1
|
Nelson TS, Allen HN, Khanna R. Neuropeptide Y and Pain: Insights from Brain Research. ACS Pharmacol Transl Sci 2024; 7:3718-3728. [PMID: 39698268 PMCID: PMC11651174 DOI: 10.1021/acsptsci.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024]
Abstract
Neuropeptide Y (NPY) is a highly conserved neuropeptide with widespread distribution in the central nervous system and diverse physiological functions. While extensively studied for its inhibitory effects on pain at the spinal cord level, its role in pain modulation within the brain remains less clear. This review aims to summarize the complex landscape of supraspinal NPY signaling in pain processing. We discuss the expression and function of NPY receptors in key pain-related brain regions, including the parabrachial nucleus, periaqueductal gray, amygdala, and nucleus accumbens. Additionally, we highlight the potent efficacy of NPY in attenuating pain sensitivity and nociceptive processing throughout the central nervous system. NPY-based therapeutic interventions targeting the central nervous system represent a promising avenue for novel analgesic strategies and pain-associated comorbidities.
Collapse
Affiliation(s)
- Tyler S. Nelson
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Heather N. Allen
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Rajesh Khanna
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
2
|
Gomes LHF, Marques AB, Dias ICDM, Gabeira SCDO, Barcelos TR, Guimarães MDO, Ferreira IR, Guida LC, Lucena SL, Rocha AD. Validation of Gene Expression Patterns for Oral Feeding Readiness: Transcriptional Analysis of Set of Genes in Neonatal Salivary Samples. Genes (Basel) 2024; 15:936. [PMID: 39062715 PMCID: PMC11275400 DOI: 10.3390/genes15070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Neonatal health assessment is crucial for detecting and intervening in various disorders. Traditional gene expression analysis methods often require invasive procedures during sample collection, which may not be feasible or ideal for preterm infants. In recent years, saliva has emerged as a promising noninvasive biofluid for assessing gene expression. Another trend that has been growing is the use of "omics" technologies such as transcriptomics in the analysis of gene expression. The costs for carrying out these analyses and the difficulty of analysis make the detection of candidate genes necessary. These genes act as biomarkers for the maturation stages of the oral feeding issue. METHODOLOGY Salivary samples (n = 225) were prospectively collected from 45 preterm (<34 gestational age) infants from five predefined feeding stages and submitted to RT-qPCR. A better description of the targeted genes and results from RT-qPCR analyses were included. The six genes previously identified as predictive of feeding success were tested. The genes are AMPK, FOXP2, WNT3, NPHP4, NPY2R, and PLXNA1, along with two reference genes: GAPDH and 18S. RT-qPCR amplification enabled the analysis of the gene expression of AMPK, FOXP2, WNT3, NPHP4, NPY2R, and PLXNA1 in neonatal saliva. Expression results were correlated with the feeding status during sample collection. CONCLUSIONS In summary, the genes AMPK, FOXP2, WNT3, NPHP4, NPY2R, and PLXNA1 play critical roles in regulating oral feeding and the development of premature infants. Understanding the influence of these genes can provide valuable insights for improving nutritional care and support the development of these vulnerable babies. Evidence suggests that saliva-based gene expression analysis in newborns holds great promise for early detection and monitoring of disease and understanding developmental processes. More research and standardization of protocols are needed to fully explore the potential of saliva as a noninvasive biomarker in neonatal care.
Collapse
Affiliation(s)
- Leonardo Henrique Ferreira Gomes
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Andressa Brito Marques
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Isabel Cristina de Meireles Dias
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Sanny Cerqueira de O. Gabeira
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Tamara Rosa Barcelos
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Mariana de Oliveira Guimarães
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Igor Ribeiro Ferreira
- Rural and Remote Support Services, Department of Health, Integrated Cardiovascular Clinical Network SA, Adelaide, SA 5042, Australia
| | - Letícia Cunha Guida
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Sabrina Lopes Lucena
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Adriana Duarte Rocha
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| |
Collapse
|
3
|
Kiive E, Kanarik M, Veidebaum T, Harro J. Neuropeptide Y gene variants and Agreeableness: interaction effect with the birth cohort and the serotonin transporter promoter polymorphism. Acta Neuropsychiatr 2024; 36:1-8. [PMID: 37070394 DOI: 10.1017/neu.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
OBJECTIVE Neuropeptide Y (NPY) is a powerful regulator of anxious states, including social anxiety, but evidence from human genetic studies is limited. Associations of common gene variants with behaviour have been described as subject to birth cohort effects, especially if the behaviour is socially motivated. This study aimed to examine the association of NPY rs16147 and rs5574 with personality traits in highly representative samples of two birth cohorts of young adults, the samples having been formed during a period of rapid societal transition. METHODS Both birth cohorts (original n = 1238) of the Estonian Children Personality Behaviour and Health Study (ECPBHS) self-reported personality traits of the five-factor model at 25 years of age. RESULTS A significant interaction effect of the NPY rs16147 and rs5574 and birth cohort on Agreeableness was found. The T/T genotype of NPY rs16147 resulted in low Agreeableness in the older cohort (born 1983) and in high Agreeableness in the younger cohort (born 1989). The C/C genotype of NPY rs5574 was associated with higher Agreeableness in the younger but not in the older cohort. In the NPY rs16147 T/T homozygotes, the deviations from average in Agreeableness within the birth cohort were dependent on the serotonin transporter promoter polymorphism. CONCLUSIONS The association between the NPY gene variants and a personality domain reflecting social desirability is subject to change qualitatively in times of rapid societal changes, serving as an example of the relationship between the plasticity genes and environment. The underlying mechanism may involve the development of the serotonergic system.
Collapse
Affiliation(s)
- Evelyn Kiive
- Division of Special Education, Department of Education, University of Tartu, Jakobi 5, 51005 Tartu, Estonia
| | - Margus Kanarik
- Division of Neuropsychopharmacology, Department of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Toomas Veidebaum
- Department of Chronic Diseases, National Institute for Health Development, Hiiu 42, 11619 Tallinn, Estonia
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Department of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| |
Collapse
|
4
|
Wu W, Ma M, Ibarra AE, Lu G, Bakshi VP, Li L. Global Neuropeptidome Profiling in Response to Predator Stress in Rat: Implications for Post-Traumatic Stress Disorder. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1549-1558. [PMID: 37405781 PMCID: PMC11731200 DOI: 10.1021/jasms.3c00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Traumatic stress triggers or exacerbates multiple psychiatric illnesses, including post-traumatic stress disorder (PTSD). Nevertheless, the neurophysiological mechanisms underlying stress-induced pathology remain unclear, in part due to the limited understanding of neuronal signaling molecules, such as neuropeptides, in this process. Here, we developed mass spectrometry (MS)-based qualitative and quantitative analytical strategies to profile neuropeptides in rats exposed to predator odor (an ethologically relevant analogue of trauma-like stress) versus control subjects (no odor) to determine peptidomic alterations induced by trauma. In total, 628 unique neuropeptides were identified across 5 fear-circuitry-related brain regions. Brain-region-specific changes of several neuropeptide families, including granin, ProSAAS, opioids, cholecystokinin, and tachykinin, were also observed in the stressed group. Neuropeptides from the same protein precursor were found to vary across different brain regions, indicating the site-specific effects of predator stress. This study reveals for the first time the interaction between neuropeptides and traumatic stress, providing insights into the molecular mechanisms of stress-induced psychopathology and suggesting putative novel therapeutic strategies for disorders such as PTSD.
Collapse
Affiliation(s)
- Wenxin Wu
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Min Ma
- School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Angel Erbey Ibarra
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Gaoyuan Lu
- School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53705, United States
| | - Vaishali P. Bakshi
- Department of Psychiatry, University of Wisconsin–Madison, Madison, WI 53719, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, United States
- School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53705, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| |
Collapse
|
5
|
Kocamaz D, Franzke C, Gröger N, Braun K, Bock J. Early Life Stress-Induced Epigenetic Programming of Hippocampal NPY-Y2 Receptor Gene Expression Changes in Response to Adult Stress. Front Cell Neurosci 2022; 16:936979. [PMID: 35846564 PMCID: PMC9283903 DOI: 10.3389/fncel.2022.936979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Early Life Stress (ELS) can critically influence brain development and future stress responses and thus represents an important risk factor for mental health and disease. Neuropeptide Y (NPY) is discussed to be a key mediator of resilient vs. vulnerable adaptations and specifically, the NPY-Y2 receptor (Y2R) may be involved in the pathophysiology of depression due to its negative regulation of NPY-release. The present study addressed the hypotheses that ELS and adult stress (AS) affect the expression of hippocampal Y2R and that exposure to ELS induces an epigenetically mediated programming effect towards a consecutive stress exposure in adulthood. The specific aims were to investigate if (i) ELS or AS as single stressors induce changes in Y2 receptor gene expression in the hippocampus, (ii) the predicted Y2R changes are epigenetically mediated via promoter-specific DNA-methylation, (iii) the ELS-induced epigenetic changes exert a programming effect on Y2R gene expression changes in response to AS, and finally (iv) if the predicted alterations are sex-specific. Animals were assigned to the following experimental groups: (1) non-stressed controls (CON), (2) only ELS exposure (ELS), (3) only adult stress exposure (CON+AS), and (4) exposure to ELS followed by AS (ELS+AS). Using repeated maternal separation in mice as an ELS and swim stress as an AS we found that both stressors affected Y2R gene expression in the hippocampus of male mice but not in females. Specifically, upregulated expression was found in the CON+AS group. In addition, exposure to both stressors ELS+AS significantly reduced Y2R gene expression when compared to CON+AS. The changes in Y2R expression were paralleled by altered DNA-methylation patterns at the Y2R promoter, specifically, a decrease in mean DNA-methylation in the CON+AS males compared to the non-AS exposed groups and an increase in the ELS+AS males compared to the CON+AS males. Also, a strong negative correlation of mean DNA-methylation with Y2R expression was found. Detailed CpG-site-specific analysis of DNA-methylation revealed that ELS induced increased DNA-methylation only at specific CpG-sites within the Y2R promoter. It is tempting to speculate that these ELS-induced CpG-site-specific changes represent a “buffering” programming effect against elevations of Y2R expression induced by AS.
Collapse
Affiliation(s)
- Derya Kocamaz
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Caroline Franzke
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Nicole Gröger
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Jörg Bock
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- PG “Epigenetics and Structural Plasticity,” Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- *Correspondence: Jörg Bock,
| |
Collapse
|
6
|
Raut SB, Marathe PA, van Eijk L, Eri R, Ravindran M, Benedek DM, Ursano RJ, Canales JJ, Johnson LR. Diverse therapeutic developments for post-traumatic stress disorder (PTSD) indicate common mechanisms of memory modulation. Pharmacol Ther 2022; 239:108195. [PMID: 35489438 DOI: 10.1016/j.pharmthera.2022.108195] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
Post-traumatic stress disorder (PTSD), characterized by abnormally persistent and distressing memories, is a chronic debilitating condition in need of new treatment options. Current treatment guidelines recommend psychotherapy as first line management with only two drugs, sertraline and paroxetine, approved by U.S. Food and Drug Administration (FDA) for treatment of PTSD. These drugs have limited efficacy as they only reduce symptoms related to depression and anxiety without producing permanent remission. PTSD remains a significant public health problem with high morbidity and mortality requiring major advances in therapeutics. Early evidence has emerged for the beneficial effects of psychedelics particularly in combination with psychotherapy for management of PTSD, including psilocybin, MDMA, LSD, cannabinoids, ayahuasca and ketamine. MDMA and psilocybin reduce barrier to therapy by increasing trust between therapist and patient, thus allowing for modification of trauma related memories. Furthermore, research into the memory reconsolidation mechanisms has allowed for identification of various pharmacological targets to disrupt abnormally persistent memories. A number of pre-clinical and clinical studies have investigated novel and re-purposed pharmacological agents to disrupt fear memory in PTSD. Novel therapeutic approaches like neuropeptide Y, oxytocin, cannabinoids and neuroactive steroids have also shown potential for PTSD treatment. Here, we focus on the role of fear memory in the pathophysiology of PTSD and propose that many of these new therapeutic strategies produce benefits through the effect on fear memory. Evaluation of recent research findings suggests that while a number of drugs have shown promising results in preclinical studies and pilot clinical trials, the evidence from large scale clinical trials would be needed for these drugs to be incorporated in clinical practice.
Collapse
Affiliation(s)
- Sanket B Raut
- Schools of Psychological Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia
| | - Padmaja A Marathe
- Department of Pharmacology and Therapeutics, Seth GS Medical College & KEM Hospital, Parel, Mumbai 400 012, India
| | - Liza van Eijk
- Department of Psychology, College of Healthcare Sciences, James Cook University, QLD 4811, Australia
| | - Rajaraman Eri
- Health Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia
| | - Manoj Ravindran
- Medicine, College of Health and Medicine, University of Tasmania, TAS 7250, Australia; Department of Psychiatry, North-West Private Hospital, Burnie TAS 7320, Australia
| | - David M Benedek
- Centre for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD 20814, USA
| | - Robert J Ursano
- Centre for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD 20814, USA
| | - Juan J Canales
- Schools of Psychological Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia
| | - Luke R Johnson
- Schools of Psychological Sciences, College of Health and Medicine, University of Tasmania, TAS 7250, Australia; Centre for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD 20814, USA.
| |
Collapse
|
7
|
Radahmadi M, Izadi MS, Rayatpour A, Ghasemi M. ComparativeStudyofCRHMicroinjections Into PVN and CeA Nuclei on Food Intake, Ghrelin, Leptin, and Glucose Levels in Acute Stressed Rats. Basic Clin Neurosci 2021; 12:133-148. [PMID: 33995935 PMCID: PMC8114857 DOI: 10.32598/bcn.12.1.2346.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/15/2020] [Accepted: 06/28/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction: Corticotropin-Releasing Hormone (CRH) is involved in stress and energy homeostasis. On the other hand, CRH receptors also exist within the paraventricular nucleus (PVN) and Central Amygdala (CeA) nuclei. The present study compared the effect of CRH microinjections into PVN and CeA on three consecutive hours and cumulative food intake, internal regulatory factors of food intake, such as serum leptin and ghrelin, as well as blood glucose levels in rats under different acute psychological (Social Stress [SS] and Isolation Stress [IS] group) stresses. Methods: Sixty-six male Wistar rats were randomly allocated to 11 groups: Control, Sham, CRH-PVN, CRH-CeA, SS, IS, SS-CRH-PVN, SS-CRH-CeA, IS-CRH-PVN, and IS-CRH-CeA groups. The CRH (2 µg/kg in 0.5 µL saline) was injected into PVN and CeA nuclei in rats under everyday, acute social stress and isolation stress conditions. Results: Acute isolation and social stresses did not affect cumulative food intake. Whereas isolation stress led to changes in both leptin and glucose levels, social stress reduced only glucose levels. Cumulative food intake significantly decreased under acute CRH injection into the CeA and particularly into the PVN. Blood glucose significantly reduced in all the groups receiving CRH into their CeA. Conclusion: The PVN played a more important role compared to CeA on food intake. These nuclei probably employ different mechanisms for their effects on food intake. Besides, it seems that exogenously CRH injection into the PVN probably had a more anorectic effect than naturally activated CRH by stresses. Acute isolation stress had a greater impact than social stress on leptin level and cumulative food intake. Thus, elevated food intake related to leptin compared to ghrelin and glucose levels in the CRH-PVN group under acute social stress.
Collapse
Affiliation(s)
- Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Sadat Izadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Rayatpour
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Yang Y, Yu H, Babygirija R, Shi B, Sun W, Zheng X, Zheng J. Electro-Acupuncture Attenuates Chronic Stress Responses via Up-Regulated Central NPY and GABA A Receptors in Rats. Front Neurosci 2021; 14:629003. [PMID: 33574739 PMCID: PMC7870494 DOI: 10.3389/fnins.2020.629003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Stress can increase the release of corticotropin-releasing factor (CRF) in the hypothalamus, resulting in attenuation of gastric motor functions. In contrast, central neuropeptide Y (NPY) can reduce the biological actions of CRF, and in turn weaken stress responses. Although electroacupuncture (EA) at stomach 36 (ST-36) has been shown to have anti-stress effects, its mechanism has not yet been investigated. The effect of EA at ST-36 on the hypothalamus-pituitary-adrenal (HPA) axis and gastrointestinal motility in chronic complicated stress (CCS) conditions have not been studied and the inhibitory mechanism of NPY on CRF through the gamma-aminobutyric acid (GABA)A receptor need to be further investigated. A CCS rat model was set up, EA at ST-36 was applied to the bilateral hind limbs every day prior to the stress loading. Further, a GABAA receptor antagonist was intracerebroventricularly (ICV) injected daily. Central CRF and NPY expression levels were studied, serum corticosterone and NPY concentrations were analyzed, and gastric motor functions were assessed. CCS rats showed significantly elevated CRF expression and corticosterone levels, which resulted in inhibited gastric motor functions. EA at ST-36 significantly increased central NPY mRNA expression and reduced central CRF mRNA expression as well as the plasma corticosterone level, helping to restore gastric motor function. However, ICV administration of the GABAA receptor antagonist significantly abolished these effects. EA at ST-36 upregulates the hypothalamic NPY system. NPY may, through the GABAA receptor, significantly antagonize the overexpressed central CRF and attenuate the HPA axis activities in CCS conditions, exerting influences and helping to restore gastric motor function.
Collapse
Affiliation(s)
- Yu Yang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Haijie Yu
- Department of Cardiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Reji Babygirija
- Department of Surgery, Medical College of Wisconsin and Zablocki VA Medical Center, Milwaukee, WI, United States
| | - Bei Shi
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Weinan Sun
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Xiaojiao Zheng
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Jun Zheng
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Alviña K, Jodeiri Farshbaf M, Mondal AK. Long term effects of stress on hippocampal function: Emphasis on early life stress paradigms and potential involvement of neuropeptide Y. J Neurosci Res 2021; 99:57-66. [PMID: 32162350 DOI: 10.1002/jnr.24614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/06/2020] [Accepted: 02/27/2020] [Indexed: 01/06/2023]
Abstract
The brain is both central in orchestrating the response to stress, and, a very sensitive target when such response is not controlled. In fact, stress has long been associated with the onset and/or exacerbation of several neuropsychiatric disorders such as anxiety, depression, and drug addiction. The hippocampus is a key brain region involved in the response to stress, not only due to its anatomical connections with the hypothalamic-pituitary-adrenal axis but also as a major target of stress mediators. The hippocampal dentate gyrus (DG)-CA3 circuit, composed of DG granule cells axons (mossy fibers) synapsing onto CA3 pyramidal cells, plays an essential role in memory encoding and retrieval, functions that are vulnerable to stress. Although naturally excitatory, this circuit is under the inhibitory control of GABAergic interneurons that maintain the excitation/inhibition balance. One subgroup of such interneurons produces neuropeptide Y (NPY), which has emerged as a promising endogenous stress "resilience molecule" due to its anxiolytic and anti-epileptic properties. Here we examine existing evidence that reveals a potential role for hilar NPY+ interneurons in mediating stress-induced changes in hippocampal function. We will focus specifically on rodent models of early life stress (ELS), defined as adverse conditions during the early postnatal period that can have profound consequences for neurodevelopment. Collectively, these findings suggest that the long-lasting effects of ELS might stem from the loss of GABAergic NPY+ cells, which then can lead to reduced inhibition in the DG-CA3 pathway. Such change might then lead to hyperexcitability and concomitant hippocampal-dependent behavioral deficits.
Collapse
Affiliation(s)
- Karina Alviña
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Amit Kumar Mondal
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
10
|
Popovitz J, Mysore SP, Adwanikar H. Neural Markers of Vulnerability to Anxiety Outcomes after Traumatic Brain Injury. J Neurotrauma 2020; 38:1006-1022. [PMID: 33050836 DOI: 10.1089/neu.2020.7320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anxiety outcomes after traumatic brain injury (TBI) are complex, and the underlying neural mechanisms are poorly understood. Here, we developed a multi-dimensional behavioral profiling approach to investigate anxiety-like outcomes in mice that takes into account individual variability. Departing from the tradition of comparing outcomes in TBI versus sham groups, we identified a subgroup within the TBI group that is vulnerable to anxiety dysfunction, and present increased exploration of the anxiogenic zone compared to sham controls or resilient injured animals, by applying dimensionality reduction, clustering, and post hoc validation to behavioral data obtained from multiple assays for anxiety at several post-injury time points. These vulnerable animals expressed distinct molecular profiles in the corticolimbic network, with downregulation in gamma-aminobutyric acid and glutamate and upregulation in neuropeptide Y markers. Indeed, among vulnerable animals, not resilient or sham controls, severity of anxiety-related outcomes correlated strongly with expression of molecular markers. Our results establish a foundational approach, with predictive power, for reliably identifying maladaptive anxiety outcomes after TBI and uncovering neural signatures of vulnerability to anxiety.
Collapse
Affiliation(s)
- Juliana Popovitz
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shreesh P Mysore
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hita Adwanikar
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Nwokafor C, Serova LI, Nahvi RJ, McCloskey J, Sabban EL. Activation of NPY receptor subtype 1 by [D-His 26]NPY is sufficient to prevent development of anxiety and depressive like effects in the single prolonged stress rodent model of PTSD. Neuropeptides 2020; 80:102001. [PMID: 31916978 DOI: 10.1016/j.npep.2019.102001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/17/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
The neuropeptide Y (NPY) system plays an important role in mediating resilience to the harmful effect of stress in post-traumatic stress disorder (PTSD). It can mediate its effects via several G-protein coupled receptors: Y1R, Y2R, Y4R and Y5R. To investigate the role of individual NPY receptors in the resilience effects of NPY to traumatic stress, intranasal infusion of either Y1R agonists [D-His26]NPY, [Leu31Pro34]NPY, Y2R agonist NPY (3-36) or NPY were administered to male Sprague-Dawley rats immediately following the last stressor of the single prolonged stress (SPS) protocol, a widely used PTSD animal model. After 7 or 14 days, effects of the treatments were measured on the elevated plus maze (EPM) for anxiety, in forced swim test (FST) for development of depressive-like or re-experiencing behavior, in social interaction (SI) test for impaired social behavior, and acoustic startle response (ASR) for hyperarousal. [D-His26]NPY, but not [Leu31Pro34]NPY nor NPY (3-36) Y2R, was effective in preventing the SPS-elicited development of anxiety. Y1R, but not Y2R agonists prevented development of depressive- feature on FST, with [D-His26]NPY superior to NPY. The results demonstrate that [D-His26]NPY was sufficient to prevent development of anxiety, social impairment and depressive symptoms, and has promise as an early intervention therapy following traumatic stress.
Collapse
Affiliation(s)
- Chiso Nwokafor
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Roxanna J Nahvi
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Jaclyn McCloskey
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
12
|
Grigorova OV, Akhapkin RV, Aleksandrovsky YA. [Modern concepts of pathogenetic therapy of anxiety disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:111-120. [PMID: 31793552 DOI: 10.17116/jnevro2019119101111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The high prevalence of anxiety disorders around the world leads to a high interest in the study of anxiety. At the moment, a lot of knowledge about the pathogenesis and therapy of anxiety disorders has been accumulated, which is well covered in modern domestic and world medical literature. It is known that many areas of the brain are involved in the modulation of anxiety, among which the amygdala is considered the key in the modulation of anxiety and fear. A large body of evidence supports the involvement of different neurotransmitter systems in the processes of anxiogenesis-anxiolysis (GABA, monoamines, glutamate, neuropeptides, neurosteroids). This article provides an analysis of methods of pharmacological impact on each of these systems, which serve to optimize the already known strategies of anxiolytic therapy.
Collapse
Affiliation(s)
- O V Grigorova
- Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - R V Akhapkin
- Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Yu A Aleksandrovsky
- Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
13
|
Gołyszny M, Obuchowicz E. Are neuropeptides relevant for the mechanism of action of SSRIs? Neuropeptides 2019; 75:1-17. [PMID: 30824124 DOI: 10.1016/j.npep.2019.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/08/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are drugs of first choice in the therapy of moderate to severe depression and anxiety disorders. Their primary mechanism of action is via influence of the serotonergic (5-HT) system, but a growing amount of data provides evidence for other non-monoaminergic players in SSRI effects. It is assumed that neuropeptides, which play a role as neuromodulators in the CNS, are involved in their mechanism of action. In this review we focus on six neuropeptides: corticotropin-releasing factor - CRF, galanin - GAL, oxytocin - OT, vasopressin - AVP, neuropeptide Y - NPY, and orexins - OXs. First, information about their roles in depression and anxiety disorders are presented. Then, findings describing their interactions with the 5-HT system are summarized. These data provide background for analysis of the results of published preclinical and clinical studies related to SSRI effects on the neuropeptide systems. We also report findings showing how modulation of neuropeptide transmission influences behavioral and neurochemical effects of SSRIs. Finally, future research necessary for enriching our knowledge of SSRI mechanisms of action is proposed. Recognition of new molecular targets for antidepressants will have a significant effect on the development of novel therapeutic strategies for mood-related disorders.
Collapse
Affiliation(s)
- Miłosz Gołyszny
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland
| | - Ewa Obuchowicz
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland.
| |
Collapse
|
14
|
Sabban EL, Serova LI. Potential of Intranasal Neuropeptide Y (NPY) and/or Melanocortin 4 Receptor (MC4R) Antagonists for Preventing or Treating PTSD. Mil Med 2019; 183:408-412. [PMID: 29635611 DOI: 10.1093/milmed/usx228] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/18/2018] [Indexed: 02/02/2023] Open
Abstract
There is a great need for effective treatment options for post-traumatic stress disorder (PTSD). Neuropeptide Y (NPY) is associated with resilience to traumatic stress. MC4R antagonists, such as HS014, also reduce response to stress. Both regulate stress-responsive systems - the hypothalamic-pituitary-axis (HPA) and the noradrenergic nervous system and their associated behaviors. Therefore, we examined if their intranasal delivery to brain could attenuate development of PTSD-related symptoms in single prolonged stress (SPS) rodent PTSD model. Three regimens were used: (1) prophylactic treatment 30 min before SPS stressors, (2) early intervention right after SPS stressors, (3) therapeutic treatment when PTSD behaviors are manifested 1 wk or more after the traumatic stress. NPY delivered by regimen 1 or 2 prevented SPS-triggered elevation in anxiety, depressive-like behavior, and hyperarousal and reduced dysregulation of HPA axis. Hypothalamic CRH mRNA and GR in ventral hippocampus were significantly induced in vehicle- but not NPY-treated group. NPY also prevented hypersensitivity of LC/NE system to novel mild stressor and induction of CRH in amygdala. Some of these impairments were also reduced with HS014, alone or together with NPY. When given after symptoms were manifested (regiment 3), NPY attenuated anxiety and depressive behaviors. This demonstrates strong preclinical proof of concept for intranasal NPY, and perhaps MC4R antagonists, for non-invasive early pharmacological interventions for PTSD and comorbid disorders and possibly also as therapeutic strategy.
Collapse
Affiliation(s)
- Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595
| | - Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595
| |
Collapse
|
15
|
Abstract
INTRODUCTION Depression and posttraumatic stress disorder (PTSD) are two complex and debilitating psychiatric disorders that result in poor life and destructive behaviors against self and others. Currently, diagnosis is based on subjective rather than objective determinations leading to misdiagnose and ineffective treatments. Advances in novel neurobiological methods have allowed assessment of promising biomarkers to diagnose depression and PTSD, which offers a new means of appropriately treating patients. Areas covered: Biomarkers discovery in blood represents a fundamental tool to predict, diagnose, and monitor treatment efficacy in depression and PTSD. The potential role of altered HPA axis, epigenetics, NPY, BDNF, neurosteroid biosynthesis, the endocannabinoid system, and their function as biomarkers for mood disorders is discussed. Insofar, we propose the identification of a biomarker axis to univocally identify and discriminate disorders with large comorbidity and symptoms overlap, so as to provide a base of support for development of targeted treatments. We also weigh in on the feasibility of a future blood test for early diagnosis. Expert commentary: Potential biomarkers have already been assessed in patients' blood and need to be further validated through multisite large clinical trial stratification. Another challenge is to assess the relation among several interdependent biomarkers to form an axis that identifies a specific disorder and secures the best-individualized treatment. The future of blood-based tests for PTSD and depression is not only on the horizon but, possibly, already around the corner.
Collapse
Affiliation(s)
- Dario Aspesi
- a The Psychiatric Institute, Department of Psychiatry , University of Illinois at Chicago , Chicago , IL , USA
| | - Graziano Pinna
- a The Psychiatric Institute, Department of Psychiatry , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
16
|
Theisen CC, Reyes BA, Sabban E, Van Bockstaele EJ. Ultrastructural Characterization of Corticotropin-Releasing Factor and Neuropeptide Y in the Rat Locus Coeruleus: Anatomical Evidence for Putative Interactions. Neuroscience 2018; 384:21-40. [DOI: 10.1016/j.neuroscience.2018.04.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
|
17
|
Yang Y, Babygirija R, Zheng J, Shi B, Sun W, Zheng X, Zhang F, Cao Y. Central Neuropeptide Y Plays an Important Role in Mediating the Adaptation Mechanism Against Chronic Stress in Male Rats. Endocrinology 2018; 159:1525-1536. [PMID: 29425286 DOI: 10.1210/en.2018-00045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 12/31/2022]
Abstract
Exposure to continuous life stress often causes gastrointestinal (GI) symptoms. Studies have shown that neuropeptide Y (NPY) counteracts the biological actions of corticotrophin-releasing factor (CRF) and is involved in the termination of the stress response. However, in chronic repeated restraint stress (CRS) conditions, the actions of NPY on GI motility remain controversial. To evaluate the role of NPY in mediation of the adaptation mechanism and GI motility in CRS conditions, a CRS rat model was set up. Central CRF and NPY expression levels were analyzed, serum corticosterone and NPY concentrations were measured, and GI motor function was evaluated. The NPY Y1 receptor antagonist BIBP-3226 was centrally administered before stress loading, and on days 1 through 5 of repeated stress, the central CRF and the serum corticosterone concentrations were measured. In addition, gastric and colonic motor functions were evaluated. The elevated central CRF expression and corticosterone concentration caused by acute stress began to fall after 3 days of stress loading, whereas central NPY expression and serum NPY began to increase. GI dysmotility also returned to a normal level. Pretreatment with BIBP-3226 abolished the adaptation mechanism and significantly increased CRF expression and the corticosterone concentration, which resulted in delayed gastric emptying and accelerated fecal pellet output. Inhibited gastric motility and enhanced distal colonic motility were also recorded. CRS-produced adaptation, overexpressed central CRF, and GI dysmotility observed in acute restraint stress were restored to normal levels. Central NPY via the Y1 receptor plays an important role in mediating the adaptation mechanism against chronic stress.
Collapse
Affiliation(s)
- Yu Yang
- Department of Physiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Reji Babygirija
- Department of Surgery, Medical College of Wisconsin and Zablocki VA Medical Center, Milwaukee, Wisconsin
| | - Jun Zheng
- Department of Physiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Bei Shi
- Department of Physiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Weinan Sun
- Department of Physiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaojiao Zheng
- Department of Physiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Fan Zhang
- Department of Physiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Yu Cao
- Department of Physiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
18
|
Grabowska MJ, Steeves J, Alpay J, van de Poll M, Ertekin D, van Swinderen B. Innate visual preferences and behavioral flexibility in Drosophila. J Exp Biol 2018; 221:jeb.185918. [DOI: 10.1242/jeb.185918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/10/2018] [Indexed: 01/02/2023]
Abstract
Visual decision-making in animals is influenced by innate preferences as well as experience. Interaction between hard-wired responses and changing motivational states determines whether a visual stimulus is attractive, aversive, or neutral. It is however difficult to separate the relative contribution of nature versus nurture in experimental paradigms, especially for more complex visual parameters such as the shape of objects. We used a closed-loop virtual reality paradigm for walking Drosophila flies to uncover innate visual preferences for the shape and size of objects, in a recursive choice scenario allowing the flies to reveal their visual preferences over time. We found that Drosophila flies display a robust attraction / repulsion profile for a range of objects sizes in this paradigm, and that this visual preference profile remains evident under a variety of conditions and persists into old age. We also demonstrate a level of flexibility in this behavior: innate repulsion to certain objects could be transiently overridden if these were novel, although this effect was only evident in younger flies. Finally, we show that a neuromodulatory circuit in the fly brain, Drosophila neuropeptide F (dNPF), can be recruited to guide visual decision-making. Optogenetic activation of dNPF-expressing neurons converted a visually repulsive object into a more attractive object. This suggests that dNPF activity in the Drosophila brain guides ongoing visual choices, to override innate preferences and thereby provide a necessary level of behavioral flexibility in visual decision-making.
Collapse
Affiliation(s)
- Martyna J. Grabowska
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - James Steeves
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Julius Alpay
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Matthew van de Poll
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Deniz Ertekin
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
19
|
Sayed S, Van Dam NT, Horn SR, Kautz MM, Parides M, Costi S, Collins KA, Iacoviello B, Iosifescu DV, Mathé AA, Southwick SM, Feder A, Charney DS, Murrough JW. A Randomized Dose-Ranging Study of Neuropeptide Y in Patients with Posttraumatic Stress Disorder. Int J Neuropsychopharmacol 2017; 21:3-11. [PMID: 29186416 PMCID: PMC5795352 DOI: 10.1093/ijnp/pyx109] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/17/2017] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Anxiety and trauma-related disorders are among the most prevalent and disabling medical conditions in the United States, and posttraumatic stress disorder in particular exacts a tremendous public health toll. We examined the tolerability and anxiolytic efficacy of neuropeptide Y administered via an intranasal route in patients with posttraumatic stress disorder. METHODS Twenty-six individuals were randomized in a cross-over, single ascending dose study into 1 of 5 cohorts: 1.4 mg (n=3), 2.8 mg (n=6), 4.6 mg (n=5), 6.8 mg (n=6), and 9.6 mg (n=6). Each individual was dosed with neuropeptide Y or placebo on separate treatment days 1 week apart in random order under double-blind conditions. Assessments were conducted at baseline and following a trauma script symptom provocation procedure subsequent to dosing. Occurrence of adverse events represented the primary tolerability outcome. The difference between treatment conditions on anxiety as measured by the Beck Anxiety Inventory and the State-Trait Anxiety Inventory immediately following the trauma script represented efficacy outcomes. RESULTS Twenty-four individuals completed both treatment days. Neuropeptide Y was well tolerated up to and including the highest dose. There was a significant interaction between treatment and dose; higher doses of neuropeptide Y were associated with a greater treatment effect, favoring neuropeptide Y over placebo on Beck Anxiety Inventory score (F1,20=4.95, P=.038). There was no significant interaction for State-Trait Anxiety Inventory score. CONCLUSIONS Our study suggests that a single dose of neuropeptide Y is well tolerated up to 9.6 mg and may be associated with anxiolytic effects. Future studies exploring the safety and efficacy of neuropeptide Y in stress-related disorders are warranted. The reported study is registered at: http://clinicaltrials.gov (ID: NCT01533519).
Collapse
Affiliation(s)
- Sehrish Sayed
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicholas T Van Dam
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sarah R Horn
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marin M Kautz
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Michael Parides
- Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sara Costi
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katherine A Collins
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brian Iacoviello
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Click Therapeutics, Inc., New York, New York
| | - Dan V Iosifescu
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,New York University School of Medicine, New York, New York,Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Aleksander A Mathé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Steven M Southwick
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut,National Center for PTSD, VA CT Healthcare System, New Haven, Connecticut
| | - Adriana Feder
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dennis S Charney
- Office of the Dean, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James W Murrough
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York,Correspondence: James W. Murrough, MD, Mood and Anxiety Disorders Research Program. Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY 10029 ()
| |
Collapse
|
20
|
Susceptibility or resilience? Prenatal stress predisposes male rats to social subordination, but facilitates adaptation to subordinate status. Physiol Behav 2017; 178:117-125. [PMID: 28284881 DOI: 10.1016/j.physbeh.2017.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 01/08/2023]
Abstract
Mood disorders such as major depressive disorder (MDD) affect a significant proportion of the population. Although progress has been made in the development of therapeutics, a large number of individuals do not attain full remission of symptoms and adverse side effects affect treatment compliance for some. In order to develop new therapies, there is a push for new models that better reflect the multiple risk factors that likely contribute to the development of depressive illness. We hypothesized that early life stress would exacerbate the depressive-like phenotype that we have previously observed in socially subordinate (SUB) adult male rats in the visible burrow system (VBS), a semi-natural, ethologically relevant environment in which males in a colony form a dominance hierarchy. Dams were exposed to chronic variable stress (CVS) during the last week of gestation, resulting in a robust and non-habituating glucocorticoid response that did not alter maternal food intake, body weight or litter size and weight. As adults, one prenatal CVS (PCVS) and one non-stressed (NS) male were housed in the VBS with adult females. Although there were no overt differences between PCVS and NS male offspring prior to VBS housing, a greater percentage of PCVS males became SUB. However, the depressive-like phenotype of SUB males was not exacerbated in PCVS males; rather, they appeared to better cope with SUB status than NS SUB males. They had lower basal plasma corticosterone than NS SUB males at the end of VBS housing. In situ hybridization for CRH in the PVN and CeA did not reveal any prenatal treatment or status effects, while NPY expression was higher within the MeA of dominant and subordinate males exposed to the VBS in comparison with controls, but with no effect of prenatal treatment. These data suggest that prenatal chronic variable stress may confer resilience to offspring when exposed to social stress in adulthood.
Collapse
|
21
|
Schmeltzer SN, Herman JP, Sah R. Neuropeptide Y (NPY) and posttraumatic stress disorder (PTSD): A translational update. Exp Neurol 2016; 284:196-210. [PMID: 27377319 PMCID: PMC8375392 DOI: 10.1016/j.expneurol.2016.06.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a trauma-evoked syndrome, with variable prevalence within the human population due to individual differences in coping and resiliency. In this review, we discuss evidence supporting the relevance of neuropeptide Y (NPY), a stress regulatory transmitter in PTSD. We consolidate findings from preclinical, clinical, and translational studies of NPY that are of relevance to PTSD with an attempt to provide a current update of this area of research. NPY is abundantly expressed in forebrain limbic and brainstem areas that regulate stress and emotional behaviors. Studies in rodents demonstrate a role for NPY in stress responses, anxiety, fear, and autonomic regulation, all relevant to PTSD symptomology. Genetic studies support an association of NPY polymorphisms with stress coping and affect. Importantly, cerebrospinal fluid (CSF) measurements in combat veterans provide direct evidence of NPY association with PTSD diagnosis and symptomology. In addition, NPY involvement in pain, depression, addiction, and metabolism may be relevant to comorbidities associated with PTSD. Collectively, the literature supports the relevance of NPY to PTSD pathophysiology, although knowledge gaps remain. The NPY system is an attractive target in terms of understanding the physiological basis of PTSD as well as treatment of the disorder.
Collapse
Affiliation(s)
- Sarah N Schmeltzer
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Renu Sah
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States; VA Medical Center, Cincinnati, OH, 45220, United States.
| |
Collapse
|
22
|
Reichmann F, Wegerer V, Jain P, Mayerhofer R, Hassan AM, Fröhlich EE, Bock E, Pritz E, Herzog H, Holzer P, Leitinger G. Environmental enrichment induces behavioural disturbances in neuropeptide Y knockout mice. Sci Rep 2016; 6:28182. [PMID: 27305846 PMCID: PMC4910086 DOI: 10.1038/srep28182] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/31/2016] [Indexed: 12/28/2022] Open
Abstract
Environmental enrichment (EE) refers to the provision of a complex and stimulating housing condition which improves well-being, behaviour and brain function of laboratory animals. The mechanisms behind these beneficial effects of EE are only partially understood. In the current report, we describe a link between EE and neuropeptide Y (NPY), based on findings from NPY knockout (KO) mice exposed to EE. Relative to EE-housed wildtype (WT) animals, NPY KO mice displayed altered behaviour as well as molecular and morphological changes in amygdala and hippocampus. Exposure of WT mice to EE reduced anxiety and decreased central glucocorticoid receptor expression, effects which were absent in NPY KO mice. In addition, NPY deletion altered the preference of EE items, and EE-housed NPY KO mice responded to stress with exaggerated hyperthermia, displayed impaired spatial memory, had higher hippocampal brain-derived neurotrophic factor mRNA levels and altered hippocampal synaptic plasticity, effects which were not seen in WT mice. Accordingly, these findings suggest that NPY contributes to the anxiolytic effect of EE and that NPY deletion reverses the beneficial effects of EE into a negative experience. The NPY system could thus be a target for "enviromimetics", therapeutics which reproduce the beneficial effects of enhanced environmental stimulation.
Collapse
Affiliation(s)
- Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Vanessa Wegerer
- Research Unit Electron Microscopic Techniques, Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Piyush Jain
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Raphaela Mayerhofer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Ahmed M. Hassan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Esther E. Fröhlich
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Elisabeth Bock
- Research Unit Electron Microscopic Techniques, Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Elisabeth Pritz
- Research Unit Electron Microscopic Techniques, Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Gerd Leitinger
- Research Unit Electron Microscopic Techniques, Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| |
Collapse
|
23
|
Sabban EL, Alaluf LG, Serova LI. Potential of neuropeptide Y for preventing or treating post-traumatic stress disorder. Neuropeptides 2016; 56:19-24. [PMID: 26617395 DOI: 10.1016/j.npep.2015.11.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/11/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
There is extensive evidence that NPY in the brain can modulate the responses to stress and play a critical role in resistance to, or recovery from, harmful effects of stress. Development of PTSD and comorbid depression following exposure to traumatic stress are associated with low NPY. This review discusses putative mechanisms for NPY's anti-stress actions. Recent preclinical data indicating potential for intranasal delivery of NPY to brain as a promising non-invasive strategy to prevent a variety of neuroendocrine, molecular and behavioral impairments in PTSD model are summarized.
Collapse
Affiliation(s)
- Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States.
| | - Lishay G Alaluf
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| |
Collapse
|
24
|
Leitermann RJ, Rostkowski AB, Urban JH. Neuropeptide Y input to the rat basolateral amygdala complex and modulation by conditioned fear. J Comp Neurol 2016; 524:2418-39. [PMID: 26779765 DOI: 10.1002/cne.23960] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 12/30/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022]
Abstract
Within the basolateral amygdaloid complex (BLA), neuropeptide Y (NPY) buffers against protracted anxiety and fear. Although the importance of NPY's actions in the BLA is well documented, little is known about the source(s) of NPY fibers to this region. The current studies identified sources of NPY projections to the BLA by using a combination of anatomical and neurochemical approaches. NPY innervation of the BLA was assessed in rats by examining the degree of NPY coexpression within interneurons or catecholaminergic fibers with somatostatin and tyrosine hydroxylase (TH) or dopamine β-hydroxylase (DβH), respectively. Numerous NPY(+) /somatostatin(+) and NPY(+) /somatostatin(-) fibers were observed, suggesting at least two populations of NPY fibers within the BLA. No colocalization was noted between NPY and TH or DβH immunoreactivities. Additionally, Fluorogold (FG) retrograde tracing with immunohistochemistry was used to identify the precise origin of NPY projections to the BLA. FG(+) /NPY(+) cells were identified within the amygdalostriatal transition area (AStr) and stria terminalis and scattered throughout the bed nucleus of the stria terminalis. The subpopulation of NPY neurons in the AStr also coexpressed somatostatin. Subjecting animals to a conditioned fear paradigm increased NPY gene expression within the AStr, whereas no changes were observed within the BLA or stria terminalis. Overall, these studies identified limbic regions associated with stress circuits providing NPY input to the BLA and demonstrated that a unique NPY projection from the AStr may participate in the regulation of conditioned fear. J. Comp. Neurol. 524:2418-2439, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Randy J Leitermann
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Amanda B Rostkowski
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Janice H Urban
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
25
|
Abstract
Stress is defined as an adverse condition that disturbs the homeostasis of the body and activates adaptation responses. Among the many pathways and mediators involved, neuropeptide Y (NPY) stands out due to its unique stress-relieving, anxiolytic and neuroprotective properties. Stress exposure alters the biosynthesis of NPY in distinct brain regions, the magnitude and direction of this effect varying with the duration and type of stress. NPY is expressed in particular neurons of the brainstem, hypothalamus and limbic system, which explains why NPY has an impact on stress-related changes in emotional-affective behaviour and feeding as well as on stress coping. The biological actions of NPY in mammals are mediated by the Y1, Y2, Y4 and Y5 receptors, Y1 receptor stimulation being anxiolytic whereas Y2 receptor activation is anxiogenic. Emerging evidence attributes NPY a role in stress resilience, the ability to cope with stress. Thus there is a negative correlation between stress-induced behavioural disruption and cerebral NPY expression in animal models of post-traumatic stress disorder. Exogenous NPY prevents the negative consequences of stress, and polymorphisms of the NPY gene are predictive of impaired stress processing and increased risk of neuropsychiatric diseases. Stress is also a factor contributing to, and resulting from, neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's disease, in which NPY appears to play an important neuroprotective role. This review summarizes the evidence for an implication of NPY in stress-related and neurodegenerative pathologies and addresses the cerebral NPY system as a therapeutic target.
Collapse
Affiliation(s)
- Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| |
Collapse
|
26
|
Butler RK, Oliver EM, Sharko AC, Parilla-Carrero J, Kaigler KF, Fadel JR, Wilson MA. Activation of corticotropin releasing factor-containing neurons in the rat central amygdala and bed nucleus of the stria terminalis following exposure to two different anxiogenic stressors. Behav Brain Res 2016; 304:92-101. [PMID: 26821289 DOI: 10.1016/j.bbr.2016.01.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 12/20/2022]
Abstract
Rats exposed to the odor of a predator or to the elevated plus maze (EPM) express unique unconditioned fear behaviors. The extended amygdala has previously been demonstrated to mediate the response to both predator odor and the EPM. We seek to determine if divergent amygdalar microcircuits are associated with the different behavioral responses. The current experiments compared activation of corticotropin-releasing factor (CRF)-containing neuronal populations in the central amygdala and bed nucleus of the stria terminalis (BNST) of rats exposed to either the EPM (5 min) versus home cage controls, or predator (ferret) odor versus butyric acid, or no odor (30 min). Sections of the brains were prepared for dual-labeled immunohistochemistry and counts of c-Fos co-localized with CRF were made in the centrolateral and centromedial amygdala (CLA and CMA) as well as the dorsolateral (dl), dorsomedial (dm), and ventral (v) BNST. Ferret odor-exposed rats displayed an increase in duration and a decrease in latency of defensive burying versus control rats. Exposure to both predator stress and EPM induced neuronal activation in the BNST, but not the central amygdala, and similar levels of neuronal activation were seen in both the high and low anxiety groups in the BNST after EPM exposure. Dual-labeled immunohistochemistry showed a significant increase in the percentage of CRF/c-Fos co-localization in the vBNST of ferret odor-exposed rats compared to control and butyric acid-exposed groups as well as EPM-exposed rats compared to home cage controls. In addition, an increase in the percentage of CRF-containing neurons co-localized with c-Fos was observed in the dmBNST after EPM exposure. No changes in co-localization of CRF with c-Fos was observed with these treatments in either the CLA or CMA. These results suggest that predator odor and EPM exposure activates CRF neurons in the BNST to a much greater extent than CRF neurons of the central amygdala, and indicates unconditioned anxiogenic stimuli may activate unique anatomical circuits in the extended amygdala.
Collapse
Affiliation(s)
- Ryan K Butler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Elisabeth M Oliver
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Amanda C Sharko
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC,USA
| | - Jeffrey Parilla-Carrero
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Kris F Kaigler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Jim R Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC,USA
| |
Collapse
|
27
|
Wood SK, Wood CS, Lombard CM, Lee CS, Zhang XY, Finnell JE, Valentino RJ. Inflammatory Factors Mediate Vulnerability to a Social Stress-Induced Depressive-like Phenotype in Passive Coping Rats. Biol Psychiatry 2015; 78:38-48. [PMID: 25676490 PMCID: PMC4442770 DOI: 10.1016/j.biopsych.2014.10.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Coping strategy impacts susceptibility to psychosocial stress. The locus coeruleus (LC) and dorsal raphe (DR) are monoamine nuclei implicated in stress-related disorders. Our goal was to identify genes in these nuclei that distinguish active and passive coping strategies in response to social stress. METHODS Rats were exposed to repeated resident-intruder stress and coping strategy determined. Gene and protein expression in the LC and DR were determined by polymerase chain reaction array and enzyme-linked immunosorbent assay and compared between active and passive stress-coping and unstressed rats. The effect of daily interleukin (IL)-1 receptor antagonist before stress on anhedonia was also determined. RESULTS Rats exhibited passive or active coping strategies based on a short latency (SL) or longer latency (LL) to assume a defeat posture, respectively. Stress differentially regulated 19 and 26 genes in the LC and DR of SL and LL rats, respectively, many of which encoded for inflammatory factors. Notably, Il-1β was increased in SL and decreased in LL rats in both the LC and DR. Protein changes were generally consistent with a proinflammatory response to stress in SL rats selectively. Stress produced anhedonia selectively in SL rats and this was prevented by IL-1 receptor antagonist, consistent with a role for IL-1β in stress vulnerability. CONCLUSIONS This study highlighted distinctions in gene expression related to coping strategy in response to social stress. Passive coping was associated with a bias toward proinflammatory processes, particularly IL-1β, whereas active coping and resistance to stress-related pathology was associated with suppression of inflammatory processes.
Collapse
Affiliation(s)
- Susan K Wood
- Department of Anesthesiology, Division of Stress Neurobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina.
| | - Christopher S Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Calliandra M Lombard
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Catherine S Lee
- Department of Anesthesiology, Division of Stress Neurobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Xiao-Yan Zhang
- Department of Anesthesiology, Division of Stress Neurobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Julie E Finnell
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Rita J Valentino
- Department of Anesthesiology, Division of Stress Neurobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Areias MFC, Prada PO. Mechanisms of insulin resistance in the amygdala: Influences on food intake. Behav Brain Res 2015; 282:209-17. [DOI: 10.1016/j.bbr.2015.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/31/2014] [Accepted: 01/05/2015] [Indexed: 12/17/2022]
|
29
|
Wood SK, Bhatnagar S. Resilience to the effects of social stress: evidence from clinical and preclinical studies on the role of coping strategies. Neurobiol Stress 2015; 1:164-173. [PMID: 25580450 PMCID: PMC4286805 DOI: 10.1016/j.ynstr.2014.11.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The most common form of stress encountered by people stems from one's social environment and is perceived as more intense than other types of stressors. One feature that may be related to differential resilience or vulnerability to stress is the type of strategy used to cope with the stressor, either active or passive coping. This review focuses on models of social stress in which individual differences in coping strategies produce resilience or vulnerability to the effects of stress. Neurobiological mechanisms underlying these individual differences are discussed. Overall, the literature suggests that there are multiple neural mechanisms that underlie individual differences in stress-induced resilience and vulnerability. How these mechanisms interact with one another to produce a resilient or vulnerable phenotype is not understood and such mechanisms have been poorly studied in females and in early developmental periods. Finally, we propose that resilience may be stress context specific and resilience phenotypes may need to be fine-tuned to suit a shifting environment. Resilience is considered positive adaptation in the face of adversity. Coping strategy impacts one's susceptibility to social stress-induced psychopathology. Neurobiological substrates such as CRF, NPY and DA may impact stress susceptibility. Individual differences within females and during adolescence are poorly understood.
Collapse
Affiliation(s)
- Susan K. Wood
- Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Corresponding author. Department of Pharmacology, Physiology & Neuroscience, Basic Science Bldg 1, 3rd Floor, Rm D28A, 6439 Garners Ferry Rd, Columbia, SC 29209, USA.
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4399, USA
| |
Collapse
|
30
|
Enman NM, Sabban EL, McGonigle P, Van Bockstaele EJ. Targeting the Neuropeptide Y System in Stress-related Psychiatric Disorders. Neurobiol Stress 2015; 1:33-43. [PMID: 25506604 PMCID: PMC4260418 DOI: 10.1016/j.ynstr.2014.09.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Repeated, extreme, or traumatic stressors can elicit pathological effects leading to many negative physical and psychological outcomes. Stressors can precipitate the onset of psychiatric diseases, or exacerbate pre-existing disorders including various anxiety and mood disorders. As stressors can negatively impact human psychiatric health, it is essential to identify neurochemicals that may confer protection from the negative sequelae of repeated or extreme stress exposure. Elucidating the neurobiological underpinnings of stress resilience will enhance our ability to promote resilience to, or recovery from, stress-related psychiatric disease. Herein, we will review the evidence for neuropeptide Y as an endogenous mediator of resilience and its potential relevance for the treatment of stress-related psychiatric diseases. Overview of neuropeptide Y and receptor subtypes in the central nervous system. Alterations of neuropeptide Y in human stress-related psychiatric disorders. Evidence for neuropeptide Y in resilience to stress-related emotionality in rodent behavioral models. Pharmacotherapeutic implications for neuropeptide Y in the treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Nicole M Enman
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, 19102, USA
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Paul McGonigle
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, 19102, USA
| | | |
Collapse
|
31
|
Christiansen SH, Olesen MV, Gøtzsche CR, Woldbye DPD. Anxiolytic-like effects after vector-mediated overexpression of neuropeptide Y in the amygdala and hippocampus of mice. Neuropeptides 2014; 48:335-44. [PMID: 25267070 DOI: 10.1016/j.npep.2014.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 11/24/2022]
Abstract
Neuropeptide Y (NPY) causes anxiolytic- and antidepressant-like effects after central administration in rodents. These effects could theoretically be utilized in future gene therapy for anxiety and depression using viral vectors for induction of overexpression of NPY in specific brain regions. Using a recombinant adeno-associated viral (rAAV) vector, we addressed this idea by testing effects on anxiolytic- and depression-like behaviours in adult mice after overexpression of NPY transgene in the amygdala and/or hippocampus, two brain regions implicated in emotional behaviours. In the amygdala, injections of rAAV-NPY caused significant anxiolytic-like effect in the open field, elevated plus maze, and light-dark transition tests. In the hippocampus, rAAV-NPY treatment was associated with anxiolytic-like effect only in the elevated plus maze. No additive effect was observed after combined rAAV-NPY injection into both the amygdala and hippocampus where anxiolytic-like effect was found in the elevated plus maze and light-dark transition tests. Antidepressant-like effects were not detected in any of the rAAV-NPY injected groups. Immobility was even increased in the tail suspension and forced swim tests after intra-amygdaloid rAAV-NPY. Taken together, the present data show that rAAV-NPY treatment may confer non-additive anxiolytic-like effect after injection into the amygdala or hippocampus, being most pronounced in the amygdala.
Collapse
Affiliation(s)
- S H Christiansen
- Laboratory for Neural Plasticity, Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - M V Olesen
- Laboratory for Neural Plasticity, Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - C R Gøtzsche
- Laboratory for Neural Plasticity, Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| | - D P D Woldbye
- Laboratory for Neural Plasticity, Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark.
| |
Collapse
|
32
|
Wood SK. Cardiac autonomic imbalance by social stress in rodents: understanding putative biomarkers. Front Psychol 2014; 5:950. [PMID: 25206349 PMCID: PMC4143725 DOI: 10.3389/fpsyg.2014.00950] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/10/2014] [Indexed: 12/17/2022] Open
Abstract
Exposure to stress or traumatic events can lead to the development of depression and anxiety disorders. In addition to the debilitating consequences on mental health, patients with psychiatric disorders also suffer from autonomic imbalance, making them susceptible to a variety of medical disorders. Emerging evidence utilizing spectral analysis of heart rate variability (HRV), a reliable non-invasive measure of cardiovascular autonomic regulation, indicates that patients with depression and various anxiety disorders (i.e., panic, social, generalized anxiety disorders, and post traumatic stress disorder) are characterized by decreased HRV. Social stressors in rodents are ethologically relevant experimental stressors that recapitulate many of the dysfunctional behavioral and physiological changes that occur in psychological disorders. In this review, evidence from clinical studies and preclinical stress models identify putative biomarkers capable of precipitating the comorbidity between disorders of the mind and autonomic dysfunction. Specifically, the role of corticotropin releasing factor, neuropeptide Y and inflammation are investigated. The impetus for this review is to highlight stress-related biomarkers that may prove critical in the development of autonomic imbalance in stress -related psychiatric disorders.
Collapse
Affiliation(s)
- Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, School of Medicine, University of South Carolina Columbia, SC, USA
| |
Collapse
|
33
|
Desai SJ, Borkar CD, Nakhate KT, Subhedar NK, Kokare DM. Neuropeptide Y attenuates anxiety- and depression-like effects of cholecystokinin-4 in mice. Neuroscience 2014; 277:818-30. [PMID: 25106129 DOI: 10.1016/j.neuroscience.2014.07.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/02/2014] [Accepted: 07/28/2014] [Indexed: 01/08/2023]
Abstract
We investigated the involvement of neuropeptide Y (NPY) in the modulation of cholecystokinin-4 (CCK-4)-evoked anxiety and depression. Adult male mice were injected with vehicle, CCK-4, NPY, NPY Y1 receptor agonist [Leu(31), Pro(34)]-NPY or antagonist BIBP3226, via intracerebroventricular route, and subjected to social interaction or forced swim test (FST) for the evaluation of anxiety- and depression-like phenotypes, respectively. To assess the interactions between the two systems, if any, NPYergic agents were administered prior to CCK-4 and the animals were subjected to these behavioral tests. Treatment with CCK-4 or BIBP3226 dose-dependently reduced social interaction time, while NPY or [Leu(31), Pro(34)]-NPY produced opposite effect. CCK-4 treatment increased immobility time in FST. This effect was reversed by NPY and [Leu(31), Pro(34)]-NPY, although BIBP3226 per se did not alter the immobility time. In a combination study, the anxiogenic or depressive effects of CCK-4 were attenuated by NPY or [Leu(31), Pro(34)]-NPY and potentiated by BIBP3226. The brains of CCK-4 treated rats were processed for NPY immunohistochemistry. Following CCK-4 treatment, the nucleus accumbens shell (AcbSh), ventral part of lateral division of the bed nucleus of stria terminalis (BSTLV), hypothalamic paraventricular nucleus and locus coeruleus showed a reduction in NPY-immunoreactive fibers. Population of NPY-immunopositive cells was also decreased in the AcbSh, BSTLV, prefrontal cortex and hypothalamic arcuate nucleus (ARC). However, NPY-immunoreaction in the fibers of the ARC and cells of the central nucleus of amygdala was unchanged. We conclude that, inhibition of NPY signaling in the brain by CCK-4 might be causal to anxiety- and depression-like behaviors.
Collapse
Affiliation(s)
- S J Desai
- Department of Anatomy & Cell Biology, University of Western Ontario, Ontario, Canada
| | - C D Borkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India
| | - K T Nakhate
- Rungta College of Pharmaceutical Sciences and Research, Rungta Educational Campus, Kohka-Kurud Road, Bhilai 490 024, Chhattisgarh, India
| | - N K Subhedar
- Indian Institute of Science Education and Research (IISER), Central Tower, Sai Trinity Building, Garware Circle, Sutarwadi, Pashan, Pune 411 021, Maharashtra, India
| | - D M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India.
| |
Collapse
|
34
|
Taksande BG, Kotagale NR, Gawande DY, Bharne AP, Chopde CT, Kokare DM. Neuropeptide Y in the central nucleus of amygdala regulates the anxiolytic effect of agmatine in rats. Eur Neuropsychopharmacol 2014; 24:955-63. [PMID: 24461723 DOI: 10.1016/j.euroneuro.2013.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 11/15/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
In the present study, modulation of anxiolytic action of agmatine by neuropeptide Y (NPY) in the central nucleus of amygdala (CeA) is evaluated employing Vogel's conflict test (VCT) in rats. The intra-CeA administration of agmatine (0.6 and 1.2µmol/rat), NPY (10 and 20pmol/rat) or NPY Y1/Y5 receptors agonist [Leu(31), Pro(34)]-NPY (30 and 60pmol/rat) significantly increased the number of punished drinking licks following 15min of treatment. Combination treatment of subeffective dose of NPY (5pmol/rat) or [Leu(31), Pro(34)]-NPY (15pmol/rat) and agmatine (0.3µmol/rat) produced synergistic anxiolytic-like effect. However, intra-CeA administration of selective NPY Y1 receptor antagonist, BIBP3226 (0.25 and 0.5mmol/rat) produced anxiogenic effect. In separate set of experiment, pretreatment with BIBP3226 (0.12mmol/rat) reversed the anxiolytic effect of agmatine (0.6µmol/rat). Furthermore, we evaluated the effect of intraperitoneal injection of agmatine (40mg/kg) on NPY-immunoreactivity in the nucleus accumbens shell (AcbSh), lateral part of bed nucleus of stria terminalis (BNSTl) and CeA. While agmatine treatment significantly decreased the fibers density in BNSTl, increase was noticed in AcbSh. In addition, agmatine reduced NPY-immunoreactive cells in the AcbSh and CeA. Immunohistochemical data suggest the enhanced transmission of NPY from the AcbSh and CeA. Taken together, this study suggests that agmatine produced anxiolytic effect which might be regulated via modulation of NPYergic system particularly in the CeA.
Collapse
Affiliation(s)
- Brijesh G Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.) 441002, India
| | - Nandkishor R Kotagale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.) 441002, India
| | - Dinesh Y Gawande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.) 441002, India
| | - Ashish P Bharne
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Chandrabhan T Chopde
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur (M.S.) 441002, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India.
| |
Collapse
|
35
|
Wood SK. Individual differences in the neurobiology of social stress: implications for depression-cardiovascular disease comorbidity. Curr Neuropharmacol 2014; 12:205-11. [PMID: 24669213 PMCID: PMC3964750 DOI: 10.2174/1570159x11666131120224413] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/02/2013] [Accepted: 11/02/2013] [Indexed: 12/16/2022] Open
Abstract
Stress initiates a cascade of complex neural and peripheral changes that promote healthy adaption to stress, but when unabated, leads to pathology. Fascinating individual differences arise in the ability to cope with a stressor, rendering an individual more or less likely to develop stress-induced pathologies such as depression, anxiety, and cardiovascular disease. In this review we evaluate recent findings that investigate the neural underpinnings of adopting a passive or active coping response during social defeat stress. Because passive coping is associated with vulnerability to stress-related pathologies and active coping confers resiliency, understanding neurobiological adaptations associated with these diverse coping strategies may reveal biomarkers or targets impacting stress susceptibility. The co-occurrence of stress-induced depression and cardiovascular disease is becoming increasingly clear. Therefore this review focuses on the central mechanisms capable of contributing to psychopathology and cardiovascular disease such as corticotropin releasing factor, neuropeptide Y, monoamines, cytokines and oxidative stress. The impetus for this review is to highlight neurobiological systems that warrant further evaluation for their contribution to the pathophysiology of depression-cardiovascular disease comorbidity.
Collapse
Affiliation(s)
- Susan K Wood
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology and Neuroscience
| |
Collapse
|
36
|
Tyagi E, Agrawal R, Ying Z, Gomez-Pinilla F. TBI and sex: crucial role of progesterone protecting the brain in an omega-3 deficient condition. Exp Neurol 2014; 253:41-51. [PMID: 24361060 PMCID: PMC4005409 DOI: 10.1016/j.expneurol.2013.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 01/03/2023]
Abstract
We assessed whether the protective action of progesterone on traumatic brain injury (TBI) could be influenced by the consumption of omega-3 fatty acids during early life. Pregnant Sprague-Dawley rats were fed on omega-3 adequate or deficient diet from 3rd day of pregnancy and their female offspring were kept on the same diets up to the age of 15 weeks. Ovariectomy was performed at the age of 12 weeks to deprive animals from endogenous steroids until the time of a fluid percussion injury (FPI). Dietary n-3 fatty acid deficiency increased anxiety in sham animals and TBI aggravated the effects of the deficiency. Progesterone replacement counteracted the effects of TBI on the animals reared under n-3 deficiency. A similar pattern was observed for markers of membrane homeostasis such as 4-Hydroxynonenal (HNE) and secreted phospholipases A2 (sPLA2), synaptic plasticity such as brain derived neurotrophic factor (BDNF), syntaxin (STX)-3 and growth associated protein (GAP)-43, and for growth inhibitory molecules such as myelin-associated glycoprotein (MAG) and Nogo-A. Results that progesterone had no effects on sham n-3 deficient animals suggest that the availability of progesterone is essential under injury conditions. Progesterone treatment counteracted several parameters related to synaptic plasticity and membrane stability reduced by FPI and n-3 deficiency suggest potential targets for therapeutic applications. These results reveal the importance of n-3 preconditioning during early life and the efficacy of progesterone therapy during adulthood to counteract weaknesses in neuronal and behavioral plasticity.
Collapse
Affiliation(s)
- Ethika Tyagi
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Rahul Agrawal
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Zhe Ying
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA 90095, USA.
| |
Collapse
|
37
|
Abstract
Resiliency to the adverse effects of extraordinary emotional trauma on the brain varies within the human population. Accordingly, some people cope better than others with traumatic stress. Neuropeptide Y (NPY) is a 36-amino-acid peptide transmitter abundantly expressed in forebrain limbic and brain stem areas that regulate stress and emotional behaviors. Studies largely in rodents demonstrate a role for NPY in promoting coping with stress. Moreover, accruing data from the genetic to the physiological implicate NPY as a potential 'resilience-to-stress' factor in humans. Here, we consolidate findings from preclinical and clinical studies of NPY that are of relevance to stress-associated syndromes, most prototypically posttraumatic stress disorder (PTSD). Collectively, these data suggest that reduced central nervous system (CNS) NPY concentrations or function may be associated with PTSD. We also link specific symptoms of human PTSD with extant findings in the NPY field to reveal potential physiological contributions of the neuropeptide to the disorder. In pursuit of understanding the physiological basis and treatment of PTSD, the NPY system is an attractive target.
Collapse
Affiliation(s)
- R Sah
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, USA.
| | - TD Geracioti
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA,Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| |
Collapse
|
38
|
Lach G, de Lima TCM. Role of NPY Y1 receptor on acquisition, consolidation and extinction on contextual fear conditioning: dissociation between anxiety, locomotion and non-emotional memory behavior. Neurobiol Learn Mem 2013; 103:26-33. [PMID: 23603424 DOI: 10.1016/j.nlm.2013.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/27/2013] [Accepted: 04/11/2013] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) is the most abundant peptide in the central nervous system (CNS) and is densely localized in the brain regions involved in stress, memory, fear and anxiety. Although previous research supports a role for NPY in the mediation of rodent and human emotional behavior, there is currently a lack of information on the effects of low doses of NPY that could have a potential therapeutic advantage, minimizing side-effects such as cognition impairment or sedation. Herein, we assessed the effects of intracerebroventricular (i.c.v.) administration of low doses of NPY, and of the Y1-agonist Leu31Pro34-NPY (LP-NPY) on contextual fear conditioning (CFC), as they have no effect on unconditioned anxiety-like, locomotor activity and non-emotional memory. NPY (3 pmol) and LP-NPY (1 pmol) inhibited freezing behavior when administered in the acquisition or consolidation stages, indicating a reduction of fear. When injected in the extinction phase, only NPY inhibited freezing behavior on CFC. Pre-treatment with the Y1-antagonist BIBO3304 before NPY and LP-NPY was able to prevent the inhibition of fear responses induced by both NPY agonists. Taken together, our results demonstrate robust fear-inhibiting effects of i.c.v. injection of NPY on contextual fear conditioning in rats, a response that is mediated, at least in part, by the Y1 receptor. Moreover, these treatments were unable to change locomotor activity or to show an anxiolytic-like effect, as evaluated in an open-field and an elevated plus-maze. This specific fear reduction effect may underlie resilience systems in the CNS and has potential therapeutic relevance in PTSD.
Collapse
Affiliation(s)
- Gilliard Lach
- Laboratory of Neuropharmacology, Department of Pharmacology, CCB, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88049-970, Brazil
| | | |
Collapse
|
39
|
Ide S, Hara T, Ohno A, Tamano R, Koseki K, Naka T, Maruyama C, Kaneda K, Yoshioka M, Minami M. Opposing roles of corticotropin-releasing factor and neuropeptide Y within the dorsolateral bed nucleus of the stria terminalis in the negative affective component of pain in rats. J Neurosci 2013; 33:5881-94. [PMID: 23554470 PMCID: PMC6618927 DOI: 10.1523/jneurosci.4278-12.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/30/2013] [Accepted: 02/07/2013] [Indexed: 11/21/2022] Open
Abstract
Pain is a complex experience composed of sensory and affective components. Although the neural systems of the sensory component of pain have been studied extensively, those of its affective component remain to be determined. In the present study, we examined the effects of corticotropin-releasing factor (CRF) and neuropeptide Y (NPY) injected into the dorsolateral bed nucleus of the stria terminalis (dlBNST) on pain-induced aversion and nociceptive behaviors in rats to examine the roles of these peptides in affective and sensory components of pain, respectively. In vivo microdialysis showed that formalin-evoked pain enhanced the release of CRF in this brain region. Using a conditioned place aversion (CPA) test, we found that intra-dlBNST injection of a CRF1 or CRF2 receptor antagonist suppressed pain-induced aversion. Intra-dlBNST CRF injection induced CPA even in the absence of pain stimulation. On the other hand, intra-dlBNST NPY injection suppressed pain-induced aversion. Coadministration of NPY inhibited CRF-induced CPA. This inhibitory effect of NPY was blocked by coadministration of a Y1 or Y5 receptor antagonist. Furthermore, whole-cell patch-clamp electrophysiology in dlBNST slices revealed that CRF increased neuronal excitability specifically in type II dlBNST neurons, whereas NPY decreased it in these neurons. Excitatory effects of CRF on type II dlBNST neurons were suppressed by NPY. These results have uncovered some of the neuronal mechanisms underlying the affective component of pain by showing opposing roles of intra-dlBNST CRF and NPY in pain-induced aversion and opposing actions of these peptides on neuronal excitability converging on the same target, type II neurons, within the dlBNST.
Collapse
Affiliation(s)
- Soichiro Ide
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and
| | - Taiki Hara
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and
| | - Atsushi Ohno
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and
| | - Ryuta Tamano
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and
| | - Kana Koseki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and
| | - Tomonori Naka
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and
| | - Chikashi Maruyama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and
| | - Katsuyuki Kaneda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and
| | - Mitsuhiro Yoshioka
- Department of Neuropharmacology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan and
| |
Collapse
|
40
|
Serova L, Tillinger A, Alaluf L, Laukova M, Keegan K, Sabban E. Single intranasal neuropeptide Y infusion attenuates development of PTSD-like symptoms to traumatic stress in rats. Neuroscience 2013; 236:298-312. [DOI: 10.1016/j.neuroscience.2013.01.040] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/19/2012] [Accepted: 01/21/2013] [Indexed: 11/29/2022]
|
41
|
Tyagi E, Agrawal R, Zhuang Y, Abad C, Waschek JA, Gomez-Pinilla F. Vulnerability imposed by diet and brain trauma for anxiety-like phenotype: implications for post-traumatic stress disorders. PLoS One 2013; 8:e57945. [PMID: 23483949 PMCID: PMC3590222 DOI: 10.1371/journal.pone.0057945] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/29/2013] [Indexed: 12/18/2022] Open
Abstract
Mild traumatic brain injury (mTBI, cerebral concussion) is a risk factor for the development of psychiatric illness such as posttraumatic stress disorder (PTSD). We sought to evaluate how omega-3 fatty acids during brain maturation can influence challenges incurred during adulthood (transitioning to unhealthy diet and mTBI) and predispose the brain to a PTSD-like pathobiology. Rats exposed to diets enriched or deficient in omega-3 fatty acids (n-3) during their brain maturation period, were transitioned to a western diet (WD) when becoming adult and then subjected to mTBI. TBI resulted in an increase in anxiety-like behavior and its molecular counterpart NPY1R, a hallmark of PTSD, but these effects were more pronounced in the animals exposed to n-3 deficient diet and switched to WD. The n-3 deficiency followed by WD disrupted BDNF signaling and the activation of elements of BDNF signaling pathway (TrkB, CaMKII, Akt and CREB) in frontal cortex. TBI worsened these effects and more prominently in combination with the n-3 deficiency condition. Moreover, the n-3 deficiency primed the immune system to the challenges imposed by the WD and brain trauma as evidenced by results showing that the WD or mTBI affected brain IL1β levels and peripheral Th17 and Treg subsets only in animals previously conditioned to the n-3 deficient diet. These results provide novel evidence for the capacity of maladaptive dietary habits to lower the threshold for neurological disorders in response to challenges.
Collapse
Affiliation(s)
- Ethika Tyagi
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Rahul Agrawal
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yumei Zhuang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Catalina Abad
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - James A. Waschek
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurosurgery, University California Los Angeles Brain Injury Research Center, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Bowers ME, Choi DC, Ressler KJ. Neuropeptide regulation of fear and anxiety: Implications of cholecystokinin, endogenous opioids, and neuropeptide Y. Physiol Behav 2012; 107:699-710. [PMID: 22429904 PMCID: PMC3532931 DOI: 10.1016/j.physbeh.2012.03.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 02/24/2012] [Accepted: 03/05/2012] [Indexed: 11/23/2022]
Abstract
The neural circuitry of fear likely underlies anxiety and fear-related disorders such as specific and social phobia, panic disorder, and posttraumatic stress disorder. The primary pharmacological treatments currently utilized for these disorders include benzodiazepines, which act on the GABAergic receptor system, and antidepressants, which modulate the monamine systems. However, recent work on the regulation of fear neural circuitry suggests that specific neuropeptide modulation of this system is of critical importance. Recent reviews have examined the roles of the hypothalamic-pituitary-adrenal axis neuropeptides as well as the roles of neurotrophic factors in regulating fear. The present review, instead, will focus on three neuropeptide systems which have received less attention in recent years but which are clearly involved in regulating fear and its extinction. The endogenous opioid system, particularly activating the μ opioid receptors, has been demonstrated to regulate fear expression and extinction, possibly through functioning as an error signal within the ventrolateral periaqueductal gray to mark unreinforced conditioned stimuli. The cholecystokinin (CCK) system initially led to much excitement through its potential role in panic disorder. More recent work in the CCK neuropeptide pathway suggests that it may act in concordance with the endogenous cannabinoid system in the modulation of fear inhibition and extinction. Finally, older as well as very recent data suggests that neuropeptide Y (NPY) may play a very interesting role in counteracting stress effects, enhancing extinction, and enhancing resilience in fear and stress preclinical models. Future work in understanding the mechanisms of neuropeptide functioning, particularly within well-known behavioral circuits, are likely to provide fascinating new clues into the understanding of fear behavior as well as suggesting novel therapeutics for treating disorders of anxiety and fear dysregulation.
Collapse
Affiliation(s)
- Mallory E Bowers
- Center for Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | | | | |
Collapse
|
43
|
Holzer P, Reichmann F, Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 2012; 46:261-74. [PMID: 22979996 PMCID: PMC3516703 DOI: 10.1016/j.npep.2012.08.005] [Citation(s) in RCA: 349] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/04/2012] [Accepted: 08/09/2012] [Indexed: 02/06/2023]
Abstract
The gut-brain axis refers to the bidirectional communication between the gut and the brain. Four information carriers (vagal and spinal afferent neurons, immune mediators such as cytokines, gut hormones and gut microbiota-derived signalling molecules) transmit information from the gut to the brain, while autonomic neurons and neuroendocrine factors carry outputs from the brain to the gut. The members of the neuropeptide Y (NPY) family of biologically active peptides, NPY, peptide YY (PYY) and pancreatic polypeptide (PP), are expressed by cell systems at distinct levels of the gut-brain axis. PYY and PP are exclusively expressed by endocrine cells of the digestive system, whereas NPY is found at all levels of the gut-brain and brain-gut axis. The major systems expressing NPY comprise enteric neurons, primary afferent neurons, several neuronal pathways throughout the brain and sympathetic neurons. In the digestive tract, NPY and PYY inhibit gastrointestinal motility and electrolyte secretion and in this way modify the input to the brain. PYY is also influenced by the intestinal microbiota, and NPY exerts, via stimulation of Y1 receptors, a proinflammatory action. Furthermore, the NPY system protects against distinct behavioural disturbances caused by peripheral immune challenge, ameliorating the acute sickness response and preventing long-term depression. At the level of the afferent system, NPY inhibits nociceptive input from the periphery to the spinal cord and brainstem. In the brain, NPY and its receptors (Y1, Y2, Y4, Y5) play important roles in regulating food intake, energy homeostasis, anxiety, mood and stress resilience. In addition, PP and PYY signal to the brain to attenuate food intake, anxiety and depression-related behaviour. These findings underscore the important role of the NPY-Y receptor system at several levels of the gut-brain axis in which NPY, PYY and PP operate both as neural and endocrine messengers.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| | | | | |
Collapse
|
44
|
Butler RK, White LC, Frederick-Duus D, Kaigler KF, Fadel JR, Wilson MA. Comparison of the activation of somatostatin- and neuropeptide Y-containing neuronal populations of the rat amygdala following two different anxiogenic stressors. Exp Neurol 2012; 238:52-63. [PMID: 22917777 DOI: 10.1016/j.expneurol.2012.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 07/02/2012] [Accepted: 08/01/2012] [Indexed: 01/29/2023]
Abstract
Rats exposed to the odor of a predator or to the elevated plus maze express fear behaviors without a prior exposure to either stimulus. The expression of innate fear provides for an ideal model of anxiety which can aid in the elucidation of brain circuits involved in anxiety-related behaviors. The current experiments compared activation of neuropeptide-containing neuronal populations in the amygdala of rats exposed to either the elevated plus maze (EPM; 5 min) versus home cage controls, or predator ferret odor versus butyric acid, or no odor (30 min). Sections of the brains were prepared for dual-labeled immunohistochemistry and counts of c-Fos co-localized with somatostatin (SOM) or neuropeptide Y (NPY) were made in the basolateral (BLA), central (CEA), medial (MEA) nuclei of the amygdala. Ferret odor and butyric acid exposure significantly decreased the percentage of SOM-positive neurons also immunoreactive for c-Fos in the anterior BLA compared to controls, whereas EPM exposure yielded a significant increase in the activation of SOM-positive neurons versus home cage controls. In the CEA, ferret odor and butyric exposure significantly decreased the percentage of SOM-positive neurons also immunoreactive for c-Fos compared to no-odor controls whereas EPM exposure yielded no change versus controls. In the MEA, both ferret odor exposure and EPM exposure resulted in increased SOM co-localized with c-Fos compared to control groups whereas NPY co-localized with c-Fos occurred following ferret odor exposure, but not EPM exposure. These results indicate that phenotypically distinct neuronal populations of the amygdala are differentially activated following exposure to different anxiogenic stimuli. These studies further elucidate the fundamental neurocircuitry of anxiety and could possibly explain the differential behavioral effects of predator versus novelty-induced stress.
Collapse
Affiliation(s)
- Ryan K Butler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Leitermann RJ, Sajdyk TJ, Urban JH. Cell-specific expression of calcineurin immunoreactivity within the rat basolateral amygdala complex and colocalization with the neuropeptide Y Y1 receptor. J Chem Neuroanat 2012; 45:50-6. [PMID: 22884996 DOI: 10.1016/j.jchemneu.2012.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/27/2012] [Accepted: 07/28/2012] [Indexed: 11/17/2022]
Abstract
Neuropeptide Y (NPY) produces potent anxiolytic effects via activation of NPY Y1 receptors (Y1r) within the basolateral amygdaloid complex (BLA). The role of NPY in the BLA was recently expanded to include the ability to produce stress resilience and long-lasting reductions in anxiety-like behavior. These persistent behavioral effects are dependent upon activity of the protein phosphatase, calcineurin (CaN), which has long been associated with shaping long-term synaptic signaling. Furthermore, NPY-induced reductions in anxiety-like behavior persist months after intra-BLA delivery, which together indicate a form of neuronal plasticity had likely occurred. To define a site of action for NPY-induced CaN signaling within the BLA, we employed multi-label immunohistochemistry to determine which cell types express CaN and if CaN colocalizes with the Y1r. We have previously reported that both major neuronal cell populations in the BLA, pyramidal projection neurons and GABAergic interneurons, express the Y1r. Therefore, this current study evaluated CaN immunoreactivity in these cell types, along with Y1r immunoreactivity. Antibodies against calcium-calmodulin kinase II (CaMKII) and GABA were used to identify pyramidal neurons and GABAergic interneurons, respectively. A large population of CaN immunoreactive cells displayed Y1r immunoreactivity (90%). Nearly all (98%) pyramidal neurons displayed CaN immunoreactivity, while only a small percentage of interneurons (10%) contained CaN immunoreactivity. Overall, these anatomical findings provide a model whereby NPY could directly regulate CaN activity in the BLA via activation of the Y1r on CaN-expressing, pyramidal neurons. Importantly, they support BLA pyramidal neurons as prime targets for neuronal plasticity associated with the long-term reductions in anxiety-like behavior produced by NPY injections into the BLA.
Collapse
Affiliation(s)
- Randy J Leitermann
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | | | | |
Collapse
|
46
|
Cohen H, Liu T, Kozlovsky N, Kaplan Z, Zohar J, Mathé AA. The neuropeptide Y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of post-traumatic stress disorder. Neuropsychopharmacology 2012; 37:350-63. [PMID: 21976046 PMCID: PMC3242318 DOI: 10.1038/npp.2011.230] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Converging evidence implicates the regulatory neuropeptide Y (NPY) in anxiety- and depression-related behaviors. The present study sought to assess whether there is an association between the magnitude of behavioral responses to stress and patterns of NPY in selected brain areas, and subsequently, whether pharmacological manipulations of NPY levels affect behavior in an animal model of PTSD. Animals were exposed to predator-scent stress for 15 min. Behaviors were assessed with the elevated plus maze and acoustic startle response tests 7 days later. Preset cutoff criteria classified exposed animals according to their individual behavioral responses. NPY protein levels were assessed in specific brain regions 8 days after the exposure. The behavioral effects of NPY agonist, NPY-Y1-receptor antagonist, or placebo administered centrally 1 h post-exposure were evaluated in the same manner. Immunohistochemical technique was used to detect the expression of the NPY, NPY-Y1 receptor, brain-derived neurotrophic factor, and GR 1 day after the behavioral tests. Animals whose behavior was extremely disrupted (EBR) selectively displayed significant downregulation of NPY in the hippocampus, periaqueductal gray, and amygdala, compared with animals whose behavior was minimally (MBR) or partially (PBR) disrupted, and with unexposed controls. One-hour post-exposure treatment with NPY significantly reduced prevalence rates of EBR and reduced trauma-cue freezing responses, compared with vehicle controls. The distinctive pattern of NPY downregulation that correlated with EBR as well as the resounding behavioral effects of pharmacological manipulation of NPY indicates an intimate association between NPY and behavioral responses to stress, and potentially between molecular and psychopathological processes, which underlie the observed changes in behavior. The protective qualities attributed to NPY are supported by the extreme reduction of its expression in animals severely affected by the stressor and imply a role in promoting resilience and/or recovery.
Collapse
Affiliation(s)
- Hagit Cohen
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, The State of Israel Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Tianmin Liu
- Karolinska Institutet-Clinical Neuroscience, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Nitsan Kozlovsky
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, The State of Israel Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zeev Kaplan
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, The State of Israel Ministry of Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Joseph Zohar
- Division of Psychiatry, The State of Israel Ministry of Health, The Chaim Sheba Medical Center, Ramat-Gan, Israel,Sackler Medical School, Tel-Aviv University, Tel-Aviv, Israel
| | - Aleksander A Mathé
- Karolinska Institutet-Clinical Neuroscience, Karolinska University Hospital Huddinge, Stockholm, Sweden,Karolinska Institutet-Clinical Neuroscience, Karolinska University Hospital Huddinge, Stockholm SE-14186, Sweden, Tel: +46 70 4840743, Fax: +46 8 300972, E-mail:
| |
Collapse
|
47
|
McGuire JL, Larke LE, Sallee FR, Herman JP, Sah R. Differential Regulation of Neuropeptide Y in the Amygdala and Prefrontal Cortex during Recovery from Chronic Variable Stress. Front Behav Neurosci 2011; 5:54. [PMID: 21954381 PMCID: PMC3173714 DOI: 10.3389/fnbeh.2011.00054] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 08/13/2011] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence from clinical studies and pre-clinical animal models supports a role for neuropeptide Y (NPY) in adaptive emotional response following stress. The long-term impact of stress, particularly chronic stress, on availability, and function of resilience factors such as NPY may be critical to understanding the etiology of stress-related psychopathology. In these studies, we examined expression of NPY during recovery from a chronic variable stress (CVS) model of repetitive trauma in rats. Due to the importance of amygdala and prefrontal cortex in regulating emotional responses, we predicted chronic changes in NPY expression could contribute to persistent behavioral deficits seen in this model. Consistent with the hypothesis, ELISA for NPY peptide identified a significant reduction in NPY at the delayed (7 days) recovery time-point. Interestingly, a significant increase in prefrontal NPY was observed at the same recovery time-point. The mRNA expression for NPY was not changed in the amygdala or PFC, although there was a modest but not statistically significant increase in NPY mRNA at the delayed recovery time-point in the prefrontal cortex. The observed changes in NPY expression are consistent with maladaptive coping and enhanced emotionality, due to the nature of NPY signaling within these respective regions, and the nature of reciprocal connections between amygdala and prefrontal cortex.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Center for Neuroscience and Regenerative Medicine, Department of Psychiatry, Uniformed Services University Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
48
|
Grillo CA, Piroli GG, Kaigler KF, Wilson SP, Wilson MA, Reagan LP. Downregulation of hypothalamic insulin receptor expression elicits depressive-like behaviors in rats. Behav Brain Res 2011; 222:230-5. [PMID: 21458499 PMCID: PMC3774048 DOI: 10.1016/j.bbr.2011.03.052] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/07/2011] [Accepted: 03/23/2011] [Indexed: 11/27/2022]
Abstract
Ongoing epidemiological studies estimate that greater than 60% of the adult US population may be categorized as either overweight or obese. There is a growing appreciation that the complications of obesity extend to the central nervous system (CNS) and may result in increased risk for neurological co-morbidities like depressive illness. One potential mechanistic mediator linking obesity and depressive illness is the adipocyte derived hormone leptin. We previously demonstrated that lentivirus-mediated downregulation of hypothalamic insulin receptors increases body weight, adiposity and plasma leptin levels, which is consistent with features of the metabolic syndrome. Using this novel model of obesity, we examined performance in the forced swim test (FST), the sucrose preference test and the elevated plus maze (EPM), approaches that are often used as measures of depressive-like and anxiety-like behaviors, in rats that received third ventricular injections of either an insulin receptor antisense lentivirus (hypo-IRAS) or a control lentivirus (hypo-Con). Hypo-IRAS rats exhibited significant increases in immobility time and corresponding decreases in active behaviors in the FST and exhibited anhedonia as measured by decreased sucrose intake compared to hypo-Con rats. Hypo-IRAS rats also exhibited increases in anxiety-like behaviors in the EPM. Plasma, hippocampal and amygdalar brain-derived neurotrophic factor (BDNF) levels were reduced in hypo-IRAS rats, suggesting that the obesity/hyperleptinemic phenotype may elicit this behavioral phenotype through modulation of neurotrophic factor expression. Collectively, these data support the hypothesis for an increased risk for mood disorders in obesity, which may be related to decreased expression of hippocampal and amygdalar BDNF.
Collapse
Affiliation(s)
- Claudia A Grillo
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, 6439 Garner's Ferry Road, D40, Columbia, SC 29208, United States
| | | | | | | | | | | |
Collapse
|
49
|
Francès F, Guillen M, Verdú F, Portolés O, Castelló A, Sorlí J, Corella D. The 1258 G>A polymorphism in the neuropeptide Y gene is associated with greater alcohol consumption in a Mediterranean population. Alcohol 2011; 45:131-6. [PMID: 21303710 DOI: 10.1016/j.alcohol.2010.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 08/10/2010] [Accepted: 08/10/2010] [Indexed: 11/25/2022]
Abstract
Neuropeptide Y (NPY) is a neurotransmitter widely distributed in the central nervous system. Several studies have demonstrated that increases of NPY are associated with reduced alcohol intake and anxiety manifestations. The Leu7Pro polymorphism in the NPY has been associated with alcohol consumption, but evidence is scarce. In the Spanish Mediterranean population, this variant is not polymorphic. Thus, our aim is to identify novel functional variants in the NPY and to investigate the impact of these markers and others previously described on alcohol consumption in this population. A total of 911 subjects (321 men and 590 women) from the Spanish Mediterranean population were recruited. Alcohol consumption, and demographic and lifestyle variables were measured. Nucleotide sequence determination and SNP analyses were carried out. Only one exonic SNP was detected by direct sequencing (1258 G>A or rs9785023; allele frequency 0.47). From the intronic markers chosen (483 A>G or rs13235938, 2517 A>G or rs4722342, and 7065 A>G or rs4722343), only the two latter ones were polymorphic (allele frequencies 0.46 and 0.04, respectively), and none of them were associated with alcohol consumption. However, the 1258 G>A SNP was associated (recessive pattern) with higher alcohol intake. This association was particularly relevant in men with high alcohol intake (59.1±5.0 g/day in AA as opposed to 40.6±7.5 in the G carriers, P=.022) and women with moderate alcohol intake (7.3±5.5 g/day in AA as opposed to 4.6±3.9g/day in G carriers, P=.048). The 1258 G>A polymorphism in the NPY is associated with higher alcohol consumption in the Mediterranean population.
Collapse
|
50
|
Bertholomey ML, Henderson AN, Badia-Elder NE, Stewart RB. Neuropeptide Y (NPY)-induced reductions in alcohol intake during continuous access and following alcohol deprivation are not altered by restraint stress in alcohol-preferring (P) rats. Pharmacol Biochem Behav 2011; 97:453-61. [PMID: 20937300 PMCID: PMC3006030 DOI: 10.1016/j.pbb.2010.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 09/28/2010] [Accepted: 10/04/2010] [Indexed: 11/21/2022]
Abstract
Administration of neuropeptide Y (NPY) reduces anxiety-like behavior and alcohol intake in alcohol-preferring rats. The present experiment examined whether the effects of NPY on alcohol drinking are modulated by stress exposure during continuous access or following ethanol deprivation. Female P rats underwent 6 weeks of continuous access to 15% v/v ethanol and water prior to intracerebroventricular (ICV) cannula implantation. Deprived rats underwent two cycles of 5 days of ethanol exposure followed by 2 days of ethanol deprivation, while non-deprived rats had uninterrupted access to ethanol. Stressed rats in both ethanol access groups were exposed to restraint stress for 1h 4-6h after ethanol was removed from the deprived group in both cycles. ICV infusions of 5.0 μg NPY or aCSF were administered 48 h following the deprivation/stress procedure, after which ethanol was returned. Rats showed increased ethanol intake following ethanol deprivation compared to non-deprived controls. Food and water intake were increased, while ethanol intake was decreased, in rats infused with NPY. Stress did not increase ethanol intake or alter the response to NPY. Although no stress effects were found, the present experiment replicates previous findings regarding the effectiveness of NPY in reducing ethanol consumption. Future studies aimed at determining the extent to which stress may affect relapse to ethanol drinking and response to NPY would benefit from implementing different stress paradigms and varying the pattern of ethanol access.
Collapse
Affiliation(s)
- Megan L. Bertholomey
- Department of Psychology, Purdue School of Science, Indiana University-Purdue University Indianapolis
| | - Angela N. Henderson
- Department of Psychology, Purdue School of Science, Indiana University-Purdue University Indianapolis
| | - Nancy E. Badia-Elder
- Department of Psychology, Purdue School of Science, Indiana University-Purdue University Indianapolis
| | - Robert B. Stewart
- Department of Psychology, Purdue School of Science, Indiana University-Purdue University Indianapolis
| |
Collapse
|