1
|
He Y, Piao ZS, Jia Y, Wu HQ, Wang XQ, Yu WF, Wu FX. Dezocine modulates the reinstatement of conditioned place preference in morphine-dependent rats via the dopamine reward circuitry. Front Neurosci 2025; 19:1507747. [PMID: 40040846 PMCID: PMC11876162 DOI: 10.3389/fnins.2025.1507747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/03/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Opioid addiction is a significant public health issue, with existing treatments such as buprenorphine and methadone exhibiting limitations, including side effects and insufficient prevention of relapse. Novel therapeutic strategies are needed to address these challenges. This study investigates the potential of dezocine in reducing addiction-related behaviors and preventing relapse. Methods A morphine-induced conditioned place preference (CPP) model was established in rats to evaluate the effect of dezocine on addiction-related behaviors. Behavioral assessments were conducted to measure withdrawal symptoms and CPP reinstatement. To explore the underlying mechanism, Western blot (WB) and immunofluorescence (IF) were used to quantify the expression of phosphorylated DARPP32 (p-DARPP32) and DOPA decarboxylase (DDC) in reward-related brain regions, including the nucleus accumbens (NAc), ventral tegmental area (VTA), hippocampus (HP), and prefrontal cortex (PFC). Results Dezocine significantly reduced withdrawal symptoms and prevented CPP reinstatement, indicating its potential to alleviate addiction behaviors. Western blotting and immunofluorescence analysis revealed that dezocine increased p-DARPP32 expression in the NAc, VTA, HP, and PFC, without altering DDC levels. Discussion These findings suggest that dezocine may exert its therapeutic effects by inhibiting kappa opioid receptor activation and enhancing dopamine signaling in reward-related brain circuitry. The increase in p-DARPP32 expression in key brain regions supports this mechanism, providing insights into the potential clinical application of dezocine for managing opioid addiction. Dezocine represents a promising candidate for opioid addiction treatment, with the ability to control withdrawal symptoms and prevent relapse.
Collapse
Affiliation(s)
- Yan He
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, Shanghai, China
- Department of Anesthesiology, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Zhi-Sheng Piao
- Department of Critical Care Medicine, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Yi Jia
- Department of Critical Care Medicine, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Hui-Qi Wu
- Department of Critical Care Medicine, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Xiao-Qiang Wang
- Department of Anesthesiology, Ren Ji Hospital of Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, Shanghai, China
- Department of Anesthesiology, Ren Ji Hospital of Shanghai Jiao Tong University, Shanghai, China
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fei-Xiang Wu
- Department of Critical Care Medicine, Eastern Hepatobiliary Surgery Hospital Affiliated to Naval Medical University, Shanghai, China
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Cheng Z, Zhao F, Piao J, Yang W, Cui R, Li B. Rasd2 regulates depression-like behaviors via DRD2 neurons in the prelimbic cortex afferent to nucleus accumbens core circuit. Mol Psychiatry 2025; 30:435-449. [PMID: 39097664 PMCID: PMC11746134 DOI: 10.1038/s41380-024-02684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Depressive symptoms, such as anhedonia, decreased social interaction, and lack of motivation, implicate brain reward systems in the pathophysiology of depression. Exposure to chronic stress impairs the function of brain reward circuits and is well-known to be involved in the etiology of depression. A transcriptomic analysis found that stress alters the expression of Rasd2 in mice prefrontal cortex (PFC). Similarly, in our previous study, acute fasting decreased Rasd2 expression in mice PFC, and RASD2 modulated dopamine D2 receptor (DRD2)-mediated antidepressant-like effects in ovariectomized mice. This research suggests the role of RASD2 in stress-induced depression and its underlying neural mechanisms that require further investigation. Here, we show that 5-day unpredictable mild stress (5-d UMS) exposure reduces RASD2 expression in both the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) of mice, while overexpression (but not knock-down) of Rasd2 in the NAc core (NAcc) alleviates 5-d UMS-induced depression-like behaviors and activates the DRD2-cAMP-PKA-DARPP-32 signaling pathway. Further studies investigated neuronal projections between the mPFC (Cg1, PrL, and IL) and NAcc, labeled by the retrograde tracer Fluorogold. Depression-like behaviors induced by 5-d UMS were only related to inhibition of the PrL-NAcc circuit. DREADD (Designer receptors exclusively activated by designer drug) analysis found that the activation of PrL-NAcc glutaminergic projection alleviated depression-like behaviors and increased DRD2- and RASD2-positive neurons in the NAcc. Using Drd2-cre transgenic mice, we constructed mice with Rasd2 overexpression in DRD2PrL-NAcc neurons, finding that Rasd2 overexpression ameliorated 5-d UMS-induced depression-like behaviors. These findings demonstrate a critical role for RASD2 modulation of DRD2PrL-NAcc neurons in 5-d UMS-induced depression-like behaviors. In addition, the study identifies a new potential strategy for precision medical treatment of depression.
Collapse
Affiliation(s)
- Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China.
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China.
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China.
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China.
| |
Collapse
|
3
|
Olivares-García R, López-Cruz L, Carratalá-Ros C, Matas-Navarro P, Salamone JD, Correa M. Mild forced exercise in young mice prevents anergia induced by dopamine depletion in late adulthood: Relation to CDNF and DARPP-32 phosphorylation patterns in nucleus accumbens. Neuropharmacology 2025; 262:110197. [PMID: 39442910 DOI: 10.1016/j.neuropharm.2024.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Mesolimbic dopamine (DA) plays a critical role in behavioral activation and exertion of effort in motivated behaviors. DA antagonism and depletion in nucleus accumbens (Nacb) induces anergia in effort-based decision-making tasks. Exercise improves motor function in Parkinson's disease (PD). However, the beneficial effects of physical exercise on anergia, a symptom present in many psychiatric and neurological pathologies needs to be studied. During 9 weeks, young CD1 male mice were trained to run at a moderate speed in automatically turning running wheels (RW) (forced exercise group) or locked in static RWs (control group) in 1 h daily sessions. Both groups were tested in a 3-choice-T-maze task developed for the assessment of preference between active (RW) vs. sedentary reinforcers, and vulnerability to DA depletion-induced anergia was studied after tetrabenazine administration (TBZ; VMAT-2 blocker). Exercise did not change spontaneous preferences, did not affect body weight, plasma corticosterone levels or measures of anxiety, but it increased the cerebral DA neurotrophic factor (CDNF) in Nacb core, suggesting a neuroprotective effect in this nucleus. After TBZ administration, only the non-trained group showed a shift in relative preferences from active to sedentary options, reducing time running but increasing consumption of pellets, thus showing a typical anergic but not anhedonic effect. Moreover, only in the non-trained group, phosphorylation of DARPP-32(Thr34) increased after TBZ administration. These results are the first to show that mild forced exercise carried out from a young age to adulthood could act on Nacb-related functions, and prevent the anergia-inducing effects of DA depletion.
Collapse
Affiliation(s)
| | - Laura López-Cruz
- School of Life, Health and Chemical Sciences, The Open University, MK7 6AA, Milton Keynes, UK
| | - Carla Carratalá-Ros
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - Paula Matas-Navarro
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - John D Salamone
- Behavioral Neuroscience Div., University of Connecticut, 06269-1020, Storrs, CT, USA
| | - Mercè Correa
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain.
| |
Collapse
|
4
|
Huai Z, Huang B, He G, Li H, Liu Y, Le Q, Wang F, Ma L, Liu X. Accumulation of NMDA receptors in accumbal neuronal ensembles mediates increased conditioned place preference for cocaine after prolonged withdrawal. Prog Neurobiol 2024; 234:102573. [PMID: 38401668 DOI: 10.1016/j.pneurobio.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 02/26/2024]
Abstract
Cue-induced cocaine craving gradually intensifies following abstinence, a phenomenon known as the incubation of drug craving. Neuronal ensembles activated by initial cocaine use, are critically involved in this process. However, the mechanisms by which neuronal changes occurring in the ensembles after withdrawal contribute to incubation remain largely unknown. Here we labeled neuronal ensembles in the shell of nucleus accumbens (NAcSh) activated by cocaine conditioned place preference (CPP) training. NAcSh ensembles showed an increasing activity induced by CPP test after 21-day withdrawal. Inhibiting synaptic transmission of NAcSh ensembles suppressed the preference for cocaine paired-side after 21-day withdrawal, demonstrating a critical role of NAcSh ensembles in increased preference for cocaine. The density of dendritic spines in dopamine D1 receptor expressing ensembles was increased after 21-day withdrawal. Moreover, the expression of Grin1, a subunit of the N-methyl-D-aspartate (NMDA) receptor, specifically increased in the NAcSh ensembles after cocaine withdrawal in both CPP and self-administration (SA) mouse models. Targeted knockdown or dysfunction of Grin1 in NAcSh ensembles significantly suppressed craving for cocaine. Our results suggest that the accumulation of NMDA receptors in NAcSh ensembles mediates increased craving for cocaine after prolonged withdrawal, thereby providing potential molecular targets for treatment of drug addiction.
Collapse
Affiliation(s)
- Ziqing Huai
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Bing Huang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Guanhong He
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Haibo Li
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Yonghui Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Qiumin Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Feifei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China.
| | - Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China.
| |
Collapse
|
5
|
Mews P, Cunningham AM, Scarpa J, Ramakrishnan A, Hicks EM, Bolnick S, Garamszegi S, Shen L, Mash DC, Nestler EJ. Convergent abnormalities in striatal gene networks in human cocaine use disorder and mouse cocaine administration models. SCIENCE ADVANCES 2023; 9:eadd8946. [PMID: 36763659 PMCID: PMC9916993 DOI: 10.1126/sciadv.add8946] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/06/2023] [Indexed: 06/11/2023]
Abstract
Cocaine use disorder (CUD) is an intractable syndrome, and rising overdose death rates represent a substantial public health crisis that exacts tremendous personal and financial costs on patients and society. Sharp increases in cocaine use drive the urgent need for better mechanistic insight into this chronic relapsing brain disorder that currently lacks effective treatment options. To investigate the transcriptomic changes involved, we conducted RNA sequencing on two striatal brain regions that are heavily implicated in CUD, the nucleus accumbens and caudate nucleus, from men suffering from CUD and matched controls. Weighted gene coexpression analyses identified CUD-specific gene networks enriched in ionotropic receptors and linked to lowered neuroinflammation, contrasting the proinflammatory responses found in opioid use disorder. Integration of comprehensive transcriptomic datasets from mouse cocaine self-administration models revealed evolutionarily conserved gene networks in CUD that implicate especially D1 medium spiny neurons as drivers of cocaine-induced plasticity.
Collapse
Affiliation(s)
- Philipp Mews
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley M. Cunningham
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Scarpa
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily M. Hicks
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Bolnick
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susanna Garamszegi
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deborah C. Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Greener MR, Storr SJ. Exploring the Role of DARPP-32 in Addiction: A Review of the Current Limitations of Addiction Treatment Pathways and the Role of DARPP-32 to Improve Them. NEUROSCI 2022; 3:494-509. [PMID: 39483434 PMCID: PMC11523713 DOI: 10.3390/neurosci3030035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/23/2022] [Indexed: 11/03/2024] Open
Abstract
We are amidst a global addiction crisis, yet stigmas surrounding addiction counterintuitively prevail. Understanding and appreciating the neurobiology of addiction is essential to dissolve this stigma and for the development of new pharmacological agents to improve upon currently narrow therapeutic options. This review highlights this and evaluates dopamine-and-cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP-32) as a potential target to treat various forms of substance abuse. Despite the proven involvement of DARPP-32 in addiction pathophysiology, no robust investigations into compounds that could pharmacologically modulate it have been carried out. Agents capable of altering DARPP-32 signalling in this way could prevent or reverse drug abuse and improve upon currently substandard treatment options.
Collapse
Affiliation(s)
- Megan R. Greener
- Biodiscovery Institute Phase 3, Entrance 2, Building 43, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | |
Collapse
|
7
|
Abstract
DARPP-32 (dopamine- and cAMP-regulated phosphoprotein with an apparent Mr of 32,000), now also known as phosphoprotein phosphatase 1 regulatory subunit 1B (PPP1R1B), is a potent inhibitor of protein phosphatase 1 (PP1, also known as PPP1) when phosphorylated at Thr34 by cAMP-dependent protein kinase (PKA). DARPP-32 exhibits a remarkable regional distribution in brain, roughly similar to that of dopamine innervation. Its discovery was a culmination of the long-standing effort of Paul Greengard to understand the mechanisms through which neurotransmitters such as dopamine exert their effects on target neurons. DARPP-32 is particularly enriched in striatal projection neurons where it is regulated by numerous signals through which it integrates and amplifies responses to many stimuli. Molecular studies of DARPP-32 have revealed that its regulation and function are more complex than anticipated. It is phosphorylated on multiple sites by several protein kinases that modulate DARPP-32 properties. Primarily, when phosphorylated at Thr34 DARPP-32 is a potent inhibitor of PP1, whereas when phosphorylated at Thr75 by Cdk5 it inhibits PKA. Phosphorylation at serine residues by CK1 and CK2 modulates its intracellular localization and its sensitivity to kinases or phosphatases. Modeling studies provide evidence that the signaling pathways including DARPP-32 are endowed of strong robustness and bistable properties favoring switch-like responses. Thus DARPP-32 combined with a set of other distinct signaling molecules enriched in striatal projection neurons plays a key role in the characteristic properties and physiological function of these neurons.
Collapse
|
8
|
Lee AM, Picciotto MR. Effects of nicotine on DARPP-32 and CaMKII signaling relevant to addiction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 90:89-115. [PMID: 33706940 PMCID: PMC8008986 DOI: 10.1016/bs.apha.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Paul Greengard brought to neuroscience the idea of, and evidence for, the role of second messenger systems in neuronal signaling. The fundamental nature of his contributions is evident in the far reach of his work, relevant to various subfields and topics in neuroscience. In this review, we discuss some of Greengard's work from the perspective of nicotinic acetylcholine receptors and their relevance to nicotine addiction. Specifically, we review the roles of dopamine- and cAMP-regulated phospho-protein of 32kDa (DARPP-32) and Ca2+/calmodulin-dependent kinase II (CaMKII) in nicotine-dependent behaviors. For each protein, we discuss the historical context of their discovery and initial characterization, focusing on the extensive biochemical and immunohistochemical work conducted by Greengard and colleagues. We then briefly summarize contemporary understanding of each protein in key intracellular signaling cascades and evidence for the role of each protein with respect to systems and behaviors relevant to nicotine addiction.
Collapse
Affiliation(s)
- Angela M Lee
- Department of Psychiatry, Yale University, New Haven, CT, United States; Yale Interdepartmental Neuroscience Program, New Haven, CT, United States
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, New Haven, CT, United States; Yale Interdepartmental Neuroscience Program, New Haven, CT, United States.
| |
Collapse
|
9
|
Christensen KR, Nairn AC. cAMP-regulated phosphoproteins DARPP-32, ARPP16/19, and RCS modulate striatal signal transduction through protein kinases and phosphatases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 90:39-65. [PMID: 33706938 DOI: 10.1016/bs.apha.2020.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Decades of research led by Paul Greengard identified protein phosphorylation as a ubiquitous and vital post-translational modification involved in many neuronal signaling pathways. In particular, his discovery that second messenger-regulated protein phosphorylation plays a central role in the propagation and transduction of signals in the nervous system has been essential in understanding the molecular mechanisms of neuronal communication. The establishment of dopamine (DA) as an essential neurotransmitter in the central nervous system, combined with observations that DA activates G-protein-coupled receptors to control the production of cyclic adenosine monophosphate (cAMP) in postsynaptic neurons, has provided fundamental insight into the regulation of neurotransmission. Notably, DA signaling in the striatum is involved in many neurological functions such as control of locomotion, reward, addiction, and learning, among others. This review focuses on the history, characterization, and function of cAMP-mediated regulation of serine/threonine protein phosphatases and their role in DA-mediated signaling in striatal neurons. Several small, heat- and acid-stable proteins, including DARPP-32, RCS, and ARPP-16/19, were discovered by the Greengard laboratory to be regulated by DA- and cAMP signaling, and found to undergo a complex but coordinated sequence of phosphorylation and dephosphorylation events. These studies have contributed significantly to the establishment of protein phosphorylation as a ubiquitous and vital process in signal propagation in neurons, paradigm shifting discoveries at the time. Understanding DA-mediated signaling in the context of signal propagation has led to numerous insights into human conditions and the development of treatments and therapies.
Collapse
Affiliation(s)
- Kyle R Christensen
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States
| | - Angus C Nairn
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States.
| |
Collapse
|
10
|
Guo W, Long H, Bu Q, Zhao Y, Wang H, Tian J, Cen X. Role of BRD4 phosphorylation in the nucleus accumbens in relapse to cocaine-seeking behavior in mice. Addict Biol 2020; 25:e12808. [PMID: 31364211 DOI: 10.1111/adb.12808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 02/05/2023]
Abstract
Cocaine addiction is a chronic relapsing brain disorder characterized by compulsive drug seeking. Preliminary study suggested that bromodomain-containing protein 4 (BRD4), an epigenetic reader protein, participates in cocaine-induced reward and neuroplasticity. However, the exact role of BRD4 in cocaine addiction, particularly cocaine relapse, remains elusive. In this study, we found that BRD4 phosphorylation in the nucleus accumbens (NAc) was closely related to the maintenance of cocaine reinforcement and relapse in different cocaine exposure paradigms. Cocaine significantly increased the binding of phosphorylated BRD4 (pBRD4) at the promoter of Gria2 and Bdnf genes in the NAc. (+)JQ1, a selective BRD4 inhibitor, markedly reduced the reinforcement and reinstatement of cocaine-seeking behaviors, which was accompanied by the decreased expressions of GRIA2 and BDNF. Furthermore, chromatin immunoprecipitation assay showed that (+)JQ1 clearly attenuated cocaine-enhanced binding of pBRD4 at the promotor of Gria2 and Bdnf genes. Blockade of casein kinase II significantly attenuated BRD4 phosphorylation and cocaine relapse-like behaviors, suggesting the important role of pBRD4 in modulating cocaine effect. Together, our findings suggest that BRD4 phosphorylation in the NAc modulates multiple addiction-related behaviors of cocaine and particularly relapse to cocaine-seeking behaviors. Inhibition of BRD4 activity may be a novel target against cocaine addiction and relapse.
Collapse
Affiliation(s)
- Wei Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai University Yantai China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu China
| | - Hailei Long
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu China
- Healthy Food Evaluation Research Center, Department of Food Science and Technology, College of Light Industry, Textile and Food EngineeringSichuan University Chengdu China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai University Yantai China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai University Yantai China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu China
| |
Collapse
|
11
|
Cantacorps L, Montagud-Romero S, Luján MÁ, Valverde O. Prenatal and postnatal alcohol exposure increases vulnerability to cocaine addiction in adult mice. Br J Pharmacol 2020; 177:1090-1105. [PMID: 31705540 DOI: 10.1111/bph.14901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/13/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Alcohol exposure in utero may lead to a wide range of long-lasting morphological and behavioural deficiencies known as fetal alcohol spectrum disorders (FASD), associated with a higher risk of later developing neuropsychiatric disorders. However, little is known about the long-term consequences of cocaine use and abuse in individuals with FASD. This study aimed to investigate the effects of maternal binge alcohol drinking during prenatal and postnatal periods on cocaine reward-related behaviours in adult offspring. EXPERIMENTAL APPROACH Pregnant C57BL/6 female mice were exposed to an experimental protocol of binge alcohol consumption (drinking-in-the-dark test) from gestation to weaning. Male offspring were subsequently left undisturbed until reaching adulthood and were tested for cocaine-induced motivational responses (conditioned place preference, behavioural sensitization and operant self-administration). Protein expression of dopamine- and glutamate-related molecules was assessed following cocaine-induced reinstatement. KEY RESULTS The results show that prenatal and postnatal alcohol exposure enhanced the preference for the cocaine-paired chamber in the conditioned place preference test. Furthermore, early alcohol-exposed mice displayed attenuated cocaine-induced behavioural sensitization but also higher cocaine self-administration. Furthermore, alterations in glutamatergic excitability (GluA1/GluA2 ratio) and ΔFosB expression were found in the prefrontal cortex and the striatum of alcohol-exposed mice after cocaine-primed reinstatement. CONCLUSION AND IMPLICATIONS Our findings demonstrate that maternal binge-like alcohol consumption during gestation and lactation alters sensitivity to the reinforcing effects of cocaine in adult offspring mice. Together, such data suggest that prenatal and postnatal alcohol exposure may underlie an enhanced susceptibility of alcohol-exposed offspring to develop drug addiction later in adulthood.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sandra Montagud-Romero
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Miguel Ángel Luján
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
12
|
Larson TA, O’Neill CE, Palumbo MP, Bachtell RK. Effects of adolescent caffeine consumption on cocaine self-administration and reinstatement of cocaine seeking. J Psychopharmacol 2018; 33:269881118812098. [PMID: 30484365 PMCID: PMC6766411 DOI: 10.1177/0269881118812098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Caffeine consumption by children and adolescents has risen dramatically in recent years, yet the lasting effects of caffeine consumption during adolescence remain poorly understood. AIM: These experiments explore the effects of adolescent caffeine consumption on cocaine self-administration and seeking using a rodent model. METHODS: Sprague-Dawley rats consumed caffeine for 28 days during the adolescent period. Following the caffeine consumption period, the caffeine solution was replaced with water for the remainder of the experiment. Age-matched control rats received water for the duration of the study. Behavioral testing in a cocaine self-administration procedure occurred during adulthood (postnatal days 62-82) to evaluate how adolescent caffeine exposure influenced the reinforcing properties of cocaine. Cocaine seeking was also tested during extinction training and reinstatement tests following cocaine self-administration. RESULTS: Adolescent caffeine consumption increased the acquisition of cocaine self-administration and increased performance on different schedules of reinforcement. Consumption of caffeine in adult rats did not produce similar enhancements in cocaine self-administration. Adolescent caffeine consumption also produced an upward shift in the U-shaped dose response curve on cocaine self-administration maintained on a within-session dose-response procedure. Adolescent caffeine consumption had no effect on cocaine seeking during extinction training or reinstatement of cocaine seeking by cues or cocaine. CONCLUSIONS: These findings suggest that caffeine consumption during adolescence may enhance the reinforcing properties of cocaine, leading to enhanced acquisition that may contribute to increased addiction vulnerability.
Collapse
Affiliation(s)
- Tracey A Larson
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO USA
| | - Casey E O’Neill
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO USA
| | - Michaela P Palumbo
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO USA
| | - Ryan K Bachtell
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO USA
| |
Collapse
|
13
|
Epigenetic Effects Induced by Methamphetamine and Methamphetamine-Dependent Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4982453. [PMID: 30140365 PMCID: PMC6081569 DOI: 10.1155/2018/4982453] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/10/2018] [Indexed: 12/21/2022]
Abstract
Methamphetamine is a widely abused drug, which possesses neurotoxic activity and powerful addictive effects. Understanding methamphetamine toxicity is key beyond the field of drug abuse since it allows getting an insight into the molecular mechanisms which operate in a variety of neuropsychiatric disorders. In fact, key alterations produced by methamphetamine involve dopamine neurotransmission in a way, which is reminiscent of spontaneous neurodegeneration and psychiatric schizophrenia. Thus, understanding the molecular mechanisms operated by methamphetamine represents a wide window to understand both the addicted brain and a variety of neuropsychiatric disorders. This overlapping, which is already present when looking at the molecular and cellular events promoted immediately after methamphetamine intake, becomes impressive when plastic changes induced in the brain of methamphetamine-addicted patients are considered. Thus, the present manuscript is an attempt to encompass all the molecular events starting at the presynaptic dopamine terminals to reach the nucleus of postsynaptic neurons to explain how specific neurotransmitters and signaling cascades produce persistent genetic modifications, which shift neuronal phenotype and induce behavioral alterations. A special emphasis is posed on disclosing those early and delayed molecular events, which translate an altered neurotransmitter function into epigenetic events, which are derived from the translation of postsynaptic noncanonical signaling into altered gene regulation. All epigenetic effects are considered in light of their persistent changes induced in the postsynaptic neurons including sensitization and desensitization, priming, and shift of neuronal phenotype.
Collapse
|
14
|
Rorabaugh BR, Rose MJ, Stoops TS, Stevens AA, Seeley SL, D'Souza MS. Regulators of G-protein signaling 2 and 4 differentially regulate cocaine-induced rewarding effects. Physiol Behav 2018; 195:9-19. [PMID: 30036561 DOI: 10.1016/j.physbeh.2018.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 01/11/2023]
Abstract
There is a need to identify new therapeutic targets for the treatment of cocaine addiction due to the rise in cocaine abuse and deaths due to cocaine overdose. Regulator of G protein signaling (RGS) proteins such as RGS2 and RGS4 are widely distributed in brain regions that play a role in drug reward. Importantly, RGS2 and RGS4 negatively regulate G-protein coupled receptor signaling pathways of monoaminergic neurotransmitters that play a role in the rewarding effects of cocaine by enhancing the rate of hydrolysis of Gα-bound guanine nucleotide triphosphate. Thus, the objective of this study was to investigate the effects of cocaine on conditioned place preference (CPP) and locomotor activity in mice that lacked either RGS2 or RGS4 (i.e. knockout (KO) mice) and their wildtype (WT) littermates. Moreover recent studies have reported influence of sex on RGS functioning and hence studies were conducted in both male and female mice. Cocaine-induced CPP was attenuated in male, but not female RGS4 KO mice compared to respective RGS4 WT mice. Cocaine-induced CPP was not influenced by deletion of RGS2 in either male or female mice. Similarly, cocaine-induced locomotor activity was not influenced by deletion of either RGS2 or RGS4 irrespective of sex. Together, the data indicate that the rewarding effects of cocaine were attenuated in the absence of RGS4 expression, but not in the absence of RGS2 expression in a sex-dependent manner. Importantly, these data suggest that RGS4 can serve as a potential target for medications that can be used to treat cocaine addiction.
Collapse
Affiliation(s)
- Boyd R Rorabaugh
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States
| | - Madison J Rose
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States
| | - Thorne S Stoops
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States
| | - Allison A Stevens
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States
| | - Sarah L Seeley
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States
| | - Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States.
| |
Collapse
|
15
|
Pavković Ž, Smiljanić K, Kanazir S, Milanović D, Pešić V, Ruždijić S. Brain molecular changes and behavioral alterations induced by propofol anesthesia exposure in peripubertal rats. Paediatr Anaesth 2017; 27:962-972. [PMID: 28772011 DOI: 10.1111/pan.13182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Propofol is commonly used in modern anesthesiology. Some findings suggest that it is highly addictive. AIM In this study it was examined whether propofol anesthesia exposure was able to induce behavioral alterations and brain molecular changes already described in addictive drug usage in peripubertal rats, during the onset of mid/periadolescence as a developmental period with increasing vulnerability to drug addiction. METHODS The expression of D1 dopamine receptor, a dopamine, and cAMP-regulated phosphoprotein with a Mr 32 000; Ca2+ /calmodulin-dependent protein kinase IIα; and Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog-B was examined in peripubertal rats 4, 24, and 48 hour after propofol anesthesia exposure by Western blot and immunohistochemistry. Brain regions of interest were the medial prefrontal cortex, the striatum, and the thalamus. Anxiety and behavioral cross-sensitization to d-amphetamine were examined as well. RESULTS Significant increase in the expression of dopamine and cAMP-regulated phosphoprotein with a Mr 32 000 phosphorylated at threonine 34, a postsynaptic marker of dopaminergic neurotransmission, and Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog-B, a marker of neuronal activity, was detected in the thalamus of experimental animals 4-24 hour after the treatment, with the accent on the paraventricular thalamic nucleus. Significant increase in the expression of Ca2+ /calmodulin-dependent protein kinase IIα phosphorylated at threonine 286, a sensor of synaptic activity, was observed in the prefrontal cortex and the striatum 24 hour after propofol anesthesia exposure. It was accompanied by a significant decrease in Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog-B expression in the striatum. Decreased behavioral inhibition in aversive environment and increased motor response to d-amphetamine in a context-independent manner were observed as well. CONCLUSION In peripubertal rats, propofol anesthesia exposure induces transient molecular and behavioral response that share similarities with those reported previously for addictive drugs. In the absence of additional pharmacological manipulation, all detected effects receded within 48 hour after the treatment.
Collapse
Affiliation(s)
- Željko Pavković
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Kosara Smiljanić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Desanka Milanović
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Vesna Pešić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Sabera Ruždijić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Vaillancourt K, Ernst C, Mash D, Turecki G. DNA Methylation Dynamics and Cocaine in the Brain: Progress and Prospects. Genes (Basel) 2017; 8:genes8050138. [PMID: 28498318 PMCID: PMC5448012 DOI: 10.3390/genes8050138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/04/2017] [Indexed: 12/27/2022] Open
Abstract
Cytosine modifications, including DNA methylation, are stable epigenetic marks that may translate environmental change into transcriptional regulation. Research has begun to investigate DNA methylation dynamics in relation to cocaine use disorders. Specifically, DNA methylation machinery, including methyltransferases and binding proteins, are dysregulated in brain reward pathways after chronic cocaine exposure. In addition, numerous methylome-wide and candidate promoter studies have identified differential methylation, at the nucleotide level, in rodent models of cocaine abuse and drug seeking behavior. This review highlights the current progress in the field of cocaine-related methylation, and offers considerations for future research.
Collapse
Affiliation(s)
- Kathryn Vaillancourt
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC H4H 1R3, Canada.
| | - Carl Ernst
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC H4H 1R3, Canada.
| | - Deborah Mash
- Department of Neurology, University of Miami Miller School of Medicine, University of Miami, Coral Gables, FL 33146, USA.
| | - Gustavo Turecki
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC H4H 1R3, Canada.
| |
Collapse
|
17
|
Wang H, Farhan M, Xu J, Lazarovici P, Zheng W. The involvement of DARPP-32 in the pathophysiology of schizophrenia. Oncotarget 2017; 8:53791-53803. [PMID: 28881851 PMCID: PMC5581150 DOI: 10.18632/oncotarget.17339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is one of the most devastating heterogeneous psychiatric disorders. The dopamine hypothesis is the longest standing pathoetiologic theory of schizophrenia based on neurochemical evidences of elevated brain striatal dopamine synthesis capacity and increased dopamine release in response to stress. Dopamine and cyclic AMP-regulated phosphoprotein of relative molecular mass 32,000 (DARPP-32) is a cytosolic protein highly enriched in the medium spiny neurons of the neostriatum, considered as the most important integrator between the cortical input and the basal ganglia, and associated with motor control. Accumulating evidences has indicated the involvement of DARPP-32 in the development of schizophrenia; i. DARPP-32 phosphorylation is regulated by several neurotransmitters, including dopamine and glutamate, neurotransmitters implicated in schizophrenia pathogenesis; ii. decrease of both total and phosphorylated DARPP-32 in the prefrontal cortex are observed in schizophrenic animal models; iii. postmortem brain studies indicated decreased expression of DARPP-32 protein in the superior temporal gyrus and dorsolateral prefrontal cortex in patients with schizophrenia; iv. DARPP-32 phosphorylation is increased upon therapy with antipsychotic drugs, such as haloperidol and risperidone which improve behavioral performance in experimental animal models and patients; v. Genetic analysis of the gene coding for DARPP-32 propose an association with schizophrenia. Cumulatively, these findings implicate DARPP-32 protein in schizophrenia and propose it as a potential therapeutic target. Here, we summarize the possible roles of DARPP-32 during the development of schizophrenia and make some recommendations for future research. We propose that DARPP-32 and its interacting proteins may serve as potential therapeutic targets in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Haitao Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Mohd Farhan
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
18
|
Nishi A, Shuto T. Potential for targeting dopamine/DARPP-32 signaling in neuropsychiatric and neurodegenerative disorders. Expert Opin Ther Targets 2017; 21:259-272. [PMID: 28052701 DOI: 10.1080/14728222.2017.1279149] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Alterations in dopamine neurotransmission has been implicated in pathophysiology of neuropsychiatric and neurodegenerative disorders, and DARPP-32 plays a pivotal role in dopamine neurotransmission. DARPP-32 likely influences dopamine-mediated behaviors in animal models of neuropsychiatric and neurodegenerative disorders and therapeutic effects of pharmacological treatment. Areas covered: We will review animal studies on the biochemical and behavioral roles of DARPP-32 in drug addiction, schizophrenia and Parkinson's disease. In general, under physiological and pathophysiological conditions, DARPP-32 in D1 receptor expressing (D1R) -medium spiny neurons (MSNs) promotes dopamine/D1 receptor/PKA signaling, whereas DARPP-32 in D2 receptor expressing (D2R)-MSNs counteracts dopamine/D2 receptor signaling. However, the function of DARPP-32 is differentially regulated in acute and chronic phases of drug addiction; DARPP-32 enhances D1 receptor/PKA signaling in the acute phase, whereas DARPP-32 suppresses D1 receptor/PKA signaling in the chronic phase through homeostatic mechanisms. Therefore, DARPP-32 plays a bidirectional role in dopamine neurotransmission, depending on the cell type and experimental conditions, and is involved in dopamine-related behavioral abnormalities. Expert opinion: DARPP-32 differentially regulates dopamine signaling in D1R- and D2R-MSNs, and a shift of balance between D1R- and D2R-MSN function is associated with behavioral abnormalities. An adjustment of this imbalance is achieved by therapeutic approaches targeting DARPP-32-related signaling molecules.
Collapse
Affiliation(s)
- Akinori Nishi
- a Department of Pharmacology , Kurume University School of Medicine , Kurume, Fukuoka , Japan
| | - Takahide Shuto
- a Department of Pharmacology , Kurume University School of Medicine , Kurume, Fukuoka , Japan
| |
Collapse
|
19
|
t-Darpp overexpression in HER2-positive breast cancer confers a survival advantage in lapatinib. Oncotarget 2016; 6:33134-45. [PMID: 26430732 PMCID: PMC4741754 DOI: 10.18632/oncotarget.5311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 09/14/2015] [Indexed: 11/25/2022] Open
Abstract
Drug resistance is a major barrier to successful cancer treatment. For patients with HER2-positive breast cancer who initially respond to therapy, the majority develop resistance within one year of treatment. Patient outcomes could improve significantly if we can find and exploit common mechanisms of acquired resistance to different targeted therapies. Overexpression of t-Darpp, a truncated form of the dual kinase/phosphatase inhibitor Darpp-32, has been linked to acquired resistance to trastuzumab, a front-line therapy for HER2-positive breast cancer. Darpp-32 reverses t-Darpp's effect on trastuzumab resistance. In this study, we examined whether t-Darpp could be involved in resistance to lapatinib, another HER2-targeted therapeutic. Lapatinib-resistant SKBR3 cells (SK/LapR) showed a marked change in the Darpp-32:t-Darpp ratio toward a predominance of t-Darpp. Overexpression of t-Darpp alone was not sufficient to confer lapatinib resistance, but cells that overexpress t-Darpp partially mimicked the molecular resistance phenotype observed in SK/LapR cells exposed to lapatinib. SK/LapR cells failed to down-regulate Survivin and failed to induce BIM accumulation in response to lapatinib; cells overexpressing t-Darpp exhibited only the failed BIM accumulation. t-Darpp knock-down reversed this phenotype. Using a fluorescence-based co-culture system, we found that cells overexpressing t-Darpp formed colonies in lapatinib within 3-4 weeks, whereas parental cells in the same co-culture did not. Overall, t-Darpp appears to mediate a survival advantage in lapatinib, possibly linked to failed lapatinib-induced BIM accumulation. t-Darpp might also be relevant to acquired resistance to other cancer drugs that rely on BIM accumulation to induce apoptosis.
Collapse
|
20
|
Keil MF, Briassoulis G, Stratakis CA. The Role of Protein Kinase A in Anxiety Behaviors. Neuroendocrinology 2016; 103:625-39. [PMID: 26939049 DOI: 10.1159/000444880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/19/2016] [Indexed: 11/19/2022]
Abstract
This review focuses on the genetic and other evidence supporting the notion that the cyclic AMP (cAMP) signaling pathway and its mediator, the protein kinase A (PKA) enzyme, which respond to environmental stressors and regulate stress responses, are central to the pathogenesis of disorders related to anxiety. We describe the PKA pathway and review in vitro animal studies (mouse) and other evidence that support the importance of PKA in regulating behaviors that lead to anxiety. Since cAMP signaling and PKA have been pharmacologically exploited since the 1940s (even before the identification of cAMP as a second messenger with PKA as its mediator) for a number of disorders from asthma to cardiovascular diseases, there is ample opportunity to develop therapies using this new knowledge about cAMP, PKA, and anxiety disorders.
Collapse
Affiliation(s)
- Margaret F Keil
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Md., USA
| | | | | |
Collapse
|
21
|
Bosse KE, Charlton JL, Susick LL, Newman B, Eagle AL, Mathews TA, Perrine SA, Conti AC. Deficits in behavioral sensitization and dopaminergic responses to methamphetamine in adenylyl cyclase 1/8-deficient mice. J Neurochem 2015; 135:1218-31. [PMID: 26146906 PMCID: PMC5049486 DOI: 10.1111/jnc.13235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/18/2015] [Accepted: 06/30/2015] [Indexed: 01/22/2023]
Abstract
The cAMP/protein kinase A pathway regulates methamphetamine (METH)-induced neuroplasticity underlying behavioral sensitization. We hypothesize that adenylyl cyclases (AC) 1/8 mediate these neuroplastic events and associated striatal dopamine regulation. Locomotor responses to METH (1 and 5 mg/kg) and striatal dopamine function were evaluated in mice lacking AC 1/8 (DKO) and wild-type (WT) mice. Only 5 mg/kg METH induced an acute locomotor response in DKO mice, which was significantly attenuated versus WT controls. DKO mice showed a marked attenuation in the development and expression of METH-induced behavioral sensitization across doses relative to WT controls. While basal and acute METH (5 mg/kg)-evoked accumbal dialysate dopamine levels were similar between genotypes, saline-treated DKO mice showed elevated tissue content of dopamine and homovanillic acid in the dorsal striatum (DS), reflecting dysregulated dopamine homeostasis and/or metabolism. Significant reductions in DS dopamine levels were observed in METH-sensitized DKO mice compared to saline-treated controls, an effect not observed in WT mice. Notably, saline-treated DKO mice had significantly increased phosphorylated Dopamine- and cAMP-regulated phosphoprotein levels, which were not further augmented following METH sensitization, as observed in WT mice. These data indicate that AC 1/8 are critical to mechanisms subserving drug-induced behavioral sensitization and mediate nigrostriatal pathway METH sensitivity. Calcium/calmodulin-stimulated adenylyl cyclase (AC) isoforms 1 and 8 were studied for their involvement in the adaptive neurobehavioral responses to methamphetamine. AC 1/8 double knockout (DKO) mice showed heightened basal locomotor activity and dorsal striatal dopamine responsivity. Conversely, methamphetamine-induced locomotor activity was attenuated in DKO mice, accompanied by reductions in dopamine and HVA content and impaired DARPP-32 activation. These findings indicate AC 1/8 signaling regulates the sensitivity of the nigrostriatal pathway subserving stimulant and neuroadaptive sensitizing effects of methamphetamine. 3-MT, 3-methoxytyramine; Ca(2+), calcium; CaM, calmodulin; cdk5; cyclin-dependent kinase 5; DA, dopamine; DARPP-32, dopamine- and cAMP-regulated phosphoprotein; D1R, dopamine D1 receptor; HVA, homovanillic acid; PKA, protein kinase A.
Collapse
Affiliation(s)
- Kelly E Bosse
- Research & Development, John D. Dingell VA Medical Center, Detroit, Michigan, USA.,Department of Neurosurgery, Wayne State University, Detroit, Michigan, USA
| | - Jennifer L Charlton
- Research & Development, John D. Dingell VA Medical Center, Detroit, Michigan, USA.,Department of Neurosurgery, Wayne State University, Detroit, Michigan, USA
| | - Laura L Susick
- Research & Development, John D. Dingell VA Medical Center, Detroit, Michigan, USA.,Department of Neurosurgery, Wayne State University, Detroit, Michigan, USA
| | - Brooke Newman
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Andrew L Eagle
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Tiffany A Mathews
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Alana C Conti
- Research & Development, John D. Dingell VA Medical Center, Detroit, Michigan, USA.,Department of Neurosurgery, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
22
|
Lazenka MF, Tomarchio AJ, Lichtman AH, Greengard P, Flajolet M, Selley DE, Sim-Selley LJ. Role of Dopamine Type 1 Receptors and Dopamine- and cAMP-Regulated Phosphoprotein Mr 32 kDa in Δ9-Tetrahydrocannabinol-Mediated Induction of ΔFosB in the Mouse Forebrain. J Pharmacol Exp Ther 2015; 354:316-27. [PMID: 26099530 PMCID: PMC4538878 DOI: 10.1124/jpet.115.224428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/18/2015] [Indexed: 11/22/2022] Open
Abstract
Δ(9)-Tetrahydrocannabinol (THC), the main psychoactive component of marijuana, produces motor and motivational effects via interactions with the dopaminergic system in the caudate-putamen and nucleus accumbens. However, the molecular events that underlie these interactions after THC treatment are not well understood. Our study shows that pretreatment with dopamine D1 receptor (D1R) antagonists before repeated administration of THC attenuated induction of Δ FBJ murine osteosarcoma viral oncogene homolog B (ΔFosB) in the nucleus accumbens, caudate-putamen, amygdala, and prefrontal cortex. Anatomical studies showed that repeated THC administration induced ΔFosB in D1R-containing striatal neurons. Dopamine signaling in the striatum involves phosphorylation-specific effects of the dopamine- and cAMP-regulated phosphoprotein Mr 32 kDa (DARPP-32), which regulates protein kinase A signaling. Genetic deletion of DARPP-32 attenuated ΔFosB expression measured after acute, but not repeated, THC administration in both the caudate-putamen and nucleus accumbens. THC was then acutely or repeatedly administered to wild-type (WT) and DARPP-32 knockout (KO) mice, and in vivo responses were measured. DARPP-32 KO mice exhibited enhanced acute THC-mediated hypolocomotion and developed greater tolerance to this response relative to the WT mice. Agonist-stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding showed that cannabinoid-stimulated G-protein activity did not differ between DARPP-32 KO and WT mice treated with vehicle or repeated THC. These results indicate that D1Rs play a major role in THC-mediated ΔFosB induction in the forebrain, whereas the role of DARPP-32 in THC-mediated ΔFosB induction and modulation of motor activity appears to be more complex.
Collapse
Affiliation(s)
- Matthew F Lazenka
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| | - Aaron J Tomarchio
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| | - Paul Greengard
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| | - Marc Flajolet
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| | - Dana E Selley
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| | - Laura J Sim-Selley
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.)
| |
Collapse
|
23
|
Farris SP, Harris RA, Ponomarev I. Epigenetic modulation of brain gene networks for cocaine and alcohol abuse. Front Neurosci 2015; 9:176. [PMID: 26041984 PMCID: PMC4438259 DOI: 10.3389/fnins.2015.00176] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/30/2015] [Indexed: 12/19/2022] Open
Abstract
Cocaine and alcohol are two substances of abuse that prominently affect the central nervous system (CNS). Repeated exposure to cocaine and alcohol leads to longstanding changes in gene expression, and subsequent functional CNS plasticity, throughout multiple brain regions. Epigenetic modifications of histones are one proposed mechanism guiding these enduring changes to the transcriptome. Characterizing the large number of available biological relationships as network models can reveal unexpected biochemical relationships. Clustering analysis of variation from whole-genome sequencing of gene expression (RNA-Seq) and histone H3 lysine 4 trimethylation (H3K4me3) events (ChIP-Seq) revealed the underlying structure of the transcriptional and epigenomic landscape within hippocampal postmortem brain tissue of drug abusers and control cases. Distinct sets of interrelated networks for cocaine and alcohol abuse were determined for each abusive substance. The network approach identified subsets of functionally related genes that are regulated in agreement with H3K4me3 changes, suggesting cause and effect relationships between this epigenetic mark and gene expression. Gene expression networks consisted of recognized substrates for addiction, such as the dopamine- and cAMP-regulated neuronal phosphoprotein PPP1R1B/DARPP-32 and the vesicular glutamate transporter SLC17A7/VGLUT1 as well as potentially novel molecular targets for substance abuse. Through a systems biology based approach our results illustrate the utility of integrating epigenetic and transcript expression to establish relevant biological networks in the human brain for addiction. Future work with laboratory models may clarify the functional relevance of these gene networks for cocaine and alcohol, and provide a framework for the development of medications for the treatment of addiction.
Collapse
Affiliation(s)
- Sean P Farris
- Waggoner Center for Alcohol & Addiction Research and The College of Pharmacy, University of Texas at Austin Austin, TX, USA
| | - Robert A Harris
- Waggoner Center for Alcohol & Addiction Research and The College of Pharmacy, University of Texas at Austin Austin, TX, USA
| | - Igor Ponomarev
- Waggoner Center for Alcohol & Addiction Research and The College of Pharmacy, University of Texas at Austin Austin, TX, USA
| |
Collapse
|
24
|
de Guglielmo G, Melis M, De Luca MA, Kallupi M, Li HW, Niswender K, Giordano A, Senzacqua M, Somaini L, Cippitelli A, Gaitanaris G, Demopulos G, Damadzic R, Tapocik J, Heilig M, Ciccocioppo R. PPARγ activation attenuates opioid consumption and modulates mesolimbic dopamine transmission. Neuropsychopharmacology 2015; 40:927-37. [PMID: 25311134 PMCID: PMC4330506 DOI: 10.1038/npp.2014.268] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 01/11/2023]
Abstract
PPARγ is one of the three isoforms identified for the peroxisome proliferator-activated receptors (PPARs) and is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. PPARγ has been long studied for its role in adipogenesis and glucose metabolism, but the discovery of the localization in ventral tegmental area (VTA) neurons opens new vistas for a potential role in the regulation of reward processing and motivated behavior in drug addiction. Here, we demonstrate that activation of PPARγ by pioglitazone reduces the motivation for heroin and attenuates its rewarding properties. These effects are associated with a marked reduction of heroin-induced increase in phosphorylation of DARPP-32 protein in the nucleus accumbens (NAc) and with a marked and selective reduction of acute heroin-induced elevation of extracellular dopamine (DA) levels in the NAc shell, as measured by in vivo microdialysis. Through ex vivo electrophysiology in acute midbrain slices, we also show that stimulation of PPARγ attenuates opioid-induced excitation of VTA DA neurons via reduction of presynaptic GABA release from the rostromedial tegmental nucleus (RMTg). Consistent with this finding, site-specific microinjection of pioglitazone into the RMTg but not into the VTA reduced heroin taking. Our data illustrate that activation of PPARγ may represent a new pharmacotherapeutic option for the treatment of opioid addiction.
Collapse
Affiliation(s)
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- INN, National Institute of Neuroscience, Cagliari, Italy
| | - Marsida Kallupi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Hong Wu Li
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Kevin Niswender
- Tennessee Valley Healthcare System, Nashville, TN, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Lorenzo Somaini
- Addiction Treatment Centre, Health Local Unit, ASL 12 Biella, Biella, Italy
| | - Andrea Cippitelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | | | | | - Ruslan Damadzic
- Laboratory of Clinical and Translational Studies, National Institute of Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jenica Tapocik
- Laboratory of Clinical and Translational Studies, National Institute of Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Institute of Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
25
|
Ignatowski TA, Aalinkeel R, Reynolds JL, Nair BB, Sykes DE, Gleason CPK, Law WC, Mammen MJ, Prasad PN, Schwartz SA, Mahajan SD. Nanotherapeutic Approach for Opiate Addiction Using DARPP-32 Gene Silencing in an Animal Model of Opiate Addiction. J Neuroimmune Pharmacol 2015; 10:136-52. [DOI: 10.1007/s11481-015-9585-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/12/2015] [Indexed: 01/05/2023]
|
26
|
Reynaert ML, Marrocco J, Gatta E, Mairesse J, Van Camp G, Fagioli F, Maccari S, Nicoletti F, Morley-Fletcher S. A Self-Medication Hypothesis for Increased Vulnerability to Drug Abuse in Prenatally Restraint Stressed Rats. PERINATAL PROGRAMMING OF NEURODEVELOPMENT 2015; 10:101-20. [DOI: 10.1007/978-1-4939-1372-5_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Differential regulation of MeCP2 and PP1 in passive or voluntary administration of cocaine or food. Int J Neuropsychopharmacol 2014; 17:2031-44. [PMID: 24936739 DOI: 10.1017/s1461145714000972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cocaine exposure induces changes in the expression of numerous genes, in part through epigenetic modifications. We have initially shown that cocaine increases the expression of the chromatin remodeling protein methyl-CpG binding protein 2 (MeCP2) and characterized the protein phosphatase-1Cβ (PP1Cβ) gene, as repressed by passive i.p. cocaine injections through a Mecp2-mediated mechanism involving de novo DNA methylation. Both proteins being involved in learning and memory processes, we investigated whether voluntary cocaine administration would similarly affect their expression using an operant self-administration paradigm. Passive and voluntary i.v. cocaine intake was found to induce Mecp2 and to repress PP1Cβ in the prefrontal cortex and the caudate putamen. This observation is consistent with the role of Mecp2 acting as a transcriptional repressor of PP1Cβ and shows that passive intake was sufficient to alter their expression. Surprisingly, striking differences were observed under the same conditions in food-restricted rats tested for food pellet delivery. In the prefrontal cortex and throughout the striatum, both proteins were induced by food operant conditioning, but remained unaffected by passive food delivery. Although cocaine and food activate a common reward circuit, changes observed in the expression of other genes such as reelin and GAD67 provide new insights into molecular mechanisms differentiating neuroadaptations triggered by each reinforcer. The identification of hitherto unknown genes differentially regulated by drugs of abuse and a natural reinforcer should improve our understanding of how two rewarding stimuli differ in their ability to drive behavior.
Collapse
|
28
|
Ropinirole regulates emotionality and neuronal activity markers in the limbic forebrain. Int J Neuropsychopharmacol 2014; 17:1981-93. [PMID: 24852388 DOI: 10.1017/s1461145714000728] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Restless legs syndrome (RLS) and Parkinson's disease (PD) are movement disorders usually accompanied by emotional and cognitive deficits. Although D3/D2 receptor agonists are effective against motor and non-motor deficits in RLS and PD, the exact behavioral and neurochemical effects of these drugs are not clearly defined. This study aimed to evaluate the effects of acute ropinirole (0, 0.1, 1 or 10 mg/kg, i.p.), a preferential D3/D2 receptor agonist, on intracranial self-stimulation (ICSS), spontaneous motor activity, anxiety- and depression-like behaviors, spatial reference and working memory in rats as well as on certain markers of neuronal activity, i.e. induction of immediate early genes, such as c-fos and arc, and crucial phosphorylations on GluA1 subunit of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and NA1, NA2A and NA2B subunits of N-methyl-D-aspartate (NMDA) receptors. Ropinirole decreased ICSS thresholds and induced anxiolytic- and antidepressive-like effects without affecting motor activity or spatial memory. The effects on emotionality were associated with a decrease in p-Ser897-NA1 and an increase in p-Tyr1472-NA2B in the ventral striatum as well as an increased induction of c-fos messenger RNA (mRNA) in the prefrontal cortex (PFC) and decreased expression of arc mRNA in the striatum and the shell of the nucleus accumbens. Our data indicate that ropinirole significantly affects emotionality at doses (1-10 mg/kg, i.p.) that exert no robust effects on locomotion or cognition. The data reinforce the use of D3/D2 receptor agonists in the treatment of RLS and PD patients characterized by emotional deficits and suggest that altered NMDA-mediated neurotransmission in the limbic forebrain may underlie some of ropinirole's therapeutic actions.
Collapse
|
29
|
Huang V, Hemmings HC, Crews D. Sociosexual investigation in sexually experienced, hormonally manipulated male leopard geckos: relation with phosphorylated DARPP-32 in dopaminergic pathways. ACTA ACUST UNITED AC 2014; 321:595-602. [PMID: 25351686 DOI: 10.1002/jez.1891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 06/18/2014] [Accepted: 08/06/2014] [Indexed: 12/15/2022]
Abstract
Dopaminergic activity is both associated with sociosexual exposure and modulated by sexual experience and hormonal state across vertebrate taxa. Mature leopard geckos, a reptile with temperature-dependent sex determination, have dopaminoceptive nuclei that are influenced by their embryonic environment and sensitive to adult hormonal manipulation. In this study, we exposed hormonally manipulated male leopard geckos from different incubation temperatures to conspecifics and measured their sociosexual investigation, as well as phosphorylated DARPP-32 at Threonine 34 (pDARPP-32) immunoreactivity as a marker for D1 dopamine receptor activity in the nucleus accumbens, striatum, and preoptic area. Social investigation time by males of different incubation temperatures was modulated in opposite directions by exogenous androgen treatment. Males exposed to novel stimuli spent a greater proportion of time investigating females of different incubation temperatures. The time spent investigating females was positively correlated to pDARPP-32 immunoreactivity in the preoptic area. This is the first study quantifying pDARPP-32 in a lizard species, and suggests the protein as a potential marker to measure differences in the dopaminergic pathway in a social setting with consideration of embryonic environment and hormonal state.
Collapse
Affiliation(s)
- Victoria Huang
- Section of Integrative Biology C-0990, University of Texas at Austin, Austin, Texas
| | | | | |
Collapse
|
30
|
Cocaine-induced changes in NMDA receptor signaling. Mol Neurobiol 2014; 50:494-506. [PMID: 24445951 DOI: 10.1007/s12035-014-8636-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/02/2014] [Indexed: 01/27/2023]
Abstract
Addictive states are often thought to rely on lasting modification of signaling at relevant synapses. A long-standing theory posits that activity at N-methyl-D-aspartate receptors (NMDARs) is a critical component of long-term synaptic plasticity in many brain areas. Indeed, NMDAR signaling has been found to play a role in the etiology of addictive states, in particular, following cocaine exposure. However, no consensus is apparent with respect to the specific effects of cocaine exposure on NMDARs. Part of the difficulty lies in the fact that NMDARs interact extensively with multiple membrane proteins and intracellular signaling cascades. This allows for highly heterogeneous patterns of NMDAR regulation by cocaine in distinct brain regions and at distinct synapses. The picture is further complicated by findings that cocaine effects on NMDARs are sensitive to the behavioral history of cocaine exposure such as the mode of cocaine administration. This review provides a summary of evidence for cocaine-induced changes in NMDAR expression, cocaine-induced alterations in NMDAR function, and cocaine effects on NMDAR control of intracellular signaling cascades.
Collapse
|
31
|
Abstract
Several studies have reported the coupling of dopamine signaling to phospholipase C β (PLCβ) both in vitro and in vivo. However, the precise physiological relevance of this signaling pathway in mediating dopamine behaviors is still unclear. Here we report that stimulation of dopamine receptor signaling in vivo with systemic administration of apomorphine, amphetamine, and cocaine leads to increased production of inositol triphosphate (IP3) in the mouse striatum. Using selective antagonists and dopamine D1 and D2 receptor knock-out animals, we show that the production of IP3 is mediated by the D1 receptor, but not the D2 receptor. A selective blocker of PLCβ, U73122, was used to assess the physiological relevance of D1-mediated IP3 production. We show that U73122 inhibits the locomotor-stimulating effects of apomorphine, amphetamine, cocaine, and SKF81297. Furthermore, U73122 also suppresses the spontaneous hyperactivity exhibited by dopamine transporter knock-out mice. Importantly, the effects of U73122 are selective to dopamine-mediated hyperactivity, as this compound does not affect hyperactivity induced by the glutamate NMDA receptor antagonist MK801. Finally, we present evidence showing that an imbalance of D1- and D2-mediated signaling following U73122 treatment modifies the locomotor output of animals from horizontal locomotor activity to vertical activity, further highlighting the importance of the PLCβ pathway in the regulation of forward locomotion via dopamine receptors.
Collapse
|
32
|
Cui G, Yang X, Wang X, Zhang Z, Yue X, Shi H, Shen X. Ranitidine reduced levodopa-induced dyskinesia in a rat model of Parkinson's disease. Neuropsychiatr Dis Treat 2014; 10:39-46. [PMID: 24379672 PMCID: PMC3872142 DOI: 10.2147/ndt.s54782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chronic administration of levodopa in Parkinson's disease leads to debilitating involuntary movements, termed levodopa-induced dyskinesia (LID). The pathogenesis of LID is poorly understood. Previous research has shown that histamine H2 receptors are highly expressed in the input (striatum) and output (globus pallidus, substantia nigra) regions of the basal ganglia, particularly in the GABAergic striatopallidal and striatonigral pathways. Therefore, a histamine H2 receptor antagonist could be used to reduce LID. In the present work, we investigated whether ranitidine has the potential to diminish LID in rats with dyskinesia and explored the underlying mechanisms involved. METHODS A rat model of PD was induced by 6-hydroxydopamine. Valid PD rats were then treated with levodopa (25 mg/kg, intraperitoneally) and benserazide (12.5 mg/kg, intraperitoneally) for 21 days to induce a rat model of LID. The acute and chronic effects of administration of ranitidine at different doses (5 mg/kg, 10 mg/kg, and 20 mg/kg) on abnormal involuntary movements, levodopa-induced rotations, and the forelimb adjusting steps test were investigated in LID rats. The chronic effect of ranitidine (10 mg/kg) on the expression of Arc and proenkephalin was also evaluated. RESULTS Levodopa elicited increased dyskinesia in PD rats. Acute ranitidine treatment had no effect on LID, but chronic ranitidine administration (10 mg/kg, 20 mg/kg) reduced LID in rats with dyskinesia. Importantly, levodopa-induced rotations were not affected by chronic treatment with ranitidine. In addition, chronic ranitidine (10 mg/kg, 20 mg/kg) significantly improved stepping of the lesioned forepaw. Real-time polymerase chain reaction showed that Arc and proenkephalin levels were reduced by chronic ranitidine (10 mg/kg) in dyskinetic rats. CONCLUSION These data indicate that ranitidine is a good adjunct for reducing LID in rats with dyskinesia. Inhibition of dopamine D1-mediated activation in the medium spiny neurons may account for the antidyskinetic effects of ranitidine in rats with dyskinesia.
Collapse
Affiliation(s)
- Guiyun Cui
- Department of Neurology, Jiangsu, People's Republic of China ; Department of Neurology, Jiangsu, People's Republic of China
| | - Xinxin Yang
- Department of Neurology, Jiangsu, People's Republic of China ; Department of Neurology, Jiangsu, People's Republic of China
| | - Xiaoying Wang
- Department of Ultrasound, the Affiliated Hospital of Xuzhou Medical College, Jiangsu, People's Republic of China ; Department of Neurology, Jiangsu, People's Republic of China
| | - Zunsheng Zhang
- Department of Neurology, Jiangsu, People's Republic of China
| | - Xuanye Yue
- Department of Neurology, Jiangsu, People's Republic of China
| | - Hongjuan Shi
- Department of Neurology, Jiangsu, People's Republic of China
| | - Xia Shen
- Department of Neurology, Jiangsu, People's Republic of China
| |
Collapse
|
33
|
Lesch KP, Merker S, Reif A, Novak M. Dances with black widow spiders: dysregulation of glutamate signalling enters centre stage in ADHD. Eur Neuropsychopharmacol 2013; 23:479-91. [PMID: 22939004 DOI: 10.1016/j.euroneuro.2012.07.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/10/2012] [Accepted: 07/24/2012] [Indexed: 11/26/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with impairments across the lifespan. The persistence of ADHD is associated with considerable liability to neuropsychiatric co-morbidity such as depression, anxiety and substance use disorder. The substantial heritability of ADHD is well documented and recent genome-wide analyses for risk genes revealed synaptic adhesion molecules (e.g. latrophilin-3, LPHN3; fibronectin leucine-rich repeat transmembrane protein-3, FLRT3), glutamate receptors (e.g. metabotropic glutamate receptor-5, GRM5) and mediators of intracellular signalling pathways (e.g. nitric oxide synthase-1, NOS1). These genes encode principal components of the molecular machinery that connects pre- and postsynaptic neurons, facilitates glutamatergic transmission, controls synaptic plasticity and empowers intersecting neural circuits to process and refine information. Thus, identification of genetic variation affecting molecules essential for the formation, specification and function of excitatory synapses is refocusing research efforts on ADHD pathogenesis to include the long-neglected glutamate system.
Collapse
Affiliation(s)
- K P Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, ADHD Clinical Research Network, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Füchsleinstr. 15, 97080 Würzburg, Germany.
| | | | | | | |
Collapse
|
34
|
Pol Bodetto S, Carouge D, Fonteneau M, Dietrich JB, Zwiller J, Anglard P. Cocaine represses protein phosphatase-1Cβ through DNA methylation and Methyl-CpG Binding Protein-2 recruitment in adult rat brain. Neuropharmacology 2013; 73:31-40. [PMID: 23688924 DOI: 10.1016/j.neuropharm.2013.05.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 04/28/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Repeated cocaine exposure induces epigenetic factors such as DNA methyl-binding proteins, indicating that resulting changes in gene expression are mediated by alterations in brain DNA methylation. While the activity of protein phosphatase type-1 (PP1) is involved in cocaine effects and in brain plasticity, the expression of the PP1Cβ catalytic subunit gene was identified here as modulated by cocaine. Its expression was induced together with that of PP1Cγ in the brain of Methyl-CpG Binding Protein-2 (Mecp2) mutant mice, whereas PP1Cα expression was not affected, illustrating a different regulation of PP1C isoforms. Repeated cocaine administration was found to increase DNA methylation at the PP1Cβ gene together with its binding to Mecp2 in rat caudate putamen, establishing a link between two genes involved in cocaine-related effects and in learning and memory processes. Cocaine also increased DNMT3 expression, resulting in PP1Cβ repression that did not occur in the presence of DNMT inhibitor. Cocaine-induced PP1Cβ repression was observed in several brain structures, as evaluated by RT-qPCR, immunohistochemistry and Western blot, but did not occur after a single cocaine injection. Our data demonstrate that PP1Cβ is a direct MeCP2-target gene in vivo. They suggest that its repression may participate to behavioral adaptations triggered by the drug.
Collapse
Affiliation(s)
- Sarah Pol Bodetto
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
35
|
Jonkman S, Kenny PJ. Molecular, cellular, and structural mechanisms of cocaine addiction: a key role for microRNAs. Neuropsychopharmacology 2013; 38:198-211. [PMID: 22968819 PMCID: PMC3521966 DOI: 10.1038/npp.2012.120] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The rewarding properties of cocaine play a key role in establishing and maintaining the drug-taking habit. However, as exposure to cocaine increases, drug use can transition from controlled to compulsive. Importantly, very little is known about the neurobiological mechanisms that control this switch in drug use that defines addiction. MicroRNAs (miRNAs) are small non-protein coding RNA transcripts that can regulate the expression of messenger RNAs that code for proteins. Because of their highly pleiotropic nature, each miRNA has the potential to regulate hundreds or even thousands of protein-coding RNA transcripts. This property of miRNAs has generated considerable interest in their potential involvement in complex psychiatric disorders such as addiction, as each miRNA could potentially influence the many different molecular and cellular adaptations that arise in response to drug use that are hypothesized to drive the emergence of addiction. Here, we review recent evidence supporting a key role for miRNAs in the ventral striatum in regulating the rewarding and reinforcing properties of cocaine in animals with limited exposure to the drug. Moreover, we discuss evidence suggesting that miRNAs in the dorsal striatum control the escalation of drug intake in rats with extended cocaine access. These findings highlight the central role for miRNAs in drug-induced neuroplasticity in brain reward systems that drive the emergence of compulsive-like drug use in animals, and suggest that a better understanding of how miRNAs control drug intake will provide new insights into the neurobiology of drug addiction.
Collapse
Affiliation(s)
- Sietse Jonkman
- Laboratory of Behavioral and Molecular Neuroscience, Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute–Florida, Jupiter, FL, USA
| | - Paul J Kenny
- Laboratory of Behavioral and Molecular Neuroscience, Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute–Florida, Jupiter, FL, USA,Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute—Florida, 130 Scripps Way, Jupiter, FL 33458, USA, Tel: +1 561 228 2231, Fax: +1 561 799 8961, E-mail:
| |
Collapse
|
36
|
Gomez AM, Midde NM, Mactutus CF, Booze RM, Zhu J. Environmental enrichment alters nicotine-mediated locomotor sensitization and phosphorylation of DARPP-32 and CREB in rat prefrontal cortex. PLoS One 2012; 7:e44149. [PMID: 22952905 PMCID: PMC3432100 DOI: 10.1371/journal.pone.0044149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/30/2012] [Indexed: 01/28/2023] Open
Abstract
Exposure within an environmental enrichment paradigm results in neurobiological adaptations and decreases the baseline of locomotor activity. The current study determined activation of DARPP-32 (dopamine- and cAMP-regulated phosphoprotein-32) and CREB (cAMP response element binding protein), and locomotor activity in rats raised in enriched (EC), impoverished (IC), and standard (SC) conditions following repeated administration of nicotine or saline. In the saline-control group, the basal phosphorylation state of DARPP-32 at Threonine-34 site (pDARPP-32 Thr34) in the prefrontal cortex (PFC) was lower in EC compared to IC and SC rats, which was positively correlated with their respective baseline activities. While nicotine (0.35 mg/kg, freebase) produced locomotor sensitization across all housing conditions when the nicotine-mediated locomotor activity was expressed as a percent change from their respective saline control, EC rats displayed greater sensitization to nicotine than IC and SC rats. Consistent with the behavioral findings, repeated nicotine injection increased pDARPP-32 Thr34 in PFC of EC and IC rats and in nucleus accumbens of EC rats; however, the magnitude of change from saline control in nicotine-induced enhancement of pDARPP-32 Thr34 in PFC was strikingly increased in EC rats relative to IC rats. Moreover, EC rats had lower basal phosphorylation levels of CREB at serine 133 in PFC and nucleus accumbens compared to IC and SC rats, whereas the nicotine-induced increase in phosphorylated CREB-Ser133 was more pronounced in PFC of EC rats relative to IC and SC rats. Collectively, these findings suggest innovative insights into advancing our understanding of the molecular mechanisms of enrichment-induced changes in the motivational effects of nicotine, and aiding in the identification of new therapeutic strategies for tobacco smokers.
Collapse
Affiliation(s)
- Adrian M. Gomez
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Narasimha M. Midde
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Charles F. Mactutus
- Department of Psychology, University of South Carolina, Columbia, South Carolina, United States of America
| | - Rosemarie M. Booze
- Department of Psychology, University of South Carolina, Columbia, South Carolina, United States of America
| | - Jun Zhu
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
37
|
Naloxonazine, a specific mu-opioid receptor antagonist, attenuates the increment of locomotor activity induced by acute methamphetamine in mice. Toxicol Lett 2012; 212:61-5. [DOI: 10.1016/j.toxlet.2012.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 11/24/2022]
|
38
|
Davis MM, Olausson P, Greengard P, Taylor JR, Nairn AC. Regulator of calmodulin signaling knockout mice display anxiety-like behavior and motivational deficits. Eur J Neurosci 2012; 35:300-8. [PMID: 22250817 DOI: 10.1111/j.1460-9568.2011.07956.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Regulator of calmodulin (CaM) signaling (RCS), when phosphorylated by protein kinase A (PKA) on Ser55, binds to CaM and inhibits CaM-dependent signaling. RCS expression is high in the dorsal striatum, nucleus accumbens and amygdala, suggesting that the protein is involved in limbic-striatal function. To test this hypothesis, we examined RCS knockout (KO) mice in behavioral models dependent on these brain areas. Mice were tested for food-reinforced instrumental conditioning and responding under a progressive ratio (PR) schedule of reinforcement and in models of anxiety (elevated plus maze and open field). While RCS KO mice showed normal acquisition of a food-motivated instrumental response, they exhibited a lower breakpoint value when tested on responding under a PR schedule of reinforcement. RCS KO mice also displayed decreased exploration in both the open arms of an elevated plus maze and in the center region of an open field, suggesting an enhanced anxiety response. Biochemical studies revealed a reduction in the levels of dopamine and cAMP-regulated phosphoprotein (DARPP-32) in the striatum of RCS KO mice. DARPP-32 is important in reward-mediated behavior, suggestive of a possible role for DARPP-32 in mediating some of the effects of RCS. Together these results implicate a novel PKA-regulated phosphoprotein, RCS, in the etiology of motivational deficits and anxiety.
Collapse
Affiliation(s)
- Maya M Davis
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06508, USA
| | | | | | | | | |
Collapse
|
39
|
Wells L, Opacka-Juffry J, Fisher D, Ledent C, Hourani S, Kitchen I. In vivo dopaminergic and behavioral responses to acute cocaine are altered in adenosine A(2A) receptor knockout mice. Synapse 2012; 66:383-90. [PMID: 22213208 DOI: 10.1002/syn.21527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 12/14/2011] [Indexed: 11/07/2022]
Abstract
Adenosine, acting on adenosine A(2A) receptors (A2ARs), regulates addictive processes induced by drugs of abuse. This study investigates the role of A(2A) adenosine receptors in neurochemical and behavioral responses to an acute cocaine challenge. Changes in the extracellular levels of dopamine (DA) in the nucleus accumbens (NAc) of mice lacking A(2A) adenosine receptors and wild type (WT) littermates after an acute cocaine (20 mg/kg) administration were evaluated by in vivo microdialysis studies. Locomotor effects induced by cocaine were measured during the microdialysis procedure. Cocaine-evoked increases in extracellular DA were not sustained in mice lacking A(2A) Rs in comparison with wild-type mice (P < 0.05). Cocaine administration significantly increased ambulatory activity in both genotypes. However, overall locomotor activity was further increased, whereas rest and small local movement measures were significantly attenuated in the A(2A) R knockout mice compared with WT littermates (P < 0.05). Our findings support an important role for adenosine A(2A) R in modulating the acute effects of cocaine, as demonstrated by the decrease in cocaine-evoked dopaminergic transmission in the NAc. Furthermore, the results support an important antagonistic role of A(2A) R in vivo in regulating psychostimulant-induced hyperlocomotion.
Collapse
Affiliation(s)
- Lisa Wells
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom.
| | | | | | | | | | | |
Collapse
|
40
|
Girault JA. Signaling in striatal neurons: the phosphoproteins of reward, addiction, and dyskinesia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:33-62. [PMID: 22340713 DOI: 10.1016/b978-0-12-396456-4.00006-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The striatum is a deep region of the forebrain involved in action selection, control of movement, and motivation. It receives a convergent excitatory glutamate input from the cerebral cortex and the thalamus, controlled by dopamine (DA) released in response to unexpected rewards and other salient stimuli. Striatal function and its dysfunction in drug addiction or Parkinson's disease depend on the interplay between these neurotransmitters. Signaling cascades in striatal medium-sized spiny neurons (MSNs) involve multiple kinases, phosphatases, and phosphoproteins, some of which are highly enriched in these neurons. They control the properties of ion channels and the plasticity of MSNs, in part through their effects on gene transcription. This chapter summarizes signaling in MSNs and focuses on the regulation of multiple protein phosphatases through DA and glutamate receptors and the role of ERK. It is hypothesized that these pathways are particularly adapted to the specific computing properties of MSNs and the function of the basal ganglia circuits in which they participate.
Collapse
|
41
|
Feyder M, Bonito-Oliva A, Fisone G. L-DOPA-Induced Dyskinesia and Abnormal Signaling in Striatal Medium Spiny Neurons: Focus on Dopamine D1 Receptor-Mediated Transmission. Front Behav Neurosci 2011; 5:71. [PMID: 22028687 PMCID: PMC3199545 DOI: 10.3389/fnbeh.2011.00071] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/06/2011] [Indexed: 11/13/2022] Open
Abstract
Dyskinesia is a serious motor complication caused by prolonged administration of l-DOPA to patients affected by Parkinson's disease. Accumulating evidence indicates that l-DOPA-induced dyskinesia (LID) is primarily caused by the development of sensitized dopamine D1 receptor (D1R) transmission in the medium spiny neurons (MSNs) of the striatum. This phenomenon, combined with chronic administration of l-DOPA, leads to persistent and intermittent hyper-activation of the cAMP signaling cascade. Activation of cAMP signaling results in increased activity of the cAMP-dependent protein kinase (PKA) and of the dopamine- and cAMP-dependent phosphoprotein of 32 kDa (DARPP-32), which regulate several downstream effector targets implicated in the control of the excitability of striatal MSNs. Dyskinesia is also accompanied by augmented activity of the extracellular signal-regulated kinases (ERK) and the mammalian target of rapamycin complex 1 (mTORC1), which are involved in the control of transcriptional and translational efficiency. Pharmacological or genetic interventions aimed at reducing abnormal signal transduction at the level of these various intracellular cascades have been shown to attenuate LID in different animal models. For instance, LID is reduced in mice deficient for DARPP-32, or following inhibition of PKA. Blockade of ERK obtained genetically or using specific inhibitors is also able to attenuate dyskinetic behavior in rodents and non-human primates. Finally, administration of rapamycin, a drug which blocks mTORC1, results in a strong reduction of LID. This review focuses on the abnormalities in signaling affecting the D1R-expressing MSNs and on their potential relevance for the design of novel anti-dyskinetic therapies.
Collapse
Affiliation(s)
- Michael Feyder
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | | | | |
Collapse
|
42
|
Wuo-Silva R, Fukushiro DF, Borçoi AR, Fernandes HA, Procópio-Souza R, Hollais AW, Santos R, Ribeiro LTC, Corrêa JMRM, Talhati F, Saito LP, Aramini TCF, Kameda SR, Bittencourt LRA, Tufik S, Frussa-Filho R. Addictive potential of modafinil and cross-sensitization with cocaine: a pre-clinical study. Addict Biol 2011; 16:565-79. [PMID: 21790900 DOI: 10.1111/j.1369-1600.2011.00341.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Repeated or even a single exposure to drugs of abuse can lead to persistent locomotor sensitization, which is the result of an abundance of neuroplastic changes occurring within the circuitry involved in motivational behavior and is thought to play a key role in certain aspects of drug addiction. There is substantial controversy about the addictive potential of modafinil, a wake-promoting drug used to treat narcolepsy that is increasingly being used as a cognitive enhancer and has been proposed as a pharmacotherapy for cocaine dependence. Male mice were used to investigate the ability of modafinil to induce locomotor sensitization after repeated or single administration in mice. Bidirectional cross-sensitization with cocaine and modafinil-induced conditioned place preference were also evaluated. Both repeated and single exposure to moderate and high doses of modafinil produced a pronounced locomotor sensitization that cross-sensitized in a bidirectional way with cocaine. Remarkably, when cocaine and modafinil were repeatedly administered sequentially, their behavioral sensitization was additive. Supporting these behavioral sensitization data, modafinil produced a pronounced conditioned place preference in the mouse. Taken together, the present findings provide pre-clinical evidence for the addictive potential of modafinil. Our data also strongly suggest that similar neural substrates are involved in the psychomotor/rewarding effects of modafinil and cocaine.
Collapse
|
43
|
Yger M, Girault JA. DARPP-32, Jack of All Trades… Master of Which? Front Behav Neurosci 2011; 5:56. [PMID: 21927600 PMCID: PMC3168893 DOI: 10.3389/fnbeh.2011.00056] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 08/16/2011] [Indexed: 02/03/2023] Open
Abstract
DARPP-32 (PPP1R1B) was discovered as a substrate of cAMP-dependent protein kinase (PKA) enriched in dopamine-innervated brain areas. It is one of three related, PKA-regulated inhibitors of protein phosphatase-1 (PP1). These inhibitors seem to have appeared in early vertebrate ancestors, possibly Gnathostomes. DARPP-32 has additional important biochemical properties including inhibition of PKA when phosphorylated by Cdk5 and regulation by casein kinases 1 and 2. It is highly enriched in specific neuronal populations, especially striatal medium-size spiny neurons. As PP1 inhibitor DARPP-32 amplifies and/or mediates many actions of PKA at the plasma membrane and in the cytoplasm, with a broad spectrum of potential targets and functions. DARPP-32 also undergoes a continuous and tightly regulated cytonuclear shuttling. This trafficking is controlled by phosphorylation of Ser-97, which is necessary for nuclear export. When phosphorylated on Thr-34 and dephosphorylated on Ser-97, DARPP-32 can inhibit PP1 in the nucleus and modulate signaling pathways involved in the regulation of chromatin response. Recent work with multiple transgenic and knockout mutant mice has allowed the dissection of DARPP-32 function in striato-nigral and striato-pallidal neurons. It is implicated in the action of therapeutic and abused psychoactive drugs, in prefrontal cortex function, and in sexual behavior. However, the contribution of DARPP-32 in human behavior remains poorly understood. Post-mortem studies in humans suggest possible alterations of DARPP-32 levels in schizophrenia and bipolar disorder. Genetic studies have revealed a polymorphism with possible association with psychological and psychopathological traits. In addition, a short isoform of DARPP-32, t-DARPP, plays a role in cancer, indicating additional signaling properties. Thus, DARPP-32 is a non-essential but tightly regulated signaling hub molecule which may improve the general performance of the neuronal circuits in which it is expressed.
Collapse
Affiliation(s)
- Marion Yger
- INSERM UMR-S 839Paris, France
- Université Pierre et Marie CurieParis, France
- Institut du Fer à MoulinParis, France
| | - Jean-Antoine Girault
- INSERM UMR-S 839Paris, France
- Université Pierre et Marie CurieParis, France
- Institut du Fer à MoulinParis, France
| |
Collapse
|
44
|
Crittenden JR, Graybiel AM. Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 2011; 5:59. [PMID: 21941467 PMCID: PMC3171104 DOI: 10.3389/fnana.2011.00059] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/18/2011] [Indexed: 11/24/2022] Open
Abstract
The striatum is composed principally of GABAergic, medium spiny striatal projection neurons (MSNs) that can be categorized based on their gene expression, electrophysiological profiles, and input–output circuits. Major subdivisions of MSN populations include (1) those in ventromedial and dorsolateral striatal regions, (2) those giving rise to the direct and indirect pathways, and (3) those that lie in the striosome and matrix compartments. The first two classificatory schemes have enabled advances in understanding of how basal ganglia circuits contribute to disease. However, despite the large number of molecules that are differentially expressed in the striosomes or the extra-striosomal matrix, and the evidence that these compartments have different input–output connections, our understanding of how this compartmentalization contributes to striatal function is still not clear. A broad view is that the matrix contains the direct and indirect pathway MSNs that form parts of sensorimotor and associative circuits, whereas striosomes contain MSNs that receive input from parts of limbic cortex and project directly or indirectly to the dopamine-containing neurons of the substantia nigra, pars compacta. Striosomes are widely distributed within the striatum and are thought to exert global, as well as local, influences on striatal processing by exchanging information with the surrounding matrix, including through interneurons that send processes into both compartments. It has been suggested that striosomes exert and maintain limbic control over behaviors driven by surrounding sensorimotor and associative parts of the striatal matrix. Consistent with this possibility, imbalances between striosome and matrix functions have been reported in relation to neurological disorders, including Huntington’s disease, L-DOPA-induced dyskinesias, dystonia, and drug addiction. Here, we consider how signaling imbalances between the striosomes and matrix might relate to symptomatology in these disorders.
Collapse
Affiliation(s)
- Jill R Crittenden
- Brain and Cognitive Sciences Department and McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | | |
Collapse
|
45
|
Walaas SI, Hemmings HC, Greengard P, Nairn AC. Beyond the dopamine receptor: regulation and roles of serine/threonine protein phosphatases. Front Neuroanat 2011; 5:50. [PMID: 21904525 PMCID: PMC3162284 DOI: 10.3389/fnana.2011.00050] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 07/23/2011] [Indexed: 11/17/2022] Open
Abstract
Dopamine plays an important modulatory role in the central nervous system, helping to control critical aspects of motor function and reward learning. Alteration in normal dopaminergic neurotransmission underlies multiple neurological diseases including schizophrenia, Huntington’s disease, and Parkinson’s disease. Modulation of dopamine-regulated signaling pathways is also important in the addictive actions of most drugs of abuse. Our studies over the last 30 years have focused on the molecular actions of dopamine acting on medium spiny neurons, the predominant neurons of the neostriatum. Striatum-enriched phosphoproteins, particularly dopamine and adenosine 3′:5′-monophosphate-regulated phosphoprotein of 32 kDa (DARPP-32), regulator of calmodulin signaling (RCS), and ARPP-16, mediate pleiotropic actions of dopamine. Notably, each of these proteins, either directly or indirectly, regulates the activity of one of the three major subclasses of serine/threonine protein phosphatases, PP1, PP2B, and PP2A, respectively. For example, phosphorylation of DARPP-32 at Thr34 by protein kinase A results in potent inhibition of PP1, leading to potentiation of dopaminergic signaling at multiple steps from the dopamine receptor to the nucleus. The discovery of DARPP-32 and its emergence as a critical molecular integrator of striatal signaling will be discussed, as will more recent studies that highlight novel roles for RCS and ARPP-16 in dopamine-regulated striatal signaling pathways.
Collapse
Affiliation(s)
- Sven Ivar Walaas
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | | | | | | |
Collapse
|
46
|
Li D, Herrera S, Bubula N, Nikitina E, Palmer AA, Hanck DA, Loweth JA, Vezina P. Casein kinase 1 enables nucleus accumbens amphetamine-induced locomotion by regulating AMPA receptor phosphorylation. J Neurochem 2011; 118:237-47. [PMID: 21564097 PMCID: PMC3129449 DOI: 10.1111/j.1471-4159.2011.07308.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The closely related δ and ε isoforms of the serine/threonine protein kinase casein kinase 1 (Csnk1) have been implicated in the generation of psychostimulant-induced behaviors. In this study, we show that Csnk1δ/ε produces its effects on behavior by acting on the Darpp-32-PP1 signaling pathway to regulate AMPA receptor phosphorylation in the nucleus accumbens (NAcc). Inhibiting Csnk1δ/ε in the NAcc with the selective inhibitor PF-670462 blocks amphetamine induced locomotion and its ability to increase phosphorylation of Darpp-32 at S137 and T34, decrease PP1 activity and increase phosphorylation of the AMPA receptor subunit at S845. Consistent with these findings, preventing GluR1 phosphorylation with the alanine mutant GluR1(S845A) reduces glutamate-evoked currents in cultured medium spiny neurons and blocks the locomotor activity produced by NAcc amphetamine. Thus, Csnk1 enables the locomotor and likely the incentive motivational effects of amphetamine by regulating Darrp-32-PP1-GlurR1(S845) signaling in the NAcc. As such, Csnk1 may be a critical target for intervention in the treatment of drug use disorders.
Collapse
Affiliation(s)
- Dongdong Li
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
| | - Stacy Herrera
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
| | - Nancy Bubula
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
| | - Elena Nikitina
- Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
| | - Abraham A Palmer
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
- Department of Human Genetics, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
- Committee on Neurobiology, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
| | - Dorothy A Hanck
- Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
- Committee on Neurobiology, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
| | - Jessica A Loweth
- Committee on Neurobiology, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
| | - Paul Vezina
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
- Committee on Neurobiology, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
| |
Collapse
|
47
|
Wissman AM, McCollum AF, Huang GZ, Nikrodhanond AA, Woolley CS. Sex differences and effects of cocaine on excitatory synapses in the nucleus accumbens. Neuropharmacology 2011; 61:217-27. [PMID: 21510962 PMCID: PMC3105198 DOI: 10.1016/j.neuropharm.2011.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 03/16/2011] [Accepted: 04/01/2011] [Indexed: 12/11/2022]
Abstract
Human and animal studies indicate that drugs of abuse affect males and females differently, but the mechanism(s) underlying sex differences are unknown. The nucleus accumbens (NAc) is central in the neural circuitry of addiction and medium spiny neurons (MSNs) in the NAc show drug-induced changes in morphology and physiology including increased dendritic spine density. We previously showed in drug-naïve rats that MSN dendritic spine density is higher in females than males. In this study, we investigated sex differences in the effects of cocaine on locomotor activity as well as MSN dendritic spine density and excitatory synaptic physiology in rats treated for 5 weeks followed by 17-21 days of abstinence. Females showed a greater locomotor response to cocaine and more robust behavioral sensitization than males. Spine density was also higher in females and, particularly in the core of the NAc, the magnitude of the cocaine-induced increase in spine density was greater in females. Interestingly, in cocaine-treated females but not males, cocaine-induced behavioral activation during treatment was correlated with spine density measured after treatment. Miniature EPSC (mEPSC) frequency in core MSNs also was higher in females, and increased with cocaine in both the core and shell of females more than males. We found no differences in mEPSC amplitude or paired-pulse ratio of evoked EPSCs, suggesting that sex differences and cocaine effects on mEPSC frequency reflect differences in excitatory synapse number per neuron rather than presynaptic release probability. These studies are the first to demonstrate structural and electrophysiological differences between males and females that may drive sex differences in addictive behavior.
Collapse
Affiliation(s)
- Anne Marie Wissman
- Department of Neurobiology and Physiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Anhedonia is a core symptom of depression that also characterizes substance abuse-related mood disorders, in particular those secondary to stimulant abuse. This study investigated the long-lasting condition of cocaine sensitization as an inducing condition for anhedonia in rats. Cortical-mesolimbic dopamine plays a central role in assessing the incentive value of a stimulus and an increased dopamine output in these areas after a novel palatable meal seems to correlate with the ability to acquire an instrumental behaviour aimed at earning it again. This dopaminergic response is associated with consistent modifications in the phosphorylation pattern of some cAMP-dependent protein kinase (PKA) substrates and it is mediated by dopamine D1 receptor stimulation. Thus, since behavioural cocaine sensitization is characterized by tonically increased levels of phospho-Thr75 DARPP-32 that is a potent PKA inhibitor, we hypothesized that cocaine-sensitized rats might reveal deficits in palatable food responding. Indeed, non-food-deprived cocaine-sensitized rats showed no interest in palatable food, no dopaminergic response after a palatable meal in terms of increased dopamine output and DARPP-32 phosphorylation changes, and no ability to acquire a palatable food-sustained instrumental behaviour. Repeated administration of an established antidepressant compound, imipramine, corrected these deficits and reinstated the dopaminergic response in the cortico-mesolimbic areas to control values. Thus, the behavioural modifications observed in cocaine-sensitized rats satisfy some requirements for an experimental model of anhedonia since they are induced by repeated cocaine administration (aetiological validity), they mimic an anhedonia-like symptom (construct validity), and are reversed by the administration of imipramine (predictive validity).
Collapse
|
49
|
Valjent E, Bertran-Gonzalez J, Aubier B, Greengard P, Hervé D, Girault JA. Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol. Neuropsychopharmacology 2010; 35:401-15. [PMID: 19759531 PMCID: PMC2794893 DOI: 10.1038/npp.2009.143] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A single exposure to psychostimulants or morphine is sufficient to induce persistent locomotor sensitization, as well as neurochemical and electrophysiological changes in rodents. Although it provides a unique model to study the bases of long-term behavioral plasticity, sensitization mechanisms remain poorly understood. We investigated in the mouse, a species suited for transgenic studies, the mechanisms of locomotor sensitization showed by the increased response to a second injection of drug (two-injection protocol of sensitization, TIPS). The first cocaine injection induced a locomotor sensitization that was completely context-dependent, increased during the first week, and persisted 3 months later. The induction of sensitized responses to cocaine required dopamine D1 and glutamate NMDA receptors. A single injection of the selective dopamine transporter blocker GBR12783 was sufficient to activate extracellular signal-regulated kinase (ERK) in the striatum to the same level as cocaine and to induce sensitization to cocaine, but not to itself. The induction of sensitization was sensitive to protein synthesis inhibition by anisomycin after cocaine administration. Morphine induced a pronounced context-dependent sensitization that crossed with cocaine. Sensitization to morphine injection was prevented in knockin mutant mice bearing a Thr-34-Ala mutation of DARPP-32, which suppresses its ability to inhibit protein phosphatase-1 (PP1), but not mutation of Thr-75 or Ser-130. These results combined with previous ones show that TIPS in mouse is a context-dependent response, which involves an increase in extracellular dopamine, stimulation of D1 and NMDA receptors, regulation of the cAMP-dependent and ERK pathways, inhibition of PP1, and protein synthesis. It provides a simple and sensitive paradigm to study the mechanisms of long-term effects of drugs of abuse.
Collapse
Affiliation(s)
- Emmanuel Valjent
- Inserm UMR-S 839, Paris, France,Université Pierre et Marie Curie (UPMC-Paris 6), Paris, France,Institut du Fer à Moulin, Paris, France
| | - Jesus Bertran-Gonzalez
- Inserm UMR-S 839, Paris, France,Université Pierre et Marie Curie (UPMC-Paris 6), Paris, France,Institut du Fer à Moulin, Paris, France
| | - Benjamin Aubier
- Inserm UMR-S 839, Paris, France,Université Pierre et Marie Curie (UPMC-Paris 6), Paris, France,Institut du Fer à Moulin, Paris, France
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Denis Hervé
- Inserm UMR-S 839, Paris, France,Université Pierre et Marie Curie (UPMC-Paris 6), Paris, France,Institut du Fer à Moulin, Paris, France
| | - Jean-Antoine Girault
- Inserm UMR-S 839, Paris, France,Université Pierre et Marie Curie (UPMC-Paris 6), Paris, France,Institut du Fer à Moulin, Paris, France,Inserm UMR-S 839, Institut du Fer à Moulin, 17 rue du Fer à Moulin, 75005 Paris, France, Tel: +33 1 45 87 61 52, Fax: +33 1 45 87 61 59, E-mail:
| |
Collapse
|
50
|
Zombeck JA, Lewicki AD, Patel K, Gupta T, Rhodes JS. Patterns of neural activity associated with differential acute locomotor stimulation to cocaine and methamphetamine in adolescent versus adult male C57BL/6J mice. Neuroscience 2009; 165:1087-99. [PMID: 19932887 DOI: 10.1016/j.neuroscience.2009.11.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 11/12/2009] [Accepted: 11/17/2009] [Indexed: 10/20/2022]
Abstract
Adolescence is a time period when major changes occur in the brain with long-term consequences for behavior. One ramification is altered responses to drugs of abuse, but the specific brain mechanisms and implications for mental health are poorly understood. Here, we used a mouse model in which adolescents display dramatically reduced sensitivity to the acute locomotor stimulating effects of cocaine and methamphetamine. The goal was to identify key brain regions or circuits involved in the differential behavior. Male adolescent (postnatal day (PN), 30-35) and young adult (PN, 69-74) C57BL/6J mice were administered an i.p. injection of cocaine (0, 15, 30 mg/kg) or methamphetamine (0, 2, 4 mg/kg) and euthanized 90 min later. Locomotor activity was monitored continuously in the home cage by video tracking. Immunohistochemical detection of Fos protein was used to quantify neuronal activation in 16 different brain regions. As expected, adolescents were less sensitive to the locomotor stimulating effects of cocaine and methamphetamine as indicated by a rightward shift in the dose response relationship. After a saline injection, adolescents showed similar levels of Fos as adults in all regions except the dorsal caudate (CPuD) and lateral caudate (CPuL) where levels were lower in adolescents. Cocaine and methamphetamine dose dependently increased Fos in all brain regions sampled in both adolescents and adults, but Fos levels were similar in both age groups for a majority of regions and doses. Locomotor activity was correlated with Fos in several brain areas within adolescent and adult groups, and adolescents had a significantly greater induction of Fos for a given amount of locomotor activity in key brain regions including the caudate where they showed reduced Fos under baseline conditions. Future research will identify the molecular and cellular events that are responsible for the differential psychostimulant-induced patterns of brain activation and behavior observed in adolescent versus adult mice.
Collapse
Affiliation(s)
- J A Zombeck
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|