1
|
Hopkins SC, Toongsuwan S, Corriveau TJ, Watanabe T, Tsushima Y, Asada T, Lew R, Shi L, Zann V, Snowden TJ, van der Graaf PH, Darpo B, Searle GE, Rabiner EA, Wilding I, Szabo ST, Galluppi GR, Koblan KS. Discovery and Model-Informed Drug Development of a Controlled-Release Formulation of Nonracemic Amisulpride that Reduces Plasma Exposure but Achieves Pharmacodynamic Bioequivalence in the Brain. Clin Pharmacol Ther 2024; 116:460-470. [PMID: 38822554 DOI: 10.1002/cpt.3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024]
Abstract
Nonracemic amisulpride (SEP-4199) is an investigational 85:15 ratio of aramisulpride to esamisulpride and currently in clinical trials for the treatment of bipolar depression. During testing of SEP-4199, a pharmacokinetic/pharmacodynamic (PK/PD) disconnect was discovered that prompted the development of a controlled-release (CR) formulation with improved therapeutic index for QT prolongation. Observations that supported the development of a CR formulation included (i) plasma concentrations of amisulpride enantiomers were cleared within 24-hours, but brain dopamine D2 receptor (D2R) occupancies, although achieving stable levels during this time, required 5 days to return to baseline; (ii) nonracemic amisulpride administered to non-human primates produced significantly greater D2R occupancies during a gradual 6-hour administration compared with a single bolus; (iii) concentration-occupancy curves were left-shifted in humans when nonracemic amisulpride was gradually administered over 3 and 6 hours compared with immediate delivery; (iv) CR solid oral dose formulations of nonracemic amisulpride were able to slow drug dissolution in vitro and reduce peak plasma exposures in vivo in human subjects. By mathematically solving for a drug distribution step into an effect compartment, and for binding to target receptors, the discovery of a novel PK/PD model (termed here as Distribution Model) accounted for hysteresis between plasma and brain, a lack of receptor saturation, and an absence of accumulation of drug occupancy with daily doses. The PK/PD disconnect solved by the Distribution Model provided model-informed drug development to continue in Phase III using the non-bioequivalent CR formulation with diminished QT prolongation as dose-equivalent to the immediate release (IR) formulation utilized in Phase II.
Collapse
Affiliation(s)
- Seth C Hopkins
- Sumitomo Pharma America, Inc., Marlborough, Massachusetts, USA
| | | | | | - Takao Watanabe
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Yuki Tsushima
- Technology Research & Development Division, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Takumi Asada
- Technology Research & Development Division, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Robert Lew
- Sumitomo Pharma America, Inc., Marlborough, Massachusetts, USA
| | - Lei Shi
- Sumitomo Pharma America, Inc., Marlborough, Massachusetts, USA
| | | | - Thomas J Snowden
- Certara QSP, University of Kent Innovation Centre, Canterbury, UK
| | | | | | | | | | - Ian Wilding
- Ian Wilding Associates Limited, Nottingham, UK
| | - Steven T Szabo
- Sumitomo Pharma America, Inc., Marlborough, Massachusetts, USA
| | | | | |
Collapse
|
2
|
de Bartolomeis A, Vellucci L, Barone A, Manchia M, De Luca V, Iasevoli F, Correll CU. Clozapine's multiple cellular mechanisms: What do we know after more than fifty years? A systematic review and critical assessment of translational mechanisms relevant for innovative strategies in treatment-resistant schizophrenia. Pharmacol Ther 2022; 236:108236. [PMID: 35764175 DOI: 10.1016/j.pharmthera.2022.108236] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
Almost fifty years after its first introduction into clinical care, clozapine remains the only evidence-based pharmacological option for treatment-resistant schizophrenia (TRS), which affects approximately 30% of patients with schizophrenia. Despite the long-time experience with clozapine, the specific mechanism of action (MOA) responsible for its superior efficacy among antipsychotics is still elusive, both at the receptor and intracellular signaling level. This systematic review is aimed at critically assessing the role and specific relevance of clozapine's multimodal actions, dissecting those mechanisms that under a translational perspective could shed light on molecular targets worth to be considered for further innovative antipsychotic development. In vivo and in vitro preclinical findings, supported by innovative techniques and methods, together with pharmacogenomic and in vivo functional studies, point to multiple and possibly overlapping MOAs. To better explore this crucial issue, the specific affinity for 5-HT2R, D1R, α2c, and muscarinic receptors, the relatively low occupancy at dopamine D2R, the interaction with receptor dimers, as well as the potential confounder effects resulting in biased ligand action, and lastly, the role of the moiety responsible for lipophilic and alkaline features of clozapine are highlighted. Finally, the role of transcription and protein changes at the synaptic level, and the possibility that clozapine can directly impact synaptic architecture are addressed. Although clozapine's exact MOAs that contribute to its unique efficacy and some of its severe adverse effects have not been fully understood, relevant information can be gleaned from recent mechanistic understandings that may help design much needed additional therapeutic strategies for TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| |
Collapse
|
3
|
Arzuk E, Karakuş F, Orhan H. Bioactivation of clozapine by mitochondria of the murine heart: Possible cause of cardiotoxicity. Toxicology 2020; 447:152628. [PMID: 33166605 DOI: 10.1016/j.tox.2020.152628] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 01/11/2023]
Abstract
The mechanism of clozapine-associated cardiotoxicity has not been elucidated. The formation of a reactive nitrenium ion from the drug has been suggested as the cause, however, the reason why the heart is a target remains unknown. The heart is one of the most perfused organs; therefore, it contains a large number of mitochondria per cell; these organelles are responsible for both oxygen metabolism and energy production due to high energy expenditure. Given that mitochondria play critical roles in cellular homeostasis and maintenance, this study tested the hypothesis that cardiac mitochondria are both a target and initiator of clozapine-induced cardiotoxicity through activating the drug. We investigated whether murine heart receives a relatively high amount of systemically administered drug (20 mg/kg, i.p., Wistar albino rats) and whether cardiac mice (Swiss albino) and rat (Wistar albino) mitochondria locally activate clozapine (100 μM) to a reactive metabolite. We observed a relatively large distribution of clozapine to heart tissue as well as the formation of reactive metabolites by cardiac mitochondria in situ. Mitochondrial cytochrome P450 enzymes (CYP) in cardiac tissue responsible for biotransformation of clozapine were also characterized. CYP3A4 has been found to be the major enzyme catalyzes CLZ bioactivation, while CYP1A largely and CYP3A4 partially catalyzes the formation of stable metabolites of CLZ. At 100 μM concentration, clozapine caused a significant decline in mitochondrial oxygen consumption rate in vitro as much as positive control (antimycin A), while it did not induce mitochondrial permeability transition pore opening. These data provide an explanation as to why the heart is a target for clozapine adverse effects.
Collapse
Affiliation(s)
- Ege Arzuk
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35040 Bornova-İzmir, Turkey
| | - Fuat Karakuş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35040 Bornova-İzmir, Turkey
| | - Hilmi Orhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35040 Bornova-İzmir, Turkey.
| |
Collapse
|
4
|
Sekhar GN, Fleckney AL, Boyanova ST, Rupawala H, Lo R, Wang H, Farag DB, Rahman KM, Broadstock M, Reeves S, Thomas SA. Region-specific blood-brain barrier transporter changes leads to increased sensitivity to amisulpride in Alzheimer's disease. Fluids Barriers CNS 2019; 16:38. [PMID: 31842924 PMCID: PMC6915870 DOI: 10.1186/s12987-019-0158-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Research into amisulpride use in Alzheimer's disease (AD) implicates blood-brain barrier (BBB) dysfunction in antipsychotic sensitivity. Research into BBB transporters has been mainly directed towards the ABC superfamily, however, solute carrier (SLC) function in AD has not been widely studied. This study tests the hypothesis that transporters for organic cations contribute to the BBB delivery of the antipsychotics (amisulpride and haloperidol) and is disrupted in AD. METHODS The accumulation of [3H]amisulpride (3.7-7.7 nM) and [3H]haloperidol (10 nM) in human (hCMEC/D3) and mouse (bEnd.3) brain endothelial cell lines was explored. Computational approaches examined molecular level interactions of both drugs with the SLC transporters [organic cation transporter 1 (OCT1), plasma membrane monoamine transporter (PMAT) and multi-drug and toxic compound extrusion proteins (MATE1)] and amisulpride with the ABC transporter (P-glycoprotein). The distribution of [3H]amisulpride in wildtype and 3×transgenic AD mice was examined using in situ brain perfusion experiments. Western blots determined transporter expression in mouse and human brain capillaries . RESULTS In vitro BBB and in silico transporter studies indicated that [3H]amisulpride and [3H]haloperidol were transported by the influx transporter, OCT1, and efflux transporters MATE1 and PMAT. Amisulpride did not have a strong interaction with OCTN1, OCTN2, P-gp, BCRP or MRP and could not be described as a substrate for these transporters. Amisulpride brain uptake was increased in AD mice compared to wildtype mice, but vascular space was unaffected. There were no measurable changes in the expression of MATE1, MATE2, PMAT OCT1, OCT2, OCT3, OCTN1, OCTN2 and P-gp in capillaries isolated from whole brain homogenates from the AD mice compared to wildtype mice. Although, PMAT and MATE1 expression was reduced in capillaries obtained from specific human brain regions (i.e. putamen and caudate) from AD cases (Braak stage V-VI) compared to age matched controls (Braak stage 0-II). CONCLUSIONS Together our research indicates that the increased sensitivity of individuals with Alzheimer's to amisulpride is related to previously unreported changes in function and expression of SLC transporters at the BBB (in particular PMAT and MATE1). Dose adjustments may be required for drugs that are substrates of these transporters when prescribing for individuals with AD.
Collapse
Affiliation(s)
- Gayathri Nair Sekhar
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Alice L Fleckney
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Sevda Tomova Boyanova
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Huzefa Rupawala
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Rachel Lo
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Hao Wang
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Doaa B Farag
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
- Faculty of Pharmacy, Misr International University, Cairo, 11431, Egypt
| | - Khondaker Miraz Rahman
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK
| | - Martin Broadstock
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 125 Coldharbour Lane, Camberwell, London, SE5 9N, UK
| | - Suzanne Reeves
- Division of Psychiatry, Faculty of Brain Sciences, University College London, 149 Tottenham Court Road, London, W1T 7NF, UK
| | - Sarah Ann Thomas
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, Waterloo, London, SE1 9NH, UK.
| |
Collapse
|
5
|
Schoretsanitis G, Kane JM, Ruan CJ, Spina E, Hiemke C, de Leon J. A comprehensive review of the clinical utility of and a combined analysis of the clozapine/norclozapine ratio in therapeutic drug monitoring for adult patients. Expert Rev Clin Pharmacol 2019; 12:603-621. [PMID: 31075044 DOI: 10.1080/17512433.2019.1617695] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Georgios Schoretsanitis
- Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, NY, USA
- Hofstra Northwell School of Medicine, Hempstead, NY, USA
- Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - John M. Kane
- Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, NY, USA
- Hofstra Northwell School of Medicine, Hempstead, NY, USA
- Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Can-Jun Ruan
- Laboratory of Clinical Psychopharmacology & The National Clinical Research Centre for Mental Disorders & Beijing Key Lab of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center of Mainz, Mainz, Germany
| | - Jose de Leon
- University of Kentucky Mental Health Research Center at Eastern State Hospital, Lexington, KY, USA
- Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain
- Biomedical Research Centre in Mental Health Net (CIBERSAM), Santiago Apostol Hospital, University of the Basque Country, Vitoria, Spain
| |
Collapse
|
6
|
Serotonergic, Dopaminergic, and Noradrenergic Modulation of Erotic Stimulus Processing in the Male Human Brain. J Clin Med 2019; 8:jcm8030363. [PMID: 30875818 PMCID: PMC6463265 DOI: 10.3390/jcm8030363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 01/23/2023] Open
Abstract
Human sexual behavior is mediated by a complex interplay of cerebral and spinal centers, as well as hormonal, peripheral, and autonomic functions. Neuroimaging studies identified central neural signatures of human sexual responses comprising neural emotional, motivational, autonomic, and cognitive components. However, empirical evidence regarding the neuromodulation of these neural signatures of human sexual responses was scarce for decades. Pharmacological functional magnetic resonance imaging (fMRI) provides a valuable tool to examine the interaction between neuromodulator systems and functional network anatomy relevant for human sexual behavior. In addition, this approach enables the examination of potential neural mechanisms regarding treatment-related sexual dysfunction under psychopharmacological agents. In this article, we introduce common neurobiological concepts regarding cerebral sexual responses based on neuroimaging findings and we discuss challenges and findings regarding investigating the neuromodulation of neural sexual stimulus processing. In particular, we summarize findings from our research program investigating how neural correlates of sexual stimulus processing are modulated by serotonergic, dopaminergic, and noradrenergic antidepressant medication in healthy males.
Collapse
|
7
|
Lorke DE, Petroianu GA. Reversible cholinesterase inhibitors as pretreatment for exposure to organophosphates. A review. J Appl Toxicol 2018; 39:101-116. [PMID: 30027640 DOI: 10.1002/jat.3662] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 01/04/2023]
Abstract
Organophosphorus compounds (OPCs), inhibitors of acetylcholinesterase (AChE), are useful agents as pesticides, but also represent a serious health hazard. Standard therapy with atropine and established oxime-type enzyme reactivators (pralidoxime, obidoxime) is unsatisfactory. Better therapeutic results are obtained, when reversible AChE inhibitors are administered before OPC exposure. This review summarizes the history of such a pretreatment approach and sums up a set of experiments undertaken in search of compounds that are efficacious when given before a broad range of OPCs. The prophylactic efficacy of 10 known AChE inhibitors, either already used clinically for different indications (physostigmine, pyridostigmine, ranitidine, tiapride, tacrine, amiloride, metoclopramide, methylene blue) or developed for possible therapeutic use in the future (7-methoxytacrine, K-27) was compared, when administered before exposure to six chemically diverse OPCs in the same experimental setting: ethyl-paraoxon, methyl-paraoxon, diisopropylfluorophosphate, terbufos sulfone, azinphos-methyl and dicrotophos. The experimental oxime K-27 was the most efficacious compound, affording best protection, when administered before terbufos sulfone, azinphos-methyl and dicrotophos, second best before ethyl- and methyl-paraoxon exposure and third best before diisopropylfluorophosphate administration. This ranking was similar to that of physostigmine, which was superior to the Food and Drug Administration-approved pretreatment for soman with pyridostigmine. Tiapride, amiloride, metoclopramide, methylene blue and 7-methoxytacrine did not achieve protection. No correlation was observed between the IC50 of the reversible AChE inhibitors and their protective efficacy. These studies indicate that K-27 can be considered a very promising broad-spectrum prophylactic agent in case of imminent organophosphate exposure, which may be related to its AChE reactivating activity rather than its AChE inhibition.
Collapse
Affiliation(s)
- Dietrich E Lorke
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Georg A Petroianu
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
8
|
Dickens D, Rädisch S, Chiduza GN, Giannoudis A, Cross MJ, Malik H, Schaeffeler E, Sison-Young RL, Wilkinson EL, Goldring CE, Schwab M, Pirmohamed M, Nies AT. Cellular Uptake of the Atypical Antipsychotic Clozapine Is a Carrier-Mediated Process. Mol Pharm 2018; 15:3557-3572. [PMID: 29944835 DOI: 10.1021/acs.molpharmaceut.8b00547] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The weak base antipsychotic clozapine is the most effective medication for treating refractory schizophrenia. The brain-to-plasma concentration of unbound clozapine is greater than unity, indicating transporter-mediated uptake, which has been insufficiently studied. This is important, because it could have a significant impact on clozapine's efficacy, drug-drug interaction, and safety profile. A major limitation of clozapine's use is the risk of clozapine-induced agranulocytosis/granulocytopenia (CIAG), which is a rare but severe hematological adverse drug reaction. We first studied the uptake of clozapine into human brain endothelial cells (hCMEC/D3). Clozapine uptake into cells was consistent with a carrier-mediated process, which was time-dependent and saturable ( Vmax = 3299 pmol/million cells/min, Km = 35.9 μM). The chemical inhibitors lamotrigine, quetiapine, olanzapine, prazosin, verapamil, indatraline, and chlorpromazine reduced the uptake of clozapine by up to 95%. This could in part explain the in vivo interactions observed in rodents or humans for these compounds. An extensive set of studies utilizing transporter-overexpressing cell lines and siRNA-mediated transporter knockdown in hCMEC/D3 cells showed that clozapine was not a substrate of OCT1 (SLC22A1), OCT3 (SLC22A3), OCTN1 (SLC22A4), OCTN2 (SLC22A5), ENT1 (SLC29A1), ENT2 (SLC29A2), and ENT4/PMAT (SLC29A4). In a recent genome-wide analysis, the hepatic uptake transporters SLCO1B1 (OATP1B1) and SLCO1B3 (OATP1B3) were identified as additional candidate transporters. We therefore also investigated clozapine transport into OATP1B-transfected cells and found that clozapine was neither a substrate nor an inhibitor of OATP1B1 and OATP1B3. In summary, we have identified a carrier-mediated process for clozapine uptake into brain, which may be partly responsible for clozapine's high unbound accumulation in the brain and its drug-drug interaction profile. Cellular clozapine uptake is independent from currently known drug transporters, and thus, molecular identification of the clozapine transporter will help to understand clozapine's efficacy and safety profile.
Collapse
Affiliation(s)
- David Dickens
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GL , U.K
| | - Steffen Rädisch
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GL , U.K
| | - George N Chiduza
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GL , U.K
| | - Athina Giannoudis
- Department of Molecular and Clinical Cancer Medicine , University of Liverpool , Liverpool L69 3BX , U.K
| | - Michael J Cross
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GL , U.K
| | - Hassan Malik
- Liverpool Hepatobiliary Unit , University Hospital Aintree , Liverpool L9 7AL , U.K
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology , 70376 Stuttgart , Germany.,University Tübingen , Tübingen , Germany
| | - Rowena L Sison-Young
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GL , U.K
| | - Emma L Wilkinson
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GL , U.K
| | - Christopher E Goldring
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GL , U.K
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology , 70376 Stuttgart , Germany.,Department of Clinical Pharmacology , University Hospital Tübingen , 72076 Tubingen , Germany.,Department of Pharmacy and Biochemistry , University Tübingen , 72076 Tübingen , Germany
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GL , U.K
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology , 70376 Stuttgart , Germany.,University Tübingen , Tübingen , Germany
| |
Collapse
|
9
|
Skrobecki P, Chmielińska A, Bonarek P, Stepien P, Wisniewska-Becker A, Dziedzicka-Wasylewska M, Polit A. Sulpiride, Amisulpride, Thioridazine, and Olanzapine: Interaction with Model Membranes. Thermodynamic and Structural Aspects. ACS Chem Neurosci 2017; 8:1543-1553. [PMID: 28375612 DOI: 10.1021/acschemneuro.7b00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neuroleptic drugs are widely applied in effective treatment of schizophrenia and related disorders. The lipophilic character of neuroleptics means that they tend to accumulate in the lipid membranes, impacting their functioning and processing. In this paper, the effect of four drugs, namely, thioridazine, olanzapine, sulpiride, and amisulpride, on neutral and negatively charged lipid bilayers was examined. The interaction of neuroleptics with lipids and the subsequent changes in the membrane physical properties was assessed using several complementary biophysical approaches (isothermal titration calorimetry, electron paramagnetic resonance spectroscopy, dynamic light scattering, and ζ potential measurements). We have determined the thermodynamic parameters, that is, the enthalpy of interaction and the binding constant, to describe the interactions of the investigated drugs with model membranes. Unlike thioridazine and olanzapine, which bind to both neutral and negatively charged membranes, amisulpride interacts with only the negatively charged one, while sulpiride does not bind to any of them. The mechanism of olanzapine and thioridazine insertion into the bilayer membrane cannot be described merely by a simple molecule partition between two different phases (the aqueous and the lipid phase). We have estimated the number of protons transferred in the course of drug binding to determine which of its forms, ionized or neutral, binds more strongly to the membrane. Finally, electron paramagnetic resonance results indicated that the drugs are localized near the water-membrane interface of the bilayer and presence of a negative charge promotes their burying deeper into the membrane.
Collapse
Affiliation(s)
- Piotr Skrobecki
- Department
of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Anna Chmielińska
- Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Piotr Bonarek
- Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Piotr Stepien
- Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Anna Wisniewska-Becker
- Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
- Department
of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Agnieszka Polit
- Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
10
|
A Liquid Chromatography-Tandem Mass Spectrometry Method for Quantifying Amisulpride in Human Plasma and Breast Milk, Applied to Measuring Drug Transfer to a Fully Breast-Fed Neonate. Ther Drug Monit 2016; 38:493-8. [DOI: 10.1097/ftd.0000000000000300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Relation of the Allelic Variants of Multidrug Resistance Gene to Agranulocytosis Associated With Clozapine. J Clin Psychopharmacol 2016; 36:257-61. [PMID: 27043126 DOI: 10.1097/jcp.0000000000000495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Clozapine use is associated with leukopenia and more rarely agranulocytosis, which may be lethal. The drug and its metabolites are proposed to interact with the multidrug resistance transporter (ABCB1/MDR1) gene product, P-glycoprotein (P-gp). Among various P-glycoprotein genetic polymorphisms, nucleotide changes in exons 26 (C3435T), 21 (G2677T), and 12 (C1236T) have been implicated for changes in pharmacokinetics and pharmacodynamics of many substrate drugs. In this study, we aimed to investigate the association between these specific ABCB1 polymorphisms and clozapine-associated agranulocytosis (CAA). Ten patients with a history of CAA and 91 control patients without a history of CAA, despite 10 years of continuous clozapine use, were included. Patient recruitment and blood sample collection were conducted at the Hacettepe University Faculty of Medicine, Department of Psychiatry, in collaboration with the members of the Schizophrenia and Other Psychotic Disorders Section of the Psychiatric Association of Turkey, working in various psychiatry clinics. After DNA extraction from peripheral blood lymphocytes, genotyping was performed using polymerase chain reaction and endonuclease digestion. Patients with CAA had shorter duration of clozapine use but did not show any significant difference in other clinical, sociodemographic characteristics and in genotypic or allelic distributions of ABCB1 variants and haplotypes compared with control patients. Among the 10 patients with CAA, none carried the ABCB1 all-variant haplotype (TT-TT-TT), whereas the frequency of this haplotype was approximately 12% among the controls. Larger sample size studies and thorough genetic analyses may reveal both genetic risk and protective factors for this serious adverse event.
Collapse
|
12
|
A systematic microdialysis study of dopamine transmission in the accumbens shell/core and prefrontal cortex after acute antipsychotics. Psychopharmacology (Berl) 2015; 232:1427-40. [PMID: 25345736 DOI: 10.1007/s00213-014-3780-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/10/2014] [Indexed: 01/16/2023]
Abstract
RATIONALE The only systematic in vivo studies comparing antipsychotic (AP) effects on nucleus accumbens (NAc) shell and core dopamine (DA) transmission are voltammetric studies performed in pargyline-pretreated, halothane-anaesthetized rats. Studies in freely moving rats not pretreated with pargyline are not available. This study was intended to fill this gap by the use of in vivo microdialysis in freely moving rats. METHODS Male Sprague-Dawley rats were implanted with microdialysis probes in the NAc shell and core and medial prefrontal cortex (PFCX). The next day, rats were administered intravenously with two or three doses of APs, and dialysate DA was monitored in 10-min samples. Some rats were pretreated with pargyline (75 mg/kg i.p.) and after 1 h were given clozapine or risperidone. RESULTS Clozapine, risperidone, quetiapine, raclopride, sulpiride and amisulpride increased DA preferentially in the NAc shell. Such preferential effect on shell DA was not observed after haloperidol, chlorpromazine and olanzapine. In contrast to voltammetric studies, a preferential effect on NAc core DA was not observed after any dose of AP. Pargyline pretreatment did not reduce but actually amplified the preferential effect of clozapine and risperidone on NAc shell DA. CONCLUSIONS Apart from raclopride and olanzapine, the APs with lower extrapyramidal effects could be distinguished from typical APs on the basis of their ability to preferentially stimulate DA transmission in the NAc shell. There was no relationship between stimulation of PFCX DA and atypical APs profile. The differences between this study and voltammetry studies were not attributable to pargyline pretreatment.
Collapse
|
13
|
Shin H, Kim J, Song JH. Clozapine and olanzapine inhibit proton currents in BV2 microglial cells. Eur J Pharmacol 2015; 755:74-9. [PMID: 25771455 DOI: 10.1016/j.ejphar.2015.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/23/2015] [Accepted: 03/01/2015] [Indexed: 01/21/2023]
Abstract
Excessive reactive oxygen species produced by NADPH oxidase in over-activated microglia can lead to neuronal death. Some atypical antipsychotic drugs possibly have anti-inflammatory properties and suppress the production of pro-inflammatory cytokines and reactive oxygen species from microglia. Voltage-gated proton channels (Hv1) are expressed in microglia and are required for NADPH oxidase-dependent reactive oxygen species generation, which could contribute to neuronal death and ischemic brain damage. In the present study, we examined the effects of the atypical antipsychotics clozapine, olanzapine and risperidone on proton currents in microglial BV2 cells. Clozapine and olanzapine inhibited proton currents with IC50 values of 9.8 μM and 84 μM, respectively. Risperidone, however, showed very weak inhibition of proton currents. Clozapine-induced inhibition of proton currents was not accompanied by a positive shift in the activation voltage or reversal potential, indicating that the inhibition was not mediated through an increase in the intracellular pH. Clozapine binds to a multitude of receptors, including serotonin, dopamine and muscarinic receptors. Serotonin receptors, however, were not responsible for the proton current inhibition by clozapine. Of the three drugs, only clozapine could reach concentrations to inhibit microglial proton currents in the brain at therapeutic doses. Thus, the anti-inflammatory activity of clozapine may be partly attributable to its inhibition of microglial proton currents.
Collapse
Affiliation(s)
- Hyewon Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, Republic of Korea
| | - Jiwon Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, Republic of Korea
| | - Jin-Ho Song
- Department of Pharmacology, College of Medicine, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, Republic of Korea.
| |
Collapse
|
14
|
Graf H, Wiegers M, Metzger CD, Walter M, Grön G, Abler B. Erotic stimulus processing under amisulpride and reboxetine: a placebo-controlled fMRI study in healthy subjects. Int J Neuropsychopharmacol 2015; 18:pyu004. [PMID: 25612894 PMCID: PMC4368880 DOI: 10.1093/ijnp/pyu004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Impaired sexual function is increasingly recognized as a side effect of psychopharmacological treatment. However, underlying mechanisms of action of the different drugs on sexual processing are still to be explored. Using functional magnetic resonance imaging, we previously investigated effects of serotonergic (paroxetine) and dopaminergic (bupropion) antidepressants on sexual functioning (Abler et al., 2011). Here, we studied the impact of noradrenergic and antidopaminergic medication on neural correlates of visual sexual stimulation in a new sample of subjects. METHODS Nineteen healthy heterosexual males (mean age 24 years, SD 3.1) under subchronic intake (7 days) of the noradrenergic agent reboxetine (4 mg/d), the antidopaminergic agent amisulpride (200mg/d), and placebo were included and studied with functional magnetic resonance imaging within a randomized, double-blind, placebo-controlled, within-subjects design during an established erotic video-clip task. Subjective sexual functioning was assessed using the Massachusetts General Hospital-Sexual Functioning Questionnaire. RESULTS Relative to placebo, subjective sexual functioning was attenuated under reboxetine along with diminished neural activations within the caudate nucleus. Altered neural activations correlated with decreased sexual interest. Under amisulpride, neural activations and subjective sexual functioning remained unchanged. CONCLUSIONS In line with previous interpretations of the role of the caudate nucleus in the context of primary reward processing, attenuated caudate activation may reflect detrimental effects on motivational aspects of erotic stimulus processing under noradrenergic agents.
Collapse
Affiliation(s)
- Heiko Graf
- Department of Psychiatry III, Ulm University, Ulm, Germany (Drs Graf, Wiegers, Grön, and Abler); Department of Psychiatry, Otto von Guericke University, Magdeburg, Germany (Drs Metzger and Walter); Leibniz Institute for Neurobiology, Magdeburg, Germany (Drs Metzger and Walter).
| | | | | | | | | | | |
Collapse
|
15
|
In vitro P-glycoprotein efflux inhibition by atypical antipsychotics is in vivo nicely reflected by pharmacodynamic but less by pharmacokinetic changes. Pharmacol Biochem Behav 2012; 102:312-20. [PMID: 22525746 DOI: 10.1016/j.pbb.2012.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 04/03/2012] [Accepted: 04/07/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND P-glycoprotein (P-gp), an efflux transporter of the blood-brain barrier, limits the access of multiple xenobiotics to the central nervous system (CNS). Thus drug-dependent inhibition, induction or genetic variation of P-gp impacts drug therapy. METHODS We investigated atypical antipsychotics and their interaction with P-gp. Amisulpride, clozapine, N-desmethylclozapine, olanzapine, and quetiapine were assessed in vitro on their inhibitory potential and in vivo on their disposition in mouse serum and brain, and behaviourally on the RotaRod test. In vivo wildtype (WT) and mdr1a/1b double knockout mice (mdr1a/1b (-/-, -/-); KO) were investigated. RESULTS In rhodamine 123 efflux assay drugs inhibitory potency to P-gp could be ranked quetiapine>N-desmethylclozapine>clozapine>olanzapine. When treating WT and KO mice i.p. and assessing brain and serum levels by HPLC analysis, P-gp expression has the highest but a rather short effect on the distribution of amisulpride, whereas the others ranked N-desmethylclozapine>olanzapine>quetiapine>clozapine; contrasted by in vivo behavioral changes at various time points. Here quetiapine>clozapine>olanzapine impacts behavior most when P-gp is lacking. Present results indicate the relevance of P-gp expression for CNS-drug therapy. CONCLUSIONS Combination of in vitro, and in vivo methods highlights that inhibitory potency did not reflect P-gp related drug disposition. But, when drugs were ranked for inhibitory potency, this order is reflected in pharmacodynamic changes or vice versa. Pharmacodynamic effects otherwise were at most correlated to drug brain levels, which however, were present only to a limited extent (by positron emission tomography) accessible in humans.
Collapse
|
16
|
Improving the prediction of the brain disposition for orally administered drugs using BDDCS. Adv Drug Deliv Rev 2012; 64:95-109. [PMID: 22261306 DOI: 10.1016/j.addr.2011.12.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/08/2011] [Accepted: 12/12/2011] [Indexed: 01/16/2023]
Abstract
In modeling blood-brain barrier (BBB) passage, in silico models have yielded ~80% prediction accuracy, and are currently used in early drug discovery. Being derived from molecular structural information only, these models do not take into account the biological factors responsible for the in vivo outcome. Passive permeability and P-glycoprotein (Pgp, ABCB1) efflux have been successfully recognized to impact xenobiotic extrusion from the brain, as Pgp is known to play a role in limiting the BBB penetration of oral drugs in humans. However, these two properties alone fail to explain the BBB penetration for a significant number of marketed central nervous system (CNS) agents. The Biopharmaceutics Drug Disposition Classification System (BDDCS) has proved useful in predicting drug disposition in the human body, particularly in the liver and intestine. Here we discuss the value of using BDDCS to improve BBB predictions of oral drugs. BDDCS class membership was integrated with in vitro Pgp efflux and in silico permeability data to create a simple 3-step classification tree that accurately predicted CNS disposition for more than 90% of 153 drugs in our data set. About 98% of BDDCS class 1 drugs were found to markedly distribute throughout the brain; this includes a number of BDDCS class 1 drugs shown to be Pgp substrates. This new perspective provides a further interpretation of how Pgp influences the sedative effects of H1-histamine receptor antagonists.
Collapse
|
17
|
A. Aboelwa A, I.A. Makhl A. In vivo Evaluation and Application of Central Composite Design in the Optimization of Amisulpride Self-Emulsifying Drug Delivery System. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ajdd.2012.1.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Moons T, de Roo M, Claes S, Dom G. Relationship between P-glycoprotein and second-generation antipsychotics. Pharmacogenomics 2011; 12:1193-211. [PMID: 21843066 DOI: 10.2217/pgs.11.55] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The membrane transport protein P-glycoprotein (P-gp) is an interesting candidate for individual differences in response to antipsychotics. To present an overview of the current knowledge of P-gp and its interaction with second-generation antipsychotics (SGAs), an internet search for all relevant English original research articles concerning P-gp and SGAs was conducted. Several SGAs are substrates for P-gp in therapeutic concentrations. These include amisulpride, aripiprazole, olanzapine, perospirone, risperidone and paliperidone. Clozapine and quetiapine are not likely to be substrates of P-gp. However, most antipsychotics act as inhibitors of P-gp, and can therefore influence plasma and brain concentrations of other substrates. No information was available for sertindole, ziprasidone or zotepine. Research in animal models demonstrated significant differences in antipsychotic brain concentration and behavior owing to both P-gp knockout and inhibition. Results in patients are less clear, as several external factors have to be accounted for. Patients with polymorphisms which decrease P-gp functionality tend to perform better in clinical settings. There is some variability in the findings concerning adverse effects, and no definitive conclusions can be drawn at this point.
Collapse
Affiliation(s)
- Tim Moons
- University Psychiatric Centre, Catholic University Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
19
|
Packeu A, Wennerberg M, Balendran A, Vauquelin G. Estimation of the dissociation rate of unlabelled ligand-receptor complexes by a 'two-step' competition binding approach. Br J Pharmacol 2011; 161:1311-28. [PMID: 20946109 DOI: 10.1111/j.1476-5381.2010.00931.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Because the in vivo effectiveness of ligands may also be determined by the rate by which they dissociate from their target receptors, drug candidates are being increasingly screened for this kinetic property. The dissociation rate of unlabelled ligand-receptor complexes can be estimated indirectly from their ability to slow the association of subsequently added radioligand molecules. EXPERIMENTAL APPROACH We used the 'two-step competition' binding approach consisting of pre-incubating the receptor preparation with a wide range of ligand concentrations, washing off free ligand molecules, adding radioligand and monitoring its receptor binding after a fixed time. Based on the rationale that binding of both ligands is mutually exclusive and that they bind according to the law of mass action to a single class of sites, the unlabelled ligand's dissociation rate can be estimated from the upward shift that the competition curve experiences after washing. KEY RESULTS The relevance of the 'two-step competition' approach was explored by computer simulations and by comparing the dissociation behaviour of unlabelled D(2) dopamine and CB(1) cannabinoid receptor antagonists in this and alternative approaches. Besides providing satisfactory estimations of dissociation rates, the method also detects the ability of the unlabelled ligand molecules to be released from 'sinks' such as the cell membrane. CONCLUSIONS AND IMPLICATIONS As the 'two-step competition' requires rapid intermediate washing steps and needs radioligand binding to be measured at only one time point, this approach is particularly suited for binding studies on intact plated cells. LINKED ARTICLES This article is part of a themed section on Analytical Receptor Pharmacology in Drug Discovery. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2010.161.issue-6.
Collapse
Affiliation(s)
- A Packeu
- Department of Molecular and Biochemical Pharmacology, Free University of Brussels (VUB), Brussels, Belgium
| | | | | | | |
Collapse
|
20
|
Strazielle N, Ghersi-Egea JF. In Vitro Models of the Blood–Cerebrospinal Fluid Barrier and Their Use in Neurotoxicological Research. NEUROMETHODS 2011. [DOI: 10.1007/978-1-61779-077-5_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Prediction of the in vitro permeability determined in Caco-2 cells by using artificial neural networks. Eur J Pharm Sci 2010; 41:107-17. [DOI: 10.1016/j.ejps.2010.05.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 05/12/2010] [Accepted: 05/30/2010] [Indexed: 11/24/2022]
|
22
|
Gibbs AA, Naudts KH, Spencer EP, David AS. Effects of amisulpride on emotional memory using a dual-process model in healthy male volunteers. J Psychopharmacol 2010; 24:323-31. [PMID: 18838493 DOI: 10.1177/0269881108097722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Memory dysfunction occurs in a number of neuropsychiatric disorders. Therapeutic psychopharmacological agents may exacerbate such memory impairment. Detailed characterisation of drug-induced memory impairment is therefore important. We recently showed that the D(2)/D(3) antagonist amisulpride quantitatively impairs emotional memory in a randomised placebo-controlled study of 33 healthy volunteers. Current evidence suggests that two qualitatively different processes (recollection and familiarity) contribute to recognition memory and can be investigated using a Dual-Process Signal Detection model. Using such a model, we found that amisulpride levels at encoding were significantly inversely correlated with recollection estimates for emotional but not neutral stimuli or familiarity estimates in healthy male volunteers. This suggests that dopamine antagonism at encoding preferentially impairs the recollection component of emotional memory, relative to the familiarity component. This was supported by receiver operating characteristic analysis. We also found a significantly increased false recognition rate, associated with significantly shorter reaction times for emotional but not neutral stimuli in the amisulpride group. These findings have important implications for our understanding of recognition memory processes, as well as the interpretation of neuropsychological findings in medicated patients.
Collapse
Affiliation(s)
- A A Gibbs
- Section of Cognitive Neuropsychiatry, Department of Psychiatry, Institute of Psychiatry, London, UK.
| | | | | | | |
Collapse
|
23
|
A decade of progress in the discovery and development of 'atypical' antipsychotics. PROGRESS IN MEDICINAL CHEMISTRY 2010; 49:37-80. [PMID: 20855038 DOI: 10.1016/s0079-6468(10)49002-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Natesan S, Reckless GE, Barlow KBL, Nobrega JN, Kapur S. Amisulpride the 'atypical' atypical antipsychotic--comparison to haloperidol, risperidone and clozapine. Schizophr Res 2008; 105:224-35. [PMID: 18710798 DOI: 10.1016/j.schres.2008.07.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 07/04/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Amisulpride's high and selective affinity for dopamine D2/3 (Ki 1.3/2.4 nM) receptors, lack of affinity for serotonin receptors, and its unusually high therapeutic doses (400-800 mg/day) makes it unique among atypical antipsychotics and prompted us to compare its actions with other antipsychotics in animal models. METHODS Amisulpride's effects on amphetamine and phencyclidine induced locomotor activity (AIL/PIL), conditioned avoidance response, catalepsy (CAT), subcortical Fos expression, and plasma prolactin was correlated to its time-course striatal D2/3 and prefrontal 5-HT2 receptor occupancy (D(2/3)/5-HT2RO); in comparison to haloperidol, clozapine, and risperidone. RESULTS Unlike the atypicals clozapine and risperidone, amisulpride lacked 5-HT2RO and showed a 'delayed' pattern of D2/3RO: 43, 60 and 88% after 1, 2 and 6 h (100 mg/kg), respectively, despite a quick onset (1 h) and decline (6 h) of prolactin elevation. While haloperidol and risperidone were effective at D2RO>60%, clozapine at D2/3RO<50%, amisulpride was effective only when its D2RO exceeded 60% with a delayed latency and lasted longer than other antipsychotics. CAT was observed for haloperidol and risperidone when D2RO exceeded 80%, while in the case of amisulpride, CAT was not observed even when doses exceeded 90% D2/3RO. Amisulpride also displayed functional limbic selectivity in Fos expression like the other atypicals. CONCLUSIONS Amisulpride's "delayed" functional profile on acute administration and the need for high doses is most likely due to its poor blood-brain-barrier penetration; however, it is distinct from other atypicals in showing low motor side-effects, activity against phencyclidine, and a mesolimbic preference, despite no action on serotonin receptors.
Collapse
Affiliation(s)
- Sridhar Natesan
- Schizophrenia Program and the PET Centre, Centre for Addiction and Mental Health (CAMH), Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
25
|
Effects of (−)-OSU6162 and ACR16 on motor activity in rats, indicating a unique mechanism of dopaminergic stabilization. J Neural Transm (Vienna) 2008; 115:899-908. [DOI: 10.1007/s00702-008-0038-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
|
26
|
Linnet K, Ejsing TB. A review on the impact of P-glycoprotein on the penetration of drugs into the brain. Focus on psychotropic drugs. Eur Neuropsychopharmacol 2008; 18:157-69. [PMID: 17683917 DOI: 10.1016/j.euroneuro.2007.06.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 05/15/2007] [Accepted: 06/19/2007] [Indexed: 12/23/2022]
Abstract
In recent years there has been increasing focus on the role of the drug transporter P-glycoprotein (P-gp) with regard to drug penetration into the brain. Studies using mice devoid of functional P-gp have revealed that P-gp at the blood-brain barrier (BBB) can exert a profound effect on the ability of some drugs to enter the brain, e.g. cardiovascular drugs (digoxin, quinidine), opioids (morphine, loperamide, methadone), HIV protease inhibitors, the new generation of antihistamines, and some antidepressants and antipsychotics. Among the latter group, risperidone is strongly influenced having about 10 times higher cerebral concentration in P-gp knock-out mice than in control mice. Taking into account that polytherapy is commonplace in psychiatry, theoretically there is a risk of drug-drug interactions with regard to P-gp at the BBB. Here we review the evidence for a role of P-gp with regard to psychoactive drugs from in vitro studies and experiments in knock-out mice devoid of functional P-gp. Moreover, the evidence for significant drug-drug interactions involving psychotropic drugs in rodents is considered. Clinical observations suggesting a role for P-gp in relation to drug-drug interactions at the BBB are sparse, and a definite conclusion awaits further studies. Also, the possible clinical relevance of P-gp genetic polymorphisms is questionable, and more investigations are needed on this subject.
Collapse
Affiliation(s)
- Kristian Linnet
- The Department of Forensic Chemistry, Institute of Forensic Medicine, University of Copenhagen, Frederik V's Vej 11, 2100 Copenhagen, Denmark.
| | | |
Collapse
|
27
|
Schmitt U, Abou El-Ela A, Guo LJ, Glavinas H, Krajcsi P, Baron JM, Tillmann C, Hiemke C, Langguth P, Härtter S. Cyclosporine A (CsA) affects the pharmacodynamics and pharmacokinetics of the atypical antipsychotic amisulpride probably via inhibition of P-glycoprotein (P-gp). J Neural Transm (Vienna) 2005; 113:787-801. [PMID: 16252067 DOI: 10.1007/s00702-005-0367-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 08/28/2005] [Indexed: 01/16/2023]
Abstract
The importance of P-glycoprotein (P-gp) in the pharmacokinetics of amisulpride and the effects of a P-gp inhibitor cyclosporine A (CsA) was investigated both, in vitro and in vivo. In vitro and in vivo results indicated amisulpride as a substrate of P-gp. Amisulpride was not metabolized by rat liver microsomes. Open field behavior showed time dependent abolishment in locomotion by amisulpride (50 mg kg(-1)). Co-administration of CsA (50 mg kg(-1)) resulted in a higher and significantly longer antipsychotic effect (24 h after drug administration). Accordingly, the area under concentration-time curve in serum and brain was higher in CsA co-treated rats (13.5 vs. 29.8 micromol h l(-1) for serum and 2.16 vs 2.98 micromol h l(-1) for brain tissue) while renal clearance was not affected. These results pointed to a pharmacokinetic drug interaction between CsA and amisulpride most likely caused by inhibition of P-gp.
Collapse
Affiliation(s)
- U Schmitt
- Department of Psychiatry, University of Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li M, Budin R, Fleming AS, Kapur S. Effects of novel antipsychotics, amisulpiride and aripiprazole, on maternal behavior in rats. Psychopharmacology (Berl) 2005; 181:600-10. [PMID: 16025315 DOI: 10.1007/s00213-005-0091-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 05/25/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Rat maternal behavior, which entails complex motivational and social factors, is disrupted by the currently available typical and atypical antipsychotics. It is thought that this disruption reflects a side effect of antipsychotics, modeling the neuroleptic-induced negative or deficit state. Amisulpiride and aripiprazole are new atypical antipsychotics with mechanisms of action distinct from the current typical and atypical antipsychotics. The effects of these drugs on maternal behavior have not been explored. OBJECTIVE In the present study, we systematically examined the behavioral effects of amisulpiride and aripiprazole on maternal behavior in postpartum female rats. METHODS Various components of maternal behavior (pup retrieval, pup licking, nest building and pup nursing) were examined repeatedly over a period of 24 h after a single injection of three doses of amisulpiride (10, 30, and 100 mg/kg s.c.) and aripiprazole (3, 10, and 30 mg/kg). RESULTS Amisulpiride at the lower doses (10 and 30 mg/kg) enhanced pup licking, and only at the highest dose disrupted the active components of maternal behavior such as pup retrieval and nest building. Its effect was delayed in onset and prolonged as compared to other antipsychotics. Aripiprazole, even at the highest dose (30 mg/kg) did not impair pup retrieval or pup licking. However, it did disrupt nest building and led to enhanced pup nursing. CONCLUSIONS The unique effects of these two drugs may be due to their unique actions at the mesolimbic dopamine synapses. The sparing of the major components of maternal behavior by aripiprazole may be related to its partial agonist effects, whereas the enhancement of pup licking by amisulpiride may be related to its dose-dependent preferential effect on the presynaptic autoreceptors. The potential clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Ming Li
- Centre for Addiction and Mental Health, Clarke Site 250 College Street, Toronto, Ontario, M5R 1T8, Canada
| | | | | | | |
Collapse
|