1
|
Petersen M, Dubielecka P. Adaptor protein Abelson interactor 1 in homeostasis and disease. Cell Commun Signal 2024; 22:468. [PMID: 39354505 PMCID: PMC11446139 DOI: 10.1186/s12964-024-01738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
Dysregulation of Abelson interactor 1 (ABI1) is associated with various states of disease including developmental defects, pathogen infections, and cancer. ABI1 is an adaptor protein predominantly known to regulate actin cytoskeleton organization processes such as those involved in cell adhesion, migration, and shape determination. Linked to cytoskeleton via vasodilator-stimulated phosphoprotein (VASP), Wiskott-Aldrich syndrome protein family (WAVE), and neural-Wiskott-Aldrich syndrome protein (N-WASP)-associated protein complexes, ABI1 coordinates regulation of various cytoplasmic protein signaling complexes dysregulated in disease states. The roles of ABI1 beyond actin cytoskeleton regulation are much less understood. This comprehensive, protein-centric review describes molecular roles of ABI1 as an adaptor molecule in the context of its dysregulation and associated disease outcomes to better understand disease state-specific protein signaling and affected interconnected biological processes.
Collapse
Affiliation(s)
- Max Petersen
- Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
- Center for the Biology of Aging, Brown University, Providence, RI, USA
- Legoretta Cancer Center, Brown University, Providence, RI, USA
| | - Pat Dubielecka
- Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA.
- Center for the Biology of Aging, Brown University, Providence, RI, USA.
- Legoretta Cancer Center, Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Petersen M, Chorzalska A, Pardo M, Rodriguez A, Morgan J, Ahsan N, Zhao TC, Liang O, Kotula L, Bertone P, Gruppuso PA, Dubielecka PM. Proximity proteomics reveals role of Abelson interactor 1 in the regulation of TAK1/RIPK1 signaling. Mol Oncol 2023; 17:2356-2379. [PMID: 36635880 PMCID: PMC10620119 DOI: 10.1002/1878-0261.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
Dysregulation of the adaptor protein Abelson interactor 1 (ABI1) is linked to malignant transformation. To interrogate the role of ABI1 in cancer development, we mapped the ABI1 interactome using proximity-dependent labeling (PDL) with biotin followed by mass spectrometry. Using a novel PDL data filtering strategy, considering both peptide spectral matches and peak areas of detected peptides, we identified 212 ABI1 proximal interactors. These included WAVE2 complex components such as CYFIP1, NCKAP1, or WASF1, confirming the known role of ABI1 in the regulation of actin-polymerization-dependent processes. We also identified proteins associated with the TAK1-IKK pathway, including TAK1, TAB2, and RIPK1, denoting a newly identified function of ABI1 in TAK1-NF-κB inflammatory signaling. Functional assays using TNFα-stimulated, ABI1-overexpressing or ABI1-deficient cells showed effects on the TAK1-NF-kB pathway-dependent signaling to RIPK1, with ABI1-knockout cells being less susceptible to TNFα-induced, RIPK1-mediated, TAK1-dependent apoptosis. In sum, our PDL-based strategy enabled mapping of the ABI1 proximal interactome, thus revealing a previously unknown role of this adaptor protein in TAK1/RIPK1-based regulation of cell death and survival.
Collapse
Affiliation(s)
- Max Petersen
- Department of Medicine, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
- Division of Hematology/OncologyRhode Island HospitalProvidenceRIUSA
- Division of Biology and Medicine, Department of Pathology and Laboratory MedicineBrown UniversityProvidenceRIUSA
| | - Anna Chorzalska
- Department of Medicine, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
- Division of Hematology/OncologyRhode Island HospitalProvidenceRIUSA
| | - Makayla Pardo
- Department of Medicine, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
- Division of Hematology/OncologyRhode Island HospitalProvidenceRIUSA
| | - Anaelena Rodriguez
- Department of Medicine, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
- Division of Hematology/OncologyRhode Island HospitalProvidenceRIUSA
| | - John Morgan
- Flow Cytometry and Cell Sorting Core FacilityRoger Williams Medical CenterProvidenceRIUSA
| | - Nagib Ahsan
- COBRE Center for Cancer Research Development, Proteomics Core FacilityRhode Island HospitalProvidenceRIUSA
- Department of Chemistry and BiochemistryThe University of OklahomaNormanOKUSA
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research CenterThe University of OklahomaNormanOKUSA
| | - Ting C. Zhao
- Department of SurgeryRhode Island Hospital and Warren Alpert Medical School of Brown UniversityProvidenceRIUSA
| | - Olin Liang
- Department of Medicine, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
- Division of Hematology/OncologyRhode Island HospitalProvidenceRIUSA
- Legorreta Cancer Center, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
| | - Leszek Kotula
- Department of UrologySUNY Upstate Medical UniversitySyracuseNYUSA
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
- Upstate Cancer CenterSUNY Upstate Medical UniversitySyracuseNYUSA
| | - Paul Bertone
- Department of Medicine, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
- Division of Hematology/OncologyRhode Island HospitalProvidenceRIUSA
- Legorreta Cancer Center, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
| | - Philip A. Gruppuso
- Division of Pediatric EndocrinologyRhode Island Hospital and Warren Alpert Medical School of Brown UniversityProvidenceRIUSA
| | - Patrycja M. Dubielecka
- Department of Medicine, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
- Division of Hematology/OncologyRhode Island HospitalProvidenceRIUSA
- Division of Biology and Medicine, Department of Pathology and Laboratory MedicineBrown UniversityProvidenceRIUSA
- Legorreta Cancer Center, Alpert Medical SchoolBrown UniversityProvidenceRIUSA
| |
Collapse
|
3
|
Khalili D, Kunc M, Herbrich S, Müller AM, Theopold U. Chitinase-like proteins promoting tumorigenesis through disruption of cell polarity via enlarged endosomal vesicles. Front Oncol 2023; 13:1170122. [PMID: 37188187 PMCID: PMC10175591 DOI: 10.3389/fonc.2023.1170122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Chitinase-like proteins (CLPs) are associated with tissue-remodeling and inflammation but also with several disorders, including fibrosis, atherosclerosis, allergies, and cancer. However, CLP's role in tumors is far from clear. Methods Here, we utilize Drosophila melanogaster and molecular genetics to investigate the function of CLPs (imaginal disc growth factors; Idgf's) in RasV12 dysplastic salivary glands. Results and discussion We find one of the Idgf's members, Idgf3, is transcriptionally induced in a JNK-dependent manner via a positive feedback loop mediated by reactive oxygen species (ROS). Moreover, Idgf3 accumulates in enlarged endosomal vesicles (EnVs) that promote tumor progression by disrupting cytoskeletal organization. The process is mediated via the downstream component, aSpectrin, which localizes to the EnVs. Our data provide new insight into CLP function in tumors and identifies specific targets for tumor control.
Collapse
|
4
|
Zhang Y, Zhong Z, Li M, Chen J, Lin T, Sun J, Wang D, Mu Q, Su H, Wu N, Liu A, Yu Y, Zhang M, Liu Y, Guo J, Yu W. The roles and prognostic significance of ABI1-TSV-11 expression in patients with left-sided colorectal cancer. Sci Rep 2021; 11:10734. [PMID: 34031495 PMCID: PMC8144562 DOI: 10.1038/s41598-021-90220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Abnormally expressed and/or phosphorylated Abelson interactor 1 (ABI1) participates in the metastasis and progression of colorectal cancer (CRC). ABI1 presents as at least 12 transcript variants (TSVs) by mRNA alternative splicing, but it is unknown which of them is involved in CRC metastasis and prognosis. Here, we firstly identified ABI1-TSV-11 as a key TSV affecting the metastasis and prognosis of left-sided colorectal cancer (LsCC) and its elevated expression is related to lymph node metastasis and shorter overall survival (OS) in LsCC by analyzing data from The Cancer Genome Atlas and TSVdb. Secondly, ABI1-TSV-11 overexpression promoted LoVo and SW480 cells adhesion and migration in vitro, and accelerated LoVo and SW480 cells lung metastasis in vivo. Finally, mechanism investigations revealed that ABI1-isoform-11 interacted with epidermal growth factor receptor pathway substrate 8 (ESP8) and regulated actin dynamics to affect LoVo and SW480 cells biological behaviors. Taken together, our data demonstrated that ABI1-TSV-11 plays an oncogenic role in LsCC, it is an independent risk factor of prognosis and may be a potential molecular marker and therapeutic target in LsCC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Zhaohui Zhong
- Department of General Surgery, Peking University People's Hospital, Beijing, China
| | - Mei Li
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Jingyi Chen
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Tingru Lin
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Jie Sun
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Di Wang
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Qing Mu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Huiting Su
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Na Wu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Aiyu Liu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yimeng Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Menglei Zhang
- Department of Animal Laboratory, Peking University People's Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Jingzhu Guo
- Department of Pediatric, Peking University People's Hospital, Beijing, China.
| | - Weidong Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
5
|
Nath D, Li X, Mondragon C, Post D, Chen M, White JR, Hryniewicz-Jankowska A, Caza T, Kuznetsov VA, Hehnly H, Jamaspishvili T, Berman DM, Zhang F, Kung SHY, Fazli L, Gleave ME, Bratslavsky G, Pandolfi PP, Kotula L. Abi1 loss drives prostate tumorigenesis through activation of EMT and non-canonical WNT signaling. Cell Commun Signal 2019; 17:120. [PMID: 31530281 PMCID: PMC6749699 DOI: 10.1186/s12964-019-0410-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/01/2019] [Indexed: 12/29/2022] Open
Abstract
Background Prostate cancer development involves various mechanisms, which are poorly understood but pointing to epithelial mesenchymal transition (EMT) as the key mechanism in progression to metastatic disease. ABI1, a member of WAVE complex and actin cytoskeleton regulator and adaptor protein, acts as tumor suppressor in prostate cancer but the role of ABI1 in EMT is not clear. Methods To investigate the molecular mechanism by which loss of ABI1 contributes to tumor progression, we disrupted the ABI1 gene in the benign prostate epithelial RWPE-1 cell line and determined its phenotype. Levels of ABI1 expression in prostate organoid tumor cell lines was evaluated by Western blotting and RNA sequencing. ABI1 expression and its association with prostate tumor grade was evaluated in a TMA cohort of 505 patients and metastatic cell lines. Results Low ABI1 expression is associated with biochemical recurrence, metastasis and death (p = 0.038). Moreover, ABI1 expression was significantly decreased in Gleason pattern 5 vs. pattern 4 (p = 0.0025) and 3 (p = 0.0012), indicating an association between low ABI1 expression and highly invasive prostate tumors. Disruption of ABI1 gene in RWPE-1 cell line resulted in gain of an invasive phenotype, which was characterized by a loss of cell-cell adhesion markers and increased migratory ability of RWPE-1 spheroids. Through RNA sequencing and protein expression analysis, we discovered that ABI1 loss leads to activation of non-canonical WNT signaling and EMT pathways, which are rescued by re-expression of ABI1. Furthermore, an increase in STAT3 phosphorylation upon ABI1 inactivation and the evidence of a high-affinity interaction between the FYN SH2 domain and ABI1 pY421 support a model in which ABI1 acts as a gatekeeper of non-canonical WNT-EMT pathway activation downstream of the FZD2 receptor. Conclusions ABI1 controls prostate tumor progression and epithelial plasticity through regulation of EMT-WNT pathway. Here we discovered that ABI1 inhibits EMT through suppressing FYN-STAT3 activation downstream from non-canonical WNT signaling thus providing a novel mechanism of prostate tumor suppression. Electronic supplementary material The online version of this article (10.1186/s12964-019-0410-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Disharee Nath
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Xiang Li
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Claudia Mondragon
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA
| | - Dawn Post
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA
| | - Ming Chen
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Present address: Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.,Duke Cancer Institute, Duke University, Durham, NC, 27710, USA
| | - Julie R White
- Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Anita Hryniewicz-Jankowska
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA.,Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Tiffany Caza
- Department of Pathology and Medicine, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Vladimir A Kuznetsov
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA.,Bioinformatics Institute, A-STAR, Singapore, 138671, Singapore
| | - Heidi Hehnly
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Tamara Jamaspishvili
- Department of Pathology and Molecular Medicine and Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, 10 Stuart St, Kingston, ON, K7L 3N6, Canada
| | - David M Berman
- Department of Pathology and Molecular Medicine and Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, 10 Stuart St, Kingston, ON, K7L 3N6, Canada
| | - Fan Zhang
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Sonia H Y Kung
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Ladan Fazli
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Martin E Gleave
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Gennady Bratslavsky
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Leszek Kotula
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
6
|
Wang JL, Yan TT, Long C, Cai WW. Oncogenic function and prognostic significance of Abelson interactor 1 in hepatocellular carcinoma. Int J Oncol 2017; 50:1889-1898. [PMID: 28339046 DOI: 10.3892/ijo.2017.3920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/03/2017] [Indexed: 11/06/2022] Open
Abstract
Aberrant expression of Abelson interactor 1 (ABI1) has been reported in multiple cancers. However, its clinical significance and potential biological roles in hepatocellular carcinoma (HCC) have not been fully elucidated. In this study, we found that ABI1 was obviously upregulated in HCC tissues compared with non-tumor tissues. Moreover, high ABI1 expression was significantly correlated with tumor size (P=0.041), tumor number (P<0.001), tumor encapsulation (P<0.001) and BCLC stage (P=0.010). Importantly, Kaplan-Meier survival analysis showed that increased ABI1 expression predicted shorter overall survival time (P<0.001) and a higher tendency of tumor recurrence (P=0.001) in HCC patients. Multivariate Cox regression analysis further confirmed high ABI1 expression was an independent predictor for both overall survival (HR=1.795, P=0.025) and early recurrence (HR=1.893, P=0.012) after surgical resection. Furthermore, in vitro studies indicated that overexpression of ABI1 induced an increase in cell proliferation, migration and invasion of HCC cells, whereas knockdown of ABI1 did the opposite. Xenograft mouse models verified the promoting effects of ABI1 on HCC growth and lung metastasis in vivo. Collectively, our findings indicated that ABI1 contributes to the development and progression of HCC as an oncogene and may serve as a valuable prognostic marker for HCC patients.
Collapse
Affiliation(s)
- Ji-Long Wang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ting-Ting Yan
- Xiangya School of Public Health, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chen Long
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Wen-Wu Cai
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
7
|
Zhang R, Liu C, Niu Y, Jing Y, Zhang H, Wang J, Yang J, Zen K, Zhang J, Zhang CY, Li D. MicroRNA-128-3p regulates mitomycin C-induced DNA damage response in lung cancer cells through repressing SPTAN1. Oncotarget 2016; 8:58098-58107. [PMID: 28938540 PMCID: PMC5601636 DOI: 10.18632/oncotarget.12300] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/20/2016] [Indexed: 01/08/2023] Open
Abstract
The DNA damage response is critical for maintaining genome integrity and preventing damage to DNA due to endogenous and exogenous insults. Mitomycin C (MMC), a potent DNA cross-linker, is used as a chemotherapeutic agent because it causes DNA inter-strand cross-links (DNA ICLs) in cancer cells. While many microRNAs, which may serve as oncogenes or tumor suppressors, are grossly dysregulated in human cancers, little is known about their roles in MMC-treated lung cancer. Here, we report that miR-128-3p can attenuate repair of DNA ICLs by targeting SPTAN1 (αII Sp), resulting in cell cycle arrest and promoting chromosomal aberrations in lung cancer cells treated with MMC. Using computational prediction and experimental validation, SPTAN1 was found to be a conserved target of miR-128-3p. We then found that miR-128-3p caused translational inhibition of SPTAN1, reducing its protein level. SPTAN1 repression via miR-128-3p also induced cell cycle arrest and chromosomal instability. Additionally, miR-128-3p significantly influenced interaction of the αII Sp/FANCA/XPF complex, thus limiting DNA repair. In summary, the results demonstrate that miR-128-3p accelerates cell cycle arrest and chromosomal instability in MMC-treated lung cancer cells by suppressing SPTAN1, and these findings could be applied for adjuvant chemotherapy of lung cancer.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences(NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Chang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences(NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yahan Niu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences(NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ying Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences(NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Haiyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences(NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences(NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences(NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences(NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences(NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences(NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Donghai Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences(NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
8
|
Sowalsky AG, Sager R, Schaefer RJ, Bratslavsky G, Pandolfi PP, Balk SP, Kotula L. Loss of Wave1 gene defines a subtype of lethal prostate cancer. Oncotarget 2016; 6:12383-91. [PMID: 25906751 PMCID: PMC4494945 DOI: 10.18632/oncotarget.3564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022] Open
Abstract
Genetic alterations involving TMPRSS2-ERG alterations and deletion of key tumor suppressor genes are associated with development and progression of prostate cancer (PCa). However, less defined are early events that may contribute to the development of high-risk metastatic prostate cancer. Bioinformatic analysis of existing tumor genomic data from PCa patients revealed that WAVE complex gene alterations are associated with a greater likelihood of prostate cancer recurrence. Further analysis of primary vs. castration resistant prostate cancer indicate that disruption of WAVE complex gene expression, and particularly WAVE1 gene (WASF1) loss, is also associated with castration resistance, where WASF1 is frequently co-deleted with PTEN and resists androgen deprivation therapy (ADT). Hence, we propose that WASF1 status defines a subtype of ADT-resistant patients. Better understanding of the effects of WAVE pathway disruption will lead to development of better diagnostic and treatment modalities.
Collapse
Affiliation(s)
- Adam G Sowalsky
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca Sager
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rachel J Schaefer
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Pier Paolo Pandolfi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA
| | - Steven P Balk
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA
| | - Leszek Kotula
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.,Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
9
|
Zhang J, Tang L, Chen Y, Duan Z, Xiao L, Li W, Liu X, Shen L. Upregulation of Abelson interactor protein 1 predicts tumor progression and poor outcome in epithelial ovarian cancer. Hum Pathol 2015; 46:1331-40. [PMID: 26193797 DOI: 10.1016/j.humpath.2015.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022]
Abstract
Abelson interactor protein 1 (Abi1) is a key regulator of actin reorganization and lamellipodia formation. Because of its role in cell migration, Abi1 has been implicated in tumor progression. In the present study, we investigated the role of Abi1 in epithelial ovarian cancer (EOC) by analyzing its expression and correlation with clinicopathological and survival data. We evaluated the expression of Abi1 in 223 paraffin-embedded EOC specimens by immunohistochemistry and 46 frozen EOC samples by Western blot and real-time reverse transcription polymerase chain reaction analysis. Results showed that Abi1 protein and mRNA expression was significantly higher in EOC tissue compared with noncancerous tumors and normal ovaries (P < .05). Moreover, high level of Abi1 expression was significantly correlated with advanced stage, high grade, elevated Ca-125 level, and suboptimal surgical debulking (P < .05). By Western blot analysis, Abi1 was expressed in highly invasive cells compared with weakly invasive cells (P < .05). Immunofluorescence was performed to demonstrate Abi1 expression in SKOV3 cells. Additionally, upregulation of Abi1 significantly correlated with shorter survival (P < .05). Most importantly, multivariate analysis showed that Abi1 overexpression is an independent prognostic factor, complementary to clinical stage and residual tumor size. In conclusion, our findings suggest that Abi1 acts as a tumor-promoting gene in EOC progression, which may lead to unfavorable prognosis. Abi1 may serve as a potential effective prognostic marker for EOC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Liangdan Tang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yanlin Chen
- Department of Pathology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhaoning Duan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lin Xiao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Wenwen Li
- Department of Pathology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xiaohan Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Liyuan Shen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
10
|
Hossain S, Dubielecka PM, Sikorski AF, Birge RB, Kotula L. Crk and ABI1: binary molecular switches that regulate abl tyrosine kinase and signaling to the cytoskeleton. Genes Cancer 2012; 3:402-13. [PMID: 23226578 DOI: 10.1177/1947601912460051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nonreceptor tyrosine kinases Abl and Arg are among the most well-characterized tyrosine kinases in the human genome. The activation of Abl by N-terminal fusions with Bcr (Bcr-Abl) or Gag (v-Abl) is responsible for chronic myeloid leukemia or Ph+ acute lymphoblastic leukemia and mouse leukemia virus, respectively. In addition, aberrant Abl and Arg activation downstream of several oncogenic growth factor receptors contributes to the development and progression of a variety of human cancers, often associated with poor clinical outcome, drug resistance, and tumor invasion and metastasis. Abl activation can occur by a variety of mechanisms that include domain interactions involving structural remodeling of autoinhibited conformations as well as direct phosphorylation by upstream kinases and phosphatases. Constitutive activation of Abl plays a significant role in regulating the actin cytoskeleton by modulating cell adhesion, motility, and invadopodia. This review addresses the role of Abl and Arg in tumor progression with particular emphasis on the roles of Crk and Abi1 adapter proteins as distinct molecular switches for Abl transactivation. These insights, combined with new insights into the structure of these kinases, provide the rationale to envision that Crk and Abi1 fine-tune Abl regulation to control signaling to the cytoskeleton.
Collapse
Affiliation(s)
- Sajjad Hossain
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA ; Current address: Stony Brook University, Stony Brook, NY, USA
| | | | | | | | | |
Collapse
|
11
|
Xiong X, Chorzalska A, Dubielecka PM, White JR, Vedvyas Y, Hedvat CV, Haimovitz-Friedman A, Koutcher JA, Reimand J, Bader GD, Sawicki JA, Kotula L. Disruption of Abi1/Hssh3bp1 expression induces prostatic intraepithelial neoplasia in the conditional Abi1/Hssh3bp1 KO mice. Oncogenesis 2012; 1:e26. [PMID: 23552839 PMCID: PMC3503296 DOI: 10.1038/oncsis.2012.28] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/10/2012] [Accepted: 07/31/2012] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is one of the leading causes of cancer-related deaths in the United States and a leading diagnosed non-skin cancer in American men. Genetic mutations underlying prostate tumorigenesis include alterations of tumor suppressor genes. We tested the tumor suppressor hypothesis for ABI1/hSSH3BP1 by searching for gene mutations in primary prostate tumors from patients, and by analyzing the consequences of prostate-specific disruption of the mouse Abi1/Hssh3bp1 ortholog. We sequenced the ABI1/hSSH3BP1 gene and identified recurring mutations in 6 out of 35 prostate tumors. Moreover, complementation and anchorage-independent growth, proliferation, cellular adhesion and xenograft assays using the LNCaP cell line, which contains a loss-of-function Abi1 mutation, and a stably expressed wild-type or mutated ABI gene, were consistent with the tumor suppressor hypothesis. To test the hypothesis further, we disrupted the gene in the mouse prostate by breeding the Abi1 floxed strain with the probasin promoter-driven Cre recombinase strain. Histopathological evaluation of mice indicated development of prostatic intraepithelial neoplasia (PIN) in Abi1/Hssh3bp1 knockout mouse as early as the eighth month, but no progression beyond PIN was observed in mice as old as 12 months. Observed decreased levels of E-cadherin, β-catenin and WAVE2 in mouse prostate suggest abnormal cellular adhesion as the mechanism underlying PIN development owing to Abi1 disruption. Analysis of syngeneic cell lines point to the possibility that upregulation of phospho-Akt underlies the enhanced cellular proliferation phenotype of cells lacking Abi1. This study provides proof-of-concept for the hypothesis that Abi1 downregulation has a role in the development of prostate cancer.
Collapse
Affiliation(s)
- X Xiong
- Laboratory of Cell Signaling, New York Blood Center, New York, NY, USA
| | - A Chorzalska
- Laboratory of Cell Signaling, New York Blood Center, New York, NY, USA
| | - P M Dubielecka
- Laboratory of Cell Signaling, New York Blood Center, New York, NY, USA
| | - J R White
- Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Y Vedvyas
- Laboratory of Cell Signaling, New York Blood Center, New York, NY, USA
| | - C V Hedvat
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - A Haimovitz-Friedman
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - J A Koutcher
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - J Reimand
- The Donnelly Center for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - G D Bader
- The Donnelly Center for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - J A Sawicki
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | - L Kotula
- Laboratory of Cell Signaling, New York Blood Center, New York, NY, USA
| |
Collapse
|
12
|
Kotula L. Abi1, a critical molecule coordinating actin cytoskeleton reorganization with PI-3 kinase and growth signaling. FEBS Lett 2012; 586:2790-4. [PMID: 22617151 DOI: 10.1016/j.febslet.2012.05.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/10/2012] [Accepted: 05/10/2012] [Indexed: 12/24/2022]
Abstract
Coordination of actin cytoskeletal reorganization with growth and proliferation signals is a key cellular process that is not fully understood. PI-3 kinase is one of the central nodes for distributing growth and proliferation signals downstream from growth factor receptors to the nucleus. Although PI-3 kinase function has been associated with actin cytoskeleton remodeling, satisfactory explanations of the mechanisms mediating this regulation have been elusive. Here we propose that interaction of the Abi1 protein with the p85 regulatory subunit of PI-3 kinase represents the link between growth receptor signaling and actin cytoskeleton remodeling. This function of Abi1, which involves WAVE complex, was initially observed in macropinocytosis, and may explain the coincident dysregulation of PI-3 kinase and actin cytoskeleton in cancer.
Collapse
Affiliation(s)
- Leszek Kotula
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| |
Collapse
|
13
|
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 2012; 92:273-366. [PMID: 22298658 DOI: 10.1152/physrev.00005.2011] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of endocytosis has evolved remarkably in little more than a decade. This is the result not only of advances in our knowledge of its molecular and biological workings, but also of a true paradigm shift in our understanding of what really constitutes endocytosis and of its role in homeostasis. Although endocytosis was initially discovered and studied as a relatively simple process to transport molecules across the plasma membrane, it was subsequently found to be inextricably linked with almost all aspects of cellular signaling. This led to the notion that endocytosis is actually the master organizer of cellular signaling, providing the cell with understandable messages that have been resolved in space and time. In essence, endocytosis provides the communications and supply routes (the logistics) of the cell. Although this may seem revolutionary, it is still likely to be only a small part of the entire story. A wealth of new evidence is uncovering the surprisingly pervasive nature of endocytosis in essentially all aspects of cellular regulation. In addition, many newly discovered functions of endocytic proteins are not immediately interpretable within the classical view of endocytosis. A possible framework, to rationalize all this new knowledge, requires us to "upgrade" our vision of endocytosis. By combining the analysis of biochemical, biological, and evolutionary evidence, we propose herein that endocytosis constitutes one of the major enabling conditions that in the history of life permitted the development of a higher level of organization, leading to the actuation of the eukaryotic cell plan.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Thompson VC, Day TK, Bianco-Miotto T, Selth LA, Han G, Thomas M, Buchanan G, Scher HI, Nelson CC, Greenberg NM, Butler LM, Tilley WD. A gene signature identified using a mouse model of androgen receptor-dependent prostate cancer predicts biochemical relapse in human disease. Int J Cancer 2012; 131:662-72. [DOI: 10.1002/ijc.26414] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 08/23/2011] [Indexed: 01/01/2023]
|
15
|
Ramalingam S, Ramamoorthy P, Subramaniam D, Anant S. Reduced Expression of RNA Binding Protein CELF2, a Putative Tumor Suppressor Gene in Colon Cancer. ACTA ACUST UNITED AC 2012; 1:27-33. [PMID: 23795348 DOI: 10.7178/ig.1.1.7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS Colon cancer is the third leading cause of cancer death in both men and women in the United States. Every year, 160000 cases of colorectal cancer are diagnosed, and 57000 patients die. CUGBP, Elav-like family member 2 (CELF2) is an RNA binding protein that modulates various posttranscriptional events including RNA splicing, shuttling, editing, stability and translation. Previous studies have demonstrated that CELF2 expression is low in colon cancer cells. Furthermore, ectopic overexpression of CELF2 induces cells to undergo death by mitotic catastrophe. Based on the above observations, we hypothesized that CELF2 expression might be reduced during neoplastic transformation of colon cells. METHODS Forty human colon cancer tissues along with 10 uninvolved normal colon tissues from cancer patients were utilized for immunohistochemical analysis of CELF2 expression. RESULTS We have observed that CELF2 levels are reduced in colon tumor tissues when compared to the normal intestinal tissues. The data set suggests that RNA binding protein CELF2 could be a potential tumor suppressor protein. CELF2 was predominantly nuclear in normal cells, while the cancer tissues had diffused cytoplasmic staining. CONCLUSION CELF2 expression is consistently reduced during neoplastic transformation suggesting that it might play a crucial role in tumor initiation and progression.
Collapse
Affiliation(s)
- Satish Ramalingam
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas, USA ; Kansas University Cancer Center, University of Kansas Medical Center, Kansas, USA
| | | | | | | |
Collapse
|
16
|
Expression of Abl interactor 1 and its prognostic significance in breast cancer: a tissue-array-based investigation. Breast Cancer Res Treat 2010; 129:373-86. [PMID: 21046228 DOI: 10.1007/s10549-010-1241-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 10/21/2010] [Indexed: 01/18/2023]
Abstract
Abl interactor 1 (Abi1) is an adaptor protein involved in cell migration. Previous in vitro work suggested that Abi1 is a regulator of breast cancer proliferation, migration, and invasion. In the present study, we explore the expression of Abi1 and its downstream effector phospho-Akt (p-Akt) in a series of breast cancers and correlate their expression with clinicopathological and survival data. Using tissue microarrays, 988 patients with invasive breast carcinoma were evaluated by immunohistochemistry. Statistical correlation was performed to determine associations between Abi1 and p-Akt expression and standard breast clinicopathological factors. The prognostic value of Abi1 and p-Akt for disease-free (DFS) and overall survival (OS) was also evaluated. Abi1 expression was demonstrated in 33.7% (314/933) of invasive carcinomas, while p-Akt was expressed in 46.7% (441/944). There was a significant association between Abi1 and p-Akt expression (P=0.001). Abi1 expression showed significant positive correlation with older age at diagnosis and the Ki67 index. Most importantly, it was demonstrated to be an independent predictor of both DFS and OS (HR = 1.6 and 1.5, P<0.001, respectively). There was no association between p-Akt expression and survival. To the best of our knowledge, this is the first study evaluating Abi1 expression in a large group of breast cancers. Our analysis demonstrated that tumors expressing high levels of Abi1 are significantly associated with early recurrence and worse survival on multivariate analysis. This suggests that Abi1 expression has potential as a molecular marker to refine outcome prediction in breast cancer patients.
Collapse
|
17
|
Cui M, Yu W, Dong J, Chen J, Zhang X, Liu Y. Downregulation of ABI1 expression affects the progression and prognosis of human gastric carcinoma. Med Oncol 2010; 27:632-639. [PMID: 19554484 DOI: 10.1007/s12032-009-9260-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 06/15/2009] [Indexed: 01/24/2023]
Abstract
Abelson interactor protein-1 (ABI1) is a promising candidate tumor suppressor, and plays critical roles both in the pathogenesis of BCR-Abl-induced leukemia and in the spread of several solid tumors. The expression of ABI1 and its role in cancer progression and prognosis are largely unknown in the majority of solid tumors, including gastric cancer. In this study, we analyzed the correlation between ABI1 expression and the clinicopathological characteristics, tumor progression, and prognosis of patients with gastric carcinoma. Tissue specimens were from 103 gastric cancer patients who underwent gastrectomy in our hospital between January 2000 and December 2007. Among them 59 tumor tissue samples were matched with normal tissue samples. The expression of ABI1 protein was measured using immunohistochemical staining of paraffin-embedded tissue specimens. Meanwhile, quantitative real-time RT-PCR and Western blotting were used to identify the expression of ABI1 in human gastric normal mucosal cell line (GES-1) and gastric cancer cell lines (N87, AGS). We performed a statistical analysis of the potential correlation between ABI1 expression and the patients' clinicopathological characteristics, 5-year survival, and median survival time. The immunohistochemical staining results of 59 patients showed that ABI1 was expressed in 28.8% (17/59) of gastric cancer tissues, compared to 91.5% (54/59) of normal samples. ABI1 expression in 103 patients was strongly correlated with tumor differentiation, clinical stage, and lymph node status (P < 0.01). The 5-year survival rate was 15.3% in the ABI1-negative group and 63.7% in the ABI1-positive group. Median survival time in the ABI1-negative and ABI1-positive groups was 25.0 months (95% CI: 19.7-30.3) and 74.0 months (95% CI: 54.6-93.3), respectively. There was a significant difference between the two groups (chi(2) = 10.888, P = 0.001). Furthermore, we found that ABI1 expressed lowly in poor differentiated AGS, whereas highly in GES-1 and well-differentiated N87. Downregulation of ABI1 expression in human gastric carcinoma may play a critical role in tumor progression and in determining patient prognosis. ABI1 may be a useful diagnostic or prognostic molecular biomarker, and might be a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Meihua Cui
- Department of Gastroenterology, People's Hospital, Peking University, 100044, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Dubielecka PM, Cui P, Xiong X, Hossain S, Heck S, Angelov L, Kotula L. Differential regulation of macropinocytosis by Abi1/Hssh3bp1 isoforms. PLoS One 2010; 5:e10430. [PMID: 20479892 PMCID: PMC2866655 DOI: 10.1371/journal.pone.0010430] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 04/07/2010] [Indexed: 12/17/2022] Open
Abstract
Background Macropinocytosis, which is a constitutive cellular process of fluid and macromolecule uptake, is regulated by actin cytoskeleton rearrangements near the plasma membrane. Activation of Rac1, which is proposed to act upstream of the actin polymerization regulatory Wave 2 complex, has been found to correlate with enhanced macropinocytosis. One of the components of the Wave 2 complex is Abi1. Multiple, alternatively spliced isoforms of Abi1 are expressed in mammalian cells, but the functional significance of the various isoforms is unknown. Principal Findings Here, using flow cytometric assay analysis for Alexa Fluor 647, we demonstrate that Abi1 isoforms 2 and 3 differentially regulate macropinocytosis. LNCaP cells expressing isoform 3 had increased macropinocytic uptake that correlated with enhanced cell spreading and higher Rac1 activation in comparison to cells expressing isoform 2. Isoform 2 expressing cells had decreased macropinocytic uptake, but demonstrated greater sensitivity to Rac1 activation. Moreover, more isoform 2 was localized within the cytoplasm in comparison to isoform 3, which was more associated with the plasma membrane. Activated Rac1 was found to specifically bind to a site in exon 10 of isoform 2 in vitro. Because of alternative mRNA splicing, exon 10 is absent from isoform 3, precluding similar binding of activated Rac1. Both isoforms, however, bound to inactive Rac1 through the same non-exon 10 site. Thus, Abi1 isoform 3-containing Wave 2 complex exhibited a differential binding to activated vs. inactive Rac1, whereas isoform 2-containing Wave 2 complex bound activated or inactive Rac1 comparably. Conclusion Based on these observations, we postulate that Abi1 isoforms differentially regulate macropinocytosis as a consequence of their different relative affinities for activated Rac1 in Wave 2 complex. These findings also raise the possibility that isoform-specific roles occur in other Abi1 functions.
Collapse
Affiliation(s)
- Patrycja M. Dubielecka
- Laboratory of Cell Signaling, New York Blood Center, New York, New York, United States of America
| | - Ping Cui
- Laboratory of Cell Signaling, New York Blood Center, New York, New York, United States of America
| | - Xiaoling Xiong
- Laboratory of Cell Signaling, New York Blood Center, New York, New York, United States of America
| | - Sajjad Hossain
- Laboratory of Cell Signaling, New York Blood Center, New York, New York, United States of America
| | - Susanne Heck
- Flow Cytometry Core, New York Blood Center, New York, New York, United States of America
| | - Lyudmil Angelov
- Confocal Microscopy Laboratory, New York Blood Center, New York, New York, United States of America
| | - Leszek Kotula
- Laboratory of Cell Signaling, New York Blood Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Xiong X, Cui P, Hossain S, Xu R, Warner B, Guo X, An X, Debnath AK, Cowburn D, Kotula L. Allosteric inhibition of the nonMyristoylated c-Abl tyrosine kinase by phosphopeptides derived from Abi1/Hssh3bp1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:737-47. [PMID: 18328268 DOI: 10.1016/j.bbamcr.2008.01.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 01/09/2008] [Accepted: 01/28/2008] [Indexed: 11/25/2022]
Abstract
Here we report c-Abl kinase inhibition mediated by a phosphotyrosine located in trans in the c-Abl substrate, Abi1. The mechanism, which is pertinent to the nonmyristoylated c-Abl kinase, involves high affinity concurrent binding of the phosphotyrosine pY213 to the Abl SH2 domain and binding of a proximal PXXP motif to the Abl SH3 domain. Abi1 regulation of c-Abl in vivo appears to play a critical role, as demonstrated by inhibition of pY412 phosphorylation of the nonmyristoylated Abl by coexpression of Abi1. Pervanadate-induced c-Abl kinase activity was also reduced upon expression of the wild type Abi1 but not by expression of the Y213 to F213 mutant Abi1 in LNCaP cells, which are naturally deficient in the regulatory pY213. Our findings suggest a novel mechanism by which Abl kinase is regulated in cells.
Collapse
Affiliation(s)
- Xiaoling Xiong
- Laboratory of Cell Signaling, New York Blood Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang C, Navab R, Iakovlev V, Leng Y, Zhang J, Tsao MS, Siminovitch K, McCready DR, Done SJ. Abelson interactor protein-1 positively regulates breast cancer cell proliferation, migration, and invasion. Mol Cancer Res 2007; 5:1031-9. [PMID: 17951403 DOI: 10.1158/1541-7786.mcr-06-0391] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abelson interactor protein-1 (ABI-1) is an adaptor protein involved in actin reorganization and lamellipodia formation. It forms a macromolecular complex containing Hspc300/WASP family verprolin-homologous proteins 2/ABI-1/nucleosome assembly protein 1/PIR121 or Abl/ABI-1/WASP family verprolin-homologous proteins 2 in response to Rho family-dependent stimuli. Due to its role in cell mobility, we hypothesized that ABI-1 has a role in invasion and metastasis. In the present study, we found that weakly invasive breast cancer cell lines (MCF-7, T47D, MDA-MB-468, SKBR3, and CAMA1) express lower levels of ABI-1 compared with highly invasive breast cancer cell lines (MDA-MB-231, MDA-MB-157, BT549, and Hs578T), which exhibit high ABI-1 levels. Using RNA interference, ABI-1 was stably down-regulated in MDA-MB-231, which resulted in decreased cell proliferation and anchorage-dependent colony formation and abrogation of lamellipodia formation on fibronectin. Down-regulation of ABI-1 decreased invasiveness and migration ability and decreased adhesion on collagen IV and actin polymerization in MDA-MB-231 cells. Additionally, compared with control parental cells, ABI-1 small interfering RNA-transfected cells showed decreased levels of phospho-PDK1, phospho-Raf, phospho-AKT, total AKT, and AKT1. These data suggest that ABI-1 plays an important role in the spread of breast cancer and that this role may be mediated via the phosphatidylinositol 3-kinase pathway.
Collapse
Affiliation(s)
- Chunjie Wang
- Division of Applied Molecular Oncology, Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
BACKGROUND Carcinoma of the prostate (CaP) is the most commonly diagnosed cancer in men in the United States. Signal transduction molecules such as tyrosine kinases play important roles in CaP. Src, a nonreceptor tyrosine kinase (NRTK) and the first proto-oncogene discovered is shown to participate in processes such as cell proliferation and migration in CaP. Underscoring NRTK's and, specifically, Src's importance in cancer is the recent approval by the US Food and Drug Administration of dasatinib, the first commercial Src inhibitor for clinical use in chronic myelogenous leukemia (CML). In this review we will focus on NRTKs and their roles in the biology of CaP. MATERIALS AND METHODS Publicly available literature from PubMed regarding the topic of members of NRTKs in CaP was searched and reviewed. RESULTS Src, FAK, JaK1/2, and ETK are involved in processes indispensable to the biology of CaP: cell growth, migration, invasion, angiogenesis, and apoptosis. CONCLUSIONS Src emerges as a common signaling and regulatory molecule in multiple biological processes in CaP. Src's relative importance in particular stages of CaP, however, required further definition. Continued investigation of NRTKs will increase our understanding of their biological function and potential role as new therapeutic targets.
Collapse
Affiliation(s)
- Yu-Ming Chang
- Department of Urology, University of California at Davis, Sacramento, CA 95817, USA
| | | | | |
Collapse
|
22
|
Williams JA, MacIver B, Klipfell EA, Thomas GH. The C-terminal domain ofDrosophilaβHeavy-spectrin exhibits autonomous membrane association and modulates membrane area. J Cell Sci 2004; 117:771-82. [PMID: 14734656 DOI: 10.1242/jcs.00922] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Current models of cell polarity invoke asymmetric cues that reorganize the secretory apparatus to induce polarized protein delivery. An important step in this process is the stabilization of the protein composition in each polarized membrane domain. The spectrin-based membrane skeleton is thought to contribute to such stabilization by increasing the half-life of many proteins at the cell surface. Genetic evidence is consistent with a negative role for Drosophila βHeavy-spectrin in endocytosis, but the inhibitory mechanism has not been elucidated. Here, we investigated the membrane binding properties of the C-terminal nonrepetitive domain of βHeavy-spectrin through its in vivo expression in transgenic flies. We found that this region is a membrane-association domain that requires a pleckstrin homology domain for full activity, and we showed for the first time that robust membrane binding by such a C-terminal domain requires additional contributions outside the pleckstrin homology. In addition, we showed that expression of the βHeavy-spectrin C-terminal domain has a potent effect on epithelial morphogenesis. This effect is associated with its ability to induce an expansion in plasma membrane surface area. The membrane expansions adopt a very specific bi-membrane structure that sequesters both the C-terminal domain and the endocytic protein dynamin. Our data provide supporting evidence for the inhibition of endocytosis by βHeavy-spectrin, and suggest that the C-terminal domain mediates this effect through interaction with the endocytic machinery. Spectrin may be an active partner in the stabilization of polarized membrane domains.
Collapse
Affiliation(s)
- Janice A Williams
- Department of Biology, Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|