1
|
Aumann MA, Lee SJ, Song AK, O’Rourke KR, Trujillo P, Yan Y, Kang H, Claassen DO. Behavioral Effects of Stimulated Dopamine Release and D2-like Receptor Displacement in Parkinson's Patients with Impulse-Control Disorder. Int J Mol Sci 2025; 26:3866. [PMID: 40332565 PMCID: PMC12027723 DOI: 10.3390/ijms26083866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Dysregulated dopamine (DA) release in the mesocorticolimbic circuit is noted in Parkinson's disease (PD) patients with impulsive and compulsive behaviors (ICBs). However, the effect of acute DA release on mood, the localization of this process, and the phenotypic differences in patients with ICB remain unknown. We applied a placebo-controlled dextro-amphetamine (dAMPH) study in 20 PD patients: 10 with ICBs (PD-ICB) and 10 without (PD-C). Subjective mood experiences were measured with well-described self-reported measures including the Positive and Negative Affect Scale (PANAS), Drug Effects Questionnaire (DEQ), and Amphetamine Interview Rating Scale (AIRS). D2-like receptor availability was measured as non-displaceable binding potential (BPND) using PET imaging with the high-affinity D2/3 receptor ligand [18F]-fallypride. Among all the subjects, dAMPH increased the PANAS positive, DEQ feel, DEQ high, and AIRS total scores. Increases in the PANAS positive and AIRS total scores were greater in the PD-ICB cohort. A mixed-effects model correlated these questionnaire changes with dAMPH-induced reductions in BPND in the ventral striatum (VS), caudate, amygdala, and caudo-medial orbitofrontal cortex. The baseline caudate, VS, and amygdala BPND positively correlated with lower on-dAMPH PANAS positive scores. Elevated mood symptoms of acute dAMPH administration in PD are linked to DA release in the mesocorticolimbic regions. Distinctions in behavioral effects among PD-ICB subjects emphasize that dysregulated striatal and extra-striatal DA-ergic networks alter mood responses to stimulated DA release and may also contribute to behavioral changes resulting from DA-targeting therapies in PD.
Collapse
Affiliation(s)
- Megan A. Aumann
- Department of Neurology, Division of Behavioral and Cognitive Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.A.A.); (S.J.L.); (A.K.S.); (K.R.O.); (P.T.)
| | - Sean J. Lee
- Department of Neurology, Division of Behavioral and Cognitive Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.A.A.); (S.J.L.); (A.K.S.); (K.R.O.); (P.T.)
| | - Alexander K. Song
- Department of Neurology, Division of Behavioral and Cognitive Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.A.A.); (S.J.L.); (A.K.S.); (K.R.O.); (P.T.)
| | - Kaitlyn R. O’Rourke
- Department of Neurology, Division of Behavioral and Cognitive Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.A.A.); (S.J.L.); (A.K.S.); (K.R.O.); (P.T.)
| | - Paula Trujillo
- Department of Neurology, Division of Behavioral and Cognitive Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.A.A.); (S.J.L.); (A.K.S.); (K.R.O.); (P.T.)
| | - Yan Yan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (Y.Y.); (H.K.)
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (Y.Y.); (H.K.)
| | - Daniel O. Claassen
- Department of Neurology, Division of Behavioral and Cognitive Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.A.A.); (S.J.L.); (A.K.S.); (K.R.O.); (P.T.)
| |
Collapse
|
2
|
Darcey VL, Guo J, Chi M, Chung ST, Courville AB, Gallagher I, Herscovitch P, Howard R, La Noire M, Milley L, Schick A, Stagliano M, Turner S, Urbanski N, Yang S, Yim E, Zhai N, Zhou MS, Hall KD. Striatal dopamine tone is positively associated with adiposity in humans as determined by PET using dual dopamine type-2 receptor antagonist tracers. Mol Psychiatry 2025:10.1038/s41380-025-02960-y. [PMID: 40188315 DOI: 10.1038/s41380-025-02960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/08/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
The relationship between adiposity and dopamine type-2 receptor binding potential (D2BP) in the human brain has been repeatedly studied for >20 years with highly discrepant results, likely due to variable methodologies and differing study populations. We conducted a controlled inpatient feeding study to measure D2BP in the striatum using positron emission tomography with both [18F]fallypride and [11C]raclopride in pseudo-random order in 54 young adults with a wide range of body mass index (BMI 20-44 kg/m2). Within-subject D2BP measurements using the two tracers were moderately correlated (r = 0.47, p < 0.001). D2BP was negatively correlated with BMI as measured by [11C]raclopride (r = -0.51; p < 0.0001) but not [18F]fallypride (r = -0.01; p = 0.92) and these correlation coefficients were significantly different from each other (p < 0.001). Given that [18F]fallypride has greater binding affinity to dopamine type-2 receptors than [11C]raclopride, which is more easily displaced by endogenous dopamine, our results suggest that adiposity is positively associated with increased striatal dopamine tone.ClinicalTrials.gov Identifier: NCT03648892.
Collapse
Affiliation(s)
- Valerie L Darcey
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Center on Compulsive Behaviors, Intramural Research Program, NIH, Bethesda, MD, USA
| | - Juen Guo
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Meible Chi
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie T Chung
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amber B Courville
- Human Energy and Body Weight Regulation Core, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Isabelle Gallagher
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter Herscovitch
- Positron Emission Tomography Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Howard
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Melissa La Noire
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Milley
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex Schick
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael Stagliano
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara Turner
- Nutrition Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Urbanski
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shanna Yang
- Nutrition Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Eunha Yim
- University of Maryland, College Park, MD, USA
| | - Nan Zhai
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Megan S Zhou
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kevin D Hall
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Mann LG, Servant M, Hay KR, Song AK, Trujillo P, Yan B, Kang H, Zald D, Donahue MJ, Logan GD, Claassen DO. The Role of a Dopamine-Dependent Limbic-Motor Network in Sensory Motor Processing in Parkinson Disease. J Cogn Neurosci 2023; 35:1806-1822. [PMID: 37677065 PMCID: PMC10594953 DOI: 10.1162/jocn_a_02048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Limbic and motor integration is enabled by a mesial temporal to motor cortex network. Parkinson disease (PD) is characterized by a loss of dorsal striatal dopamine but relative preservation of mesolimbic dopamine early in disease, along with changes to motor action control. Here, we studied 47 patients with PD using the Simon conflict task and [18F]fallypride PET imaging. Additionally, a cohort of 16 patients participated in a single-blinded dextroamphetamine (dAMPH) study. Task performance was evaluated using the diffusion model for conflict tasks, which allows for an assessment of interpretable action control processes. First, a voxel-wise examination disclosed a negative relationship, such that longer non-decision time is associated with reduced D2-like binding potential (BPND) in the bilateral putamen, left globus pallidus, and right insula. Second, an ROI analysis revealed a positive relationship, such that shorter non-decision time is associated with reduced D2-like BPND in the amygdala and ventromedial OFC. The difference in non-decision time between off-dAMPH and on-dAMPH trials was positively associated with D2-like BPND in the globus pallidus. These findings support the idea that dysfunction of the traditional striatal-motor loop underlies action control deficits but also suggest that a compensatory parallel limbic-motor loop regulates motor output.
Collapse
Affiliation(s)
- Leah G. Mann
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mathieu Servant
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, 25000 Besançon, France
| | - Kaitlyn R. Hay
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexander K. Song
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bailu Yan
- Deparment of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Hakmook Kang
- Deparment of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - David Zald
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
| | - Manus J. Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gordon D. Logan
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Daniel O. Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Darcey VL, Guo J, Chi M, Chung ST, Courville AB, Gallagher I, Herscovitch P, Howard R, LaNoire M, Milley L, Schick A, Stagliano M, Turner S, Urbanski N, Yang S, Yim E, Zhai N, Zhou MS, Hall KD. Striatal dopamine tone is positively associated with body mass index in humans as determined by PET using dual dopamine type-2 receptor antagonist tracers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.27.23296169. [PMID: 37886556 PMCID: PMC10602123 DOI: 10.1101/2023.09.27.23296169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The relationship between adiposity and dopamine type-2 receptor binding potential (D2BP) in the human brain has been repeatedly studied for >20 years with highly discrepant results, likely due to variable methodologies and differing study populations. We conducted a controlled inpatient feeding study to measure D2BP in the striatum using positron emission tomography with both [18F]fallypride and [11C]raclopride in pseudo-random order in 54 young adults with a wide range of body mass index (BMI 20-44 kg/m2). Within-subject D2BP measurements using the two tracers were moderately correlated (r=0.47, p<0.001). D2BP was negatively correlated with BMI as measured by [11C]raclopride (r= -0.51; p<0.0001) but not [18F]fallypride (r=-0.01; p=0.92) and these correlation coefficients were significantly different from each other (p<0.001). Given that [18F]fallypride has greater binding affinity to dopamine type-2 receptors than [11C]raclopride, which is more easily displaced by endogenous dopamine, our results suggest that adiposity is positively associated with increased striatal dopamine tone.
Collapse
Affiliation(s)
- Valerie L Darcey
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Center on Compulsive Behaviors, Intramural Research Program, NIH, Bethesda, MD, USA
| | - Juen Guo
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Meible Chi
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie T Chung
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amber B Courville
- Human Energy and Body Weight Regulation Core, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Isabelle Gallagher
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter Herscovitch
- Positron Emission Tomography Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Howard
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Melissa LaNoire
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Milley
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex Schick
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael Stagliano
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara Turner
- Nutrition Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Urbanski
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shanna Yang
- Nutrition Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Eunha Yim
- University of Maryland, College Park, MD, USA
| | - Nan Zhai
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Megan S Zhou
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kevin D Hall
- Integrative Physiology Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Towers EB, Williams IL, Qillawala EI, Rissman EF, Lynch WJ. Sex/Gender Differences in the Time-Course for the Development of Substance Use Disorder: A Focus on the Telescoping Effect. Pharmacol Rev 2023; 75:217-249. [PMID: 36781217 PMCID: PMC9969523 DOI: 10.1124/pharmrev.121.000361] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/05/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
Sex/gender effects have been demonstrated for multiple aspects of addiction, with one of the most commonly cited examples being the "telescoping effect" where women meet criteria and/or seek treatment of substance use disorder (SUD) after fewer years of drug use as compared with men. This phenomenon has been reported for multiple drug classes including opioids, psychostimulants, alcohol, and cannabis, as well as nonpharmacological addictions, such as gambling. However, there are some inconsistent reports that show either no difference between men and women or opposite effects and a faster course to addiction in men than women. Thus, the goals of this review are to evaluate evidence for and against the telescoping effect in women and to determine the conditions/populations for which the telescoping effect is most relevant. We also discuss evidence from preclinical studies, which strongly support the validity of the telescoping effect and show that female animals develop addiction-like features (e.g., compulsive drug use, an enhanced motivation for the drug, and enhanced drug-craving/vulnerability to relapse) more readily than male animals. We also discuss biologic factors that may contribute to the telescoping effect, such as ovarian hormones, and its neurobiological basis focusing on the mesolimbic dopamine reward pathway and the corticomesolimbic glutamatergic pathway considering the critical roles these pathways play in the rewarding/reinforcing effects of addictive drugs and SUD. We conclude with future research directions, including intervention strategies to prevent the development of SUD in women. SIGNIFICANCE STATEMENT: One of the most widely cited gender/sex differences in substance use disorder (SUD) is the "telescoping effect," which reflects an accelerated course in women versus men for the development and/or seeking treatment for SUD. This review evaluates evidence for and against a telescoping effect drawing upon data from both clinical and preclinical studies. We also discuss the contribution of biological factors and underlying neurobiological mechanisms and highlight potential targets to prevent the development of SUD in women.
Collapse
Affiliation(s)
- Eleanor Blair Towers
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Ivy L Williams
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Emaan I Qillawala
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Emilie F Rissman
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Wendy J Lynch
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| |
Collapse
|
6
|
Song AK, Hay KR, Trujillo P, Aumann M, Stark AJ, Yan Y, Kang H, Donahue MJ, Zald DH, Claassen DO. Amphetamine-induced dopamine release and impulsivity in Parkinson's disease. Brain 2022; 145:3488-3499. [PMID: 34951464 PMCID: PMC10233259 DOI: 10.1093/brain/awab487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/12/2022] Open
Abstract
Impulsive-compulsive behaviours manifest in a substantial proportion of subjects with Parkinson's disease. Reduced ventral striatum dopamine receptor availability, and increased dopamine release is noted in patients with these symptoms. Prior studies of impulsivity suggest that midbrain D2 autoreceptors regulate striatal dopamine release in a feedback inhibitory manner, and in healthy populations, greater impulsivity is linked to poor proficiency of this inhibition. This has not been assessed in a Parkinson's disease population. Here, we applied 18F-fallypride PET studies to assess striatal and extrastriatal D2-like receptor uptake in a placebo-controlled oral dextroamphetamine sequence. We hypothesized that Parkinson's disease patients with impulsive-compulsive behaviours would have greater ventral striatal dopaminergic response to dextroamphetamine, and that an inability to attenuate ventral striatal dopamine release via midbrain D2 autoreceptors would underlie this response. Twenty patients with Parkinson's disease (mean age = 64.1 ± 5.8 years) both with (n = 10) and without (n = 10) impulsive-compulsive behaviours, participated in a single-blind dextroamphetamine challenge (oral; 0.43 mg/kg) in an OFF dopamine state. All completed PET imaging with 18F-fallypride, a high-affinity D2-like receptor ligand, in the placebo and dextroamphetamine state. Both voxelwise and region of interest analyses revealed dextroamphetamine-induced endogenous dopamine release localized to the ventral striatum, and the caudal-medial orbitofrontal cortex. The endogenous dopamine release observed in the ventral striatum correlated positively with patient-reported participation in reward-based behaviours, as quantified by the self-reported Questionnaire for Impulsivity in Parkinson's disease Rating Scale. In participants without impulsive-compulsive behaviours, baseline midbrain D2 receptor availability negatively correlated with ventral striatal dopamine release; however, this relationship was absent in those with impulsive-compulsive behaviours. These findings emphasize that reward-based behaviours in Parkinson's disease are regulated by ventral striatal dopamine release, and suggest that loss of inhibitory feedback from midbrain autoreceptors may underlie the manifestation of impulsive-compulsive behaviours.
Collapse
Affiliation(s)
- Alexander K Song
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kaitlyn R Hay
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Megan Aumann
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Department of Psychology, Vanderbilt University, Nashville, TN 37232, USA
| | - Adam J. Stark
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yan Yan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Manus J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David H Zald
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
7
|
Ceccarini J, Koole M, Van Laere K. Cannabinoid receptor availability modulates the magnitude of dopamine release in vivo in the human reward system: A preliminary multitracer positron emission tomography study. Addict Biol 2022; 27:e13167. [PMID: 35470551 DOI: 10.1111/adb.13167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022]
Abstract
The established role of dopamine (DA) in the mediation of reward and positive reinforcement, reward processing is strongly influenced by the type 1 cannabinoid receptors (CB1 Rs). Although considerable preclinical evidence has demonstrated several functional CB1 R-DA interactions, the relation between human CB1 R availability, DA release capacity and drug-reinforcing effects has been never investigated so far. Here, we perform a multitracer [18 F]MK-9470 and [18 F]fallypride positron emission tomography (PET) study in 10 healthy male subjects using a placebo-controlled and single-blinded amphetamine (AMPH) (30 mg) administration paradigm to (1) investigate possible functional interactions between CB1 R expression levels and DA release capacity in a normo-DAergic state, relating in vivo AMPH-induced DA release to CB1 R availability, and (2) to test the hypothesis that the influence of striatal DAergic signalling on the positive reinforcing effects of AMPH may be regulated by prefrontal CB1 R levels. Compared with placebo, AMPH significantly reduced [18 F]fallypride binding potential (hence increase DA release; ΔBPND ranging from -6.1% to -9.6%) in both striatal (p < 0.005, corrected for multiple comparisons) and limbic extrastriatal regions (p ≤ 0.04, uncorrected). Subjects who reported a greater dopaminergic response in the putamen also showed higher CB1 R availability in the medial and dorsolateral prefrontal cortex (r = 0.72; p = 0.02), which are regions involved in salience attribution, motivation and decision making. On the other hand, the magnitude of DA release was greater in those subjects with lower CB1 R availability in the anterior cingulate cortex (ACC) (r = -0.66; p = 0.03). Also, the correlation between the DA release in the nucleus accumbens with the subjective AMPH effect liking was mediated through the CB1 R availability in the ACC (c' = -0.76; p = 0.01). Our small preliminary study reports for the first time that the human prefrontal CB1 R availability is a determinant of DA release within both the ventral and dorsal reward corticostriatal circuit, contributing to a number of studies supporting the existence of an interaction between CB1 R and DA receptors at the molecular and behavioural level. These preliminary findings warrant further investigation in pathological conditions characterized by hypo/hyper excitability to DA release such as addiction and schizophrenia.
Collapse
Affiliation(s)
- Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology KU Leuven Leuven Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology KU Leuven Leuven Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology KU Leuven Leuven Belgium
- Nuclear Medicine University Hospitals Leuven Leuven Belgium
| |
Collapse
|
8
|
Prasad K, de Vries EFJ, Elsinga PH, Dierckx RAJO, van Waarde A. Allosteric Interactions between Adenosine A 2A and Dopamine D 2 Receptors in Heteromeric Complexes: Biochemical and Pharmacological Characteristics, and Opportunities for PET Imaging. Int J Mol Sci 2021; 22:ijms22041719. [PMID: 33572077 PMCID: PMC7915359 DOI: 10.3390/ijms22041719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Adenosine and dopamine interact antagonistically in living mammals. These interactions are mediated via adenosine A2A and dopamine D2 receptors (R). Stimulation of A2AR inhibits and blockade of A2AR enhances D2R-mediated locomotor activation and goal-directed behavior in rodents. In striatal membrane preparations, adenosine decreases both the affinity and the signal transduction of D2R via its interaction with A2AR. Reciprocal A2AR/D2R interactions occur mainly in striatopallidal GABAergic medium spiny neurons (MSNs) of the indirect pathway that are involved in motor control, and in striatal astrocytes. In the nucleus accumbens, they also take place in MSNs involved in reward-related behavior. A2AR and D2R co-aggregate, co-internalize, and co-desensitize. They are at very close distance in biomembranes and form heteromers. Antagonistic interactions between adenosine and dopamine are (at least partially) caused by allosteric receptor–receptor interactions within A2AR/D2R heteromeric complexes. Such interactions may be exploited in novel strategies for the treatment of Parkinson’s disease, schizophrenia, substance abuse, and perhaps also attention deficit-hyperactivity disorder. Little is known about shifting A2AR/D2R heteromer/homodimer equilibria in the brain. Positron emission tomography with suitable ligands may provide in vivo information about receptor crosstalk in the living organism. Some experimental approaches, and strategies for the design of novel imaging agents (e.g., heterobivalent ligands) are proposed in this review.
Collapse
Affiliation(s)
- Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Department of Diagnostic Sciences, Ghent University Faculty of Medicine and Health Sciences, C.Heymanslaan 10, 9000 Gent, Belgium
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| |
Collapse
|
9
|
Narendran R, Mason NS, Himes ML, Frankle WG. Imaging Cortical Dopamine Transmission in Cocaine Dependence: A [ 11C]FLB 457-Amphetamine Positron Emission Tomography Study. Biol Psychiatry 2020; 88:788-796. [PMID: 32507390 PMCID: PMC7554061 DOI: 10.1016/j.biopsych.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Positron emission tomography studies have demonstrated less dopamine D2/3 receptor availability and blunted psychostimulant-induced dopamine release in cocaine-dependent subjects (CDSs). No studies in CDSs have reported the in vivo status of D2/3 and dopamine release in the cortex. Basic and functional imaging studies suggest a role for prefrontal cortical dopaminergic abnormalities in impaired executive function and relapse in cocaine dependence. We used [11C]FLB 457 positron emission tomography and amphetamine to measure cortical D2/3 receptors and dopamine release in CDSs. METHODS [11C]FLB 457 and positron emission tomography were used to measure D2/3 receptor binding potential in cortical regions of interest in recently abstinent CDSs (n = 24) and healthy control subjects (n = 36) both before and after 0.5 mg kg-1 of oral d-amphetamine. Binding potential relative to nondisplaceable uptake (BPND) and binding potential relative to total plasma concentration (BPP) were derived using an arterial input function-based kinetic analysis. Cortical dopamine release in regions of interest was measured as the change in BPND and BPP after amphetamine. RESULTS Baseline D2/3 receptor availability (BPP and BPND) and amphetamine-induced dopamine release (ΔBPND and ΔBPP) were significantly lower in the cortical regions in CDSs compared with healthy control subjects. Fewer D2/3 receptors and less dopamine release in CDSs were not associated with performance on working memory and attention tasks. CONCLUSIONS The results of this study suggest that deficits in dopamine D2/3 transmission involve the cortex in cocaine dependence. Further studies to understand the clinical relevance of these findings are warranted.
Collapse
Affiliation(s)
- Rajesh Narendran
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | | | - Michael L. Himes
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA
| | | |
Collapse
|
10
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|
11
|
Lissemore JI, Nagano-Saito A, Smart K, Gravel P, Leyton M, Benkelfat C. Dopaminergic Plasticity in the Bilateral Hippocampus Following Threat Reversal in Humans. Sci Rep 2020; 10:7627. [PMID: 32376865 PMCID: PMC7203150 DOI: 10.1038/s41598-020-63977-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/06/2020] [Indexed: 11/24/2022] Open
Abstract
When a cue no longer predicts a threat, a diminished ability to extinguish or reverse this association is thought to increase risk for stress-related disorders. Despite the clear clinical relevance, the mediating neurochemical mechanisms of threat reversal have received relatively little study. One neurotransmitter implicated in rodent research of changing associations with threat is dopamine. To study whether dopamine is involved in threat reversal in humans, we used high-resolution positron emission tomography (PET) coupled with 18F-fallypride. Twelve healthy volunteers (6 F/6 M) underwent three PET scans: (i) at baseline, (ii) following threat conditioning (the response to a cue associated with electric wrist shock), and (iii) following threat reversal (the response to the same cue now associated with safety). We observed moderate evidence of reduced dopamine D2/3 receptor availability, consistent with greater dopamine release, in the bilateral anterior hippocampus following threat reversal, in response to a safety cue that was previously associated with threat, as compared to both baseline and during exposure to the same cue prior to threat reversal. These findings offer the first preliminary evidence that the response to a previously threatening cue that has since become associated with safety involves dopaminergic neurotransmission within the hippocampus in healthy humans.
Collapse
Affiliation(s)
- Jennifer I Lissemore
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, H3A 1A1, Quebec, Canada.
| | - Atsuko Nagano-Saito
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, H3A 1A1, Quebec, Canada
| | - Kelly Smart
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, H3A 1A1, Quebec, Canada
| | - Paul Gravel
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, H3A 1A1, Quebec, Canada
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, 3801 University St., Montreal, H3A 2B4, Quebec, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, H3A 1A1, Quebec, Canada
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, 3801 University St., Montreal, H3A 2B4, Quebec, Canada
| | - Chawki Benkelfat
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, H3A 1A1, Quebec, Canada
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, 3801 University St., Montreal, H3A 2B4, Quebec, Canada
| |
Collapse
|
12
|
Woodcock EA, Zakiniaeiz Y, Morris ED, Cosgrove KP. Sex and the dopaminergic system: Insights from addiction studies. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:141-165. [PMID: 33008522 PMCID: PMC11267480 DOI: 10.1016/b978-0-444-64123-6.00011-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sex differences are present in psychiatric disorders associated with disrupted dopamine function, and thus, sex differences in dopamine neurobiology may underlie these clinical disparities. In this chapter, we review sex differences in the dopaminergic system with a focus on substance use disorders, especially tobacco smoking, as our exemplar disorder. This chapter is organized into five sections describing sex differences in the dopaminergic system: (1) neurobiology, (2) role of sex hormones, (3) genetic underpinnings, (4) cognitive function, and (5) influence on addiction. In each section, we provide an overview of the topic area, summarize sex differences identified to date, highlight addiction research, especially clinical neuroimaging studies, and suggest avenues for future research.
Collapse
Affiliation(s)
- Eric A Woodcock
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, United States
| | - Yasmin Zakiniaeiz
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States; Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, United States
| | - Evan D Morris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Invicro, LLC, New Haven, CT, United States
| | - Kelly P Cosgrove
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Yale Positron Emission Tomography (PET) Center, Yale University, New Haven, CT, United States.
| |
Collapse
|
13
|
Huang WS, Chen GJ, Tsai TH, Cheng CY, Shiue CY, Ma KH, Yeh SHH. In vivo long-lasting alterations of central serotonin transporter activity and associated dopamine synthesis after acute repeated administration of methamphetamine. EJNMMI Res 2019; 9:92. [PMID: 31535286 PMCID: PMC6751231 DOI: 10.1186/s13550-019-0557-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/23/2019] [Indexed: 11/22/2022] Open
Abstract
Background Methamphetamine (METH)-associated alterations in the striatal dopamine (DA) system or dopamine transport (DAT) have been identified in clinical and preclinical studies with positron emission tomography (PET) imaging but have not been well correlated with in vivo serotonin transporter (SERT) availability due to the lack of appropriate imaging agents to assess SERTs. N,N-dimethyl-2-(2-amino-4-[18F]-fluorophenylthio) benzylamine (4-[18F]-ADAM) has been developed by our group and validated for its high affinity and selectivity for SERTs, allowing the in vivo examination of SERT density, location, and binding function. The aims of this study were to investigate the potential of SERT imaging using 4-[18F]-ADAM PET to estimate the long-lasting effects of METH-induced serotonergic neurotoxicity, and further determine whether a correlative relationship exists between SERT availability/activity and tyrosine hydroxylase (TH) activity in various brain regions due to the long-lasting consequences of METH treatment. Results Male rats received four administrations of METH (5 or 10 mg/kg, s.c.) or saline (1 ml/kg, s.c.) at 1-h intervals. At 30 days post-administration, in vivo SERT availability and activity were measured by 4-[18F]ADAM PET imaging. In contrast to the controls, the uptake of 4-[18F]ADAM in METH-treated mice was significantly reduced in a dose-dependent manner in the midbrain, followed by the hypothalamus, thalamus, striatum, hippocampus, and frontal cortex. The regional effects of METH on TH activity were assessed by quantitative immunohistochemistry and presented as integrated optical density (IOD). A significant decrease in TH immunostaining and IOD ratios was seen in the caudate, putamen, nucleus accumbens, substantia nigra pars compacta, and substantia nigra pars reticulata in the METH-treated rats compared to controls. Conclusion The present results suggested that the long-lasting response to METH decreased the uptake of 4-[18F]-ADAM and varied regionally along with TH immunoreactivity. In addition, 4-[18F]ADAM PET could be used to detect serotonergic neuron loss and to evaluate the severity of serotonergic neurotoxicity of METH.
Collapse
Affiliation(s)
- Wen-Sheng Huang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei City, 11217, Taiwan, Republic of China.,Nuclear Medicine Department, Tri-Service General Hospital, Taipei, Taiwan
| | - Guann-Juh Chen
- Department of Neurological Surgery, National Defense Medical Center, Tri-Service General Hospital, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei City, 11490, Taiwan, Republic of China.,Department of Neurological Surgery, Chiayi Branch, Taichung Veterans General Hospital, No. 600, Sec. 2, Shixian Rd., West District, Chiayi City, 60090, Taiwan, Republic of China
| | - Tung-Han Tsai
- Department of Neurological Surgery, National Defense Medical Center, Tri-Service General Hospital, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei City, 11490, Taiwan, Republic of China
| | - Chen-Yi Cheng
- Nuclear Medicine Department, Tri-Service General Hospital, Taipei, Taiwan
| | - Chyng-Yann Shiue
- Department of Nuclear Medicine, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng District, Taipei City, 10048, Taiwan, Republic of China
| | - Kuo-Hsing Ma
- Department of Anatomy and Biology, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd., Neihu District, Taipei City, 11490, Taiwan, Republic of China.
| | - Skye Hsin-Hsien Yeh
- Brain Research Center, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei City, 112, Taiwan, Republic of China.
| |
Collapse
|
14
|
Abstract
Dopamine D3 receptors have key roles in behavioral reward, addiction, Parkinson's disease, and schizophrenia, and there is interest in studying their role in these disorders using PET. However, current PET radiotracers for studying D3 receptors in humans all bind to both D2 and D3 due to similarities between the two receptors. Selective D2 and D3 radioligands would aid investigation of the differences between D2 and D3 circuitry in the central nervous system. While there are currently in vitro measures of ligand D3/D2 selectivity, there is a need for an in vivo PET measure of D3/D2 selectivity. This review discusses current PET imaging of dopamine D2/D3 receptors and proposes methodology for quantitating in vivo selectivity of probes for PET imaging of dopamine D3 receptors.
Collapse
Affiliation(s)
- Robert K Doot
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyle J Labban
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Faraone SV. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 2018; 87:255-270. [PMID: 29428394 DOI: 10.1016/j.neubiorev.2018.02.001] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Abstract
Psychostimulants, including amphetamines and methylphenidate, are first-line pharmacotherapies for individuals with attention-deficit/hyperactivity disorder (ADHD). This review aims to educate physicians regarding differences in pharmacology and mechanisms of action between amphetamine and methylphenidate, thus enhancing physician understanding of psychostimulants and their use in managing individuals with ADHD who may have comorbid psychiatric conditions. A systematic literature review of PubMed was conducted in April 2017, focusing on cellular- and brain system-level effects of amphetamine and methylphenidate. The primary pharmacologic effect of both amphetamine and methylphenidate is to increase central dopamine and norepinephrine activity, which impacts executive and attentional function. Amphetamine actions include dopamine and norepinephrine transporter inhibition, vesicular monoamine transporter 2 (VMAT-2) inhibition, and monoamine oxidase activity inhibition. Methylphenidate actions include dopamine and norepinephrine transporter inhibition, agonist activity at the serotonin type 1A receptor, and redistribution of the VMAT-2. There is also evidence for interactions with glutamate and opioid systems. Clinical implications of these actions in individuals with ADHD with comorbid depression, anxiety, substance use disorder, and sleep disturbances are discussed.
Collapse
Affiliation(s)
- Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.
| |
Collapse
|
16
|
Kokkinou M, Ashok AH, Howes OD. The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders. Mol Psychiatry 2018; 23:59-69. [PMID: 28972576 PMCID: PMC5754467 DOI: 10.1038/mp.2017.190] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/16/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022]
Abstract
Ketamine is a non-competitive antagonist at the N-methyl-d-aspartate receptor. It has recently been found to have antidepressant effects and is a drug of abuse, suggesting it may have dopaminergic effects. To examine the effect of ketamine on the dopamine systems, we carried out a systematic review and meta-analysis of dopamine measures in the rodent, human and primate brain following acute and chronic ketamine administration relative to a drug-free baseline or control condition. Systematic search of PubMed and PsychInfo electronic databases yielded 40 original peer-reviewed studies. There were sufficient rodent studies of the acute effects of ketamine at sub-anaesthetic doses for meta-analysis. Acute ketamine administration in rodents is associated with significantly increased dopamine levels in the cortex (Hedge's g= 1.33, P<0.01), striatum (Hedge's g=0.57, P<0.05) and the nucleus accumbens (Hedge's g=1.30, P<0.05) compared to control conditions, and 62-180% increases in dopamine neuron population activity. Sub-analysis indicated elevations were more marked in in vivo (g=1.93) than ex vivo (g=0.50) studies. There were not enough studies for meta-analysis in other brain regions studied (hippocampus, ventral pallidum and cerebellum), or of the effects of chronic ketamine administration, although consistent increases in cortical dopamine levels (from 88 to 180%) were reported in the latter studies. In contrast, no study showed an effect of anaesthetic doses (>100 mg kg-1) of ketamine on dopamine levels ex vivo, although this remains to be tested in vivo. Findings in non-human primates and in human studies using positron emission tomography were not consistent. The studies reviewed here provide evidence that acute ketamine administration leads to dopamine release in the rodent brain. We discuss the inter-species variation in the ketamine induced dopamine release as well as the implications for understanding psychiatric disorders, in particular substance abuse, schizophrenia, and the potential antidepressant properties of ketamine, and comparisons with stimulants and other NMDA antagonists. Finally we identify future research needs.
Collapse
Affiliation(s)
- M Kokkinou
- Robert Steiner MR Unit, Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, London, UK,Psychiatric Imaging Group, Faculty of Medicine, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK
| | - A H Ashok
- Robert Steiner MR Unit, Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, London, UK,Psychiatric Imaging Group, Faculty of Medicine, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - O D Howes
- Robert Steiner MR Unit, Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, London, UK,Psychiatric Imaging Group, Faculty of Medicine, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK,Psychiatric Imaging Group, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, Du Cane Road, London W12 0NN, UK. E-mail:
| |
Collapse
|
17
|
Dunn JP, Abumrad NN, Kessler RM, Patterson BW, Li R, Marks-Shulman P, Tamboli RA. Caloric Restriction-Induced Decreases in Dopamine Receptor Availability are Associated with Leptin Concentration. Obesity (Silver Spring) 2017; 25:1910-1915. [PMID: 28944597 PMCID: PMC5718041 DOI: 10.1002/oby.22023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 11/08/2022]
Abstract
OBJECTIVE It has been previously reported that early after Roux-en-Y-gastric bypass, dopamine (DA) type 2 and 3 receptor (D2/3R) binding potential (BPND ) was decreased from preoperative levels. The current study aimed to determine whether calorie restriction without weight loss modifies D2/3R BPND and whether such changes are explained by neuroendocrine regulation. METHODS Fifteen females with obesity (BMI = 39 ± 6 kg/m2 ) were studied before and after ∼10 days of a very-low-calorie-diet (VLCD). Outcome measures included fasting insulin, leptin, acyl ghrelin, and glucose, and insulin sensitivity and disposition index were estimated using the oral-minimal model (OMM) method. Participants underwent positron emission tomography scanning with the displaceable radioligand [18 F]fallypride to estimate available regional D2/3R levels. Regions of interest included the caudate, putamen, ventral striatum, hypothalamus, and substantia nigra (SN). RESULTS With the VLCD, weight decreased slightly (-3 kg). Insulin, glucose, and leptin decreased significantly, but there was no change in acyl ghrelin or measures from OMM. SN D2/3R BPND decreased significantly, with trends toward decreased levels in the remaining regions. The decrease in leptin concentration strongly predicted the change in D2/3R BPND in all regions (all P ≤ 0.004). CONCLUSIONS In obesity, reductions in regional D2/3R availability after VLCD are suggestive of increased endogenous DA competing with the radioligand. Changes in regional D2/3R availability were associated with decreases in leptin concentrations that occurred before clinically significant weight loss.
Collapse
Affiliation(s)
- Julia P. Dunn
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, U.S.A
- Veterans Administration St. Louis Health Care System, St. Louis, Missouri, U.S.A
| | - Naji N. Abumrad
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, U.S.A
| | - Robert M. Kessler
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, U.S.A
| | - Bruce W. Patterson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, U.S.A
| | - Rui Li
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, U.S.A
| | - Pamela Marks-Shulman
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, U.S.A
| | - Robyn A. Tamboli
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, U.S.A
| |
Collapse
|
18
|
Eisenstein SA, Bogdan R, Chen L, Moerlein SM, Black KJ, Perlmutter JS, Hershey T, Barch DM. Preliminary evidence that negative symptom severity relates to multilocus genetic profile for dopamine signaling capacity and D2 receptor binding in healthy controls and in schizophrenia. J Psychiatr Res 2017; 86:9-17. [PMID: 27886638 PMCID: PMC5272837 DOI: 10.1016/j.jpsychires.2016.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/07/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022]
Abstract
Deficits in central, subcortical dopamine (DA) signaling may underlie negative symptom severity, particularly anhedonia, in healthy individuals and in schizophrenia. To investigate these relationships, we assessed negative symptoms with the Schedule for the Assessment of Negative Symptoms and the Brief Negative Symptom Scale (BNSS) and self-reported anhedonia with the Scales for Physical and Social Anhedonia (SPSA), Temporal Experience of Pleasure Scale, and Snaith-Hamilton Pleasure Scale in 36 healthy controls (HC), 27 siblings (SIB) of individuals with schizophrenia, and 66 individuals with schizophrenia or schizoaffective disorder (SCZ). A subset of participants (N = 124) were genotyped for DA-related polymorphisms in genes for DRD4, DRD2/ANKK1, DAT1, and COMT, which were used to construct biologically-informed multi-locus genetic profile (MGP) scores reflective of subcortical dopaminergic signaling. DA receptor type 2 (D2R) binding was assessed among a second subset of participants (N = 23) using PET scans with the D2R-selective, non-displaceable radioligand (N-[11C]methyl)benperidol. Higher MGP scores, reflecting elevated subcortical dopaminergic signaling capacity, were associated with less negative symptom severity, as measured by the BNSS, across all participants. In addition, higher striatal D2R binding was associated with less physical and social anhedonia, as measured by the SPSA, across HC, SIB, and SCZ. The current preliminary findings support the hypothesis that subcortical DA function may contribute to negative symptom severity and self-reported anhedonia, independent of diagnostic status.
Collapse
Affiliation(s)
- Sarah A. Eisenstein
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA,Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Corresponding author, Sarah A. Eisenstein, Psychiatry Department, Campus Box 8225, Washington University School of Medicine, St. Louis, MO 63110, Phone: (314) 362-7107, Fax: (314) 362-0168,
| | - Ryan Bogdan
- Psychological & Brain Sciences Department, Washington University in St. Louis, St. Louis, MO, USA.
| | - Ling Chen
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Stephen M. Moerlein
- Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Biochemistry Department, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin J. Black
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA,Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Neurology Department, Washington University School of Medicine, St. Louis, MO, USA,Neuroscience Department, Washington University School of Medicine, MO, USA
| | - Joel S. Perlmutter
- Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Biochemistry Department, Washington University School of Medicine, St. Louis, MO, USA,Programs in Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamara Hershey
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA; Radiology Department, Washington University School of Medicine, St. Louis, MO, USA; Psychological & Brain Sciences Department, Washington University in St. Louis, St. Louis, MO, USA; Neurology Department, Washington University School of Medicine, St. Louis, MO, USA.
| | - Deanna M. Barch
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA,Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Psychological & Brain Sciences Department, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
19
|
Chuhma N, Mingote S, Kalmbach A, Yetnikoff L, Rayport S. Heterogeneity in Dopamine Neuron Synaptic Actions Across the Striatum and Its Relevance for Schizophrenia. Biol Psychiatry 2017; 81:43-51. [PMID: 27692238 PMCID: PMC5121049 DOI: 10.1016/j.biopsych.2016.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/03/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023]
Abstract
Brain imaging has revealed alterations in dopamine uptake, release, and receptor levels in patients with schizophrenia that have been resolved on the scale of striatal subregions. However, the underlying synaptic mechanisms are on a finer scale. Dopamine neuron synaptic actions vary across the striatum, involving variations not only in dopamine release but also in dopamine neuron connectivity, cotransmission, modulation, and activity. Optogenetic studies have revealed that dopamine neurons release dopamine in a synaptic signal mode, and that the neurons also release glutamate and gamma-aminobutyric acid as cotransmitters, with striking regional variation. Fast glutamate and gamma-aminobutyric acid cotransmission convey discrete patterns of dopamine neuron activity to striatal neurons. Glutamate may function not only in a signaling role at a subset of dopamine neuron synapses, but also in mediating vesicular synergy, contributing to regional differences in loading of dopamine into synaptic vesicles. Regional differences in dopamine neuron signaling are likely to be differentially involved in the schizophrenia disease process and likely determine the subregional specificity of the action of psychostimulants that exacerbate the disorder, and antipsychotics that ameliorate the disorder. Elucidating dopamine neuron synaptic signaling offers the potential for achieving greater pharmacological specificity through intersectional pharmacological actions targeting subsets of dopamine neuron synapses.
Collapse
Affiliation(s)
- Nao Chuhma
- Department of Psychiatry, Columbia University, New York, New York; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, New York
| | - Susana Mingote
- Department of Psychiatry, Columbia University, New York, New York; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, New York
| | - Abigail Kalmbach
- Department of Psychiatry, Columbia University, New York, New York; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, New York
| | - Leora Yetnikoff
- Department of Psychiatry, Columbia University, New York, New York; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, New York
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, New York; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, New York.
| |
Collapse
|
20
|
Slifstein M, Abi-Dargham A. Recent Developments in Molecular Brain Imaging of Neuropsychiatric Disorders. Semin Nucl Med 2016; 47:54-63. [PMID: 27987558 DOI: 10.1053/j.semnuclmed.2016.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Molecular imaging with PET or SPECT has been an important research tool in psychiatry for as long as these modalities have been available. Here, we discuss two areas of neuroimaging relevant to current psychiatry research. The first is the use of imaging to study neurotransmission. We discuss the use of pharmacologic probes to induce changes in levels of neurotransmitters that can be inferred through their effects on outcome measures of imaging experiments, from their historical origins focusing on dopamine transmission through recent developments involving serotonin, GABA, and glutamate. Next, we examine imaging of neuroinflammation in the context of psychiatry. Imaging markers of neuroinflammation have been studied extensively in other areas of brain research, but they have more recently attracted interest in psychiatry research, based on accumulating evidence that there may be an inflammatory component to some psychiatric conditions. Furthermore, new probes are under development that would allow unprecedented insights into cellular processes. In summary, molecular imaging would continue to offer great potential as a unique tool to further our understanding of brain function in health and disease.
Collapse
Affiliation(s)
- Mark Slifstein
- Department of Psychiatry, Columbia University Medical Center, New York, NY; New York State Psychiatric Institute, New York, NY; Department of Psychiatry, Stony Brook University, New York, NY.
| | - Anissa Abi-Dargham
- Department of Psychiatry, Columbia University Medical Center, New York, NY; Department of Radiology, Columbia University Medical Center, New York, NY; New York State Psychiatric Institute, New York, NY; Department of Psychiatry, Stony Brook University, New York, NY
| |
Collapse
|
21
|
Trifilieff P, Ducrocq F, van der Veldt S, Martinez D. Blunted Dopamine Transmission in Addiction: Potential Mechanisms and Implications for Behavior. Semin Nucl Med 2016; 47:64-74. [PMID: 27987559 DOI: 10.1053/j.semnuclmed.2016.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Positron emission tomography (PET) imaging consistently shows blunted striatal dopamine release and decreased dopamine D2 receptor availability in addiction. Here, we review the preclinical and clinical studies indicating that this neurobiological phenotype is likely to be both a consequence of chronic drug consumption and a vulnerability factor in the development of addiction. We propose that, behaviorally, blunted striatal dopamine transmission could reflect the increased impulsivity and altered cost/benefit computations that are associated with addiction. The factors that influence blunted striatal dopamine transmission in addiction are unknown. Herein, we give an overview of various factors, genetic, environmental, and social, that are known to affect dopamine transmission and that have been associated with the vulnerability to develop addiction. Altogether, these data suggest that blunted dopamine transmission and decreased D2 receptor availability are biomarkers both for the development of addiction and resistance to treatment. These findings support the view that blunted dopamine reflects impulsive behavior and deficits in motivation, which lead to the escalation of drug use.
Collapse
Affiliation(s)
- Pierre Trifilieff
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, University of Bordeaux, Bordeaux, France.
| | - Fabien Ducrocq
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, University of Bordeaux, Bordeaux, France
| | - Suzanne van der Veldt
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, University of Bordeaux, Bordeaux, France; Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Diana Martinez
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical College, New York, NY.
| |
Collapse
|
22
|
Li S, Schmitz A, Lee H, Mach RH. Automation of the Radiosynthesis of Six Different 18F-labeled radiotracers on the AllinOne. EJNMMI Radiopharm Chem 2016; 1:15. [PMID: 29564391 PMCID: PMC5843816 DOI: 10.1186/s41181-016-0018-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/22/2016] [Indexed: 11/21/2022] Open
Abstract
Background Fast implementation of positron emission tomography (PET) into clinical and preclinical studies highly demands automated synthesis for the preparation of PET radiopharmaceuticals in a safe and reproducible manner. The aim of this study was to develop automated synthesis methods for these six 18F-labeled radiopharmaceuticals produced on a routine basis at the University of Pennsylvania using the AllinOne synthesis module. Results The development of automated syntheses with varying complexity was accomplished including HPLC purification, SPE procedures and final formulation with sterile filtration. The six radiopharmaceuticals were obtained in high yield and high specific activity with full automation on the AllinOne synthesis module under current good manufacturing practice (cGMP) guidelines. Conclusion The study demonstrates the versatility of this synthesis module for the preparation of a wide variety of 18F-labeled radiopharmaceuticals for PET imaging studies.
Collapse
Affiliation(s)
- Shihong Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA USA
| | - Alexander Schmitz
- Department of Radiology, University of Pennsylvania, Philadelphia, PA USA
| | - Hsiaoju Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA USA
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
23
|
Milella MS, Fotros A, Gravel P, Casey KF, Larcher K, Verhaeghe JA, Cox SM, Reader AJ, Dagher A, Benkelfat C, Leyton M. Cocaine cue-induced dopamine release in the human prefrontal cortex. J Psychiatry Neurosci 2016; 41:322-30. [PMID: 26900792 PMCID: PMC5008921 DOI: 10.1503/jpn.150207] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates that drug-related cues can induce dopamine (DA) release in the striatum of substance abusers. Whether these same cues provoke DA release in the human prefrontal cortex remains unknown. METHODS We used high-resolution positron emission tomography with [18F]fallypride to measure cortical and striatal DA D2/3 receptor availability in the presence versus absence of drug-related cues in volunteers with current cocaine dependence. RESULTS Twelve individuals participated in our study. Among participants reporting a craving response (9 of 12), exposure to the cocaine cues significantly decreased [18F]fallypride binding potential (BPND) values in the medial orbitofrontal cortex and striatum. In all 12 participants, individual differences in the magnitude of craving correlated with BPND changes in the medial orbitofrontal cortex, dorsolateral prefrontal cortex, anterior cingulate, and striatum. Consistent with the presence of autoreceptors on mesostriatal but not mesocortical DA cell bodies, midbrain BPND values were significantly correlated with changes in BPND within the striatum but not the cortex. The lower the midbrain D2 receptor levels, the greater the striatal change in BPND and self-reported craving. LIMITATIONS Limitations of this study include its modest sample size, with only 2 female participants. Newer tracers might have greater sensitivity to cortical DA release. CONCLUSION In people with cocaine use disorders, the presentation of drug-related cues induces DA release within cortical and striatal regions. Both effects are associated with craving, but only the latter is regulated by midbrain autoreceptors. Together, the results suggest that cortical and subcortical DA responses might both influence drug-focused incentive motivational states, but with separate regulatory mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Marco Leyton
- Correspondence to: M. Leyton, Department of Psychiatry, McGill University, 1033 Pine Ave. West, Montreal QC, Canada, H3A 1A1;
| |
Collapse
|
24
|
Melrose AJ, Bailer U, Wierenga CE, Bischoff-Grethe A, Paulus MP, Kaye WH. Amphetamine alters neural response to sucrose in healthy women. Psychiatry Res Neuroimaging 2016; 252:19-25. [PMID: 27179312 DOI: 10.1016/j.pscychresns.2016.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
Amphetamine, likely via action on the brain's dopaminergic systems, induces anorectic eating behavior and blunts dopaminergic midbrain activation to rewards. Past work has hypothesized that this blunted reward responsivity is a result of increasing tonic over phasic DA activity. We sought to extend past findings to sweet taste during fMRI following single-blind administration of dextroamphetamine and placebo in 11 healthy women. We hypothesized that neural response in both limbic and cognitive sweet taste circuits would mirror past work with monetary rewards by effectively blunting sweet taste reward, and 'equalizing' it's rewarding taste with receipt of water. Behavioral results showed that amphetamine reduced self-reported hunger (supporting the existence of amphetamine anorexia) and increased self-report euphoria. In addition, region of Interest analysis revealed significant treatment by taste interactions in the middle insula and dorsal anterior cingulate confirming the 'equalizing' hypothesis in the cingulate, but unlike monetary reinforcers, the insula actually evinced enhanced separation between tastes on the amphetamine day. These results suggest a divergence from prior research using monetary reinforcers when extended to primary reinforcers, and may hint that altering dopaminergic signaling in the insula and anterior cingulate may be a target for pharmacological manipulation of appetite, and the treatment of obesity.
Collapse
Affiliation(s)
- A James Melrose
- Eating Disorders Research and Treatment Program, UCSD Department of Psychiatry, 4510 Executive Dr., Suite 315, San Diego, CA 92121-3021, USA
| | - Ursula Bailer
- Eating Disorders Research and Treatment Program, UCSD Department of Psychiatry, 4510 Executive Dr., Suite 315, San Diego, CA 92121-3021, USA; Medical University of Vienna, Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Waehringer Gurtel 18-20, A-1090 Vienna, Austria
| | - Christina E Wierenga
- Eating Disorders Research and Treatment Program, UCSD Department of Psychiatry, 4510 Executive Dr., Suite 315, San Diego, CA 92121-3021, USA; Veterans Affairs San Diego Healthcare System, Research Service, Psychiatry Service, 3350 La Jolla Village Dr., San Diego, CA 92161, USA
| | - Amanda Bischoff-Grethe
- Eating Disorders Research and Treatment Program, UCSD Department of Psychiatry, 4510 Executive Dr., Suite 315, San Diego, CA 92121-3021, USA
| | - Martin P Paulus
- Eating Disorders Research and Treatment Program, UCSD Department of Psychiatry, 4510 Executive Dr., Suite 315, San Diego, CA 92121-3021, USA; Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK 74136-3326, USA
| | - Walter H Kaye
- Eating Disorders Research and Treatment Program, UCSD Department of Psychiatry, 4510 Executive Dr., Suite 315, San Diego, CA 92121-3021, USA.
| |
Collapse
|
25
|
Smith CT, Dang LC, Cowan RL, Kessler RM, Zald DH. Variability in paralimbic dopamine signaling correlates with subjective responses to d-amphetamine. Neuropharmacology 2016; 108:394-402. [PMID: 27174408 DOI: 10.1016/j.neuropharm.2016.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 04/26/2016] [Accepted: 05/06/2016] [Indexed: 12/14/2022]
Abstract
Subjective responses to psychostimulants vary, the basis of which is poorly understood, especially in relation to possible cortical contributions. Here, we tested for relationships between participants' positive subjective responses to oral d-amphetamine (dAMPH) versus placebo and variability in striatal and extrastriatal dopamine (DA) receptor availability and release, measured via positron emission tomography (PET) with the radiotracer (18)F-fallypride. Analyses focused on 35 healthy adult participants showing positive subjective effects to dAMPH measured via the Drug Effects Questionnaire (DEQ) Feel, Like, High, and Want More subscales (Responders), and were repeated after inclusion of 11 subjects who lacked subjective responses. Associations between peak DEQ subscale ratings and both baseline (18)F-fallypride binding potential (BPnd; an index of D2/D3 receptor availability) and the percentage change in BPnd post dAMPH (%ΔBPnd; a measure of DA release) were assessed. Baseline BPnd in ventromedial prefrontal cortex (vmPFC) predicted the peak level of High reported following dAMPH. Furthermore, %ΔBPnd in vmPFC positively correlated with DEQ Want More ratings. DEQ Want More was also positively correlated with %ΔBPnd in right ventral striatum and left insula. This work indicates that characteristics of DA functioning in vmPFC, a cortical area implicated in subjective valuation, are associated with both subjective high and incentive (wanting) responses. The observation that insula %ΔBPnd was associated with drug wanting converges with evidence suggesting its role in drug craving. These findings highlight the importance of variability in DA signaling in specific paralimbic cortical regions in dAMPH's subjective response, which may confer risk for abusing psychostimulants.
Collapse
Affiliation(s)
- Christopher T Smith
- Department of Psychology, PMB 407817, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37240-7817, United States.
| | - Linh C Dang
- Department of Psychology, PMB 407817, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37240-7817, United States
| | - Ronald L Cowan
- Department of Psychology, PMB 407817, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37240-7817, United States; Department of Psychiatry, Vanderbilt University School of Medicine, 1601 23rd Ave South, Suite 3057, Nashville, TN 37212, United States
| | | | - David H Zald
- Department of Psychology, PMB 407817, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37240-7817, United States; Department of Psychiatry, Vanderbilt University School of Medicine, 1601 23rd Ave South, Suite 3057, Nashville, TN 37212, United States
| |
Collapse
|
26
|
van der Laan LN, Charbonnier L, Griffioen-Roose S, Kroese FM, van Rijn I, Smeets PA. Supersize my brain: A cross-sectional voxel-based morphometry study on the association between self-reported dietary restraint and regional grey matter volumes. Biol Psychol 2016; 117:108-116. [DOI: 10.1016/j.biopsycho.2016.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 03/02/2016] [Accepted: 03/14/2016] [Indexed: 11/15/2022]
|
27
|
Hwang CJ, Choi DY, Jung YY, Lee YJ, Yun JS, Oh KW, Han SB, Oh S, Park MH, Hong JT. Inhibition of p38 pathway-dependent MPTP-induced dopaminergic neurodegeneration in estrogen receptor alpha knockout mice. Horm Behav 2016; 80:19-29. [PMID: 26836768 DOI: 10.1016/j.yhbeh.2016.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 01/24/2016] [Accepted: 01/29/2016] [Indexed: 01/20/2023]
Abstract
Approximately, 7-10 million people in the world suffer from Parkinson's disease (PD). Recently, increasing evidence has suggested the protective effect of estrogens against nigrostriatal dopaminergic damage in PD. In this study, we investigated whether estrogen affects 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced behavioral impairment in estrogen receptor alpha (ERα)-deficient mice. MPTP (15mg/kg, four times with 1.5-h interval)-induced dopaminergic neurodegeneration was evaluated in ERα wild-type (WT) and knockout (KO) mice. Larger dopamine depletion, behavioral impairments (Rotarod test, Pole test, and Gait test), activation of microglia and astrocytes, and neuroinflammation after MPTP injection were observed in ERα KO mice compared to those in WT mice. Immunostaining for tyrosine hydroxylase (TH) after MPTP injection showed fewer TH-positive neurons in ERα KO mice than WT mice. Levels of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC, metabolite of dopamine) were also lowered in ERα KO mice after MPTP injection. Interestingly, a higher immunoreactivity for monoamine oxidase (MAO) B was found in the substantia nigra and striatum of ERα KO mice after MPTP injection. We also found an increased activation of p38 kinase (which positively regulates MAO B expression) in ERα KO mice. In vitro estrogen treatment inhibited neuroinflammation in 1-methyl-4-phenyl pyridium (MPP+)-treated cultured astrocyte cells; however, these inhibitory effects were removed by p38 inhibitor. These results indicate that ERα might be important for dopaminergic neuronal survival through inhibition of p38 pathway.
Collapse
Affiliation(s)
- Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 361-951, South Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280, Daehak-ro, Gyeongsan, Gyeongbuk 712-749, South Korea
| | - Yu Yeon Jung
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 361-951, South Korea
| | - Young-Jung Lee
- School of Equine Science, Cheju Halla University, 38 Halladaehak-ro, Jeju-si, Jeju Special Self-Governing Province 690-708, South Korea
| | - Jae Suk Yun
- Osong Health Technology Administration Complex, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Cheongju, Chungbuk 363-700, South Korea
| | - Ki-Wan Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 361-951, South Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 361-951, South Korea
| | - Seikwan Oh
- Department of Neuroscience and Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul 158-710, South Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 361-951, South Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 361-951, South Korea.
| |
Collapse
|
28
|
Weidner LD, Paris A, Frankle WG, Narendran R. Safety of Oral Amphetamine Administered during Positron Emission Tomography Scans in Medically Screened Humans. PLoS One 2015; 10:e0140647. [PMID: 26656737 PMCID: PMC4685985 DOI: 10.1371/journal.pone.0140647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/28/2015] [Indexed: 02/07/2023] Open
Abstract
Changes in endogenous dopamine levels can be detected in humans using positron emission tomography scans by measuring the amount by which a specific D2/3 radioligand is displaced. In some cases, a challenge drug such as amphetamine is introduced to increase the amount of dopamine released into the synaptic cleft. Although intravenous amphetamine is often utilized, oral amphetamine has been shown to be just as effective in increasing endogenous dopamine levels. Based on our own use of oral amphetamine as a challenge drug, we have retroactively reviewed our study charts to determine the cardiovascular safety of 0.5 mg kg-1 oral d-amphetamine. Of 172 amphetamine administrations in 144 individuals, only 2.8% of subjects experienced any transient adverse effects. In addition, we found no clinically relevant differences in increases of vital signs between healthy controls and patients. We therefore reaffirm the safety of 0.5 mg kg-1 oral amphetamine in subjects previously screened for cardiovascular risk factors.
Collapse
Affiliation(s)
- Lora D. Weidner
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Antonio Paris
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - W. Gordon Frankle
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
Okita K, Ghahremani DG, Payer DE, Robertson CL, Mandelkern MA, London ED. Relationship of Alexithymia Ratings to Dopamine D2-type Receptors in Anterior Cingulate and Insula of Healthy Control Subjects but Not Methamphetamine-Dependent Individuals. Int J Neuropsychopharmacol 2015; 19:pyv129. [PMID: 26657175 PMCID: PMC4886668 DOI: 10.1093/ijnp/pyv129] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/25/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Individuals with substance-use disorders exhibit emotional problems, including deficits in emotion recognition and processing, and this class of disorders also has been linked to deficits in dopaminergic markers in the brain. Because associations between these phenomena have not been explored, we compared a group of recently abstinent methamphetamine-dependent individuals (n=23) with a healthy-control group (n=17) on dopamine D2-type receptor availability, measured using positron emission tomography with [(18)F]fallypride. METHODS The anterior cingulate and anterior insular cortices were selected as the brain regions of interest, because they receive dopaminergic innervation and are thought to be involved in emotion awareness and processing. The Toronto Alexithymia Scale, which includes items that assess difficulty in identifying and describing feelings as well as externally oriented thinking, was administered, and the scores were tested for association with D2-type receptor availability. RESULTS Relative to controls, methamphetamine-dependent individuals showed higher alexithymia scores, reporting difficulty in identifying feelings. The groups did not differ in D2-type receptor availability in the anterior cingulate or anterior insular cortices, but a significant interaction between group and D2-type receptor availability in both regions, on self-report score, reflected significant positive correlations in the control group (higher receptor availability linked to higher alexithymia) but nonsignificant, negative correlations (lower receptor availability linked to higher alexithymia) in methamphetamine-dependent subjects. CONCLUSIONS The results suggest that neurotransmission through D2-type receptors in the anterior cingulate and anterior insular cortices influences capacity of emotion processing in healthy people but that this association is absent in individuals with methamphetamine dependence.
Collapse
Affiliation(s)
- Kyoji Okita
- Department of Psychiatry and Biobehavioral Sciences (Drs Okita, Ghahremani, and London), Department of Molecular and Medical Pharmacology (Drs Robertson and London), and Brain Research Institute (Dr London), University of California Los Angeles, Los Angeles, CA; Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada (Dr Payer); Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada (Dr Payer); Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA (Drs Okita, Robertson, Mandelkern, and London); Department of Physics, University of California Irvine, Irvine, CA (Dr Mandelkern)
| | - Dara G Ghahremani
- Department of Psychiatry and Biobehavioral Sciences (Drs Okita, Ghahremani, and London), Department of Molecular and Medical Pharmacology (Drs Robertson and London), and Brain Research Institute (Dr London), University of California Los Angeles, Los Angeles, CA; Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada (Dr Payer); Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada (Dr Payer); Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA (Drs Okita, Robertson, Mandelkern, and London); Department of Physics, University of California Irvine, Irvine, CA (Dr Mandelkern)
| | - Doris E Payer
- Department of Psychiatry and Biobehavioral Sciences (Drs Okita, Ghahremani, and London), Department of Molecular and Medical Pharmacology (Drs Robertson and London), and Brain Research Institute (Dr London), University of California Los Angeles, Los Angeles, CA; Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada (Dr Payer); Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada (Dr Payer); Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA (Drs Okita, Robertson, Mandelkern, and London); Department of Physics, University of California Irvine, Irvine, CA (Dr Mandelkern)
| | - Chelsea L Robertson
- Department of Psychiatry and Biobehavioral Sciences (Drs Okita, Ghahremani, and London), Department of Molecular and Medical Pharmacology (Drs Robertson and London), and Brain Research Institute (Dr London), University of California Los Angeles, Los Angeles, CA; Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada (Dr Payer); Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada (Dr Payer); Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA (Drs Okita, Robertson, Mandelkern, and London); Department of Physics, University of California Irvine, Irvine, CA (Dr Mandelkern)
| | - Mark A Mandelkern
- Department of Psychiatry and Biobehavioral Sciences (Drs Okita, Ghahremani, and London), Department of Molecular and Medical Pharmacology (Drs Robertson and London), and Brain Research Institute (Dr London), University of California Los Angeles, Los Angeles, CA; Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada (Dr Payer); Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada (Dr Payer); Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA (Drs Okita, Robertson, Mandelkern, and London); Department of Physics, University of California Irvine, Irvine, CA (Dr Mandelkern)
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences (Drs Okita, Ghahremani, and London), Department of Molecular and Medical Pharmacology (Drs Robertson and London), and Brain Research Institute (Dr London), University of California Los Angeles, Los Angeles, CA; Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada (Dr Payer); Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada (Dr Payer); Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA (Drs Okita, Robertson, Mandelkern, and London); Department of Physics, University of California Irvine, Irvine, CA (Dr Mandelkern).
| |
Collapse
|
30
|
Boecker H, Drzezga A. A perspective on the future role of brain pet imaging in exercise science. Neuroimage 2015; 131:73-80. [PMID: 26477649 DOI: 10.1016/j.neuroimage.2015.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/08/2015] [Accepted: 10/08/2015] [Indexed: 12/20/2022] Open
Abstract
Positron Emission Tomography (PET) bears a unique potential for examining the effects of physical exercise (acute or chronic) within the central nervous system in vivo, including cerebral metabolism, neuroreceptor occupancy, and neurotransmission. However, application of Neuro-PET in human exercise science is as yet surprisingly sparse. To date the field has been dominated by non-invasive neuroelectrical techniques (EEG, MEG) and structural/functional magnetic resonance imaging (sMRI/fMRI). Despite PET having certain inherent disadvantages, in particular radiation exposure and high costs limiting applicability at large scale, certain research questions in human exercise science can exclusively be addressed with PET: The "metabolic trapping" properties of (18)F-FDG PET as the most commonly used PET-tracer allow examining the neuronal mechanisms underlying various forms of acute exercise in a rather unconstrained manner, i.e. under realistic training scenarios outside the scanner environment. Beyond acute effects, (18)F-FDG PET measurements under resting conditions have a strong prospective for unraveling the influence of regular physical activity on neuronal integrity and potentially neuroprotective mechanisms in vivo, which is of special interest for aging and dementia research. Quantification of cerebral glucose metabolism may allow determining the metabolic effects of exercise interventions in the entire human brain and relating the regional cerebral rate of glucose metabolism (rCMRglc) with behavioral, neuropsychological, and physiological measures. Apart from FDG-PET, particularly interesting applications comprise PET ligand studies that focus on dopaminergic and opioidergic neurotransmission, both key transmitter systems for exercise-related psychophysiological effects, including mood changes, reward processing, antinociception, and in its most extreme form 'exercise dependence'. PET ligand displacement approaches even allow quantifying specific endogenous neurotransmitter release under acute exercise interventions, to which modern PET/MR hybrid technology will be additionally fruitful. Experimental studies exploiting the unprecedented multimodal imaging capacities of PET/MR in human exercise sciences are as yet pending.
Collapse
Affiliation(s)
- Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany, German Center for Neurodegenerative Diseases (DZNE), Cologne, Germany.
| |
Collapse
|
31
|
Ota M, Ogawa S, Kato K, Masuda C, Kunugi H. Striatal and extrastriatal dopamine release in the common marmoset brain measured by positron emission tomography and [(18)F]fallypride. Neurosci Res 2015; 101:1-5. [PMID: 26232153 DOI: 10.1016/j.neures.2015.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/14/2015] [Accepted: 07/17/2015] [Indexed: 01/03/2023]
Abstract
Previous studies have demonstrated that patients with schizophrenia show greater sensitivity to psychostimulants than healthy subjects. Sensitization to psychostimulants and resultant alteration of dopaminergic neurotransmission in rodents has been suggested as a useful model of schizophrenia. This study sought to examine the use of methylphenidate as a psychostimulant to induce dopamine release and that of [(18)F]fallypride as a radioligand to quantify the release in a primate model of schizophrenia. Four common marmosets were scanned by positron emission tomography twice, before and after methylphenidate challenge, to evaluate dopamine release. Four other marmosets were sensitized by repeated methamphetamine (MAP) administration. Then, they were scanned twice, before and after methylphenidate challenge, to evaluate whether MAP-sensitization induced greater sensitivity to methylphenidate. We revealed a main effect of the methylphenidate challenge but not the MAP pretreatment on the striatal binding potential. These results suggest that methylphenidate-induced striatal dopamine release in the common marmoset could be evaluated by [(18)F]fallypride.
Collapse
Affiliation(s)
- Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| | - Shintaro Ogawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| | - Koichi Kato
- Organic Radiochemistry Section, Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center Hospital of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| | - Chiaki Masuda
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
32
|
Eisenstein SA, Bischoff AN, Gredysa DM, Antenor-Dorsey JAV, Koller JM, Al-Lozi A, Pepino MY, Klein S, Perlmutter JS, Moerlein SM, Black KJ, Hershey T. Emotional Eating Phenotype is Associated with Central Dopamine D2 Receptor Binding Independent of Body Mass Index. Sci Rep 2015; 5:11283. [PMID: 26066863 PMCID: PMC4464302 DOI: 10.1038/srep11283] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/21/2015] [Indexed: 01/11/2023] Open
Abstract
PET studies have provided mixed evidence regarding central D2/D3 dopamine receptor binding and its relationship with obesity as measured by body mass index (BMI). Other aspects of obesity may be more tightly coupled to the dopaminergic system. We characterized obesity-associated behaviors and determined if these related to central D2 receptor (D2R) specific binding independent of BMI. Twenty-two obese and 17 normal-weight participants completed eating- and reward-related questionnaires and underwent PET scans using the D2R-selective and nondisplaceable radioligand (N-[11C]methyl)benperidol. Questionnaires were grouped by domain (eating related to emotion, eating related to reward, non-eating behavior motivated by reward or sensitivity to punishment). Normalized, summed scores for each domain were compared between obese and normal-weight groups and correlated with striatal and midbrain D2R binding. Compared to normal-weight individuals, the obese group self-reported higher rates of eating related to both emotion and reward (p < 0.001), greater sensitivity to punishment (p = 0.06), and lower non-food reward behavior (p < 0.01). Across normal-weight and obese participants, self-reported emotional eating and non-food reward behavior positively correlated with striatal (p < 0.05) and midbrain (p < 0.05) D2R binding, respectively. In conclusion, an emotional eating phenotype may reflect altered central D2R function better than other commonly used obesity-related measures such as BMI.
Collapse
Affiliation(s)
- Sarah A Eisenstein
- 1] Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Allison N Bischoff
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Danuta M Gredysa
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jo Ann V Antenor-Dorsey
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jonathan M Koller
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amal Al-Lozi
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marta Y Pepino
- Departments of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel Klein
- Departments of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- 1] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA [3] Departments of Anatomy &Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA [4] Departments of Physical Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA [5] Departments of Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephen M Moerlein
- 1] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin J Black
- 1] Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA [3] Departments of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA [4] Departments of Anatomy &Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tamara Hershey
- 1] Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA [3] Departments of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
33
|
No evidence for attenuated stress-induced extrastriatal dopamine signaling in psychotic disorder. Transl Psychiatry 2015; 5:e547. [PMID: 25871972 PMCID: PMC4462602 DOI: 10.1038/tp.2015.37] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 12/17/2022] Open
Abstract
Stress is an important risk factor in the etiology of psychotic disorder. Preclinical work has shown that stress primarily increases dopamine (DA) transmission in the frontal cortex. Given that DA-mediated hypofrontality is hypothesized to be a cardinal feature of psychotic disorder, stress-related extrastriatal DA release may be altered in psychotic disorder. Here we quantified for the first time stress-induced extrastriatal DA release and the spatial extent of extrastriatal DA release in individuals with non-affective psychotic disorder (NAPD). Twelve healthy volunteers (HV) and 12 matched drug-free NAPD patients underwent a single infusion [(18)F]fallypride positron emission tomography scan during which they completed the control and stress condition of the Montreal Imaging Stress Task. HV and NAPD did not differ in stress-induced [(18)F]fallypride displacement and the spatial extent of stress-induced [(18)F]fallypride displacement in medial prefrontal cortex (mPFC) and temporal cortex (TC). In the whole sample, the spatial extent of stress-induced radioligand displacement in right ventro-mPFC, but not dorso-mPFC or TC, was positively associated with task-induced subjective stress. Psychotic symptoms during the scan or negative, positive and general subscales of the Positive and Negative Syndrome Scale were not associated with stress-induced [(18)F]fallypride displacement nor the spatial extent of stress-induced [(18)F]fallypride displacement in NAPD. Our results do not offer evidence for altered stress-induced extrastriatal DA signaling in NAPD, nor altered functional relevance. The implications of these findings for the role of the DA system in NAPD and stress processing are discussed.
Collapse
|
34
|
Lee DE, Reid WC, Ibrahim WG, Peterson KL, Lentz MR, Maric D, Choyke PL, Jagoda EM, Hammoud DA. Imaging dopaminergic dysfunction as a surrogate marker of neuropathology in a small-animal model of HIV. Mol Imaging 2015; 13. [PMID: 25248756 DOI: 10.2310/7290.2014.00031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dopaminergic system is especially vulnerable to the effects of human immunodeficiency virus (HIV) infection, rendering dopaminergic deficits early surrogate markers of HIV-associated neuropathology. We quantified dopamine D2/3 receptors in young HIV-1 transgenic (Tg) (n = 6) and age-matched control rats (n = 7) and adult Tg (n = 5) and age-matched control rats (n = 5) using [18F]fallypride positron emission tomography (PET). Regional uptake was quantified as binding potential (BPND) using the two-tissue reference model with the cerebellum as the reference. Time-activity curves were generated for the ventral striatum, dorsal striatum, thalamus, and cerebellum. Whereas BPND values were significantly lower in the ventral striatum (p < .001) and dorsal striatum (p = .001) in the adult Tg rats compared to controls rats, they were significantly lower only in the dorsal striatum (p < .05) in the young rats. Tg rats had smaller striatal volumes on magnetic resonance imaging. We also found lower expression levels of tyrosine hydroxylase on immunohistochemistry in the Tg animals. Our findings suggest that progressive striatal D2/3 receptor deficits occur in Tg rats as they age and can be detected using small-animal PET imaging. The effectiveness of various approaches in preventing or halting this dopaminergic loss in the Tg rat can thus be measured preclinically using [18F]fallypride PET as a molecular imaging biomarker of HIV-associated neuropathology.
Collapse
|
35
|
Finnema SJ, Scheinin M, Shahid M, Lehto J, Borroni E, Bang-Andersen B, Sallinen J, Wong E, Farde L, Halldin C, Grimwood S. Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology (Berl) 2015; 232:4129-57. [PMID: 25921033 PMCID: PMC4600473 DOI: 10.1007/s00213-015-3938-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/09/2015] [Indexed: 01/03/2023]
Abstract
RATIONALE This review attempts to summarize the current status in relation to the use of positron emission tomography (PET) imaging in the assessment of synaptic concentrations of endogenous mediators in the living brain. OBJECTIVES Although PET radioligands are now available for more than 40 CNS targets, at the initiation of the Innovative Medicines Initiative (IMI) "Novel Methods leading to New Medications in Depression and Schizophrenia" (NEWMEDS) in 2009, PET radioligands sensitive to an endogenous neurotransmitter were only validated for dopamine. NEWMEDS work-package 5, "Cross-species and neurochemical imaging (PET) methods for drug discovery", commenced with a focus on developing methods enabling assessment of changes in extracellular concentrations of serotonin and noradrenaline in the brain. RESULTS Sharing the workload across institutions, we utilized in vitro techniques with cells and tissues, in vivo receptor binding and microdialysis techniques in rodents, and in vivo PET imaging in non-human primates and humans. Here, we discuss these efforts and review other recently published reports on the use of radioligands to assess changes in endogenous levels of dopamine, serotonin, noradrenaline, γ-aminobutyric acid, glutamate, acetylcholine, and opioid peptides. The emphasis is on assessment of the availability of appropriate translational tools (PET radioligands, pharmacological challenge agents) and on studies in non-human primates and human subjects, as well as current challenges and future directions. CONCLUSIONS PET imaging directed at investigating changes in endogenous neurochemicals, including the work done in NEWMEDS, have highlighted an opportunity to further extend the capability and application of this technology in drug development.
Collapse
Affiliation(s)
- Sjoerd J. Finnema
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Mika Scheinin
- />Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland , />Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Mohammed Shahid
- />Research and Development, Orion Corporation, Orion Pharma, Turku, Finland
| | - Jussi Lehto
- />Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland
| | - Edilio Borroni
- />Neuroscience Department, Hoffman-La Roche, Basel, Switzerland
| | | | - Jukka Sallinen
- />Research and Development, Orion Corporation, Orion Pharma, Turku, Finland
| | - Erik Wong
- />Neuroscience Innovative Medicine Unit, AstraZeneca, Wilmington, DE USA
| | - Lars Farde
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden , />Translational Science Center at Karolinska Institutet, AstraZeneca, Stockholm, Sweden
| | - Christer Halldin
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Grimwood
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA. .,, 610 Main Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
36
|
Arvidsson E, Viereckel T, Mikulovic S, Wallén-Mackenzie Å. Age- and sex-dependence of dopamine release and capacity for recovery identified in the dorsal striatum of C57/Bl6J mice. PLoS One 2014; 9:e99592. [PMID: 24925086 PMCID: PMC4055716 DOI: 10.1371/journal.pone.0099592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/15/2014] [Indexed: 11/18/2022] Open
Abstract
The dorsal striatum is the main input structure of the basal ganglia and the major target area of dopaminergic projections originating in the substantia nigra pars compacta. Heavily involved in the regulation of voluntary movement and habit formation, this structure is of strong importance in Parkinson's disease, obsessive-compulsive disorder, Tourette's syndrome and addiction. The C57/Bl6J mouse strain, the most commonly used strain in preclinical research today, is frequently used as a model organism for analysis of dopaminergic parameters implicated in human pathophysiology. Several components of the dopamine system have been shown to vary with age and sex, however knowledge of the contribution of these factors for dopamine release kinetics in the C57/Bl6J mouse strain is lacking. In the present study, we used an intracranial KCl-stimulation challenge paradigm to provoke release from dopaminergic terminals in the dorsal striatum of anaesthetized C57/Bl6J mice. By high-speed in vivo chronoamperometric recordings, we analyzed DA release parameters in male and female mice of two different ages. Our experiments demonstrate elevated DA amplitudes in adult compared to young mice of both sexes and higher DA amplitudes in females compared to males at both ages. Adult mice exhibited higher recovery capabilities after repeated stimulation than did young mice and also showed a lower variability in the kinetic parameters trise and t80 between stimulations. These results identified age- and sex- dimorphisms in DA release parameters and point to the importance of taking these dimorphisms into account when utilizing the C57/Bl6J mouse strain as model for neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Emma Arvidsson
- Department of Neuroscience, Unit of Functional Neurobiology, Uppsala University, Uppsala, Sweden
| | - Thomas Viereckel
- Department of Neuroscience, Unit of Functional Neurobiology, Uppsala University, Uppsala, Sweden
| | - Sanja Mikulovic
- Department of Neuroscience, Unit of Developmental Genetics, Uppsala University, Uppsala, Sweden
| | - Åsa Wallén-Mackenzie
- Department of Neuroscience, Unit of Functional Neurobiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
37
|
Kambeitz J, Abi-Dargham A, Kapur S, Howes OD. Alterations in cortical and extrastriatal subcortical dopamine function in schizophrenia: systematic review and meta-analysis of imaging studies. Br J Psychiatry 2014; 204:420-9. [PMID: 25029687 DOI: 10.1192/bjp.bp.113.132308] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The hypothesis that cortical dopaminergic alterations underlie aspects of schizophrenia has been highly influential. AIMS To bring together and evaluate the imaging evidence for dopaminergic alterations in cortical and other extrastriatal regions in schizophrenia. METHOD Electronic databases were searched for in vivo molecular studies of extrastriatal dopaminergic function in schizophrenia. Twenty-three studies (278 patients and 265 controls) were identified. Clinicodemographic and imaging variables were extracted and effect sizes determined for the dopaminergic measures. There were sufficient data to permit meta-analyses for the temporal cortex, thalamus and substantia nigra but not for other regions. RESULTS The meta-analysis of dopamine D2/D3 receptor availability found summary effect sizes of d = -0.32 (95% CI -0.68 to 0.03) for the thalamus, d = -0.23 (95% CI -0.54 to 0.07) for the temporal cortex and d = 0.04 (95% CI -0.92 to 0.99) for the substantia nigra. Confidence intervals were wide and all included no difference between groups. Evidence for other measures/regions is limited because of the small number of studies and in some instances inconsistent findings, although significant differences were reported for D2/D3 receptors in the cingulate and uncus, for D1 receptors in the prefrontal cortex and for dopamine transporter availability in the thalamus. CONCLUSIONS There is a relative paucity of direct evidence for cortical dopaminergic alterations in schizophrenia, and findings are inconclusive. This is surprising given the wide influence of the hypothesis. Large, well-controlled studies in drug-naive patients are warranted to definitively test this hypothesis.
Collapse
Affiliation(s)
- Joseph Kambeitz
- Joseph Kambeitz, MD, Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK; Anissa Abi-Dargham, MD, Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, USA;Shitij Kapur, MD, PhD, Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK; Oliver D. Howes, BM, BCh, MA, MRCPsych, PhD, DM, Department of Psychosis Studies, Institute of Psychiatry, King's College London, and Psychiatric Imaging Group, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, UK
| | - Anissa Abi-Dargham
- Joseph Kambeitz, MD, Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK; Anissa Abi-Dargham, MD, Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, USA;Shitij Kapur, MD, PhD, Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK; Oliver D. Howes, BM, BCh, MA, MRCPsych, PhD, DM, Department of Psychosis Studies, Institute of Psychiatry, King's College London, and Psychiatric Imaging Group, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, UK
| | - Shitij Kapur
- Joseph Kambeitz, MD, Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK; Anissa Abi-Dargham, MD, Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, USA;Shitij Kapur, MD, PhD, Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK; Oliver D. Howes, BM, BCh, MA, MRCPsych, PhD, DM, Department of Psychosis Studies, Institute of Psychiatry, King's College London, and Psychiatric Imaging Group, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, UK
| | - Oliver D Howes
- Joseph Kambeitz, MD, Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK; Anissa Abi-Dargham, MD, Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, USA;Shitij Kapur, MD, PhD, Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK; Oliver D. Howes, BM, BCh, MA, MRCPsych, PhD, DM, Department of Psychosis Studies, Institute of Psychiatry, King's College London, and Psychiatric Imaging Group, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, UK
| |
Collapse
|
38
|
Migliore S, Curcio G, Mancini F, Cappa SF. Counterfactual thinking in moral judgment: an experimental study. Front Psychol 2014; 5:451. [PMID: 24904468 PMCID: PMC4033199 DOI: 10.3389/fpsyg.2014.00451] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/28/2014] [Indexed: 12/05/2022] Open
Abstract
Counterfactual thinking is thinking about a past that did not happen. This is often the case in "if only…" situations, where we wish something had or had not happened. To make a choice in a moral decision-making situation is particularly hard and, therefore, may be often associated with the imagination of a different outcome. The main aim of the present study is to investigate counterfactual thinking in the context of moral reasoning. We used a modified version of Greene's moral dilemmas test, studying both the time needed to provide a counterfactual in the first and third person and the type of given response (in context-out of context) in a sample of 90 healthy subjects. We found a longer response time for personal vs. impersonal moral dilemmas. This effect was enhanced in the first person perspective, while in the elderly there was an overall slowing of response time. Out of context/omissive responses were more frequent in the case of personal moral dilemmas presented in the first person version, with females showing a marked increase in this kind of response. These findings suggest that gender and perspective have a critical role in counterfactual thinking in the context of moral reasoning, and may have implications for the understanding of gender-related inclinations as well as differences in moral judgment.
Collapse
Affiliation(s)
- Simone Migliore
- Integrated Center of Research, University Campus Bio Medico di Roma Rome, Italy ; School of Cognitive Psychotherapy (SPC) Rome, Italy
| | - Giuseppe Curcio
- Department of Life, Health and Environmental Sciences, University of L' Aquila L' Aquila, Italy
| | | | - Stefano F Cappa
- Division of Neuroscience, San Raffaele Scientific Institute Milan, Italy ; Center for Neurocognition and Theoretical Syntax (NeTS), IUSS Istituto Universitario di Studi Superiori Pavia, Italy
| |
Collapse
|
39
|
Abstract
The use of functional brain imaging techniques, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI), has allowed for monitoring neuronal and neurochemical activities in the living human brain and identifying abnormal changes in various neurological and psychiatric diseases. Combining these methods with techniques such as deep brain stimulation (DBS) and transcranial magnetic stimulation (TMS) has greatly advanced our understanding of the effects of such treatment on brain activity at targeted regions as well as specific disease-related networks. Indeed, recent network-level analysis focusing on inter-regional covarying activities in data interpretation has unveiled several key mechanisms underlying the therapeutic effects of brain stimulation. However, non-negligible discrepancies have been reported in the literature, attributable in part to the heterogeneity of both imaging and brain stimulation techniques. This chapter summarizes recent studies that combine brain imaging and brain stimulation, and includes discussion of future direction in these lines of research.
Collapse
|
40
|
Kessler RM, Zald DH, Ansari MS, Li R, Cowan RL. Changes in dopamine release and dopamine D2/3 receptor levels with the development of mild obesity. Synapse 2014; 68:317-20. [PMID: 24573975 DOI: 10.1002/syn.21738] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/23/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Robert M Kessler
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | | | | | | | | |
Collapse
|
41
|
Narendran R, Jedema HP, Lopresti BJ, Mason NS, Gurnsey K, Ruszkiewicz J, Chen CM, Deuitch L, Frankle WG, Bradberry CW. Imaging dopamine transmission in the frontal cortex: a simultaneous microdialysis and [11C]FLB 457 PET study. Mol Psychiatry 2014; 19:302-10. [PMID: 23439486 PMCID: PMC3706503 DOI: 10.1038/mp.2013.9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 12/14/2012] [Accepted: 01/02/2013] [Indexed: 12/25/2022]
Abstract
In a recent human positron emission tomography (PET) study we demonstrated the ability to detect amphetamine-induced dopamine (DA) release in the prefrontal cortex as a reduction in the binding of the DA D(2/3) radioligand [(11)C]FLB 457. A key requirement for validating this paradigm for use in clinical studies is demonstrating that the changes in [(11)C]FLB 457 binding observed with PET following amphetamine are related to changes in dialysate DA concentration as measured with microdialysis. Microdialysis and PET experiments were performed to compare, in five rhesus monkeys, amphetamine-induced DA release and [(11)C]FLB 457 displacement in the frontal cortex after three doses of amphetamine (0.3 mg kg(-1), 0.5 mg kg(-1) and 1.0 mg kg(-1)). Amphetamine led to a significant dose-dependent increase in dialysate (0.3 mg kg(-1): 999±287%; 0.5 mg kg(-1): 1320±432%; 1.0 mg kg(-1): 2355±1026%) as measured with microdialysis and decrease in [(11)C]FLB 457 binding potential (BP(ND), 0.3 mg kg(-1): -6±6%; 0.5 mg kg(-1): -16±4%; 1.0 mg kg(-1): -24±2%) as measured with PET. The relationship between amphetamine-induced peak ΔDA and Δ[(11)C]FLB 457 BP(ND) in the frontal cortex was linear. The results of this study clearly demonstrate that the magnitude of dialysate DA release is correlated with the magnitude of the reduction in [(11)C]FLB 457 BP(ND) in the frontal cortex. The use of the [(11)C]FLB 457-amphetamine imaging paradigm in humans should allow for characterization of prefrontal cortical DA release in neuropsychiatric disorders such as schizophrenia and addiction.
Collapse
Affiliation(s)
- Rajesh Narendran
- Department of Radiology University of Pittsburgh, Pittsburgh, PA
,Department of Psychiatry University of Pittsburgh, Pittsburgh, PA
| | - Hank P. Jedema
- Department of Psychiatry University of Pittsburgh, Pittsburgh, PA
| | | | | | - Kate Gurnsey
- Department of Psychiatry University of Pittsburgh, Pittsburgh, PA
| | | | - Chi-Min Chen
- Department of Radiology University of Pittsburgh, Pittsburgh, PA
| | - Lora Deuitch
- Department of Radiology University of Pittsburgh, Pittsburgh, PA
| | - W. Gordon Frankle
- Department of Radiology University of Pittsburgh, Pittsburgh, PA
,Department of Psychiatry University of Pittsburgh, Pittsburgh, PA
| | - Charles W. Bradberry
- Department of Psychiatry University of Pittsburgh, Pittsburgh, PA
,VA Pittsburgh Health Services, Pittsburgh, PA, USA.
| |
Collapse
|
42
|
del Campo N, Fryer TD, Hong YT, Smith R, Brichard L, Acosta-Cabronero J, Chamberlain SR, Tait R, Izquierdo D, Regenthal R, Dowson J, Suckling J, Baron JC, Aigbirhio FI, Robbins TW, Sahakian BJ, Müller U. A positron emission tomography study of nigro-striatal dopaminergic mechanisms underlying attention: implications for ADHD and its treatment. ACTA ACUST UNITED AC 2013; 136:3252-70. [PMID: 24163364 PMCID: PMC4125626 DOI: 10.1093/brain/awt263] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Through the combined use of 18F-fallypride positron emission tomography and magnetic resonance imaging this study examined the neural mechanisms underlying the attentional deficits associated with attention deficit/hyperactivity disorder and their potential reversal with a single therapeutic dose of methylphenidate. Sixteen adult patients with attention deficit/hyperactivity disorder and 16 matched healthy control subjects were positron emission tomography and magnetic resonance imaging scanned and tested on a computerized sustained attention task after oral methylphenidate (0.5 mg/kg) and placebo administration in a within-subject, double-blind, cross-over design. Although patients with attention deficit/hyperactivity disorder as a group showed significant attentional deficits and reduced grey matter volume in fronto-striato-cerebellar and limbic networks, they had equivalent D2/D3 receptor availability and equivalent increases in endogenous dopamine after methylphenidate treatment to that observed in healthy control subjects. However, poor attentional performers drawn from both the attention deficit/hyperactivity disorder and the control groups had significantly reduced left caudate dopamine activity. Methylphenidate significantly increased dopamine levels in all nigro-striatal regions, thereby normalizing dopamine levels in the left caudate in low performers. Behaviourally, methylphenidate improved sustained attention in a baseline performance-dependent manner, irrespective of diagnosis. This finding was accompanied by an equally performance-dependent effect of the drug on dopamine release in the midbrain, whereby low performers showed reduced dopamine release in this region. Collectively, these findings support a dimensional model of attentional deficits and underlying nigro-striatal dopaminergic mechanisms of attention deficit/hyperactivity disorder that extends into the healthy population. Moreover, they confer midbrain dopamine autoreceptors a hitherto neglected role in the therapeutic effects of oral methylphenidate in attention deficit/hyperactivity disorder. The absence of significant case–control differences in D2/D3 receptor availability (despite the observed relationships between dopamine activity and attention) suggests that dopamine dysregulation per se is unlikely to be the primary cause underlying attention deficit/hyperactivity disorder pathology in adults. This conclusion is reinforced by evidence of neuroanatomical changes in the same set of patients with attention deficit/hyperactivity disorder.
Collapse
Affiliation(s)
- Natalia del Campo
- 1 Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Eisenstein SA, Antenor-Dorsey JAV, Gredysa DM, Koller JM, Bihun EC, Ranck SA, Arbeláez AM, Klein S, Perlmutter JS, Moerlein SM, Black KJ, Hershey T. A comparison of D2 receptor specific binding in obese and normal-weight individuals using PET with (N-[(11)C]methyl)benperidol. Synapse 2013; 67:748-56. [PMID: 23650017 PMCID: PMC3778147 DOI: 10.1002/syn.21680] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/20/2013] [Accepted: 04/27/2013] [Indexed: 01/11/2023]
Abstract
Previous PET imaging studies have demonstrated mixed findings regarding dopamine D2/D3 receptor availability in obese relative to nonobese humans. Nonspecific D2/D3 radioligands do not allow for separate estimation of D2 receptor (D2R) and D3 receptor (D3R) subtypes of the D2 receptor family, which may play different roles in behavior and are distributed differently throughout the brain. These radioligands are also displaceable by endogenous dopamine, confounding interpretation of differences in receptor availability with differing levels of dopamine release. The present study used PET imaging with the D2R-selective radioligand (N-[(11)C] methyl)benperidol ([(11)C]NMB), which is nondisplaceable by endogenous dopamine, to estimate D2R specific binding (BPND) and its relationship to body mass index (BMI) and age in 15 normal-weight (mean BMI = 22.6 kg/m(2)) and 15 obese (mean BMI = 40.3 kg/m(2)) men and women. Subjects with illnesses or taking medications that interfere with dopamine signaling were excluded. Striatal D2R BPND was calculated using the Logan graphical method with cerebellum as a reference region. D2R BPND estimates were higher in putamen and caudate relative to nucleus accumbens, but did not differ between normal-weight and obese groups. BMI values did not correlate with D2R BPND . Age was negatively correlated with putamen D2R BPND in both groups. These results suggest that altered D2R specific binding is not involved in the pathogenesis of obesity per se and underscore the need for additional studies evaluating the relationship between D3R, dopamine reuptake, or endogenous dopamine release and human obesity.
Collapse
Affiliation(s)
- Sarah A. Eisenstein
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Jo Ann V. Antenor-Dorsey
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Danuta M. Gredysa
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Jonathan M. Koller
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Emily C. Bihun
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Samantha A. Ranck
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Ana Maria Arbeláez
- Department of Pediatrics, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Samuel Klein
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Joel S. Perlmutter
- Department of Neurology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Anatomy and Neurobiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Program in Physical Therapy, Washington University School of Medicine in St. Louis, 4444 Forest Park Blvd., St. Louis, MO 63108
- Program in Occupational Therapy, Washington University School of Medicine in St. Louis, 4444 Forest Park Blvd., St. Louis, MO 63108
| | - Stephen M. Moerlein
- Department of Radiology, Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Kevin J. Black
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Neurology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Anatomy and Neurobiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Neurology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, 660 S. Euclid Ave., St. Louis, MO 63110
| |
Collapse
|
44
|
Reproducibility of post-amphetamine [11C]FLB 457 binding to cortical D2/3 receptors. PLoS One 2013; 8:e76905. [PMID: 24098812 PMCID: PMC3786946 DOI: 10.1371/journal.pone.0076905] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022] Open
Abstract
In a recent positron emission tomography (PET) study, we demonstrated the ability to measure amphetamine-induced dopamine (DA) release in the human cortex with the relatively high affinity dopamine D2/3 radioligand [11C]FLB 457. Herein we report on reproducibility and reliability of [11C]FLB 457 binding potential relative to non-displaceable uptake (BPND) following an acute amphetamine challenge. Ten healthy human subjects were studied twice with [11C]FLB 457 following an acute amphetamine (oral, 0.5 mg kg-1 dose) challenge on two-separate days approximately one week apart. D2/3 receptor binding parameters were estimated using a two-tissue compartment kinetic analysis in the cortical regions of interest and cerebellum (reference region). The test-retest variability and intraclass correlation coefficient were assessed for distribution volume (VT), binding potential relative to plasma concentration (BPP), and BPND of [11C]FLB 457. The test-retest variability of [11C]FLB 457 VT, BPP and BPND were ≤ 17%, 22% and 11% respectively. These results, which are consistent with the published test-retest variability for this ligand measured under baseline conditions demonstrate that the post-amphetamine [11C]FLB 457 BPND is reproducible. These data further support the use [11C]FLB 457 and amphetamine to characterize cortical dopamine transmission in neuropsychiatric disorders.
Collapse
|
45
|
Nagano-Saito A, Dagher A, Booij L, Gravel P, Welfeld K, Casey KF, Leyton M, Benkelfat C. Stress-induced dopamine release in human medial prefrontal cortex--18F-fallypride/PET study in healthy volunteers. Synapse 2013; 67:821-30. [PMID: 23939822 DOI: 10.1002/syn.21700] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/26/2013] [Accepted: 07/27/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND In laboratory animals, environmental stressors markedly activate the mesocortical dopamine system. The present study tested whether this occurs in humans. METHODS The effects of a laboratory psychological stressor (Montreal Imaging Stress Task, MIST) on mesocortical dopamine release in healthy young adults (11 males, mean age ± SD, 20.6 ± 2.4 years) was measured using positron emission tomography and [(18)F]fallypride. Each subject was scanned in two separate days in counterbalanced order: one with the MIST and one with the control task. Binding potential (BP ND ) maps of the whole brain were calculated for each scan, using a simplified reference tissue compartmental model. Then BP ND was compared between subjects. Heart rate, galvanic skin response, and salivary cortisol level were measured during the scans. RESULTS The psychological stressor significantly decreased [(18)F]fallypride binding values in the dorsal part of the medial prefrontal cortex (dmPFC), corresponding to the rostal part of the cingulate motor zone. The greater the stress-induced decrease in [(18)F]fallypride binding in the dmPFC, the greater the stress-induced increases in heart rate. CONCLUSIONS The present study provides evidence of stress-induced dopamine release in the mPFC in humans, in vivo.
Collapse
Affiliation(s)
- Atsuko Nagano-Saito
- Department of Psychiatry, McGill University, Montréal, QC, H3A 1A1, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 2B4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Innately low D2 receptor availability is associated with high novelty-seeking and enhanced behavioural sensitization to amphetamine. Int J Neuropsychopharmacol 2013; 16:1819-34. [PMID: 23574629 DOI: 10.1017/s1461145713000205] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High novelty-seeking has been related to an increased risk for developing addiction, but the neurobiological mechanism underlying this relationship is unclear. We investigated whether differences in dopamine (DA) D2/3-receptor (D2/3R) function underlie phenotypic divergence in novelty-seeking and vulnerability to addiction. Measures of D2/3R availability using the D2R-preferring antagonist [18F]Fallypride, and the D3R-preferring agonist [3H]-(+)-PHNO and of DA-related gene expression and behaviours were used to characterize DA signalling in Roman high- (RHA) and low-avoidance (RLA) rats, which respectively display high and low behavioural responsiveness both to novelty and psychostimulant exposure. When compared to RLA rats, high novelty-responding RHAs had lower levels of D2R, but not D3R, binding and mRNA in substantia nigra/ventral tegmental area (SN/VTA) and showed behavioural evidence of D2-autoreceptor subsensitivity. RHA rats also showed a higher expression of the tyrosine hydroxylase gene in SN/VTA, higher levels of extracellular DA in striatum and augmentation of the DA-releasing effects of amphetamine (Amph), suggesting hyperfunctioning of midbrain DA neurons. RHA rats also exhibited lower availabilities and functional sensitivity of D2R, but not D3R, in striatum, which were inversely correlated with individual scores of novelty-seeking, which, in turn, predicted the magnitude of Amph-induced behavioural sensitization. These results indicate that innately low levels of D2R in SN/VTA and striatum, whether they are a cause or consequence of the concomitantly observed elevated DA tone, result in a specific pattern of DA signalling that may subserve novelty-seeking and vulnerability to drug use. This suggests that D2R deficits in SN/VTA and striatum could both constitute neurochemical markers of an addiction-prone phenotype.
Collapse
|
47
|
Samanez-Larkin GR, Buckholtz JW, Cowan RL, Woodward ND, Li R, Ansari MS, Arrington CM, Baldwin RM, Smith CE, Treadway MT, Kessler RM, Zald DH. A thalamocorticostriatal dopamine network for psychostimulant-enhanced human cognitive flexibility. Biol Psychiatry 2013; 74:99-105. [PMID: 23273721 PMCID: PMC3615042 DOI: 10.1016/j.biopsych.2012.10.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Everyday life demands continuous flexibility in thought and behavior. We examined whether individual differences in dopamine function are related to variability in the effects of amphetamine on one aspect of flexibility: task switching. METHODS Forty healthy human participants performed a task-switching paradigm following placebo and oral amphetamine administration. [(18)F]fallypride was used to measure D2/D3 baseline receptor availability and amphetamine-stimulated dopamine release. RESULTS The majority of the participants showed amphetamine-induced benefits through reductions in switch costs. However, such benefits were variable. Individuals with higher baseline thalamic and cortical receptor availability and striatal dopamine release showed greater reductions in switch costs following amphetamine than individuals with lower levels. The relationship between dopamine receptors and stimulant-enhanced flexibility was partially mediated by striatal dopamine release. CONCLUSIONS These data indicate that the impact of the psychostimulant on cognitive flexibility is influenced by the status of dopamine within a thalamocorticostriatal network. Beyond demonstrating a link between this dopaminergic network and the enhancement in task switching, these neural measures accounted for unique variance in predicting the psychostimulant-induced cognitive enhancement. These results suggest that there may be measurable aspects of variability in the dopamine system that predispose certain individuals to benefit from and hence use psychostimulants for cognitive enhancement.
Collapse
Affiliation(s)
- Gregory R. Samanez-Larkin
- Psychological Sciences, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240,Institute of Imaging Science, Vanderbilt University, 1161 21st Ave S, Nashville, TN 37232
| | - Joshua W. Buckholtz
- Department of Psychology, Harvard University, 33 Kirkland Street, Cambridge, MA 02138
| | - Ronald L. Cowan
- Department of Psychiatry, Vanderbilt University, 1601 23rd Ave S, Nashville, TN 37212
| | - Neil D. Woodward
- Department of Psychiatry, Vanderbilt University, 1601 23rd Ave S, Nashville, TN 37212
| | - Rui Li
- Department of Radiology and Radiological Sciences, Vanderbilt University, 1211 Medical Center Drive, Nashville, TN 37232
| | - M. Sib Ansari
- Department of Radiology and Radiological Sciences, Vanderbilt University, 1211 Medical Center Drive, Nashville, TN 37232
| | - Catherine M. Arrington
- Department of Psychology, Lehigh University, 17 Memorial Drive East, Bethlehem, PA 18015
| | - Ronald M. Baldwin
- Molecular Neuroimaging, 60 Temple Street, Suite 8A, New Haven, CT 06510
| | - Clarence E. Smith
- DXP Imaging, Norton Neuroscience Institute, 5129 Dixie Highway #100, Louisville, KY 40216
| | - Michael T. Treadway
- Department of Psychiatry, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Robert M. Kessler
- Department of Radiology and Radiological Sciences, Vanderbilt University, 1211 Medical Center Drive, Nashville, TN 37232
| | - David H. Zald
- Psychological Sciences, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240,Department of Psychiatry, Vanderbilt University, 1601 23rd Ave S, Nashville, TN 37212
| |
Collapse
|
48
|
Dunn JT, Clark-Papasavas C, Marsden P, Baker S, Cleij M, Kapur S, Kessler R, Howard R, Reeves SJ. Establishing test-retest reliability of an adapted [(18)F]fallypride imaging protocol in older people. J Cereb Blood Flow Metab 2013; 33:1098-103. [PMID: 23591647 PMCID: PMC3705439 DOI: 10.1038/jcbfm.2013.55] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/21/2013] [Accepted: 03/15/2013] [Indexed: 02/04/2023]
Abstract
[(18)F]fallypride is a high-affinity dopamine D2/3 receptor tracer with the ability to reliably quantify D2/3 receptor sites in both striatal and corticolimbic regions. The translational potential of [(18)F]fallypride imaging is, however, limited by the lengthy scanning sessions (60-80 minutes duration over a total of 3-4 hours) required by current protocols. The aims of our study were to adapt [(18)F]fallypride imaging for use in clinical populations with neurological and neuropsychiatric disorders, by reducing the duration of individual scanning sessions; and to establish the reproducibility and reliability of our adapted protocol in healthy older people. Eight participants (five male and three female; mean age=75.87±4.39 years) were scanned twice, 4-6 weeks apart. [(18)F]fallypride binding potential was determined from image data collected during three sampling times: 0-30; 60-90; and 210-240 minutes post injection. High reproducibility and reliability (test-retest variability <8%; intraclass correlation coefficient >0.8) were observed in all but the prefrontal regions, and remained so when sampling times were reduced to 20 minutes (0-20; 70-90; 220-240 minutes). The adapted protocol is feasible for use across neuropsychiatric disorders in which dopamine has been implicated and is sufficiently sensitive to detect within-subject changes between 2.7% and 5.5% in striatal and limbic regions.
Collapse
Affiliation(s)
- Joel T Dunn
- St Thomas' PET Imaging Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hernaus D, Collip D, Lataster J, Ceccarini J, Kenis G, Booij L, Pruessner J, Van Laere K, van Winkel R, van Os J, Myin-Germeys I. COMT Val158Met genotype selectively alters prefrontal [18F]fallypride displacement and subjective feelings of stress in response to a psychosocial stress challenge. PLoS One 2013; 8:e65662. [PMID: 23799032 PMCID: PMC3683024 DOI: 10.1371/journal.pone.0065662] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/25/2013] [Indexed: 12/28/2022] Open
Abstract
Catechol-O-methyltransferase (COMT) plays an essential role in degradation of extracellular dopamine in prefrontal regions of the brain. Although a polymorphism in this gene, COMT Val158Met, affects human behavior in response to stress little is known about its effect on dopaminergic activity associated with the human stress response, which may be of interest for stress-related psychiatric disorders such as psychosis. We aimed to investigate the effect of variations in COMT genotype on in vivo measures of stress-induced prefrontal cortex (PFC) dopaminergic processing and subjective stress responses. A combined sample of healthy controls and healthy first-degree relatives of psychosis patients (n = 26) were subjected to an [18F]fallypride Positron Emission Tomography scan. Psychosocial stress during the scan was induced using the Montreal Imaging Stress Task and subjective stress was assessed every 12 minutes. Parametric t-maps, generated using the linear extension of the simplified reference region model, revealed an effect of COMT genotype on the spatial extent of [18F]fallypride displacement. Detected effects of exposure to psychosocial stress were unilateral and remained restricted to the left superior and right inferior frontal gyrus, with Met-hetero- and homozygotes showing less [18F]fallypride displacement than Val-homozygotes. Additionally, Met-hetero- and homozygotes experienced larger subjective stress responses than Val-homozygotes. The direction of the effects remained the same when the data was analyzed separately for controls and first-degree relatives. The human stress response may be mediated in part by COMT-dependent dopaminergic PFC activity, providing speculation for the neurobiology underlying COMT-dependent differences in human behaviour following stress. Implications of these results for stress-related psychopathology and models of dopaminergic functioning are discussed.
Collapse
Affiliation(s)
- Dennis Hernaus
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
| | - Dina Collip
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
| | - Johan Lataster
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
- Faculty of Psychology, Open University of The Netherlands, Heerlen, The Netherlands
| | - Jenny Ceccarini
- Nuclear Medicine Division, University Hospital and Catholic University Leuven, Leuven, Belgium
| | - Gunther Kenis
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
| | - Linda Booij
- Sainte-Justine Hospital Research center, Montreal, Quebec, Canada
- Department of Psychiatry, University of Montreal, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Jens Pruessner
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Koen Van Laere
- Nuclear Medicine Division, University Hospital and Catholic University Leuven, Leuven, Belgium
| | - Ruud van Winkel
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
- University Psychiatric Centre Catholic University Leuven, Kortenberg, Belgium
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
- King’s College London, King’s Health Partners, Department of Psychosis Studies, Institute of Psychiatry, London, United Kingdom
| | - Inez Myin-Germeys
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
50
|
Predominance of D2 receptors in mediating dopamine's effects in brain metabolism: effects of alcoholism. J Neurosci 2013; 33:4527-35. [PMID: 23467368 DOI: 10.1523/jneurosci.5261-12.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dopamine signals through D1-like and D2-like receptors, which can stimulate or inhibit, respectively, neuronal activity. Here we assessed the balance between D1 or D2 receptor signaling in the human brain and how it is affected in alcoholism. Using PET, we measured the relationship between changes in dopamine and brain glucose metabolism induced by methylphenidate in controls and alcoholics. We show that methylphenidate induced significant DA increases in striatum, amygdala, and medial orbitofrontal cortex, whereas it decreased metabolism in these brain regions. Methylphenidate-induced dopamine increases were greater in controls than in alcoholics, whereas methylphenidate-induced metabolic decreases were greater in alcoholics. For both groups, methylphenidate-induced dopamine increases were associated with decreases in regional brain metabolism, and the correlations were strongest in subthalamic nuclei, anterior cingulate, and medial orbitofrontal cortex. These correlations were more extensive and robust and the slopes steeper in alcoholics than in controls despite their attenuated dopamine responses to methylphenidate, which suggests an impaired modulation of dopamine signals in the brain of alcoholic subjects. These findings are consistent with a predominant inhibitory effect of dopamine in the human brain that is likely mediated by the prominence of dopamine D2/D3 receptors.
Collapse
|