonstrate the association between snoring and depressive symptoms/suicidality in adolescents. This survey study recruited 8530 students (grades 7-11) and examined depressive symptoms, suicidality, snoring frequency, daytime sleepiness, sleep duration, and presence of insomnia by questionnaires. Correlation analyses, multiple linear regression analyses and mediation analyses were performed to determine the association between snoring frequency and depressive symptoms/suicidality. The study population included 8080 students (16.73 ± 1.09 years old). Snoring frequency was positively correlated with depressive symptoms and suicidality. Snoring frequency was associated with depressive symptoms and suicidality when adjusted for age and sex, and the association remained significant after additionally adjusting for sleep duration, insomnia, and daytime sleepiness. When depressive symptoms were included as a predictor of suicidality, snoring frequency showed no significant predictive value. Mediation analysis confirmed that depressive symptoms mediate the association between snoring frequency and suicidality. Our findings suggest that self-reported complaints of snoring are associated with increased depressive symptoms and suicidality in adolescents independently of sleep duration, insomnia, and daytime sleepiness, and the connection between snoring and suicidality is mediated by depressive symptoms. These data underscore the importance of identifying snorers among adolescents and screening for depression and suicidal ideation in this population.
Collapse
Affiliation(s)
- Hyunwoo Jeong
- Geumsan-gun Public Health Center, Geumsan, Republic of Korea
| | - Seong-Jin Cho
- Department of Psychiatry, Gachon University of Medicine and Science, Incheon, Republic of Korea
| | - Sehyun Jeon
- Department of Psychiatry, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Jooyoung Lee
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Yu Jin Lee
- Department of Psychiatry and Center for Sleep and Chronobiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Seog Ju Kim
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
39
|
The effect of negative life events on college students’ depression: the mediating role of internet addiction and the moderating role of 5-HTT1A gene rs6449693 polymorphism. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-01888-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Reddy A, Mansuri Z, Vadukapuram R, Trivedi C. Increased Suicidality and Worse Outcomes in MDD Patients With OSA: A Nationwide Inpatient Analysis of 11 Years From 2006 to 2017. J Acad Consult Liaison Psychiatry 2021; 63:46-52. [PMID: 34111622 DOI: 10.1016/j.jaclp.2021.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/02/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is the most common psychiatric disorder characterized by changes in mood, cognition, and physical symptoms. MDD has an approximate 18% prevalence of comorbid OSA. Several studies have looked into plausible mechanisms that have shown a strong relationship between OSA and MDD. OBJECTIVES The primary objective of this study was to compare suicidal ideation/attempt among MDD patients with and without a comorbid diagnosis of OSA. The secondary objective was to compare the length of stay, total hospital charge, recurrent or severity of depression, and clinical comorbidities. METHODS Data were obtained from the National (Nationwide) Inpatient Sample dataset from 2006 to 2017. For data collection, we queried for all adult patients (age ≥ 18 y), with MDD as a primary indication of admission. Further, we categorized MDD patients with and without a secondary diagnosis of OSA. To reduce the imbalance in baseline characteristics between the groups, we performed one to one age-gender matching between MDD patients with and without OSA. RESULTS In the matched cohort, 79,308 patients were included in MDD with OSA and 78,792 patients in the MDD without OSA group. MDD patients with OSA were more likely to be racially white (80% vs 75%, P < 0.001), and to have more clinical comorbidities (hypertension, heart failure, obesity, and chronic lung disease). Prevalence of recurrent type of depression (77% vs 69%, P < 0.001) and moderate to severe depression (72% vs 68%, P < 0.001) was more likely in the MDD with OSA group. Further, suicidality (composite of suicidal ideation/attempt) was more in MDD with OSA (49.5%) compared to MDD without OSA (41.8%) (P < 0.001). In the multivariate analysis, MDD with OSA was associated with higher odds of suicidal ideation/act compared to MDD without OSA (adjusted odds ratio: 1.27, P < 0.001). The total length of stay was longer in the MDD with OSA group (7.4 vs 6.9 d, P < 0.001). CONCLUSIONS In our study, poorer outcomes were observed in patients with MDD and OSA. Hence, clinicians should be vigilant for symptoms of OSA in patients with recurrent MDD or treatment-resistant MDD. We recommend that a thorough suicide risk assessment should be conducted in MDD patients with OSA, and validated questionnaires should be a part of the evaluation.
Collapse
Affiliation(s)
- Abhishek Reddy
- Department of Psychiatry, Virginia Tech Carilion School of Medicine, Roanoke, VA.
| | - Zeeshan Mansuri
- Department of Psychiatry, Boston Children's Hospital/Harvard Medical School, Boston, MA
| | - Ramu Vadukapuram
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Chintan Trivedi
- Department of Research, St David's Medical Center, Austin, TX
| |
Collapse
|
41
|
Yao XW, Li YL, Yu ZJ, Mo CY, Pan HS, Li CY. The efficacy and safety of agomelatine, sertraline, and escitalopram for senile post-stroke depression: A randomized double-blind placebo-controlled trial. Clin Neurol Neurosurg 2021; 205:106651. [PMID: 33940563 DOI: 10.1016/j.clineuro.2021.106651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/01/2021] [Accepted: 04/10/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVES This study aims to investigate the efficacy and safety of agomelatine, sertraline, and escitalopram for patients with senile post-stroke depression (SPSD, aged over 65 years). PATIENTS AND METHODS A total of 165 patients (aged over 65 years) with post-stroke depression (PSD) were recruited. These patients were randomly assigned to one of four groups and given an anti-depressant or a placebo as follows: group A (agomelatine in combination with conventional cerebrovascular disease medication) 48 patients; group B (sertraline in combination with conventional cerebrovascular disease medication) 47 patients; group C (escitalopram in combination with conventional cerebrovascular disease medication) 50 patients; and, a control group (conventional treatment alone) 20 patients. The efficacy of the different treatments was evaluated using the Hamilton Depression Scale (HAMD), the National Institute of Health Stroke Scale (NIHSS), and the Activities of Daily Living (ADL) Barthel index (BI) at one, two, four, and six weeks after treatment began. RESULTS According to the HAMD, NIHSS score, and BI index, the patients who received one of the three antidepressant treatments showed significant improvement compared with the control group (p < 0.05), but there was no significant difference between the three groups receiving anti-depressant medication (p > 0.05). Laboratory tests showed that the general adverse effects of the treatments were mild in all three groups, and patients generally tolerated the treatments. CONCLUSION A decrease of HAMD and NIHSS scores and an increase in the BI index could be observed in the patients receiving agomelatine, sertraline, or escitalopram treatment. Thus, it would appear that the condition of SPSD in older patients can be improved with the use of either agomelatine, sertraline, or escitalopram.
Collapse
Affiliation(s)
- Xian-Wei Yao
- Department of General Medicine, Wu Zhongpei Memorial Hospital, Foshan 528300, China.
| | - Yan-Lan Li
- Department of Outpatient, Guangdong Tongjiang Hospital, Foshan 528300, China
| | - Zhi-Jun Yu
- Department of General Medicine, Wu Zhongpei Memorial Hospital, Foshan 528300, China
| | - Cui-Ying Mo
- Department of General Medicine, Wu Zhongpei Memorial Hospital, Foshan 528300, China
| | - Hong-Shan Pan
- Department of General Medicine, Wu Zhongpei Memorial Hospital, Foshan 528300, China
| | - Chun-Yang Li
- Department of General Medicine, Wu Zhongpei Memorial Hospital, Foshan 528300, China
| |
Collapse
|
42
|
Qu SY, Li XY, Heng X, Qi YY, Ge PY, Ni SJ, Yao ZY, Guo R, Yang NY, Cao Y, Zhang QC, Zhu HX. Analysis of Antidepressant Activity of Huang-Lian Jie-Du Decoction Through Network Pharmacology and Metabolomics. Front Pharmacol 2021; 12:619288. [PMID: 33746756 PMCID: PMC7970346 DOI: 10.3389/fphar.2021.619288] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Depressive disorder is a common mental disorder characterized by depressed mood and loss of interest or pleasure. As the Herbal medicines are mainly used as complementary and alternative therapy for depression. This study aimed at exploring antidepressant activity of Huang-lian Jie-du Decoction (HLJDD), and evaluating active components and potential depression-associated targets. HLJDD was administered on chronic unpredictable mild stress-induced (CUMS) depressive mice. Behavior evaluation was performed through force swimming test (FST), novelty-suppressed feeding test (NSF), and open field test (OFT). Active components of HLJDD, potential targets, and metabolic pathways involved in depression were explored through systemic biology-based network pharmacology assay, molecular docking and metabonomics. FST assay showed that CUMS mice administered with HLJDD had significantly shorter immobility time compared with control mice. Further, HLJDD alleviated feeding latency of CUMS mice in NSFand increased moving distance and duration in OFT. In the following network pharmacology assay, thirty-eight active compounds in HLJDD were identified based on drug-like characteristics, and pharmacokinetics and pharmacodynamics profiles. Moreover, forty-eight molecular targets and ten biochemical pathways were uncovered through molecular docking and metabonomics. GRIN2B, DRD, PRKCA, HTR, MAOA, SLC6A4, GRIN2A, and CACNA1A are implicated in inhibition of depressive symptoms through modulating tryptophan metabolism, serotonergic and dopaminergic synaptic activities, cAMP signaling pathway, and calcium signaling pathway. Further network pharmacology-based analysis showed a correlation between HLJDD and tryptophan metabolism. A total of thirty-seven active compounds, seventy-six targets, and sixteen biochemical pathways were involved in tryptophan metabolism. These findings show that HLJDD acts on potential targets such as SLC6A4, HTR, INS, MAO, CAT, and FoxO, PI3K/Akt, calcium, HIF-1, and mTOR signaling pathways, and modulates serotoninergic and dopaminergic synaptic functions. In addition, metabonomics showed that tryptophan metabolism is the primary target for HLJDD in CUMS mice. The findings of the study show that HLJDD exhibited antidepressant effects. SLC6A4 and MAOA in tryptophan metabolism were modulated by berberine, baicalein, tetrahydroberberine, candicine and may be the main antidepressant targets for HLJDD.
Collapse
Affiliation(s)
- Shu-Yue Qu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Yue Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xia Heng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi-Yu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping-Yuan Ge
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sai-Jia Ni
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zeng-Ying Yao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nian-Yun Yang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Cao
- Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Chun Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua-Xu Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
43
|
Mori Y, Mouri A, Kunisawa K, Hirakawa M, Kubota H, Kosuge A, Niijima M, Hasegawa M, Kurahashi H, Murakami R, Hoshi M, Nakano T, Fujigaki S, Fujigaki H, Yamamoto Y, Nabeshima T, Saito K. Kynurenine 3-monooxygenase deficiency induces depression-like behavior via enhanced antagonism of α7 nicotinic acetylcholine receptors by kynurenic acid. Behav Brain Res 2021; 405:113191. [PMID: 33607168 DOI: 10.1016/j.bbr.2021.113191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 01/09/2023]
Abstract
Tryptophan (TRP) is metabolized via the kynurenine (KYN) pathway, which is related to the pathogenesis of major depressive disorder (MDD). Kynurenine 3-monooxygenase (KMO) is a pivotal enzyme in the metabolism of KYN to 3-hydroxykynurenine. In rodents, KMO deficiency induces a depression-like behavior and increases the levels of kynurenic acid (KA), a KYN metabolite formed by kynurenine aminotransferases (KATs). KA antagonizes α7 nicotinic acetylcholine receptor (α7nAChR). Here, we investigated the involvement of KA in depression-like behavior in KMO knockout (KO) mice. KYN, KA, and anthranilic acid but not TRP or 3-hydroxyanthranilic acid were elevated in the prefrontal cortex of KMO KO mice. The mRNA levels of KAT1 and α7nAChR but not KAT2-4, α4nAChR, or β2nAChR were elevated in the prefrontal cortex of KMO KO mice. Nicotine blocked increase in locomotor activity, decrease in social interaction time, and prolonged immobility in a forced swimming test, but it did not decrease sucrose preference in the KMO KO mice. Methyllycaconitine (an α7nAChR antagonist) antagonized the effect of nicotine on decreased social interaction time and prolonged immobility in the forced swimming test, but not increased locomotor activity. Galantamine (an α7nAChR allosteric agonist) blocked the increased locomotor activity and prolonged immobility in the forced swimming test, but not the decreased social interaction time in the KMO KO mice. In conclusion, elevation of KA levels contributes to depression-like behaviors in KMO KO mice by α7nAChR antagonism. The ameliorating effects of nicotine and galantamine on depression-like behaviors in KMO KO mice are associated with the activation of α7nAChR.
Collapse
Affiliation(s)
- Yuko Mori
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan.
| | - Kazuo Kunisawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan; Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Mami Hirakawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Hisayoshi Kubota
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Aika Kosuge
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Moe Niijima
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Masaya Hasegawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Hitomi Kurahashi
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Reiko Murakami
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Masato Hoshi
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Takashi Nakano
- Department of Computational Biology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Suwako Fujigaki
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Hidetsugu Fujigaki
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| |
Collapse
|
44
|
Wollenhaupt-Aguiar B, Kapczinski F, Pfaffenseller B. Biological Pathways Associated with Neuroprogression in Bipolar Disorder. Brain Sci 2021; 11:brainsci11020228. [PMID: 33673277 PMCID: PMC7918818 DOI: 10.3390/brainsci11020228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
There is evidence suggesting clinical progression in a subset of patients with bipolar disorder (BD). This progression is associated with worse clinical outcomes and biological changes. Molecular pathways and biological markers of clinical progression have been identified and may explain the progressive changes associated with this disorder. The biological basis for clinical progression in BD is called neuroprogression. We propose that the following intertwined pathways provide the biological basis of neuroprogression: inflammation, oxidative stress, impaired calcium signaling, endoplasmic reticulum and mitochondrial dysfunction, and impaired neuroplasticity and cellular resilience. The nonlinear interaction of these pathways may worsen clinical outcomes, cognition, and functioning. Understanding neuroprogression in BD is crucial for identifying novel therapeutic targets, preventing illness progression, and ultimately promoting better outcomes.
Collapse
Affiliation(s)
- Bianca Wollenhaupt-Aguiar
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON L8N 3K7, Canada; (B.W.-A.); (F.K.)
- Mood Disorders Program, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada
| | - Flavio Kapczinski
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON L8N 3K7, Canada; (B.W.-A.); (F.K.)
- Mood Disorders Program, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada
- Neuroscience Graduate Program, McMaster University, Hamilton, ON L8S 4L8, Canada
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, Brazil
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
| | - Bianca Pfaffenseller
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON L8N 3K7, Canada; (B.W.-A.); (F.K.)
- Mood Disorders Program, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada
- Correspondence:
| |
Collapse
|
45
|
Mertens LJ, Preller KH. Classical Psychedelics as Therapeutics in Psychiatry - Current Clinical Evidence and Potential Therapeutic Mechanisms in Substance Use and Mood Disorders. PHARMACOPSYCHIATRY 2021; 54:176-190. [PMID: 33472250 DOI: 10.1055/a-1341-1907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Classical psychedelics, primarily psilocybin and lysergic acid diethylamide (LSD), have been used and extensively studied in Western medicine as part of substance-assisted psychotherapy in the 1950s and 1960s. Modern clinical research is currently gaining momentum and provides new evidence for the safety and efficacy of classical psychedelics (primarily psilocybin, but also LSD and ayahuasca) in the treatment of different psychiatric conditions, including substance use and mood disorders.In this review article, we outline common pathological mechanisms of substance use disorders (SUD) and unipolar depression. Next, the current literature on the effects of psychedelics is summarized in order to generate hypotheses regarding their potential therapeutic mechanisms of action in treating these psychiatric conditions. Finally, we review and discuss clinical trials published since 2011 investigating the effects of psychedelics in SUD and depression.While results from those modern clinical trials are promising, most of them do not meet the methodological requirements to allow firm conclusions on the clinical efficacy of psychedelics. Larger, blinded, randomized controlled trials (RCT) with clearly defined patient groups and well-defined primary endpoints are needed. Additionally, the therapeutic mechanisms of classical psychedelics are currently unknown. This review presents hypotheses derived from preclinical and human studies that need to be tested in future trials to better understand the clinical potential of psychedelic substances in modern psychiatry.
Collapse
Affiliation(s)
- Lea J Mertens
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin H Preller
- Pharmaco-Neuroimaging and Cognitive-Emotional Processing, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich, Zurich, Switzerland.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
46
|
A Systematic Review Into the Influence of Temperature on Fibromyalgia Pain: Meteorological Studies and Quantitative Sensory Testing. THE JOURNAL OF PAIN 2021; 22:473-486. [PMID: 33421589 DOI: 10.1016/j.jpain.2020.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/03/2020] [Accepted: 12/15/2020] [Indexed: 01/01/2023]
Abstract
Fibromyalgia syndrome (FMS) is a chronic widespread pain condition of unknown aetiology. The role of temperature in FMS pain has not been reviewed systematically. The goal of this study was to review the influences of temperature on pain in FMS, from meteorological and quantitative sensory testing (QST) studies. The review was registered with Prospero: ID-CRD42020167687, and followed PRISMA guidance. Databases interrogated were: MEDLINE (via OVID), EMBASE, PubMed, Web of Science, ScienceDirect, CINAHL, and ProQuest (Feb'20). Exclusion criteria were: age <18, animal studies, non-English, and noncontrolled articles. Thirteen studies pertaining to ambient temperature and FMS pain were identified; 9 of these found no uniform relationship. Thirty-five QST studies were identified, 17 of which assessed cold pain thresholds (CPTs). All studies showed numerically reduced CPTs in patients, ranging from 10.9°C to 26.3°C versus 5.9°C to 13.5°C in controls; this was statistically significant in 14/17. Other thermal thresholds were often abnormal. We conclude that the literature provides consistent evidence for an abnormal sensitization of FMS patients' temperature-sensation systems. Additional work is required to elucidate the factors that determine why a subgroup of patients perceive low ambient temperatures as painful, and to characterize that group. PERSPECTIVE: Patients often report increased pain with changes in ambient temperature; even disabling, extreme temperature sensitivity in winter. Understanding this phenomenon may help clinicians provide reassurance and advice to patients and may guide research into the everyday impact of such hypersensitivity, whilst directing future work into the pathophysiology of FMS.
Collapse
|
47
|
Toyoda A, Kawase T, Tsukahara T. Effects of dietary intake of heat-inactivated Lactobacillus gasseri CP2305 on stress-induced behavioral and molecular changes in a subchronic and mild social defeat stress mouse model. Biomed Res 2021; 41:101-111. [PMID: 32307337 DOI: 10.2220/biomedres.41.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The intestinal ecosystem is involved in the pathogenesis of mood disorders such as depression. Intestinal microbes can affect the central nervous system through the gut-brain axis, which raises the possibility of using probiotics for preventing depression. In this study, we examined the effect of heat-inactivated Lactobacillus gasseri CP2305 (CP2305) in a subchronic and mild social defeat stress (sCSDS) mouse model. sCSDS suppressed food intake. However, dietary CP2305 intake rescued it, suggesting that CP2305 improved the decreased appetite in sCSDS mice. sCSDS did not alter the gene expression of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 in the hippocampus. However, dietary CP2305 provided following sCSDS increased the gene expression of these neurotrophins in the hippocampus. These findings suggest that CP2305 supplementation would aid in preventing psychosocial stress-induced disorders.
Collapse
Affiliation(s)
- Atsushi Toyoda
- College of Agriculture, Ibaraki University.,Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM).,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | | | | |
Collapse
|
48
|
Clausing ES, Non AL. Epigenetics as a Mechanism of Developmental Embodiment of Stress, Resilience, and Cardiometabolic Risk Across Generations of Latinx Immigrant Families. Front Psychiatry 2021; 12:696827. [PMID: 34354616 PMCID: PMC8329078 DOI: 10.3389/fpsyt.2021.696827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
Psychosocial stressors can become embodied to alter biology throughout the life course in ways that may have lasting health consequences. Immigrants are particularly vulnerable to high burdens of stress, which have heightened in the current sociopolitical climate. This study is an investigation of how immigration-related stress (IRS) may impact the cardiometabolic risk and epigenetic markers of Latinx immigrant mothers and children in Nashville, TN. We compared stress and resilience factors reported by Latina immigrant mothers and their children (aged 5-13) from two time points spanning the 2016 U.S. presidential election (June 2015-June 2016 baseline, n = 81; March-September 2018 follow-up, n = 39) with cardiometabolic risk markers (BMI, waist circumference, and blood pressure). We also analyzed these factors in relation to DNA methylation in saliva of stress-related candidate genes (SLC6A4 and FKBP5), generated via bisulfite pyrosequencing (complete case n's range from 67-72 baseline and 29-31 follow-up) (n's range from 80 baseline to 36 follow-up). We found various associations with cardiometabolic risk, such as higher social support and greater acculturation were associated with lower BMI in mothers; discrimination and school stress associated with greater waist circumferences in children. Very few exposures associated with FKBP5, but various stressors associated with methylation at many sites in SLC6A4, including immigrant-related stress in both mothers and children, and fear of parent deportation in children. Additionally, in the mothers, total maternal stress, health stress, and subjective social status associated with methylation at multiple sites of SLC6A4. Acculturation associated with methylation in mothers in both genes, though directions of effect varied over time. We also find DNA methylation at SLC6A4 associates with measures of adiposity and blood pressure, suggesting that methylation may be on the pathway linking stress with cardiometabolic risk. More research is needed to determine the role of these epigenetic differences in contributing to embodiment of stress across generations.
Collapse
Affiliation(s)
- Elizabeth S Clausing
- Department of Anthropology, University of California San Diego (UCSD), La Jolla, CA, United States
| | - Amy L Non
- Department of Anthropology, University of California San Diego (UCSD), La Jolla, CA, United States
| |
Collapse
|
49
|
STAT3 in the dorsal raphe gates behavioural reactivity and regulates gene networks associated with psychopathology. Mol Psychiatry 2021; 26:2886-2899. [PMID: 33046834 PMCID: PMC8505245 DOI: 10.1038/s41380-020-00904-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/02/2023]
Abstract
The signal transducer and activator of transcription 3 (STAT3) signalling pathway is activated through phosphorylation by Janus kinases in response to a diverse set of immunogenic and non-immunogenic triggers. Several distinct lines of evidence propose an intricate involvement of STAT3 in neural function relevant to behaviour in health and disease. However, in part due to the pleiotropic effects resulting from its DNA binding activity and the consequent regulation of expression of a variety of genes with context-dependent cellular consequences, the precise nature of STAT3 involvement in the neural mechanisms underlying psychopathology remains incompletely understood. Here, we focused on the midbrain serotonergic system, a central hub for the regulation of emotions, to examine the relevance of STAT3 signalling for emotional behaviour in mice by selectively knocking down raphe STAT3 expression using germline genetic (STAT3 KO) and viral-mediated approaches. Mice lacking serotonergic STAT3 presented with reduced negative behavioural reactivity and a blunted response to the sensitising effects of amphetamine, alongside alterations in midbrain neuronal firing activity of serotonergic neurons and transcriptional control of gene networks relevant for neuropsychiatric disorders. Viral knockdown of dorsal raphe (DR) STAT3 phenocopied the behavioural alterations of STAT3 KO mice, excluding a developmentally determined effect and suggesting that disruption of STAT3 signalling in the DR of adult mice is sufficient for the manifestation of behavioural traits relevant to psychopathology. Collectively, these results suggest DR STAT3 as a molecular gate for the control of behavioural reactivity, constituting a mechanistic link between the upstream activators of STAT3, serotonergic neurotransmission and psychopathology.
Collapse
|
50
|
Sun Y, Cheng L, Zeng X, Zhang X, Liu Y, Wu Z, Weng P. The intervention of unique plant polysaccharides - Dietary fiber on depression from the gut-brain axis. Int J Biol Macromol 2020; 170:336-342. [PMID: 33373637 DOI: 10.1016/j.ijbiomac.2020.12.164] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
As an invisible organ of human body, the gut microbiota plays an important role in human life and has become a hot spot in the field of life science in recent years. Due to the increasing pressure of work and life, people are prone to depression. The in-depth mechanism studies indicated that the gut microbiota could improve the depression symptom through the gut-brain axis (GBA). As unique plant polysaccharides, dietary fiber can effectively modulate the intestinal flora disorders and its crucial role in orchestrating host-microbiota crosstalk has been confirmed. This review highlights the mechanisms that the gut microbiota affects the development of depression through GBA and focuses on dietary fiber intervention on the improvement of intestinal microbiota imbalance, which may provide new ideas for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States
| | - Xiaoxiong Zeng
- Department of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|