1
|
Li P, Lei W, Dong Y, Wang X, Ye X, Tian Y, Yang Y, Liu J, Li N, Niu X, Wang X, Tian Y, Xu L, Yang Y, Liu J. mGluR7: The new player protecting the central nervous system. Ageing Res Rev 2024; 102:102554. [PMID: 39454762 DOI: 10.1016/j.arr.2024.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Metabotropic glutamate receptor 7 (mGluR7) belongs to the family of type III mGluR receptor, playing an important part in the central nervous system (CNS) through response to neurotransmitter regulation, reduction of excitatory toxicity, and early neuronal development. Drugs targeting mGluR7 (mGluR7 agonists, antagonists, and allosteric modulators) may be among the most promising agents for the treatment of CNS disorders, such as psychiatric disorders, neurodegenerative diseases, and neurodevelopmental impairments, though these potential therapies are at early stages and the data are still limited. In this review, we summarized the structure and function of mGluR7 and discussed recent progress on mGluR7 agonists and antagonists. A deeper understanding of mGluR7 will contribute to uncovering the molecular mechanisms of neuroprotection and providing a theoretical basis for the formulation of therapeutic strategies.
Collapse
Affiliation(s)
- Pan Li
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Ophthalmology, Xi'an No.1 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 30 Fenxiang Road, Xi'an 710002, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Xingyan Ye
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yaru Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jie Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ning Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaochen Niu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xin Wang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yifan Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Lu Xu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
2
|
Mielecki D, Salińska E. Group III metabotropic glutamate receptors: guardians against excitotoxicity in ischemic brain injury, with implications for neonatal contexts. Pharmacol Rep 2024; 76:1199-1218. [PMID: 39298028 PMCID: PMC11582219 DOI: 10.1007/s43440-024-00651-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
The group III metabotropic glutamate receptors (mGluRs), comprising mGluR4, mGluR6, mGluR7, and mGluR8, offer neuroprotective potential in mitigating excitotoxicity during ischemic brain injury, particularly in neonatal contexts. They are G-protein coupled receptors that inhibit adenylyl cyclase and reduce neurotransmitter release, mainly located presynaptically and acting as autoreceptors. This review aims to examine the differential expression and function of group III mGluRs across various brain regions such as the cortex, hippocampus, and cerebellum, with a special focus on the neonatal stage of development. Glutamate excitotoxicity plays a crucial role in the pathophysiology of brain ischemia in neonates. While ionotropic glutamate receptors are traditional targets for neuroprotection, their direct inhibition often leads to severe side effects due to their critical roles in normal neurotransmission and synaptic plasticity. Group III mGluRs provide a more nuanced and potentially safer approach by modulating rather than blocking glutamatergic transmission. Their downstream signaling cascade results in the regulation of intracellular calcium levels, neuronal hyperpolarization, and reduced neurotransmitter release, effectively decreasing excitotoxic signaling without completely suppressing essential glutamatergic functions. Importantly, the neuroprotective effects of group III mGluRs extend beyond direct modulation of glutamate release influencing glial cell function, neuroinflammation, and oxidative stress, all of which contribute to secondary injury cascades in brain ischemia. This comprehensive analysis of group III mGluRs multifaceted neuroprotective potential provides valuable insights for developing novel therapeutic strategies to combat excitotoxicity in neonatal ischemic brain injury.
Collapse
Affiliation(s)
- Damian Mielecki
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, Warsaw, 02-106, Poland.
| | - Elżbieta Salińska
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, Warsaw, 02-106, Poland
| |
Collapse
|
3
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Nicoletti F, Di Menna L, Iacovelli L, Orlando R, Zuena AR, Conn PJ, Dogra S, Joffe ME. GPCR interactions involving metabotropic glutamate receptors and their relevance to the pathophysiology and treatment of CNS disorders. Neuropharmacology 2023; 235:109569. [PMID: 37142158 DOI: 10.1016/j.neuropharm.2023.109569] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Cellular responses to metabotropic glutamate (mGlu) receptor activation are shaped by mechanisms of receptor-receptor interaction. mGlu receptor subtypes form homodimers, intra- or inter-group heterodimers, and heteromeric complexes with other G protein-coupled receptors (GPCRs). In addition, mGlu receptors may functionally interact with other receptors through the βγ subunits released from G proteins in response to receptor activation or other mechanisms. Here, we discuss the interactions between (i) mGlu1 and GABAB receptors in cerebellar Purkinje cells; (ii) mGlu2 and 5-HT2Aserotonergic receptors in the prefrontal cortex; (iii) mGlu5 and A2A receptors or mGlu5 and D1 dopamine receptors in medium spiny projection neurons of the indirect and direct pathways of the basal ganglia motor circuit; (iv) mGlu5 and A2A receptors in relation to the pathophysiology of Alzheimer's disease; and (v) mGlu7 and A1 adenosine or α- or β1 adrenergic receptors. In addition, we describe in detail a novel form of non-heterodimeric interaction between mGlu3 and mGlu5 receptors, which appears to be critically involved in mechanisms of activity-dependent synaptic plasticity in the prefrontal cortex and hippocampus. Finally, we highlight the potential implication of these interactions in the pathophysiology and treatment of cerebellar disorders, schizophrenia, Alzheimer's disease, Parkinson's disease, l-DOPA-induced dyskinesias, stress-related disorders, and cognitive dysfunctions.
Collapse
Affiliation(s)
- Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| | | | - Luisa Iacovelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - P Jeffrey Conn
- Department of Pharmacology, Italy; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Shalini Dogra
- Department of Pharmacology, Italy; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Max E Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| |
Collapse
|
5
|
Holter KM, Pierce BE, Gould RW. Metabotropic glutamate receptor function and regulation of sleep-wake cycles. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:93-175. [PMID: 36868636 PMCID: PMC10973983 DOI: 10.1016/bs.irn.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metabotropic glutamate (mGlu) receptors are the most abundant family of G-protein coupled receptors and are widely expressed throughout the central nervous system (CNS). Alterations in glutamate homeostasis, including dysregulations in mGlu receptor function, have been indicated as key contributors to multiple CNS disorders. Fluctuations in mGlu receptor expression and function also occur across diurnal sleep-wake cycles. Sleep disturbances including insomnia are frequently comorbid with neuropsychiatric, neurodevelopmental, and neurodegenerative conditions. These often precede behavioral symptoms and/or correlate with symptom severity and relapse. Chronic sleep disturbances may also be a consequence of primary symptom progression and can exacerbate neurodegeneration in disorders including Alzheimer's disease (AD). Thus, there is a bidirectional relationship between sleep disturbances and CNS disorders; disrupted sleep may serve as both a cause and a consequence of the disorder. Importantly, comorbid sleep disturbances are rarely a direct target of primary pharmacological treatments for neuropsychiatric disorders even though improving sleep can positively impact other symptom clusters. This chapter details known roles of mGlu receptor subtypes in both sleep-wake regulation and CNS disorders focusing on schizophrenia, major depressive disorder, post-traumatic stress disorder, AD, and substance use disorder (cocaine and opioid). In this chapter, preclinical electrophysiological, genetic, and pharmacological studies are described, and, when possible, human genetic, imaging, and post-mortem studies are also discussed. In addition to reviewing the important relationships between sleep, mGlu receptors, and CNS disorders, this chapter highlights the development of selective mGlu receptor ligands that hold promise for improving both primary symptoms and sleep disturbances.
Collapse
Affiliation(s)
- Kimberly M Holter
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Bethany E Pierce
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Robert W Gould
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
6
|
Hoglund BK, Carfagno V, Olive MF, Leyrer-Jackson JM. Metabotropic glutamate receptors and cognition: From underlying plasticity and neuroprotection to cognitive disorders and therapeutic targets. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:367-413. [PMID: 36868635 DOI: 10.1016/bs.irn.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are G protein-coupled receptors that play pivotal roles in mediating the activity of neurons and other cell types within the brain, communication between cell types, synaptic plasticity, and gene expression. As such, these receptors play an important role in a number of cognitive processes. In this chapter, we discuss the role of mGlu receptors in various forms of cognition and their underlying physiology, with an emphasis on cognitive dysfunction. Specifically, we highlight evidence that links mGlu physiology to cognitive dysfunction across brain disorders including Parkinson's disease, Alzheimer's disease, Fragile X syndrome, post-traumatic stress disorder, and schizophrenia. We also provide recent evidence demonstrating that mGlu receptors may elicit neuroprotective effects in particular disease states. Lastly, we discuss how mGlu receptors can be targeted utilizing positive and negative allosteric modulators as well as subtype specific agonists and antagonist to restore cognitive function across these disorders.
Collapse
Affiliation(s)
- Brandon K Hoglund
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ, United States
| | - Vincent Carfagno
- School of Medicine, Midwestern University, Glendale, AZ, United States
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Jonna M Leyrer-Jackson
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ, United States.
| |
Collapse
|
7
|
Mao LM, Mathur N, Shah K, Wang JQ. Roles of metabotropic glutamate receptor 8 in neuropsychiatric and neurological disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:349-366. [PMID: 36868634 PMCID: PMC10162486 DOI: 10.1016/bs.irn.2022.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are G protein-coupled receptors. Among eight mGlu subtypes (mGlu1-8), mGlu8 has drawn increasing attention. This subtype is localized to the presynaptic active zone of neurotransmitter release and is among the mGlu subtypes with high affinity for glutamate. As a Gi/o-coupled autoreceptor, mGlu8 inhibits glutamate release to maintain homeostasis of glutamatergic transmission. mGlu8 receptors are expressed in limbic brain regions and play a pivotal role in modulating motivation, emotion, cognition, and motor functions. Emerging evidence emphasizes the increasing clinical relevance of abnormal mGlu8 activity. Studies using mGlu8 selective agents and knockout mice have revealed the linkage of mGlu8 receptors to multiple neuropsychiatric and neurological disorders, including anxiety, epilepsy, Parkinson's disease, drug addiction, and chronic pain. Expression and function of mGlu8 receptors in some limbic structures undergo long-lasting adaptive changes in animal models of these disorders, which may contribute to the remodeling of glutamatergic transmission critical for the pathogenesis and symptomatology of brain illnesses. This review summarizes the current understanding of mGlu8 biology and the possible involvement of the receptor in several common psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States
| | - Nirav Mathur
- Department of Anesthesiology, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States
| | - Karina Shah
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States
| | - John Q Wang
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States; Department of Anesthesiology, University of Missouri-Kansas City, School of Medicine, Kansas City, MO, United States.
| |
Collapse
|
8
|
Miller B, Moreno N, Gutierrez BA, Limon A. Microtransplantation of Postmortem Native Synaptic mGluRs Receptors into Xenopus Oocytes for Their Functional Analysis. MEMBRANES 2022; 12:931. [PMID: 36295690 PMCID: PMC9609105 DOI: 10.3390/membranes12100931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 05/13/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are membrane receptors that play a central role in the modulation of synaptic transmission and neuronal excitability and whose dysregulation is implicated in diverse neurological disorders. Most current understanding about the electrophysiological properties of such receptors has been determined using recombinant proteins. However, recombinant receptors do not necessarily recapitulate the properties of native receptors due to the lack of obligated accessory proteins, some of which are differentially expressed as function of developmental stage and brain region. To overcome this limitation, we sought to microtransplant entire synaptosome membranes from frozen rat cortex into Xenopus oocytes, and directly analyze the responses elicited by native mGluRs. We recorded ion currents elicited by 1 mM glutamate using two electrodes voltage clamp. Glutamate produced a fast ionotropic response (6 ± 0.3 nA) in all microtransplanted oocytes (n = 218 oocytes) and a delayed oscillatory response (52 ± 7 nA) in 73% of them. The participation of Group 1 mGluRs was confirmed by the presence of metabotropic oscillations during the administration of (±)-1-Aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD; Group 1 mGluR agonist), and the absence of oscillations during co-administration of N-(1-adamantyl)quinoxaline-2-carboxamide (NPS 2390; Group 1 mGluR antagonist). Since both mGluR1 and mGluR5 belong to Group 1 mGluRs, further investigation revealed that mGluR1 antagonism with LY 456236 has little effect on metabotropic oscillations, while mGluR5 antagonism with 100 µM AZD 9272 has significant reduction of metabotropic currents elicited by ACPD and glutamate. We confirmed the expression of mGluR1 and mGluR5 in native synaptosomes by immunoblots, both of which are enhanced when compared to their counterpart proteins in rat cortex tissue lysates. Finally, these results demonstrate the merit of using microtransplantation of native synaptosomes for the study of mGluRs and the contribution of mGluR5 to the metabotropic glutamate signaling, providing a better tool for the understanding of the role of these receptors in neurological disorders.
Collapse
Affiliation(s)
| | | | | | - Agenor Limon
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
9
|
Vengeliene V, Spanagel R. mGlu2 mechanism-based interventions to treat alcohol relapse. Front Pharmacol 2022; 13:985954. [PMID: 36188569 PMCID: PMC9520163 DOI: 10.3389/fphar.2022.985954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Recently we identified a deficiency in metabotropic glutamate receptor 2 (mGlu2) function in the corticoaccumbal pathway, as a common pathological mechanism underlying alcohol-seeking and relapse behavior. Based on this mechanism, we hypothesized that mGlu2/3 agonists and mGlu2 positive allosteric modulators (PAMs) may be effective in reducing relapse-like behavior. Two mGlu2/3 agonists, LY379268 and LY354740 (a structural analog of LY379268 six-fold more potent in activating mGlu2 over mGluR3), were tested in a well-established rat model of relapse, the alcohol deprivation effect (ADE) with repeated deprivation phases. Since these agonists do not readily discriminate between contributions of mGlu2 and mGluR3, we also tested LY487379, a highly specific PAM that potentiates the effect of glutamate on the mGlu2 with less specificity on other mGlu receptor subtypes. Both LY379268 and LY354740 significantly and dose-dependently reduced the expression of the ADE. No significant changes in water intake, body weight and locomotor activity were observed. Importantly, repeated administration of mGlu2/3 agonist did not lead to tolerance development. mGlu2 PAM LY487379 treatment significantly reduced expression of the ADE in both male and female rats. Combination treatment of mGlu2/3 agonist and PAM had similar effect on relapse-like drinking to that seen in mGlu2/3 agonist treatment alone. Together with other preclinical data showing that PAMs can reduce alcohol-seeking behavior we conclude that mGlu2 PAMs should be considered for clinical trials in alcohol-dependent patients.
Collapse
Affiliation(s)
- Valentina Vengeliene
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Heidelberg, Germany
- *Correspondence: Rainer Spanagel,
| |
Collapse
|
10
|
Tyler RE, Besheer J, Joffe ME. Advances in translating mGlu 2 and mGlu 3 receptor selective allosteric modulators as breakthrough treatments for affective disorders and alcohol use disorder. Pharmacol Biochem Behav 2022; 219:173450. [PMID: 35988792 PMCID: PMC10405528 DOI: 10.1016/j.pbb.2022.173450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are promising targets for the treatment of affective disorders and alcohol use disorder (AUD). Nonspecific ligands for Group II (mGlu2 and mGlu3) mGlu receptors have demonstrated consistent therapeutic potential for affective disorders in preclinical models. Disentangling the specific roles of mGlu2 versus mGlu3 receptors in these effects has persisted as a major challenge, in part due to pharmacological limitations. However, the recent development of highly specific allosteric modulators for both mGlu2 and mGlu3 receptors have enabled straightforward and rigorous investigations into the specific function of each receptor. Here, we review recent experiments using these compounds that have demonstrated both similar and distinct receptor functions in behavioral, molecular, and electrophysiological measures associated with basal function and preclinical models of affective disorders. Studies using these selective drugs have demonstrated that mGlu2 is the predominant receptor subclass involved in presynaptic neurotransmitter release in prefrontal cortex. By contrast, the activation of postsynaptic mGlu3 receptors induces a cascade of cellular changes that results in AMPA receptor internalization, producing long-term depression and diminishing excitatory drive. Acute stress decreases the mGlu3 receptor function and dynamically alters transcript expression for both mGlu2 (Grm2) and mGlu3 (Grm3) receptors in brain areas involved in reward and stress. Accordingly, both mGlu2 and mGlu3 negative allosteric modulators show acute antidepressant-like effects and potential prophylactic effects against acute and traumatic stressors. The wide array of effects displayed by these new allosteric modulators of mGlu2 and mGlu3 receptors suggest that these drugs may act through improving endophenotypes of symptoms observed across several neuropsychiatric disorders. Therefore, recently developed allosteric modulators selective for mGlu2 or mGlu3 receptors show promise as potential therapeutics for affective disorders and AUD.
Collapse
Affiliation(s)
- Ryan E Tyler
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Neuroscience Curriculum, University of North Carolina at Chapel Hill, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Neuroscience Curriculum, University of North Carolina at Chapel Hill, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219, USA; Translational Neuroscience Program, University of Pittsburgh, USA.
| |
Collapse
|
11
|
Luessen DJ, Conn PJ. Allosteric Modulators of Metabotropic Glutamate Receptors as Novel Therapeutics for Neuropsychiatric Disease. Pharmacol Rev 2022; 74:630-661. [PMID: 35710132 PMCID: PMC9553119 DOI: 10.1124/pharmrev.121.000540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors, a family of G-protein-coupled receptors, have been identified as novel therapeutic targets based on extensive research supporting their diverse contributions to cell signaling and physiology throughout the nervous system and important roles in regulating complex behaviors, such as cognition, reward, and movement. Thus, targeting mGlu receptors may be a promising strategy for the treatment of several brain disorders. Ongoing advances in the discovery of subtype-selective allosteric modulators for mGlu receptors has provided an unprecedented opportunity for highly specific modulation of signaling by individual mGlu receptor subtypes in the brain by targeting sites distinct from orthosteric or endogenous ligand binding sites on mGlu receptors. These pharmacological agents provide the unparalleled opportunity to selectively regulate neuronal excitability, synaptic transmission, and subsequent behavioral output pertinent to many brain disorders. Here, we review preclinical and clinical evidence supporting the utility of mGlu receptor allosteric modulators as novel therapeutic approaches to treat neuropsychiatric diseases, such as schizophrenia, substance use disorders, and stress-related disorders. SIGNIFICANCE STATEMENT: Allosteric modulation of metabotropic glutamate (mGlu) receptors represents a promising therapeutic strategy to normalize dysregulated cellular physiology associated with neuropsychiatric disease. This review summarizes preclinical and clinical studies using mGlu receptor allosteric modulators as experimental tools and potential therapeutic approaches for the treatment of neuropsychiatric diseases, including schizophrenia, stress, and substance use disorders.
Collapse
|
12
|
Cox MF, Hascup ER, Bartke A, Hascup KN. Friend or Foe? Defining the Role of Glutamate in Aging and Alzheimer’s Disease. FRONTIERS IN AGING 2022; 3:929474. [PMID: 35821835 PMCID: PMC9261322 DOI: 10.3389/fragi.2022.929474] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022]
Abstract
Aging is a naturally occurring decline of physiological processes and biological pathways that affects both the structural and functional integrity of the body and brain. These physiological changes reduce motor skills, executive function, memory recall, and processing speeds. Aging is also a major risk factor for multiple neurodegenerative disorders including Alzheimer’s disease (AD). Identifying a biomarker, or biomarkers, that signals the transition from physiological to pathological aging would aid in earlier therapeutic options or interventional strategies. Considering the importance of glutamate signaling in synaptic plasticity, motor movement, and cognition, this neurotransmitter serves as a juncture between cognitive health and disease. This article discusses glutamatergic signaling during physiological aging and the pathological changes observed in AD patients. Findings from studies in mouse models of successful aging and AD are reviewed and provide a biological context for this transition. Finally, current techniques to monitor brain glutamate are highlighted. These techniques may aid in elucidating time-point specific therapeutic windows to modify disease outcome.
Collapse
Affiliation(s)
- MaKayla F. Cox
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Erin R. Hascup
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Andrzej Bartke
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Kevin N. Hascup
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States
- *Correspondence: Kevin N. Hascup,
| |
Collapse
|
13
|
Miyata K, Ikoma Y, Murata K, Kusumoto-Yoshida I, Kobayashi K, Kuwaki T, Ootsuka Y. Multifaceted roles of orexin neurons in mediating methamphetamine-induced changes in body temperature and heart rate. IBRO Neurosci Rep 2022; 12:108-120. [PMID: 35128515 PMCID: PMC8804267 DOI: 10.1016/j.ibneur.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/26/2022] Open
|
14
|
Targeting the dysfunction of glutamate receptors for the development of novel antidepressants. Pharmacol Ther 2021; 226:107875. [PMID: 33901503 DOI: 10.1016/j.pharmthera.2021.107875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
Increasing evidence indicates that dysfunction of glutamate receptors is involved in the pathophysiology of major depressive disorder (MDD). Although accumulating efforts have been made to elucidate the applications and mechanisms underlying antidepressant-like effects of ketamine, a non-selective antagonist of N-methyl-d-aspartate receptor (NMDAR), the role of specific glutamate receptor subunit in regulating depression is not completely clear. The current review aims to discuss the relationships between glutamate receptor subunits and depressive-like behaviors. Research literatures were searched from inception to July 2020. We summarized the alterations of glutamate receptor subunits in patients with MDD and animal models of depression. Animal behaviors in response to dysfunction of glutamate receptor subunits were also surveyed. To fully understand mechanisms underlying antidepressant-like effects of modulators targeting glutamate receptors, we discussed effects of each glutamate receptor subunit on serotonin system, synaptic plasticity, neurogenesis and neuroinflammation. Finally, we collected most recent clinical applications of glutamate receptor modulators and pointed out the limitations of these candidates in the treatment of MDD.
Collapse
|
15
|
Young CE, Tong Q. Corticotropin Releasing Hormone Signaling in the Bed Nuclei of the Stria Terminalis as a Link to Maladaptive Behaviors. Front Neurosci 2021; 15:642379. [PMID: 33867924 PMCID: PMC8044981 DOI: 10.3389/fnins.2021.642379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 11/30/2022] Open
Abstract
The bed nuclei of the stria terminalis (BST) is a limbic region in the extended amygdala that is heavily implicated in anxiety processing and hypothalamic-adrenal-pituitary (HPA) axis activation. The BST is complex, with many nuclei expressing different neurotransmitters and receptors involved in a variety of signaling pathways. One neurotransmitter that helps link its functions is corticotropin releasing hormone (CRH). BST CRH neuron activation may cause both anxiogenic and anxiolytic effects in rodents, and CRH neurons interact with other neuron types to influence anxiety-like responses as well as alcohol and drug–seeking behavior. This review covers the link between BST CRH neurons and thirteen other neurotransmitters and receptors and analyzes their effect on rodent behavior. Additionally, it covers the translational potential of targeting CRH signaling pathways for the treatment of human mental health disorders. Given the massive impact of anxiety, mood, and substance use disorders on our society, further research into BST CRH signaling is critical to alleviate the social and economic burdens of those disorders.
Collapse
Affiliation(s)
- Claire Emily Young
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Qingchun Tong
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Department of Neurobiology and Anatomy of McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center & UTHealth Graduate School of Biological Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
16
|
Bratek - Gerej E, Bronisz A, Ziembowicz A, Salinska E. Pretreatment with mGluR2 or mGluR3 Agonists Reduces Apoptosis Induced by Hypoxia-Ischemia in Neonatal Rat Brains. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8848015. [PMID: 33763176 PMCID: PMC7963909 DOI: 10.1155/2021/8848015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/04/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022]
Abstract
Hypoxia-ischemia (HI) in an immature brain results in energy depletion and excessive glutamate release resulting in excitotoxicity and oxidative stress. An increase in reactive oxygen species (ROS) production induces apoptotic processes resulting in neuronal death. Activation of group II mGluR was shown to prevent neuronal damage after HI. The application of agonists of mGluR3 (N-acetylaspartylglutamate; NAAG) or mGluR2 (LY379268) inhibits the release of glutamate and reduces neurodegeneration in a neonatal rat model of HI, although the exact mechanism is not fully recognized. In the present study, the effects of NAAG (5 mg/kg) and LY379268 (5 mg/kg) application (24 h or 1 h before experimental birth asphyxia) on apoptotic processes as the potential mechanism of neuroprotection in 7-day-old rats were investigated. Intraperitoneal application of NAAG or LY379268 at either time point before HI significantly reduced the number of TUNEL-positive cells in the CA1 region of the ischemic brain hemisphere. Both agonists reduced expression of the proapoptotic Bax protein and increased expression of Bcl-2. Decreases in HI-induced caspase-9 and caspase-3 activity were also observed. Application of NAAG or LY379268 24 h or 1 h before HI reduced HIF-1α formation likely by reducing ROS levels. It was shown that LY379268 concentration remains at a level that is required for activation of mGluR2 for up to 24 h; however, NAAG is quickly metabolized by glutamate carboxypeptidase II (GCPII) into glutamate and N-acetyl-aspartate. The observed effect of LY379268 application 24 h or 1 h before HI is connected with direct activation of mGluR2 and inhibition of glutamate release. Based on the data presented in this study and on our previous findings, we conclude that the neuroprotective effect of NAAG applied 1 h before HI is most likely the result of a combination of mGluR3 and NMDA receptor activation, whereas the beneficial effects of NAAG pretreatment 24 h before HI can be explained by the activation of NMDA receptors and induction of the antioxidative/antiapoptotic defense system triggered by mild excitotoxicity in neurons. This response to NAAG pretreatment is consistent with the commonly accepted mechanism of preconditioning.
Collapse
Affiliation(s)
- Ewelina Bratek - Gerej
- Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Bronisz
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Apolonia Ziembowicz
- Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Salinska
- Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
17
|
Haddar M, Azuma K, Izuo N, Kyosuke U, Asano T, Muramatsu SI, Nitta A. Impairment of cognitive function induced by Shati/Nat8l overexpression in the prefrontal cortex of mice. Behav Brain Res 2020; 397:112938. [PMID: 32998043 DOI: 10.1016/j.bbr.2020.112938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
A novel N-acetyltransferase, Shati/Nat8l, was identified in the brains of mice exposed to methamphetamine. Shati/Nat8l overexpression in the medial prefrontal cortex (mPFC) was found to attenuate methamphetamine-induced dependence. The mPFC is a brain region that plays an important role in cognitive function. However, the effect of Shati/Nat8l on cognition and memory has not yet been clarified. To understand the role of Shati/Nat8l in memory, we generated C57BL/6J mice with overexpressed Shati/Nat8l in the mPFC and performed memory-related experiments, including novel object-location and object-in-context tests. Furthermore, we used quantitative immunohistochemistry to assess the presynaptic and postsynaptic proteins, synaptophysin and postsynaptic density protein (PSD)-95, respectively. Shati/Nat8l overexpression in the mPFC impaired both novel object-location and object-in-context memory. Moreover, Shati/Nat8l overexpression in the mPFC reduced PSD-95 levels, but not synaptophysin levels in the mPFC. These results demonstrated that Shati/Nat8l overexpression in the mPFC is involved in location and contextual memory, and can affect the excitatory postsynaptic protein, PSD-95.
Collapse
Affiliation(s)
- Meriem Haddar
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Katsunori Azuma
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Uno Kyosuke
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, Japan; Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata-shi, Osaka, Japan
| | - Takashi Asano
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Open Innovation Center, Jichi Medical University, Shimotsuke, Japan; Center for Gene & Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
18
|
Srivastava A, Das B, Yao AY, Yan R. Metabotropic Glutamate Receptors in Alzheimer's Disease Synaptic Dysfunction: Therapeutic Opportunities and Hope for the Future. J Alzheimers Dis 2020; 78:1345-1361. [PMID: 33325389 PMCID: PMC8439550 DOI: 10.3233/jad-201146] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence of neuritic plaques and neurofibrillary tangles. The impaired synaptic plasticity and dendritic loss at the synaptic level is an early event associated with the AD pathogenesis. The abnormal accumulation of soluble oligomeric amyloid-β (Aβ), the major toxic component in amyloid plaques, is viewed to trigger synaptic dysfunctions through binding to several presynaptic and postsynaptic partners and thus to disrupt synaptic transmission. Over time, the abnormalities in neural transmission will result in cognitive deficits, which are commonly manifested as memory loss in AD patients. Synaptic plasticity is regulated through glutamate transmission, which is mediated by various glutamate receptors. Here we review recent progresses in the study of metabotropic glutamate receptors (mGluRs) in AD cognition. We will discuss the role of mGluRs in synaptic plasticity and their modulation as a possible strategy for AD cognitive improvement.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Brati Das
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Annie Y. Yao
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
19
|
Glutamate receptors in domestication and modern human evolution. Neurosci Biobehav Rev 2020; 108:341-357. [DOI: 10.1016/j.neubiorev.2019.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/28/2019] [Accepted: 10/07/2019] [Indexed: 02/08/2023]
|
20
|
Yohn SE, Galbraith J, Calipari ES, Conn PJ. Shared Behavioral and Neurocircuitry Disruptions in Drug Addiction, Obesity, and Binge Eating Disorder: Focus on Group I mGluRs in the Mesolimbic Dopamine Pathway. ACS Chem Neurosci 2019; 10:2125-2143. [PMID: 30933466 PMCID: PMC7898461 DOI: 10.1021/acschemneuro.8b00601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accumulated data from clinical and preclinical studies suggest that, in drug addiction and states of overeating, such as obesity and binge eating disorder (BED), there is an imbalance in circuits that are critical for motivation, reward saliency, executive function, and self-control. Central to these pathologies and the extensive topic of this Review are the aberrations in dopamine (DA) and glutamate (Glu) within the mesolimbic pathway. Group I metabotropic glutamate receptors (mGlus) are highly expressed in the mesolimbic pathway and are poised in key positions to modulate disruptions in synaptic plasticity and neurotransmitter release observed in drug addiction, obesity, and BED. The use of allosteric modulators of group I mGlus has been studied in drug addiction, as they offer several advantages over traditional orthosteric agents. However, they have yet to be studied in obesity or BED. With the substantial overlap between the neurocircuitry involved in drug addiction and eating disorders, group I mGlus may also provide novel targets for obesity and BED.
Collapse
Affiliation(s)
- Samantha E. Yohn
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| | - Jordan Galbraith
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
| | - Erin S. Calipari
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| |
Collapse
|
21
|
Crupi R, Impellizzeri D, Cuzzocrea S. Role of Metabotropic Glutamate Receptors in Neurological Disorders. Front Mol Neurosci 2019; 12:20. [PMID: 30800054 PMCID: PMC6375857 DOI: 10.3389/fnmol.2019.00020] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Glutamate is a fundamental excitatory neurotransmitter in the mammalian central nervous system (CNS), playing key roles in memory, neuronal development, and synaptic plasticity. Moreover, excessive glutamate release has been implicated in neuronal cell death. There are both ionotropic and metabotropic glutamate receptors (mGluRs), the latter of which can be divided into eight subtypes and three subgroups based on homology sequence and their effects on cell signaling. Indeed, mGluRs exert fine control over glutamate activity by stimulating several cell-signaling pathways via the activation of G protein-coupled (GPC) or G protein-independent cell signaling. The involvement of specific mGluRs in different forms of synaptic plasticity suggests that modulation of mGluRs may aid in the treatment of cognitive impairments related to several neurodevelopmental/psychiatric disorders and neurodegenerative diseases, which are associated with a high economic and social burden. Preclinical and clinical data have shown that, in the CNS, mGluRs are able to modulate presynaptic neurotransmission by fine-tuning neuronal firing and neurotransmitter release in a dynamic, activity-dependent manner. Current studies on drugs that target mGluRs have identified promising, innovative pharmacological tools for the treatment of neurodegenerative and neuropsychiatric conditions, including chronic pain.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
22
|
Ch'ng S, Fu J, Brown RM, McDougall SJ, Lawrence AJ. The intersection of stress and reward: BNST modulation of aversive and appetitive states. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:108-125. [PMID: 29330137 DOI: 10.1016/j.pnpbp.2018.01.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is widely acknowledged as a brain structure that regulates stress and anxiety states, as well as aversive and appetitive behaviours. The diverse roles of the BNST are afforded by its highly modular organisation, neurochemical heterogeneity, and complex intrinsic and extrinsic circuitry. There has been growing interest in the BNST in relation to psychopathologies such as anxiety and addiction. Although research on the human BNST is still in its infancy, there have been extensive preclinical studies examining the molecular signature and hodology of the BNST and their involvement in stress and reward seeking behaviour. This review examines the neurochemical phenotype and connectivity of the BNST, as well as electrophysiological correlates of plasticity in the BNST mediated by stress and/or drugs of abuse.
Collapse
Affiliation(s)
- Sarah Ch'ng
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
23
|
Joffe ME, Centanni SW, Jaramillo AA, Winder DG, Conn PJ. Metabotropic Glutamate Receptors in Alcohol Use Disorder: Physiology, Plasticity, and Promising Pharmacotherapies. ACS Chem Neurosci 2018; 9:2188-2204. [PMID: 29792024 PMCID: PMC6192262 DOI: 10.1021/acschemneuro.8b00200] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Developing efficacious treatments for alcohol use disorder (AUD) has proven difficult. The insidious nature of the disease necessitates a deep understanding of its underlying biology as well as innovative approaches to ameliorate ethanol-related pathophysiology. Excessive ethanol seeking and relapse are generated by long-term changes to membrane properties, synaptic physiology, and plasticity throughout the limbic system and associated brain structures. Each of these factors can be modulated by metabotropic glutamate (mGlu) receptors, a diverse set of G protein-coupled receptors highly expressed throughout the central nervous system. Here, we discuss how different components of the mGlu receptor family modulate neurotransmission in the limbic system and other brain regions involved in AUD etiology. We then describe how these processes are dysregulated following ethanol exposure and speculate about how mGlu receptor modulation might restore such pathophysiological changes. To that end, we detail the current understanding of the behavioral pharmacology of mGlu receptor-directed drug-like molecules in animal models of AUD. Together, this review highlights the prominent position of the mGlu receptor system in the pathophysiology of AUD and provides encouragement that several classes of mGlu receptor modulators may be translated as viable treatment options.
Collapse
Affiliation(s)
- Max E. Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
| | - Samuel W. Centanni
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Anel A. Jaramillo
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Danny G. Winder
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
| |
Collapse
|
24
|
Harris NA, Winder DG. Synaptic Plasticity in the Bed Nucleus of the Stria Terminalis: Underlying Mechanisms and Potential Ramifications for Reinstatement of Drug- and Alcohol-Seeking Behaviors. ACS Chem Neurosci 2018; 9:2173-2187. [PMID: 29851347 PMCID: PMC6146063 DOI: 10.1021/acschemneuro.8b00169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a component of the extended amygdala that shows significant changes in activity and plasticity through chronic exposure to drugs and stress. The region is critical for stress- and cue-induced reinstatement of drug-seeking behaviors and is thus a candidate region for the plastic changes that occur in abstinence that prime addicted patients for reinstatement behaviors. Here, we discuss the various forms of long-term potentiation (LTP) and long-term depression (LTD) in the rodent BNST and highlight the way that these changes in excitatory transmission interact with exposure to alcohol and other drugs of abuse, as well as other stressors. In addition, we highlight potential areas for future research in this area, including investigating input- and cell-specific bidirectional changes in activity. As we continue to accrue foundational knowledge in the mechanisms and effects of plasticity in the BNST, molecular targets and treatment strategies that are relevant to reinstatement behaviors will also begin to emerge. Here, we briefly discuss the effects of catecholamine receptor modulators on synaptic plasticity in the BNST due to the role of norepinephrine in LTD and dopamine on the short-term component of LTP as well as the role that signaling at these receptors plays in reinstatement of drug- and alcohol-seeking behaviors. We hope that insights gained on the specific changes in plasticity that occur within the BNST during abstinence from alcohol and other drugs of abuse will provide insight into the biological underpinnings of relapse behavior in human addicts and inform future treatment modalities for addiction that tackle this complex biological problem.
Collapse
Affiliation(s)
- Nicholas A. Harris
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology & Biophysics
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology & Biophysics
- Vanderbilt J.F. Kennedy Center for Research on Human Development
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
25
|
Differences in 5-HT2A and mGlu2 Receptor Expression Levels and Repressive Epigenetic Modifications at the 5-HT2A Promoter Region in the Roman Low- (RLA-I) and High- (RHA-I) Avoidance Rat Strains. Mol Neurobiol 2017; 55:1998-2012. [PMID: 28265857 DOI: 10.1007/s12035-017-0457-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/13/2017] [Indexed: 01/12/2023]
Abstract
The serotonin 2A (5-HT2A) and metabotropic glutamate 2 (mGlu2) receptors regulate each other and are associated with schizophrenia. The Roman high- (RHA-I) and the Roman low- (RLA-I) avoidance rat strains present well-differentiated behavioral profiles, with the RHA-I strain emerging as a putative genetic rat model of schizophrenia-related features. The RHA-I strain shows increased 5-HT2A and decreased mGlu2 receptor binding levels in prefrontal cortex (PFC). Here, we looked for differences in gene expression and transcriptional regulation of these receptors. The striatum (STR) was included in the analysis. 5-HT2A, 5-HT1A, and mGlu2 mRNA and [3H]ketanserin binding levels were measured in brain homogenates. As expected, 5-HT2A binding was significantly increased in PFC in the RHA-I rats, while no difference in binding was observed in STR. Surprisingly, 5-HT2A gene expression was unchanged in PFC but significantly decreased in STR. mGlu2 receptor gene expression was significantly decreased in both PFC and STR. No differences were observed for the 5-HT1A receptor. Chromatin immunoprecipitation assay revealed increased trimethylation of histone 3 at lysine 27 (H3K27me3) at the promoter region of the HTR2A gene in the STR. We further looked at the Akt/GSK3 signaling pathway, a downstream point of convergence of the serotonin and glutamate system, and found increased phosphorylation levels of GSK3β at tyrosine 216 and increased β-catenin levels in the PFC of the RHA-I rats. These results reveal region-specific regulation of the 5-HT2A receptor in the RHA-I rats probably due to absence of mGlu2 receptor that may result in differential regulation of downstream pathways.
Collapse
|
26
|
Johnson KA, Lovinger DM. Presynaptic G Protein-Coupled Receptors: Gatekeepers of Addiction? Front Cell Neurosci 2016; 10:264. [PMID: 27891077 PMCID: PMC5104741 DOI: 10.3389/fncel.2016.00264] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
Abstract
Drug abuse and addiction cause widespread social and public health problems, and the neurobiology underlying drug actions and drug use and abuse is an area of intensive research. Drugs of abuse alter synaptic transmission, and these actions contribute to acute intoxication as well as the chronic effects of abused substances. Transmission at most mammalian synapses involves neurotransmitter activation of two receptor subtypes, ligand-gated ion channels that mediate fast synaptic responses and G protein-coupled receptors (GPCRs) that have slower neuromodulatory actions. The GPCRs represent a large proportion of neurotransmitter receptors involved in almost all facets of nervous system function. In addition, these receptors are targets for many pharmacotherapeutic agents. Drugs of abuse directly or indirectly affect neuromodulation mediated by GPCRs, with important consequences for intoxication, drug taking and responses to prolonged drug exposure, withdrawal and addiction. Among the GPCRs are several subtypes involved in presynaptic inhibition, most of which are coupled to the Gi/o class of G protein. There is increasing evidence that these presynaptic Gi/o-coupled GPCRs have important roles in the actions of drugs of abuse, as well as behaviors related to these drugs. This topic will be reviewed, with particular emphasis on receptors for three neurotransmitters, Dopamine (DA; D1- and D2-like receptors), Endocannabinoids (eCBs; CB1 receptors) and glutamate (group II metabotropic glutamate (mGlu) receptors). The focus is on recent evidence from laboratory animal models (and some evidence in humans) implicating these receptors in the acute and chronic effects of numerous abused drugs, as well as in the control of drug seeking and taking. The ability of drugs targeting these receptors to modify drug seeking behavior has raised the possibility of using compounds targeting these receptors for addiction pharmacotherapy. This topic is also discussed, with emphasis on development of mGlu2 positive allosteric modulators (PAMs).
Collapse
Affiliation(s)
- Kari A. Johnson
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - David M. Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
27
|
|
28
|
Griebel G, Pichat P, Boulay D, Naimoli V, Potestio L, Featherstone R, Sahni S, Defex H, Desvignes C, Slowinski F, Vigé X, Bergis OE, Sher R, Kosley R, Kongsamut S, Black MD, Varty GB. The mGluR2 positive allosteric modulator, SAR218645, improves memory and attention deficits in translational models of cognitive symptoms associated with schizophrenia. Sci Rep 2016; 6:35320. [PMID: 27734956 PMCID: PMC5062470 DOI: 10.1038/srep35320] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/28/2016] [Indexed: 12/25/2022] Open
Abstract
Normalization of altered glutamate neurotransmission through activation of the mGluR2 has emerged as a new approach to treat schizophrenia. These studies describe a potent brain penetrant mGluR2 positive allosteric modulator (PAM), SAR218645. The compound behaves as a selective PAM of mGluR2 in recombinant and native receptor expression systems, increasing the affinity of glutamate at mGluR2 as inferred by competition and GTPγ35S binding assays. SAR218645 augmented the mGluR2-mediated response to glutamate in a rat recombinant mGluR2 forced-coupled Ca2+ mobilization assay. SAR218645 potentiated mGluR2 agonist-induced contralateral turning. When SAR218645 was tested in models of the positive symptoms of schizophrenia, it reduced head twitch behavior induced by DOI, but it failed to inhibit conditioned avoidance and hyperactivity using pharmacological and transgenic models. Results from experiments in models of the cognitive symptoms associated with schizophrenia showed that SAR218645 improved MK-801-induced episodic memory deficits in rats and attenuated working memory impairment in NMDA Nr1neo-/- mice. The drug reversed disrupted latent inhibition and auditory-evoked potential in mice and rats, respectively, two endophenotypes of schizophrenia. This profile positions SAR218645 as a promising candidate for the treatment of cognitive symptoms of patients with schizophrenia, in particular those with abnormal attention and sensory gating abilities.
Collapse
Affiliation(s)
- Guy Griebel
- Sanofi R&D, Strategy, Science Policy &External Innovation, Chilly-Mazarin, France
| | - Philippe Pichat
- Sanofi R&D, Translational Sciences Unit, Chilly-Mazarin, France
| | - Denis Boulay
- Sanofi R&D, Translational Sciences Unit, Chilly-Mazarin, France
| | | | - Lisa Potestio
- Sanofi R&D, 1041 Route 202/206, Bridgewater, NJ, USA
| | | | | | - Henry Defex
- Sanofi R&D, 1041 Route 202/206, Bridgewater, NJ, USA
| | | | | | - Xavier Vigé
- Sanofi R&D, Translational Sciences Unit, Chilly-Mazarin, France
| | | | - Rosy Sher
- Sanofi R&D, 1041 Route 202/206, Bridgewater, NJ, USA
| | | | | | - Mark D Black
- Sanofi R&D, 1041 Route 202/206, Bridgewater, NJ, USA
| | | |
Collapse
|
29
|
Peterlik D, Flor PJ, Uschold-Schmidt N. The Emerging Role of Metabotropic Glutamate Receptors in the Pathophysiology of Chronic Stress-Related Disorders. Curr Neuropharmacol 2016; 14:514-39. [PMID: 27296643 PMCID: PMC4983752 DOI: 10.2174/1570159x13666150515234920] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/04/2015] [Accepted: 05/12/2015] [Indexed: 12/28/2022] Open
Abstract
Chronic stress-related psychiatric conditions such as anxiety, depression, and alcohol abuse are an enormous public health concern. The etiology of these pathologies is complex, with psychosocial stressors being among the most frequently discussed risk factors. The brain glutamatergic neurotransmitter system has often been found involved in behaviors and pathophysiologies resulting from acute stress and fear. Despite this, relatively little is known about the role of glutamatergic system components in chronic psychosocial stress, neither in rodents nor in humans. Recently, drug discovery efforts at the metabotropic receptor subtypes of the glutamatergic system (mGlu1-8 receptors) led to the identification of pharmacological tools with emerging potential in psychiatric conditions. But again, the contribution of individual mGlu subtypes to the manifestation of physiological, molecular, and behavioral consequences of chronic psychosocial stress remains still largely unaddressed. The current review will describe animal models typically used to analyze acute and particularly chronic stress conditions, including models of psychosocial stress, and there we will discuss the emerging roles for mGlu receptor subtypes. Indeed, accumulating evidence indicates relevance and potential therapeutic usefulness of mGlu2/3 ligands and mGlu5 receptor antagonists in chronic stress-related disorders. In addition, a role for further mechanisms, e.g. mGlu7-selective compounds, is beginning to emerge. These mechanisms are important to be analyzed in chronic psychosocial stress paradigms, e.g. in the chronic subordinate colony housing (CSC) model. We summarize the early results and discuss necessary future investigations, especially for mGlu5 and mGlu7 receptor blockers, which might serve to suggest improved therapeutic strategies to treat stress-related disorders.
Collapse
Affiliation(s)
| | - Peter J Flor
- Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93053 Regensburg, Germany.
| | - Nicole Uschold-Schmidt
- Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93053 Regensburg, Germany.
| |
Collapse
|
30
|
Raber J, Duvoisin RM. Novel metabotropic glutamate receptor 4 and glutamate receptor 8 therapeutics for the treatment of anxiety. Expert Opin Investig Drugs 2014; 24:519-28. [DOI: 10.1517/13543784.2014.986264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jacob Raber
- 1Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Oregon Health and Science University, Division of Neuroscience, ONPRC, Portland, OR, USA ;
| | - Robert M Duvoisin
- 2Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
31
|
α(2A)-adrenergic receptors filter parabrachial inputs to the bed nucleus of the stria terminalis. J Neurosci 2014; 34:9319-31. [PMID: 25009265 DOI: 10.1523/jneurosci.0822-14.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
α2-adrenergic receptors (AR) within the bed nucleus of the stria terminalis (BNST) reduce stress-reward interactions in rodent models. In addition to their roles as autoreceptors, BNST α(2A)-ARs suppress glutamatergic transmission. One prominent glutamatergic input to the BNST originates from the parabrachial nucleus (PBN) and consists of asymmetric axosomatic synapses containing calcitonin gene-related peptide (CGRP) and vGluT2. Here we provide immunoelectron microscopic data showing that many asymmetric axosomatic synapses in the BNST contain α(2A)-ARs. Further, we examined optically evoked glutamate release ex vivo in BNST from mice with virally delivered channelrhodopsin2 (ChR2) expression in PBN. In BNST from these animals, ChR2 partially colocalized with CGRP, and activation generated EPSCs in dorsal anterolateral BNST neurons that elicited two cell-type-specific outcomes: (1) feedforward inhibition or (2) an EPSP that elicited firing. We found that the α(2A)-AR agonist guanfacine selectively inhibited this PBN input to the BNST, preferentially reducing the excitatory response in ex vivo mouse brain slices. To begin to assess the overall impact of α(2A)-AR control of this PBN input on BNST excitatory transmission, we used a Thy1-COP4 mouse line with little postsynaptic ChR2 expression nor colocalization of ChR2 with CGRP in the BNST. In slices from these mice, we found that guanfacine enhanced, rather than suppressed, optogenetically initiated excitatory drive in BNST. Thus, our study reveals distinct actions of PBN afferents within the BNST and suggests that α(2A)-AR agonists may filter excitatory transmission in the BNST by inhibiting a component of the PBN input while enhancing the actions of other inputs.
Collapse
|
32
|
Kolaj M, Zhang L, Hermes MLHJ, Renaud LP. Intrinsic properties and neuropharmacology of midline paraventricular thalamic nucleus neurons. Front Behav Neurosci 2014; 8:132. [PMID: 24860449 PMCID: PMC4029024 DOI: 10.3389/fnbeh.2014.00132] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/01/2014] [Indexed: 01/01/2023] Open
Abstract
Neurons in the midline and intralaminar thalamic nuclei are components of an interconnected brainstem, limbic and prefrontal cortex neural network that is engaged during arousal, vigilance, motivated and addictive behaviors, and stress. To better understand the cellular mechanisms underlying these functions, here we review some of the recently characterized electrophysiological and neuropharmacological properties of neurons in the paraventricular thalamic nucleus (PVT), derived from whole cell patch clamp recordings in acute rat brain slice preparations. PVT neurons display firing patterns and ionic conductances (IT and IH) that exhibit significant diurnal change. Their resting membrane potential (RMP) is maintained by various ionic conductances that include inward rectifier (Kir), hyperpolarization-activated nonselective cation (HCN) and TWIK-related acid sensitive (TASK) K+ channels. Firing patterns are regulated by high voltage-activated (HVA) and low voltage-activated (LVA) Ca2+ conductances. Moreover, transient receptor potential (TRP)-like nonselective cation channels together with Ca2+- and Na+-activated K+ conductances (KCa; KNa) contribute to unique slow afterhyperpolarizing potentials (sAHPs) that are generally not detectable in lateral thalamic or reticular thalamic nucleus neurons. The excitability of PVT neurons is also modulated by activation of neurotransmitter receptors associated with afferent pathways to PVT and other thalamic midline nuclei. We report on receptor-mediated actions of GABA, glutamate, monoamines and several neuropeptides: arginine vasopressin, gastrin-releasing peptide, thyrotropin releasing hormone and the orexins (hypocretins). This review represents an initial survey of intrinsic and transmitter-sensitive ionic conductances that are deemed to be unique to this population of midline thalamic neurons, information that is fundamental to an appreciation of the role these thalamic neurons may play in normal central nervous system (CNS) physiology and in CNS disorders that involve the dorsomedial thalamus.
Collapse
Affiliation(s)
- Miloslav Kolaj
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Li Zhang
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Michael L H J Hermes
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Leo P Renaud
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
33
|
Davis M, Walker DL. Role of bed nucleus of the stria terminalis and amygdala AMPA receptors in the development and expression of context conditioning and sensitization of startle by prior shock. Brain Struct Funct 2013; 219:1969-82. [PMID: 23934654 DOI: 10.1007/s00429-013-0616-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/23/2013] [Indexed: 12/20/2022]
Abstract
A core symptom of post-traumatic stress disorder is hyper-arousal-manifest in part by increases in the amplitude of the acoustic startle reflex. Gewirtz et al. (Prog Neuropsychopharmacol Biol Psychiatry 22:625-648, 1998) found that, in rats, persistent shock-induced startle increases were prevented by pre-test electrolytic lesions of the bed nucleus of the stria terminalis (BNST). We used reversible inactivation to determine if similar effects reflect actions on (a) BNST neurons themselves versus fibers-of-passage, (b) the development versus expression of such increases, and (c) associative fear versus non-associative sensitization. Twenty-four hours after the last of three shock sessions, startle was markedly enhanced when rats were tested in a non-shock context. These increases decayed over the course of several days. Decay was unaffected by context exposure, and elevated startle was restored when rats were tested for the first time in the original shock context. Thus, both associative and non-associative components could be measured under different conditions. Pre-test intra-BNST infusions of the AMPA receptor antagonist NBQX (3 μg/side) blocked the non-associative (as did infusions into the basolateral amygdala) but not the associative component, whereas pre-shock infusions disrupted both. NBQX did not affect baseline startle or shock reactivity. These results indicate that AMPA receptors in or very near to the BNST are critical for the expression and development of non-associative shock-induced startle sensitization, and also for context fear conditioning, but not context fear expression. More generally, they suggest that treatments targeting the BNST may be clinically useful for treating trauma-related hyper-arousal and perhaps for retarding its development.
Collapse
Affiliation(s)
- Michael Davis
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 954 Gatewood Rd NE (Yerkes Neuroscience Bldg), Rm. 5214, Atlanta, USA
| | | |
Collapse
|
34
|
Rodríguez-Sierra OE, Turesson HK, Pare D. Contrasting distribution of physiological cell types in different regions of the bed nucleus of the stria terminalis. J Neurophysiol 2013; 110:2037-49. [PMID: 23926040 DOI: 10.1152/jn.00408.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We characterized the electroresponsive and morphological properties of neurons in the bed nucleus of the stria terminalis (BNST). Previously, Rainnie and colleagues distinguished three cell types in the anterolateral region of BNST (BNST-AL): low-threshold bursting cells (LTB; type II) and regular spiking neurons that display time-dependent (RS; type I) or fast (fIR; type III) inward rectification in the hyperpolarizing direction (Hammack SE, Mania I, Rainnie DG. J Neurophysiol 98: 638-56, 2007). We report that the same neuronal types exist in the anteromedial (AM) and anteroventral (AV) regions of BNST. In addition, we observed two hitherto unreported cell types: late-firing (LF) cells, only seen in BNST-AL, that display a conspicuous delay to firing, and spontaneously active (SA) neurons, only present in BNST-AV, firing continuously at rest. However, the feature that most clearly distinguished the three BNST regions was the incidence of LTB cells (approximately 40-70%) and the strength of their bursting behavior (both higher in BNST-AM and AV relative to AL). The incidence of RS cells was similar in the three regions (∼25%), whereas that of fIR cells was higher in BNST-AL (∼25%) than AV or AM (≤8%). With the use of biocytin, two dominant morphological cell classes were identified but they were not consistently related to particular physiological phenotypes. One neuronal class had highly branched and spiny dendrites; the second had longer but poorly branched and sparsely spiny dendrites. Both often exhibited dendritic varicosities. Since LTB cells prevail in BNST, it will be important to determine what inputs set their firing mode (tonic vs. bursting) and in what behavioral states.
Collapse
Affiliation(s)
- Olga E Rodríguez-Sierra
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey; and
| | | | | |
Collapse
|
35
|
Antagonists reversibly reverse chemical LTD induced by group I, group II and group III metabotropic glutamate receptors. Neuropharmacology 2013; 74:135-46. [PMID: 23542080 DOI: 10.1016/j.neuropharm.2013.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/25/2013] [Accepted: 03/07/2013] [Indexed: 11/21/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are implicated in many neurological and psychiatric diseases and are the targets of therapeutic agents currently in clinical development. Their activation has diverse effects in the central nervous system (CNS) that includes an involvement in synaptic plasticity. We previously reported that the brief exposure of hippocampal slices to dihydroxyphenylglycine (DHPG) can result in a long-term depression (LTD) of excitatory synaptic transmission. Surprisingly, this LTD could be fully reversed by mGlu receptor antagonists in a manner that was itself fully reversible upon washout of the antagonist. Here, 15 years after the discovery of DHPG-LTD and its reversible reversibility, we summarise these initial findings. We then present new data on DHPG-LTD, which demonstrates that evoked epileptiform activity triggered by activation of group I mGlu receptors can also be reversibly reversed by mGlu receptor antagonists. Furthermore, we show that the phenomenon of reversible reversibility is not specific to group I mGlu receptors. We report that activation of group II mGlu receptors in the temporo-ammonic pathway (TAP) and mossy fibre pathway within the hippocampus and in the cortical input to neurons of the lateral amygdala induces an LTD that is reversed by LY341495, a group II mGlu receptor antagonist. We also show that activation of group III mGlu8 receptors induces an LTD at lateral perforant path inputs to the dentate gyrus and that this LTD is reversed by MDCPG, an mGlu8 receptor antagonist. In conclusion, we have shown that activation of representative members of each of the three groups of mGlu receptors can induce forms of LTD than can be reversed by antagonists, and that in each case washout of the antagonist is associated with the re-establishment of the LTD. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'.
Collapse
|
36
|
Turesson HK, Rodríguez-Sierra OE, Pare D. Intrinsic connections in the anterior part of the bed nucleus of the stria terminalis. J Neurophysiol 2013; 109:2438-50. [PMID: 23446692 DOI: 10.1152/jn.00004.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intrinsic connections in the anterior portion of the bed nucleus of the stria terminalis (BNST-A) were studied using patch recordings and ultraviolet (UV) glutamate uncaging (GU) in vitro. UV light was delivered at small BNST-A sites in a grid-like pattern while evoked responses were monitored in different BNST-A regions. Three sectors were distinguished in the BNST-A using fiber bundles readily identifiable in transilluminated slices: the anterior commissure, dividing the BNST-A into dorsal and ventral (BNST-AV) regions, and the intra-BNST component of the stria terminalis, subdividing the dorsal portion into medial (BNST-AM) and lateral (BNST-AL) regions. Overall, GU elicited GABAergic inhibitory postsynaptic potentials (IPSPs) more frequently than excitatory postsynaptic potentials. The incidence of intraregional connections was higher than interregional links. With respect to the latter, asymmetric connections were seen between different parts of the BNST-A. Indeed, while reciprocal connections were found between the BNST-AL and BNST-AM, BNST-AL to BNST-AM connections were more frequent than in the opposite direction. Similarly, while GU in the BNST-AM or BNST-AL often elicited IPSPs in BNST-AV cells, the opposite was rarely seen. Within the BNST-AM, connections were polarized, with dorsal GU sites eliciting IPSPs in more ventrally located cells more frequently than the opposite. This trend was not seen in other regions of the BNST. Consistent with this, most BNST-AM cells had dorsally directed dendrites and ventrally ramified axons, whereas this morphological polarization was not seen in other parts of the BNST-A. Overall, our results reveal a hitherto unsuspected level of asymmetry in the connections within and between different BNST-A regions, implying a degree of interdependence in their activity.
Collapse
Affiliation(s)
- Hjalmar K Turesson
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey 07102, USA
| | | | | |
Collapse
|
37
|
Conrad KL, Davis AR, Silberman Y, Sheffler DJ, Shields AD, Saleh SA, Sen N, Matthies HJG, Javitch JA, Lindsley CW, Winder DG. Yohimbine depresses excitatory transmission in BNST and impairs extinction of cocaine place preference through orexin-dependent, norepinephrine-independent processes. Neuropsychopharmacology 2012; 37:2253-66. [PMID: 22617356 PMCID: PMC3422490 DOI: 10.1038/npp.2012.76] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alpha2 adrenergic receptor (α(2)-AR) antagonist yohimbine is a widely used tool for the study of anxiogenesis and stress-induced drug-seeking behavior. We previously demonstrated that yohimbine paradoxically depresses excitatory transmission in the bed nucleus of the stria terminalis (BNST), a region critical to the integration of stress and reward pathways, and produces an impairment of extinction of cocaine-conditioned place preference (cocaine-CPP) independent of α(2)-AR signaling. Recent studies show yohimbine-induced drug-seeking behavior is attenuated by orexin receptor 1 (OX(1)R) antagonists. Moreover, yohimbine-induced cocaine-seeking behavior is BNST-dependent. Here, we investigated yohimbine-orexin interactions. Our results demonstrate yohimbine-induced depression of excitatory transmission in the BNST is unaffected by alpha1-AR and corticotropin-releasing factor receptor-1 (CRFR(1)) antagonists, but is (1) blocked by OxR antagonists and (2) absent in brain slices from orexin knockout mice. Although the actions of yohimbine were not mimicked by the norepinephrine transporter blocker reboxetine, they were by exogenously applied orexin A. We find that, as with yohimbine, orexin A depression of excitatory transmission in BNST is OX(1)R-dependent. Finally, we find these ex vivo effects are paralleled in vivo, as yohimbine-induced impairment of cocaine-CPP extinction is blocked by a systemically administered OX(1)R antagonist. These data highlight a new mechanism for orexin on excitatory anxiety circuits and demonstrate that some of the actions of yohimbine may be directly dependent upon orexin signaling and independent of norepinephrine and CRF in the BNST.
Collapse
Affiliation(s)
- Kelly L Conrad
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Adeola R Davis
- Department of Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yuval Silberman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Douglas J Sheffler
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA,Department of Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela D Shields
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sam A Saleh
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Namita Sen
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Pharmacology, Center for Molecular Recognition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Heinrich JG Matthies
- Department of Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jonathan A Javitch
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Pharmacology, Center for Molecular Recognition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA,Department of Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA,Department of Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA,Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA,Vanderbilt Brain Institute, Nashville, TN, USA,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA, Tel: +1 615 322 1144, Fax: +1 615 322 1462, E-mail:
| |
Collapse
|
38
|
Herman EJ, Bubser M, Conn PJ, Jones CK. Metabotropic glutamate receptors for new treatments in schizophrenia. Handb Exp Pharmacol 2012:297-365. [PMID: 23027420 DOI: 10.1007/978-3-642-25758-2_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) represent exciting targets for the development of novel therapeutic agents for schizophrenia. Recent studies indicate that selective activation of specific mGluR subtypes may provide potential benefits for not only the positive symptoms, but also the negative symptoms and cognitive impairments observed in individuals with schizophrenia. Although optimization of traditional orthosteric agonists may still offer a feasible approach for the activation of mGluRs, important progress has been made in the discovery of novel subtype-selective allosteric ligands, including positive allosteric modulators (PAMs) of mGluR2 and mGluR5. These allosteric mGluR ligands have improved properties for clinical development and have served as key preclinical tools for a more in-depth understanding of the potential roles of these different mGluR subtypes for the treatment of schizophrenia.
Collapse
Affiliation(s)
- E J Herman
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
39
|
Speed N, Saunders C, Davis AR, Owens WA, Matthies HJG, Saadat S, Kennedy JP, Vaughan RA, Neve RL, Lindsley CW, Russo SJ, Daws LC, Niswender1 KD, Galli A. Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding. PLoS One 2011; 6:e25169. [PMID: 21969871 PMCID: PMC3182178 DOI: 10.1371/journal.pone.0025169] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/26/2011] [Indexed: 11/18/2022] Open
Abstract
Background The prevalence of obesity has increased dramatically worldwide. The obesity epidemic begs for novel concepts and therapeutic targets that cohesively address “food-abuse” disorders. We demonstrate a molecular link between impairment of a central kinase (Akt) involved in insulin signaling induced by exposure to a high-fat (HF) diet and dysregulation of higher order circuitry involved in feeding. Dopamine (DA) rich brain structures, such as striatum, provide motivation stimuli for feeding. In these central circuitries, DA dysfunction is posited to contribute to obesity pathogenesis. We identified a mechanistic link between metabolic dysregulation and the maladaptive behaviors that potentiate weight gain. Insulin, a hormone in the periphery, also acts centrally to regulate both homeostatic and reward-based HF feeding. It regulates DA homeostasis, in part, by controlling a key element in DA clearance, the DA transporter (DAT). Upon HF feeding, nigro-striatal neurons rapidly develop insulin signaling deficiencies, causing increased HF calorie intake. Methodology/Principal Findings We show that consumption of fat-rich food impairs striatal activation of the insulin-activated signaling kinase, Akt. HF-induced Akt impairment, in turn, reduces DAT cell surface expression and function, thereby decreasing DA homeostasis and amphetamine (AMPH)-induced DA efflux. In addition, HF-mediated dysregulation of Akt signaling impairs DA-related behaviors such as (AMPH)-induced locomotion and increased caloric intake. We restored nigro-striatal Akt phosphorylation using recombinant viral vector expression technology. We observed a rescue of DAT expression in HF fed rats, which was associated with a return of locomotor responses to AMPH and normalization of HF diet-induced hyperphagia. Conclusions/Significance Acquired disruption of brain insulin action may confer risk for and/or underlie “food-abuse” disorders and the recalcitrance of obesity. This molecular model, thus, explains how even short-term exposure to “the fast food lifestyle” creates a cycle of disordered eating that cements pathological changes in DA signaling leading to weight gain and obesity.
Collapse
Affiliation(s)
- Nicole Speed
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Christine Saunders
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Adeola R. Davis
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - W. Anthony Owens
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Heinrich J. G. Matthies
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sanaz Saadat
- Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Jack P. Kennedy
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Roxanne A. Vaughan
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Science, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Rachael L. Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Craig W. Lindsley
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Scott J. Russo
- Department of Neuroscience, Mount Sinai Medical Center, New York, New York, United States of America
| | - Lynette C. Daws
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Kevin D. Niswender1
- Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Medicine, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Aurelio Galli
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Molecular Neuroscience, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
40
|
Johnson KA, Niswender CM, Conn PJ, Xiang Z. Activation of group II metabotropic glutamate receptors induces long-term depression of excitatory synaptic transmission in the substantia nigra pars reticulata. Neurosci Lett 2011; 504:102-106. [PMID: 21945652 DOI: 10.1016/j.neulet.2011.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/12/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
Activation of group II metabotropic glutamate receptors (mGlu2 and mGlu3) has been implicated as a potential therapeutic strategy for treating both motor symptoms and progressive neurodegeneration in Parkinson's disease (PD). Modulation of excitatory transmission in the basal ganglia represents a possible mechanism by which group II mGlu agonists could exert antiparkinsonian effects. Previous studies have identified reversible effects of mGlu2/3 activation on excitatory transmission at various synapses in the basal ganglia, including the excitatory synapse between the subthalamic nucleus (STN) and the substantia nigra pars reticulata (SNr). Using whole-cell patch clamp studies of GABAergic SNr neurons in rat midbrain slices, we have found that a prolonged activation of group II mGlus by the selective agonist LY379268 induces a long-term depression (LTD) of evoked excitatory postsynaptic current (EPSC) amplitude. Bath application of LY379268 (100nM, 10min) induced a marked reduction in EPSC amplitude, and excitatory transmission remained depressed for at least 40min after agonist washout. The effect of LY379268 was concentration-dependent and was completely blocked by the group II mGlu-preferring antagonist LY341495 (500nM). To determine the relative contributions of mGlu2 and mGlu3 to the LTD induced by LY379268, we tested the ability of LY379268 (100nM) to induce LTD in wild type mice and mice lacking mGlu2 or mGlu3. LY379268 induced similar LTD in wild type mice and mGlu3 knockout mice, whereas LTD was absent in mGlu2 knockout mice, indicating that mGlu2 activation is necessary for the induction of LTD in the SNr. These studies suggest a novel role for mGlu2 in the long-term regulation of excitatory transmission in the SNr and invite further exploration of mGlu2 as a therapeutic target for treating the motor symptoms of PD.
Collapse
Affiliation(s)
- Kari A Johnson
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Zixiu Xiang
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
41
|
Gosnell HB, Silberman Y, Grueter BA, Duvoisin RM, Raber J, Winder DG. mGluR8 modulates excitatory transmission in the bed nucleus of the stria terminalis in a stress-dependent manner. Neuropsychopharmacology 2011; 36:1599-607. [PMID: 21451497 PMCID: PMC3138653 DOI: 10.1038/npp.2011.40] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/09/2011] [Accepted: 02/25/2011] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are important modulators of excitatory transmission, and have been implicated in anxiety and stress-related behaviors. Previously, we showed that group III mGluR agonists could depress excitatory synaptic transmission in the bed nucleus of the stria terminalis (BNST), an integral component of the anxiety circuitry. Here, we provide converging evidence indicating that this effect is mediated primarily by mGluR8, is exerted presynaptically, and is modulated by noradrenergic signaling and stress. The effects of the group III mGluR agonist L-AP4 on excitatory transmission are not potentiated by the mGluR4-selective allosteric potentiator PHCCC, but are mimicked by the mGluR8-selective agonist DCPG. Consistent with these results, mGluR8-like immunoreactivity is seen in the BNST, and the actions of L-AP4 on excitatory transmission are absent in slices from mGluR8 knockout (KO) mice. Application of DCPG is associated with an increase in paired-pulse evoked glutamate synaptic currents, and a decrease in spontaneous glutamate synaptic current frequency, consistent with a primarily presynaptic action. mGluR8-mediated suppression of excitatory transmission is disrupted ex vivo by activation of α1 adrenergic receptors (α1 ARs). BNST mGluR8 function is also disrupted by both acute and chronic in vivo exposure to restraint stress, and in brain slices from α2A AR KO mice. These studies show that mGluR8 is an important regulator of excitatory transmission in the BNST, and suggest that this receptor is selectively disrupted by noradrenergic signaling and by both acute and chronic stress.
Collapse
Affiliation(s)
- Heather B Gosnell
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yuval Silberman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brad A Grueter
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert M Duvoisin
- Departments of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Jacob Raber
- Division of Neuroscience, Departments of Behavioral Neuroscience, and Neurology, ONPRC, Oregon Health & Science University, Portland, OR, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
42
|
Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 2011; 60:1017-41. [PMID: 21036182 PMCID: PMC3787883 DOI: 10.1016/j.neuropharm.2010.10.022] [Citation(s) in RCA: 496] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/15/2010] [Accepted: 10/21/2010] [Indexed: 12/24/2022]
Abstract
Metabotropic glutamate (mGlu) receptors were discovered in the mid 1980s and originally described as glutamate receptors coupled to polyphosphoinositide hydrolysis. Almost 6500 articles have been published since then, and subtype-selective mGlu receptor ligands are now under clinical development for the treatment of a variety of disorders such as Fragile-X syndrome, schizophrenia, Parkinson's disease and L-DOPA-induced dyskinesias, generalized anxiety disorder, chronic pain, and gastroesophageal reflux disorder. Prof. Erminio Costa was linked to the early times of the mGlu receptor history, when a few research groups challenged the general belief that glutamate could only activate ionotropic receptors and all metabolic responses to glutamate were secondary to calcium entry. This review moves from those nostalgic times to the most recent advances in the physiology and pharmacology of mGlu receptors, and highlights the role of individual mGlu receptor subtypes in the pathophysiology of human disorders. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- F Nicoletti
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hermes MLHJ, Renaud LP. Postsynaptic and presynaptic group II metabotropic glutamate receptor activation reduces neuronal excitability in rat midline paraventricular thalamic nucleus. J Pharmacol Exp Ther 2011; 336:840-9. [PMID: 21139059 DOI: 10.1124/jpet.110.176149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Drugs that interact with group II metabotropic glutamate receptors (mGluRs) are presently being evaluated for a role in the treatment of anxiety disorders and symptoms of schizophrenia. Their mechanism of action is believed to involve a reduction in excitatory neurotransmission in limbic and forebrain regions commonly associated with these mental disorders. In rodents, the glutamatergic neurons in the midline paraventricular thalamic nucleus (PVT) provide excitatory inputs to the limbic system and forebrain. PVT also displays a high density of group II mGluRs, predominantly the metabotropic glutamate 2 receptor (mGluR2). Because the role of group II mGluRs in regulating cellular and synaptic excitability in this location has yet to be determined, we used whole-cell patch-clamp recording and acute rat brain slice preparations to evaluate PVT neuron responses to a selective group II mGluR agonist, (1R,4R,5S,6R)-4-amino-2-oxabicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY 379268). LY 379268 consistently induced membrane hyperpolarization and suppressed firing by postsynaptic receptor-mediated activation of a barium-sensitive background K(+) conductance. This effect could be blocked by (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl)propanoic acid (LY 341495), a selective group II mGluR antagonist. In addition, LY 379268 acted at presynaptic receptors to reduce ionotropic glutamate receptor-mediated excitatory synaptic transmission. An mGluR2-positive allosteric modulator, 2,2,2-trifluoro-N-[4-(2-methoxyphenoxy)phenyl]-N-(3-pyridinylmethyl)ethanesulfonamide hydrochloride (LY 487379), resulted in leftward shifts of the LY 379268 dose-response curve for both postsynaptic and presynaptic actions. The data demonstrate that activation of postsynaptic and presynaptic group II (presumably mGluR2) mGluRs reduces neuronal excitability in midline thalamus, an action that may contribute to the effectiveness of mGluR2-activating drugs in rodent models of anxiety and psychosis.
Collapse
Affiliation(s)
- M L H J Hermes
- Ottawa Hospital Research Institute and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | | |
Collapse
|
44
|
Speed NK, Matthies HJG, Kennedy JP, Vaughan RA, Javitch JA, Russo SJ, Lindsley CW, Niswender K, Galli A. Akt-dependent and isoform-specific regulation of dopamine transporter cell surface expression. ACS Chem Neurosci 2010; 1:476-81. [PMID: 22778840 DOI: 10.1021/cn100031t] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 05/14/2010] [Indexed: 11/29/2022] Open
Abstract
Dopamine (DA) is a neurotransmitter implicated in multiple functions, including movement, cognition, motivation, and reward. The DA transporter (DAT) is responsible for clearing extracellular DA, thereby terminating DA neurotransmission. Previously, it has been shown that insulin signaling through protein kinase B/Akt regulates DAT function by fine-tuning DAT cell surface expression. Importantly, specific Akt isoforms (e.g., Akt1, Akt2) serve distinct physiological functions. Here, we demonstrate using isoform-specific Akt inhibitors that basal activity of Akt2, rather than Akt1, regulates DAT cell surface expression. Since Akt2 activation is mediated by insulin, these data further implicate insulin signaling as an important modulator of DAT function and dopaminergic tone.
Collapse
Affiliation(s)
| | | | | | - Roxanne A. Vaughan
- University of North Dakota School of Medicine and Health Science, Grand Forks, North Dakota
| | - Jonathan A. Javitch
- Department of Psychiatry and Pharmacology, Center for Molecular Recognition, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Scott J. Russo
- Department of Neuroscience, Mount Sinai Medical Center, New York, New York
| | | | - Kevin Niswender
- Department of Molecular Physiology & Biophysics
- Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Aurelio Galli
- Department of Pharmacology
- Department of Molecular Physiology & Biophysics
- Center for Molecular Neuroscience
| |
Collapse
|
45
|
Moussawi K, Kalivas PW. Group II metabotropic glutamate receptors (mGlu2/3) in drug addiction. Eur J Pharmacol 2010; 639:115-22. [PMID: 20371233 DOI: 10.1016/j.ejphar.2010.01.030] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/18/2009] [Accepted: 01/20/2010] [Indexed: 12/21/2022]
Abstract
Drug addiction is characterized by maladaptive decision-making and dysfunctional brain circuitry regulating motivated behaviors, resulting in loss of the behavioral flexibility needed to abstain from drug seeking. Hence, addicts face high risk of relapse even after prolonged periods of abstinence from drug use. This is thought to result from long-lasting drug-induced neuroadaptations of glutamate and dopaminergic transmission in the mesocorticolimbic and cortico-striatal circuits where group II metabotropic glutamate receptors (mGlu(2/3) receptors) are densely expressed. mGlu(2/3) receptors presynaptically control glutamate as well as dopamine release throughout the mesocorticolimbic structures involved in reward processing and drug seeking, and their function is reduced after prolonged exposure to drugs of abuse. In pre-clinical models, mGlu(2/3) receptors have been shown to regulate both reward processing and drug seeking, in part through the capacity to control release of dopamine and glutamate respectively. Specifically, mGlu(2/3) receptor agonists administered systemically or locally into certain brain structures reduce the rewarding value of commonly abused drugs and inhibit the reinstatement of drug seeking. Given the ability of mGlu(2/3) receptor agonists to compensate for and possibly reverse drug-induced neuroadaptations in mesocorticolimbic circuitry, this class of receptors emerges as a new therapeutic target for reducing relapse in drug addiction.
Collapse
Affiliation(s)
- Khaled Moussawi
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
46
|
McElligott ZA, Klug JR, Nobis WP, Patel S, Grueter BA, Kash TL, Winder DG. Distinct forms of Gq-receptor-dependent plasticity of excitatory transmission in the BNST are differentially affected by stress. Proc Natl Acad Sci U S A 2010; 107:2271-6. [PMID: 20133871 PMCID: PMC2836642 DOI: 10.1073/pnas.0905568107] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term depression (LTD) is an important synaptic mechanism for limiting excitatory influence over circuits subserving cognitive and emotional behavior. A major means of LTD induction is through the recruitment of signaling via G(q)-linked receptors activated by norepinephrine (NE), acetylcholine, and glutamate. Receptors from these transmitter families have been proposed to converge on a common postsynaptic LTD maintenance mechanism, such that hetero- and homosynaptic induction produce similar alterations in glutamate synapse efficacy. We report that in the dorsolateral and ventrolateral bed nucleus of the stria terminalis (BNST), recruitment of G(q)-linked receptors by glutamate or NE initiates mechanistically distinct forms of postsynaptically maintained LTD and these LTDs are differentially regulated by stress exposure. In particular, we show that although both mGluR5- and alpha(1)-adrenergic receptor (AR)-dependent LTDs involve postsynaptic endocytosis, the alpha(1)-AR-initiated LTD exclusively involves modulation of signaling through calcium-permeable AMPA receptors. Further, alpha(1)-AR- but not mGluR5- dependent LTD is disrupted by restraint stress. alpha(1)-AR LTD is also impaired in mice chronically exposed to ethanol. These data thus suggest that in the BNST, NE- and glutamate-activated G(q)-linked signaling pathways differentially tune glutamate synapse efficacy in response to stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas L. Kash
- Department of Pharmacology and Bowles Alcohol Center, University of North Carolina at Chapel Hill, NC
| | - Danny G. Winder
- Vanderbilt Brain Institute
- Department of Molecular Physiology and Biophysics, and
- Center for Molecular Neuroscience, and Kennedy Center for Human Development, Vanderbilt University Medical Center, Nashville, TN; and
| |
Collapse
|
47
|
Puente N, Elezgarai I, Lafourcade M, Reguero L, Marsicano G, Georges F, Manzoni OJ, Grandes P. Localization and function of the cannabinoid CB1 receptor in the anterolateral bed nucleus of the stria terminalis. PLoS One 2010; 5:e8869. [PMID: 20111610 PMCID: PMC2810340 DOI: 10.1371/journal.pone.0008869] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 01/04/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The bed nucleus of the stria terminalis (BNST) is involved in behaviors related to natural reward, drug addiction and stress. In spite of the emerging role of the endogenous cannabinoid (eCB) system in these behaviors, little is known about the anatomy and function of this system in the anterolateral BNST (alBNST). The aim of this study was to provide a detailed morphological characterization of the localization of the cannabinoid 1 (CB1) receptor a necessary step toward a better understanding of the physiological roles of the eCB system in this region of the brain. METHODOLOGY/PRINCIPAL FINDINGS We have combined anatomical approaches at the confocal and electron microscopy level to ex-vivo electrophysiological techniques. Here, we report that CB1 is localized on presynaptic membranes of about 55% of immunopositive synaptic terminals for the vesicular glutamate transporter 1 (vGluT1), which contain abundant spherical, clear synaptic vesicles and make asymmetrical synapses with alBNST neurons. About 64% of vGluT1 immunonegative synaptic terminals show CB1 immunolabeling. Furthermore, 30% and 35% of presynaptic boutons localize CB1 in alBNST of conditional mutant mice lacking CB1 mainly from GABAergic neurons (GABA-CB1-KO mice) and mainly from cortical glutamatergic neurons (Glu-CB1-KO mice), respectively. Extracellular field recordings and whole cell patch clamp in the alBNST rat brain slice preparation revealed that activation of CB1 strongly inhibits excitatory and inhibitory synaptic transmission. CONCLUSIONS/SIGNIFICANCE This study supports the anterolateral BNST as a potential neuronal substrate of the effects of cannabinoids on stress-related behaviors.
Collapse
Affiliation(s)
- Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| | - Mathieu Lafourcade
- INSERM U862 Equipe “Physiopathologie de la Transmission et de la Plasticité Synaptique”, Bordeaux, France
| | - Leire Reguero
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| | - Giovanni Marsicano
- “Endocannabinoids and Neuroadaptation”, INSERM U862 NeuroCentre Magendie, Université Bordeaux 2, Bordeaux, France
| | - François Georges
- INSERM U862 Equipe “Physiopathologie de la Transmission et de la Plasticité Synaptique”, Bordeaux, France
| | - Olivier J. Manzoni
- INSERM U862 Equipe “Physiopathologie de la Transmission et de la Plasticité Synaptique”, Bordeaux, France
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| |
Collapse
|
48
|
Guo JD, Rainnie DG. Presynaptic 5-HT(1B) receptor-mediated serotonergic inhibition of glutamate transmission in the bed nucleus of the stria terminalis. Neuroscience 2009; 165:1390-401. [PMID: 19963045 DOI: 10.1016/j.neuroscience.2009.11.071] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/20/2009] [Accepted: 11/29/2009] [Indexed: 11/16/2022]
Abstract
Activation of neurons in the bed nucleus of the stria terminalis (BNST) plays a critical role in stress and anxiety-related behaviors. Previously, we have shown that serotonin (5-HT) can directly modulate BNST neuronal excitability by an action at postsynaptic receptors. In this study we built upon that work to examine the effects of 5-HT on excitatory neurotransmission in an in vitro rat BNST slice preparation. Bath application of 5-HT reversibly reduced the amplitude of evoked excitatory postsynaptic currents (eEPSCs). These effects were mimicked by the 5-HT(1B/D) receptor agonist, sumatriptan, and by the 5-HT(1B) receptor selective agonist, CP93129. Conversely, the effects of 5-HT and sumatriptan could be blocked by the 5-HT(1B) receptor-selective antagonist, GR55562. In contrast, the 5-HT(1A) receptor agonist 8-OH DPAT or antagonist WAY 100635 could not mimic or block the effect of 5-HT on eEPSCs. Together, these data suggest that the 5-HT-induced attenuation of eEPSCs was mediated by 5-HT(1B) receptor activation. Moreover, sumatriptan had no effect on the amplitude of the postsynaptic current elicited by pressure applied AMPA, suggesting a possible presynaptic locus for the 5-HT(1B) receptor. Furthermore, 5-HT, sumatriptan and CP93129 all increased the paired pulse ratio of eEPSCs while they concomitantly decreased the amplitude of eEPSCs, suggesting that these agonists act to reduce glutamate release probability at presynaptic locus. Consistent with this observation, sumatriptan decreased the frequency of miniature EPSCs, but had no effect on their amplitude. Taken together, these results suggest that 5-HT suppresses glutamatergic neurotransmission in the BNST by activating presynaptic 5-HT(1B) receptors to decrease glutamate release from presynaptic terminals. This study illustrates a new pathway by which the activity of BNST neurons can be indirectly modulated by 5-HT, and suggests a potential new target for the development of novel treatments for depression and anxiety disorders.
Collapse
Affiliation(s)
- J-D Guo
- Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
49
|
McElligott ZA, Winder DG. Modulation of glutamatergic synaptic transmission in the bed nucleus of the stria terminalis. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1329-35. [PMID: 19524008 PMCID: PMC2783684 DOI: 10.1016/j.pnpbp.2009.05.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 05/12/2009] [Accepted: 05/14/2009] [Indexed: 11/27/2022]
Abstract
Glutamate, catecholamine and neuropeptide signaling within the bed nucleus of the stria terminalis (BNST) have all been identified as key participants in anxiety-like behaviors and behaviors related to withdrawal from exposure to substances of abuse. The BNST is thought to serve as a key relay between limbic cognitive centers and reward, stress and anxiety nuclei. Human studies and animal models have demonstrated that stressors and drugs of abuse can result in long term behavioral modifications that can culminate in psychological diseases such as addiction and post-traumatic stress disorder. The ability of catecholamines and neuropeptides to influence synaptic glutamatergic transmission (stemming from cognitive centers) within the BNST may have profound consequences over these behaviors. In this review we highlight studies examining synaptic plasticity and modulation of excitatory transmission within the BNST, emphasizing how such modulation may result in alterations in anxiety and reward related behavior.
Collapse
Affiliation(s)
| | - Danny G. Winder
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
- Kennedy Center For Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
50
|
Shields AD, Wang Q, Winder DG. alpha2A-adrenergic receptors heterosynaptically regulate glutamatergic transmission in the bed nucleus of the stria terminalis. Neuroscience 2009; 163:339-51. [PMID: 19527774 PMCID: PMC2744292 DOI: 10.1016/j.neuroscience.2009.06.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/06/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
Abstract
Stress is a major driving force in reinstatement of drug-seeking behavior. The bed nucleus of the stria terminalis (BNST) has been identified as a key brain region in this behavior, and receives a dense input of the stress-neurotransmitter norepinephrine through the ventral noradrenergic bundle. Activation of alpha(2)-adrenergic receptors (alpha(2)-ARs) in the BNST blocks stress-induced reinstatement of drug-seeking, indicating a potentially important role for these receptors. Currently, it is unclear how alpha(2)-AR agonists elicit this behavioral action, or through which alpha(2)-AR subtype. Activation of alpha(2)-ARs decreases glutamatergic transmission in the BNST, an effect which is nearly absent in the alpha(2A)-AR knockout mouse. Here, we take advantage of a knock-in mouse in which a hemagglutinin-tagged alpha(2A)-AR was inserted into the endogenous locus, along with the alpha(2A)-AR selective agonist guanfacine, to further study the role of the alpha(2A)-AR subtype in modulation of neurotransmission in the BNST. Using immunohistochemistry, we find that alpha(2A)-ARs are highly expressed in the BNST, and that this expression is more similar in distribution to the vesicular glutamate transporters than to either norepinephrine transporter or tyrosine hydroxylase positive terminals. Using whole cell patch-clamp recordings, we show that guanfacine causes a depression of evoked excitatory and, to a more limited extent, inhibitory fast synaptic transmission. In total, these data support a prominent heterosynaptic role for alpha(2A)-ARs in modulating fast synaptic transmission in the BNST.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Animals
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Gene Knock-In Techniques
- Glutamic Acid/metabolism
- Guanfacine/pharmacology
- Inhibitory Postsynaptic Potentials/drug effects
- Inhibitory Postsynaptic Potentials/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Norepinephrine/metabolism
- Organ Culture Techniques
- Patch-Clamp Techniques
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/genetics
- Receptors, Adrenergic, alpha-2/metabolism
- Septal Nuclei/cytology
- Septal Nuclei/drug effects
- Septal Nuclei/metabolism
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Substance-Related Disorders/metabolism
- Substance-Related Disorders/physiopathology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Time Factors
Collapse
Affiliation(s)
- Angela D. Shields
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN 37232-0615
| | - Qin Wang
- Department of Physiology and Biophysics, University of Alabama, Nashville TN 37232-0615
| | - Danny G. Winder
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN 37232-0615
- Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville TN 37232-0615
- J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville TN 37232-0615
| |
Collapse
|