1
|
Kay N, Huang CY, Yu YC, Chen CC, Chang CC, Huang SJ. The Involvement of Mitochondrial Dysfunction during the Development of Adenomyosis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:861-874. [PMID: 40010668 DOI: 10.1016/j.ajpath.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/10/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
The etiology of adenomyosis remains unclear. The association between epithelial-mesenchymal transition (EMT) and mitochondrial dysfunction is involved in fibrotic diseases. Adenomyosis is defined as the existence of endometrial glands and stroma in the myometrium with EMT and ultimate fibrosis. This study was designed to investigate the involvement of mitochondrial dysfunction in fibrotic adenomyosis. Mitochondrial integrity was examined in mouse and human adenomyotic tissues. Control and tamoxifen-treated mice were treated with 3-nitropropionic acid (a mitochondrial dysfunction inducer) and NG-nitro-L-arginine methyl ester (a mitochondrial dysfunction inhibitor), respectively, at postnatal day 21, followed by an evaluation of adenomyosis, EMT, and fibrosis as well as the expression of mitophagy, oxidative stress, and transforming growth factor-β1 (TGF-β1). The gene profiles of adenomyotic uteri were examined at postnatal day 42. Adenomyotic mice exhibited increased development of EMT and fibrosis. Adenomyotic tissues showed consistent mitochondrial destruction with increased fission, mitophagosomes, and lysosomes. Besides, mitophagy, oxidative stress, and TGF-β1 levels were consistently increased. The mitochondrial dysfunction, the development of mitophagy and fibrosis, and TGF-β1 expression were induced by 3-nitropropionic acid in control uteri. In contrast, NG-nitro-L-arginine methyl ester attenuated mitochondrial dysfunction, mitophagy, fibrosis, and TGF-β1 in adenomyotic uteri. Gene profiling demonstrated increased expression of mitochondrial dysfunction-related genes in adenomyotic uteri. This indicates that mitochondrial dysfunction-induced TGF-β1 dysregulation and fibrosis are associated with the development of adenomyosis.
Collapse
Affiliation(s)
- Nari Kay
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chun-Yen Huang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ya-Chun Yu
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Chen Chen
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chi-Chang Chang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - S Joseph Huang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida.
| |
Collapse
|
2
|
Movahed M, Louzada RA, Blandino-Rosano M. Enhanced dynorphin expression and secretion in pancreatic beta-cells under hyperglycemic conditions. Mol Metab 2025; 92:102088. [PMID: 39736444 PMCID: PMC11846442 DOI: 10.1016/j.molmet.2024.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/27/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025] Open
Abstract
OBJECTIVE Dynorphin, an endogenous opioid peptide predominantly expressed in the central nervous system and involved in stress response, pain, and addiction, has intrigued researchers due to its expression in pancreatic β-cells. In this study, we aimed to characterize dynorphin expression in mouse and human islets and explore the mechanisms regulating its expression. METHODS We used primary mouse and human islets with unbiased published datasets to examine how glucose and other nutrients regulate dynorphin expression and secretion in islets. RESULTS The prodynorphin gene is significantly upregulated in β-cells under hyperglycemic conditions. In vitro studies revealed that increased glucose concentrations correlate with increased dynorphin expression, indicating a critical interplay involving Ca2+, CamKII, and CREB pathways in β-cells. Perifusion studies allowed us to measure the dynamic secretion of dynorphin in response to glucose from mouse and human islets for the first time. Furthermore, we confirmed that increased dynorphin content within the β-cells directly correlates with enhanced dynorphin secretion. Finally, our findings demonstrate a synergistic effect of palmitate in conjunction with high glucose, further amplifying dynorphin levels and secretion in pancreatic islets. CONCLUSIONS This study demonstrates that the opioid peptide prodynorphin is expressed in mouse and human β-cells. Prodynorphin levels are regulated in parallel with insulin in response to glucose, palmitate, and amino acids. Our findings elucidate the signaling pathways involved, with CamKII playing a key role in regulating prodynorphin levels in β-cells. Finally, our findings are the first to demonstrate active dynorphin secretion from mouse and human islets in response to glucose.
Collapse
Affiliation(s)
- Miranda Movahed
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ruy A Louzada
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
3
|
Margolis EB, Moulton MG, Lambeth PS, O'Meara MJ. The life and times of endogenous opioid peptides: Updated understanding of synthesis, spatiotemporal dynamics, and the clinical impact in alcohol use disorder. Neuropharmacology 2023; 225:109376. [PMID: 36516892 PMCID: PMC10548835 DOI: 10.1016/j.neuropharm.2022.109376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The opioid G-protein coupled receptors (GPCRs) strongly modulate many of the central nervous system structures that contribute to neurological and psychiatric disorders including pain, major depressive disorder, and substance use disorders. To better treat these and related diseases, it is essential to understand the signaling of their endogenous ligands. In this review, we focus on what is known and unknown about the regulation of the over two dozen endogenous peptides with high affinity for one or more of the opioid receptors. We briefly describe which peptides are produced, with a particular focus on the recently proposed possible synthesis pathways for the endomorphins. Next, we describe examples of endogenous opioid peptide expression organization in several neural circuits and how they appear to be released from specific neural compartments that vary across brain regions. We discuss current knowledge regarding the strength of neural activity required to drive endogenous opioid peptide release, clues about how far peptides diffuse from release sites, and their extracellular lifetime after release. Finally, as a translational example, we discuss the mechanisms of action of naltrexone (NTX), which is used clinically to treat alcohol use disorder. NTX is a synthetic morphine analog that non-specifically antagonizes the action of most endogenous opioid peptides developed in the 1960s and FDA approved in the 1980s. We review recent studies clarifying the precise endogenous activity that NTX prevents. Together, the works described here highlight the challenges and opportunities the complex opioid system presents as a therapeutic target.
Collapse
Affiliation(s)
- Elyssa B Margolis
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, CA, USA.
| | - Madelyn G Moulton
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Philip S Lambeth
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Yang R, Tuan RRL, Hwang FJ, Bloodgood DW, Kong D, Ding JB. Dichotomous regulation of striatal plasticity by dynorphin. Mol Psychiatry 2023; 28:434-447. [PMID: 36460726 PMCID: PMC10188294 DOI: 10.1038/s41380-022-01885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022]
Abstract
Modulation of corticostriatal plasticity alters the information flow throughout basal ganglia circuits and represents a fundamental mechanism for motor learning, action selection, and reward. Synaptic plasticity in the striatal direct- and indirect-pathway spiny projection neurons (dSPNs and iSPNs) is regulated by two distinct networks of GPCR signaling cascades. While it is well-known that dopamine D2 and adenosine A2a receptors bi-directionally regulate iSPN plasticity, it remains unclear how D1 signaling modulation of synaptic plasticity is counteracted by dSPN-specific Gi signaling. Here, we show that striatal dynorphin selectively suppresses long-term potentiation (LTP) through Kappa Opioid Receptor (KOR) signaling in dSPNs. Both KOR antagonism and conditional deletion of dynorphin in dSPNs enhance LTP counterbalancing with different levels of D1 receptor activation. Behaviorally, mice lacking dynorphin in D1 neurons show comparable motor behavior and reward-based learning, but enhanced flexibility during reversal learning. These findings support a model in which D1R and KOR signaling bi-directionally modulate synaptic plasticity and behavior in the direct pathway.
Collapse
Affiliation(s)
- Renzhi Yang
- Biology Graduate Program, Stanford University, Stanford, CA, USA
| | - Rupa R Lalchandani Tuan
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | - Dong Kong
- Division of Endocrinology, Department of Pediatrics, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Stanford Bio-X, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Kaya-Akyüzlü D, Özkan-Kotiloğlu S, Yalçın-Şahiner Ş, Ağtaş-Ertan E, Özgür-İlhan İ. Association of PDYN 68-bp VNTR polymorphism with sublingual buprenorphine/naloxone treatment and with opioid or alcohol use disorder: Effect on craving, depression, anxiety and age onset of first use. Eur J Pharmacol 2022; 921:174862. [PMID: 35271823 DOI: 10.1016/j.ejphar.2022.174862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
In this case-control study (423 Turkish subjects), the functional pro-dynorphin (PDYN) 68-bp VNTR polymorphism was genotyped in opioid users receiving sublingual buprenorphine/naloxone treatment (SBNT; n = 129, 119 males and 10 females), in opioid users (OUD; n = 99, 90 males and 9 females), in alcohol users (AUD; n = 75, 75 males) and in controls (n = 120, 109 males and 11 females) to determine the effect of this polymorphism on different treatment responses, heroin or alcohol dependence as well as age onset of first use. The PDYN 68-bp alleles were determined based on the number of repeats and genotypes were classified as "short/short (SS)", "short-long (SL)" and "long-long (LL)". The intensity of craving, withdrawal, depression and anxiety were measured by the Substance Craving Scale (SCS), the Clinical Opiate Withdrawal Scale (COWS), the Beck Depression Inventory-II (BDI-II) and Beck Anxiety Inventory (BAI), respectively. Healthy controls (5.5 ± 5.8) had significantly lower levels of depressive symptoms compared to OUD (25.4 ± 13.5), AUD (22.5 ± 11.3) and SBNT (19.29 ± 12.2) groups. In OUD group, the LL genotype was associated with decreased intensity of anxiety and depressive symptoms than the SS+SL genotype. The BDI-II scores for PDYN VNTR genotypes within the 4 groups were analysed by two-way ANOVA and statistical differences were found for the groups. SBNT group had significantly lower COWS score than OUD group (1.00 versus 3.00). There were statistically significant differences in the median BAI (11 versus 24) and BDI-II scores (17.5 versus 25) between OUD and SBNT groups, supporting the antidepressant and anxiolytic effects of SBNT in persons with OUD.
Collapse
Affiliation(s)
| | - Selin Özkan-Kotiloğlu
- Kırşehir Ahi Evran University, Faculty of Science and Art, Department of Molecular Biology and Genetics, Kırşehir, Turkey
| | | | - Ece Ağtaş-Ertan
- Ankara University, Faculty of Medicine, Department of Mental Health and Diseases, Ankara, Turkey
| | - İnci Özgür-İlhan
- Ankara University, Faculty of Medicine, Department of Mental Health and Diseases, Ankara, Turkey
| |
Collapse
|
6
|
Palmer CB, Meyrath M, Canals M, Kostenis E, Chevigné A, Szpakowska M. Atypical opioid receptors: unconventional biology and therapeutic opportunities. Pharmacol Ther 2021; 233:108014. [PMID: 34624426 DOI: 10.1016/j.pharmthera.2021.108014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Endogenous opioid peptides and prescription opioid drugs modulate pain, anxiety and stress by activating four opioid receptors, namely μ (mu, MOP), δ (delta, DOP), κ (kappa, KOP) and the nociceptin/orphanin FQ receptor (NOP). Interestingly, several other receptors are also activated by endogenous opioid peptides and influence opioid-driven signaling and biology. However, they do not meet the criteria to be recognized as classical opioid receptors, as they are phylogenetically distant from them and are insensitive to classical non-selective opioid receptor antagonists (e.g. naloxone). Nevertheless, accumulating reports suggest that these receptors may be interesting alternative targets, especially for the development of safer analgesics. Five of these opioid peptide-binding receptors belong to the family of G protein-coupled receptors (GPCRs)-two are members of the Mas-related G protein-coupled receptor X family (MrgX1, MrgX2), two of the bradykinin receptor family (B1, B2), and one is an atypical chemokine receptor (ACKR3). Additionally, the ion channel N-methyl-d-aspartate receptors (NMDARs) are also activated by opioid peptides. In this review, we recapitulate the implication of these alternative receptors in opioid-related disorders and discuss their unconventional biology, with members displaying signaling to scavenging properties. We provide an overview of their established and emerging roles and pharmacology in the context of pain management, as well as their clinical relevance as alternative targets to overcome the hurdles of chronic opioid use. Given the involvement of these receptors in a wide variety of functions, including inflammation, chemotaxis, anaphylaxis or synaptic transmission and plasticity, we also discuss the challenges associated with the modulation of both their canonical and opioid-driven signaling.
Collapse
Affiliation(s)
- Christie B Palmer
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Max Meyrath
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, UK
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
7
|
Leisle L, Margreiter M, Ortega-Ramírez A, Cleuvers E, Bachmann M, Rossetti G, Gründer S. Dynorphin Neuropeptides Decrease Apparent Proton Affinity of ASIC1a by Occluding the Acidic Pocket. J Med Chem 2021; 64:13299-13311. [PMID: 34461722 DOI: 10.1021/acs.jmedchem.1c00447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prolonged acidosis, as it occurs during ischemic stroke, induces neuronal death via acid-sensing ion channel 1a (ASIC1a). Concomitantly, it desensitizes ASIC1a, highlighting the pathophysiological significance of modulators of ASIC1a acid sensitivity. One such modulator is the opioid neuropeptide big dynorphin (Big Dyn) which binds to ASIC1a and enhances its activity during prolonged acidosis. The molecular determinants and dynamics of this interaction remain unclear, however. Here, we present a molecular interaction model showing a dynorphin peptide inserting deep into the acidic pocket of ASIC1a. We confirmed experimentally that the interaction is predominantly driven by electrostatic forces, and using noncanonical amino acids as photo-cross-linkers, we identified 16 residues in ASIC1a contributing to Big Dyn binding. Covalently tethering Big Dyn to its ASIC1a binding site dramatically decreased the proton sensitivity of channel activation, suggesting that Big Dyn stabilizes a resting conformation of ASIC1a and dissociates from its binding site during channel opening.
Collapse
Affiliation(s)
- Lilia Leisle
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Margreiter
- Computational Biomedicine-Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | | | - Elinor Cleuvers
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Michèle Bachmann
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine-Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany.,Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
8
|
Spinocerebellar ataxia type 23 (SCA23): a review. J Neurol 2020; 268:4630-4645. [PMID: 33175256 DOI: 10.1007/s00415-020-10297-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
Spinocerebellar ataxias (SCAs), formerly known as autosomal dominant cerebellar ataxias (ADCAs), are a group of hereditary heterogeneous neurodegenerative diseases. Gait, progressive ataxia, dysarthria, and eye movement disorder are common symptoms of spinocerebellar ataxias. Other symptoms include peripheral neuropathy, cognitive impairment, psychosis, and seizures. Patients may lose their lives due to out of coordinated respiration and/or swallowing. Neurological signs cover pyramidal or extrapyramidal signs, spasm, ophthalmoplegia, hyperactive deep tendon reflexes, and so on. Different subtypes of SCAs present various clinical features. Spinocerebellar ataxia type 23 (SCA23), one subtype of the SCA family, is characterized by mutant prodynorphin (PDYN) gene. Based on literatures, this review details a series of SCA23, to improve a whole understanding of clinicians and point out the potential research direction of this dysfunction, including a history, pathophysiological mechanism, diagnosis and differential diagnosis, epigenetics, penetrance and prevalence, genetic counseling, treatment and prognosis.
Collapse
|
9
|
Meyrath M, Szpakowska M, Zeiner J, Massotte L, Merz MP, Benkel T, Simon K, Ohnmacht J, Turner JD, Krüger R, Seutin V, Ollert M, Kostenis E, Chevigné A. The atypical chemokine receptor ACKR3/CXCR7 is a broad-spectrum scavenger for opioid peptides. Nat Commun 2020; 11:3033. [PMID: 32561830 PMCID: PMC7305236 DOI: 10.1038/s41467-020-16664-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
Endogenous opioid peptides and prescription opioid drugs modulate pain, anxiety and stress by activating opioid receptors, currently classified into four subtypes. Here we demonstrate that ACKR3/CXCR7, hitherto known as an atypical scavenger receptor for chemokines, is a broad-spectrum scavenger of opioid peptides. Phylogenetically, ACKR3 is intermediate between chemokine and opioid receptors and is present in various brain regions together with classical opioid receptors. Functionally, ACKR3 is a scavenger receptor for a wide variety of opioid peptides, especially enkephalins and dynorphins, reducing their availability for the classical opioid receptors. ACKR3 is not modulated by prescription opioids, but we show that an ACKR3-selective subnanomolar competitor peptide, LIH383, can restrain ACKR3’s negative regulatory function on opioid peptides in rat brain and potentiate their activity towards classical receptors, which may open alternative therapeutic avenues for opioid-related disorders. Altogether, our results reveal that ACKR3 is an atypical opioid receptor with cross-family ligand selectivity. Opioids modulate pain, anxiety and stress by activating four subtypes of opioid receptors. The authors show that atypical chemokine receptor 3 (ACKR3) is a scavenger for various endogenous opioid peptides regulating their availability without activating downstream signaling.
Collapse
Affiliation(s)
- Max Meyrath
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), rue Henri Koch 29, L-4354, Esch-sur-Alzette, Luxembourg
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), rue Henri Koch 29, L-4354, Esch-sur-Alzette, Luxembourg
| | - Julian Zeiner
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Laurent Massotte
- Neurophysiology Unit, GIGA Neurosciences, University of Liège, avenue de l'hopital, B-4000, Liège, Belgium
| | - Myriam P Merz
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), rue Henri Koch 29, L-4354, Esch-sur-Alzette, Luxembourg
| | - Tobias Benkel
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany.,Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Katharina Simon
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Jochen Ohnmacht
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, avenue du Swing 6, L-4367, Belvaux, Luxembourg.,Department of Life Sciences and Medicine, University of Luxembourg, avenue du Swing 6, L-4367, Belvaux, Luxembourg
| | - Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), rue Henri Koch 29, L-4354, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, avenue du Swing 6, L-4367, Belvaux, Luxembourg.,Transversal Translational Medicine, Luxembourg Institute of Health (LIH), rue Thomas Edison 1A-B, L-1445, Strassen, Luxembourg
| | - Vincent Seutin
- Neurophysiology Unit, GIGA Neurosciences, University of Liège, avenue de l'hopital, B-4000, Liège, Belgium
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), rue Henri Koch 29, L-4354, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, 5000, Odense, Denmark
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), rue Henri Koch 29, L-4354, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
10
|
Abstract
Acid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to neurotransmission, as well as initiation of pain and neuronal death following ischemic stroke. As such, there is a great interest in understanding the in vivo regulation of ASICs, especially by endogenous neuropeptides that potently modulate ASICs. The most potent endogenous ASIC modulator known to date is the opioid neuropeptide big dynorphin (BigDyn). BigDyn is up-regulated in chronic pain and increases ASIC-mediated neuronal death during acidosis. Understanding the mechanism and site of action of BigDyn on ASICs could thus enable the rational design of compounds potentially useful in the treatment of pain and ischemic stroke. To this end, we employ a combination of electrophysiology, voltage-clamp fluorometry, synthetic BigDyn analogs, and noncanonical amino acid-mediated photocrosslinking. We demonstrate that BigDyn binding results in an ASIC1a closed resting conformation that is distinct from open and desensitized states induced by protons. Using alanine-substituted BigDyn analogs, we find that the BigDyn modulation of ASIC1a is primarily mediated through electrostatic interactions of basic amino acids in the BigDyn N terminus. Furthermore, neutralizing acidic amino acids in the ASIC1a extracellular domain reduces BigDyn effects, suggesting a binding site at the acidic pocket. This is confirmed by photocrosslinking using the noncanonical amino acid azidophenylalanine. Overall, our data define the mechanism of how BigDyn modulates ASIC1a, identify the acidic pocket as the binding site for BigDyn, and thus highlight this cavity as an important site for the development of ASIC-targeting therapeutics.
Collapse
|
11
|
Demin KA, Meshalkina DA, Kysil EV, Antonova KA, Volgin AD, Yakovlev OA, Alekseeva PA, Firuleva MM, Lakstygal AM, de Abreu MS, Barcellos LJG, Bao W, Friend AJ, Amstislavskaya TG, Rosemberg DB, Musienko PE, Song C, Kalueff AV. Zebrafish models relevant to studying central opioid and endocannabinoid systems. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:301-312. [PMID: 29604314 DOI: 10.1016/j.pnpbp.2018.03.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022]
Abstract
The endocannabinoid and opioid systems are two interplaying neurotransmitter systems that modulate drug abuse, anxiety, pain, cognition, neurogenesis and immune activity. Although they are involved in such critical functions, our understanding of endocannabinoid and opioid physiology remains limited, necessitating further studies, novel models and new model organisms in this field. Zebrafish (Danio rerio) is rapidly emerging as one of the most effective translational models in neuroscience and biological psychiatry. Due to their high physiological and genetic homology to humans, zebrafish may be effectively used to study the endocannabinoid and opioid systems. Here, we discuss current models used to target the endocannabinoid and opioid systems in zebrafish, and their potential use in future translational research and high-throughput drug screening. Emphasizing the high degree of conservation of the endocannabinoid and opioid systems in zebrafish and mammals, we suggest zebrafish as an excellent model organism to study these systems and to search for the new drugs and therapies targeting their evolutionarily conserved mechanisms.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia
| | - Darya A Meshalkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia
| | - Elana V Kysil
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Kristina A Antonova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Andrey D Volgin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Medical Military Academy, St. Petersburg, Russia
| | - Oleg A Yakovlev
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Medical Military Academy, St. Petersburg, Russia
| | - Polina A Alekseeva
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Maria M Firuleva
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Leonardo J G Barcellos
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Programs in Environmental Sciences, and Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Wandong Bao
- School of Pharmacy, Southwest University, Chongqing, China
| | - Ashton J Friend
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Neuroscience Department, Novosibirsk State University, Novosibirsk, Russia
| | - Denis B Rosemberg
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Pavel E Musienko
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Motor Physiology, Pavlov Institute of Physiology RAS, St. Petersburg, Russia; Laboratory of Neurophysiology and Experimental Neurorehabilitation, St. Petersburg State Research Institute of Phthysiopulmonology, Ministry of Health, St. Petersburg, Russia; Russian Research Center of Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Research and Development Center, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Neuroscience Department, Novosibirsk State University, Novosibirsk, Russia; ZENEREI Research Center, Slidell, LA, USA; Russian Research Center of Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia; Ural Federal University, Ekaterinburg, Russia; Aquatic Laboratory, Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia.
| |
Collapse
|
12
|
Taylor GT, Manzella F. Kappa Opioids, Salvinorin A and Major Depressive Disorder. Curr Neuropharmacol 2016; 14:165-76. [PMID: 26903446 PMCID: PMC4825947 DOI: 10.2174/1570159x13666150727220944] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/11/2015] [Accepted: 07/24/2015] [Indexed: 12/13/2022] Open
Abstract
Opioids are traditionally associated with pain, analgesia and drug abuse. It is now clear,
however, that the opioids are central players in mood. The implications for mood disorders, particularly
clinical depression, suggest a paradigm shift from the monoamine neurotransmitters to the opioids either
alone or in interaction with monoamine neurons. We have a special interest in dynorphin, the last of
the major endogenous opioids to be isolated and identified. Dynorphin is derived from the Greek word
for power, dynamis, which hints at the expectation that the neuropeptide held for its discoverers. Yet,
dynorphin and its opioid receptor subtype, kappa, has always taken a backseat to the endogenous b-endorphin and the
exogenous morphine that both bind the mu opioid receptor subtype. That may be changing as the dynorphin/ kappa system
has been shown to have different, often opposite, neurophysiological and behavioral influences. This includes major
depressive disorder (MDD). Here, we have undertaken a review of dynorphin/ kappa neurobiology as related to behaviors,
especially MDD. Highlights include the unique features of dynorphin and kappa receptors and the special relation of a
plant-based agonist of the kappa receptor salvinorin A. In addition to acting as a kappa opioid agonist, we conclude that
salvinorin A has a complex pharmacologic profile, with potential additional mechanisms of action. Its unique neurophysiological
effects make Salvinorina A an ideal candidate for MDD treatment research.
Collapse
Affiliation(s)
| | - Francesca Manzella
- Behavioral Neuroscience/ Psychology Univ. Missouri - St. Louis, One University Blvd, St. Louis, MO 63121 USA.
| |
Collapse
|
13
|
Wang Q, Long Y, Hang A, Zan GY, Shu XH, Wang YJ, Liu JG. The anxiolytic- and antidepressant-like effects of ATPM-ET, a novel κ agonist and μ partial agonist, in mice. Psychopharmacology (Berl) 2016; 233:2411-8. [PMID: 27113225 DOI: 10.1007/s00213-016-4292-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/01/2016] [Indexed: 01/21/2023]
Abstract
RATIONALE Opioid receptors are implicated in the regulation of motivation and emotion. However, animal studies show that activation of κ opioid receptor produces contrasting mood-altering effects in models of anxiety-like and depressive-like behaviors, and consequently, the role of κ receptor in mood control remains unsettled. The effect of κ/μ opioid combination in emotion regulation was unexplored. OBJECTIVES The aim of the study was to investigate the effects of (-)-3-N-ethylaminothiazolo [5,4-b]-N-cyclopropylmethylmorphinan hydrochloride (ATPM-ET), a novel κ agonist and μ partial agonist, in regulating emotional responses. METHODS The emotional responses of ATPM-ET were detected in the elevated plus maze (EPM), open field test (OFT), forced swim test (FST), and tail suspension test (TST). Selective κ antagonist nor-binaltorphimine (nor-BNI) and μ antagonist β-funaltrexamine (β-FNA) were applied to determine the type of receptor involved. The conditioned place aversion model was used to evaluate the effects on aversive emotion. RESULTS In the EPM and OFT, ATPM-ET (1 and 2 mg/kg, s.c.) significantly increased the time spent in the open arm and in the central area, respectively. In the FST and TST, ATPM-ET (0.5 and 1 mg/kg, s.c.) significantly reduced the duration of immobility. These effects were prevented by nor-BNI (10 mg/kg, i.p., -24 h), but not by β-FNA (10 and20 mg/kg, i.p., -24 h) pretreatment. At the dose of 2 mg/kg, ATPM-ET did not induce conditioned place aversion. CONCLUSIONS ATPM-ET, at doses from 0.5 to 2 mg/kg, produced anxiolytic- and antidepressant-like effects without inducing aversive emotion. These effects were more closely mediated by activation of κ receptor than μ receptor.
Collapse
Affiliation(s)
- Qian Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yu Long
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Ai Hang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Gui-Ying Zan
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Hong Shu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Yu-Jun Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jing-Gen Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
14
|
Rizwan S, Idrees A, Ashraf M, Ahmed T. Memory-enhancing effect of aspirin is mediated through opioid system modulation in an AlCl 3-induced neurotoxicity mouse model. Exp Ther Med 2016; 11:1961-1970. [PMID: 27168835 DOI: 10.3892/etm.2016.3147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 11/25/2015] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative disorders such as Alzheimers disease (AD) are multifaceted and there are currently a limited number of therapeutic strategies available to treat them. Aspirin is known to act on multiple therapeutic targets and is a successful anti-inflammatory agent in various tissues. The present study aimed to ascertain the performance of aspirin when employed as a therapeutic agent to treat neurodegeneration on novel targets, including opioid system genes, in an AlCl3-induced neurotoxicity mouse model. The effects of two doses of aspirin (5 and 20 mg/kg aspirin for 12 days) were investigated in an AlCl3-induced neurotoxicity mouse model (150 mg/kg AlCl3 for 12 days). Neurological improvements were assessed through different behavioral tests and the effects of aspirin on opioid system gene expression levels were assessed by reverse transcription-polymerase chain reaction. Both doses resulted in improvements in cognitive behavior. A 5 mg/kg dose of aspirin was revealed to be effective for spatial memory improvement (7.14±0.84 sec), whilst a 20 mg/kg dose was superior for improving extinction learning (7.63±4.04%). Aspirin (5 mg/kg) also significantly improved contextual memory (48.05±10.6%) when compared with the AlCl3-treated group (1.49±0.62%; P<0.001). Aspirin was also observed to significantly decrease δ-opioid receptor expression in the cortex (1.09±0.08 and 1.27±0.08, respectively) at both doses (5 and 20 mg/kg) when compared with the AlCl3-treated group (3.69±1.43; P<0.05). Furthermore, aspirin at 5 mg/kg significantly reduced expression of prodynorphin in the cortex (0.57±0.20) when compared with the AlCl3-treated group (1.95±0.84; P<0.05). Notably, the effect of aspirin was significant in the cortex but not in the hippocampus. In summary, aspirin was effective in ameliorating the AD-like symptoms via the modulation of opioid systems. However, additional studies are required to determine the long term effects of aspirin on such conditions.
Collapse
Affiliation(s)
- Saima Rizwan
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Ayesha Idrees
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Muhammad Ashraf
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan
| |
Collapse
|
15
|
The role of the dynorphin/κ opioid receptor system in anxiety. Acta Pharmacol Sin 2015; 36:783-90. [PMID: 25982631 DOI: 10.1038/aps.2015.32] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/02/2015] [Indexed: 01/26/2023]
Abstract
Anxiety disorders are the most common and prevalent forms of psychiatric disease, although the biological basis of anxiety is not well understood. The dynorphin/κ opioid receptor system is widely distributed in the central nervous system and has been shown to play a critical role in modulating mood and emotional behaviors. In the present review, we summarize current literature relating to the role played by the dynorphin/κ opioid receptor system in anxiety and κ opioid receptor antagonists as potential therapeutic agents for the treatment of anxiety disorders.
Collapse
|
16
|
Plasma membrane poration by opioid neuropeptides: a possible mechanism of pathological signal transduction. Cell Death Dis 2015; 6:e1683. [PMID: 25766322 PMCID: PMC4385918 DOI: 10.1038/cddis.2015.39] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022]
Abstract
Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.
Collapse
|
17
|
Ogden KK, Khatri A, Traynelis SF, Heldt SA. Potentiation of GluN2C/D NMDA receptor subtypes in the amygdala facilitates the retention of fear and extinction learning in mice. Neuropsychopharmacology 2014; 39:625-37. [PMID: 24008353 PMCID: PMC3895240 DOI: 10.1038/npp.2013.241] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/15/2013] [Accepted: 08/29/2013] [Indexed: 12/16/2022]
Abstract
NMDA receptors are glutamate receptor ion channels that contribute to synaptic plasticity and are important for many forms of learning and memory. In the amygdala, NMDA receptors are critical for the acquisition, retention, and extinction of classically conditioned fear responses. Although the GluN2B subunit has been implicated in both the acquisition and extinction of conditioned fear, GluN2C-knockout mice show reduced conditioned fear responses. Moreover, D-cycloserine (DCS), which facilitates fear extinction, selectively enhances the activity of GluN2C-containing NMDA receptors. To further define the contribution of GluN2C receptors to fear learning, we infused the GluN2C/GluN2D-selective potentiator CIQ bilaterally into the basolateral amygdala (3, 10, or 30 μg/side) following either fear conditioning or fear extinction training. CIQ both increased the expression of conditioned fear 24 h later and enhanced the extinction of the previously conditioned fear response. These results support a critical role for GluN2C receptors in the amygdala in the consolidation of learned fear responses and suggest that increased activity of GluN2C receptors may underlie the therapeutic actions of DCS.
Collapse
Affiliation(s)
- Kevin K Ogden
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Alpa Khatri
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University, Atlanta, GA, USA,Department of Pharmacology, 5025 Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta 30322, GA, USA, Tel: +404-727-0357, Fax: +404-727-0365, E-mail:
| | - Scott A Heldt
- Department of Anatomy and Neurobiology,Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA,Neuroscience Institute, University of Tennessee Health Science Center, 855 Monroe Ave, Memphis, Memphis, TN 38163, USA, Tel: 901-448-5965, Fax: 901-448-7193, E-mail:
| |
Collapse
|
18
|
Coelho JE, Alves P, Canas PM, Valadas JS, Shmidt T, Batalha VL, Ferreira DG, Ribeiro JA, Bader M, Cunha RA, do Couto FS, Lopes LV. Overexpression of Adenosine A2A Receptors in Rats: Effects on Depression, Locomotion, and Anxiety. Front Psychiatry 2014; 5:67. [PMID: 24982640 PMCID: PMC4055866 DOI: 10.3389/fpsyt.2014.00067] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/24/2014] [Indexed: 11/25/2022] Open
Abstract
Adenosine A2A receptors (A2AR) are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well-established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer's disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine-related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR)] and aged-matched wild-types (WT) of the same strain (Sprague-Dawley) were studied. The forced swimming test (FST), sucrose preference test (SPT), and the open-field test (OFT) were performed to evaluate behavioral despair, anhedonia, locomotion, and anxiety. Tg(CaMKII-hA2AR) animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48 h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR) rats exhibit depressive-like behavior, hyperlocomotion, and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress, and Alzheimer's disease.
Collapse
Affiliation(s)
- Joana E Coelho
- Faculty of Medicine of Lisbon, Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Pedro Alves
- Faculty of Medicine of Lisbon, Institute of Pharmacology and Neurosciences, University of Lisbon , Lisbon , Portugal
| | - Paula M Canas
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra , Coimbra , Portugal ; Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - Jorge S Valadas
- Faculty of Medicine of Lisbon, Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Tatiana Shmidt
- Max-Delbrück-Center for Molecular Medicine (MDC) , Berlin , Germany
| | - Vânia L Batalha
- Faculty of Medicine of Lisbon, Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Diana G Ferreira
- Faculty of Medicine of Lisbon, Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Joaquim A Ribeiro
- Faculty of Medicine of Lisbon, Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal ; Faculty of Medicine of Lisbon, Institute of Pharmacology and Neurosciences, University of Lisbon , Lisbon , Portugal
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC) , Berlin , Germany
| | - Rodrigo A Cunha
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra , Coimbra , Portugal ; Faculty of Medicine, University of Coimbra , Coimbra , Portugal
| | - Frederico Simões do Couto
- Faculty of Medicine of Lisbon, Institute of Pharmacology and Neurosciences, University of Lisbon , Lisbon , Portugal
| | - Luísa V Lopes
- Faculty of Medicine of Lisbon, Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| |
Collapse
|
19
|
Abstract
Neuropeptides play an important role in modulating seizures and epilepsy. Unlike neurotransmitters which operate on a millisecond time-scale, neuropeptides have longer half lives; this leads to modulation of neuronal and network activity over prolonged periods, so contributing to setting the seizure threshold. Most neuropeptides are stored in large dense vesicles and co-localize with inhibitory interneurons. They are released upon high frequency stimulation making them attractive targets for modulation of seizures, during which high frequency discharges occur. Numerous neuropeptides have been implicated in epilepsy; one, ACTH, is already used in clinical practice to suppress seizures. Here, we concentrate on neuropeptides that have a direct effect on seizures, and for which therapeutic interventions are being developed. We have thus reviewed the abundant reports that support a role for neuropeptide Y (NPY), galanin, ghrelin, somatostatin and dynorphin in suppressing seizures and epileptogenesis, and for tachykinins having pro-epileptic effects. Most in vitro and in vivo studies are performed in hippocampal tissue in which receptor expression is usually high, making translation to other brain areas less clear. We highlight recent therapeutic strategies to treat epilepsy with neuropeptides, which are based on viral vector technology, and outline how such interventions need to be refined in order to address human disease.
Collapse
Affiliation(s)
- Stjepana Kovac
- UCL Institute of Neurology, University College London, Queen Square, London, UK.
| | | |
Collapse
|
20
|
Van't Veer A, Carlezon WA. Role of kappa-opioid receptors in stress and anxiety-related behavior. Psychopharmacology (Berl) 2013; 229:435-52. [PMID: 23836029 PMCID: PMC3770816 DOI: 10.1007/s00213-013-3195-5] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/17/2013] [Indexed: 12/15/2022]
Abstract
RATIONALE Accumulating evidence indicates that brain kappa-opioid receptors (KORs) and dynorphin, the endogenous ligand that binds at these receptors, are involved in regulating states of motivation and emotion. These findings have stimulated interest in the development of KOR-targeted ligands as therapeutic agents. As one example, it has been suggested that KOR antagonists might have a wide range of indications, including the treatment of depressive, anxiety, and addictive disorders, as well as conditions characterized by co-morbidity of these disorders (e.g., post-traumatic stress disorder) A general effect of reducing the impact of stress may explain how KOR antagonists can have efficacy in such a variety of animal models that would appear to represent different disease states. OBJECTIVE Here, we review evidence that disruption of KOR function attenuates prominent effects of stress. We will describe behavioral and molecular endpoints including those from studies that characterize the effects of KOR antagonists and KOR ablation on the effects of stress itself, as well as on the effects of exogenously delivered corticotropin-releasing factor, a brain peptide that mediates key effects of stress. CONCLUSION Collectively, available data suggest that KOR disruption produces anti-stress effects and under some conditions can prevent the development of stress-induced adaptations. As such, KOR antagonists may have unique potential as therapeutic agents for the treatment and even prevention of stress-related psychiatric illness, a therapeutic niche that is currently unfilled.
Collapse
MESH Headings
- Animals
- Anti-Anxiety Agents/pharmacology
- Anti-Anxiety Agents/therapeutic use
- Anxiety Disorders/drug therapy
- Anxiety Disorders/metabolism
- Anxiety Disorders/psychology
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Corticotropin-Releasing Hormone/metabolism
- Dynorphins/genetics
- Dynorphins/metabolism
- Humans
- Ligands
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Stress, Psychological/drug therapy
- Stress, Psychological/metabolism
- Stress, Psychological/psychology
Collapse
Affiliation(s)
- Ashlee Van't Veer
- Department of Psychiatry, Harvard Medical School, McLean Hospital, MRC 217, 115 Mill Street, Belmont, MA, 02478, USA
| | | |
Collapse
|
21
|
Strain differences in profiles of dopaminergic neurotransmission in the prefrontal cortex of the BALB/C vs. C57Bl/6 mice: consequences of stress and afobazole. Eur J Pharmacol 2013; 708:95-104. [PMID: 23524098 DOI: 10.1016/j.ejphar.2013.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 11/24/2022]
Abstract
We found that in mice the basal activity of monoamine oxidase B (MAO-B) in the medial prefrontal cortex (mPFC) is lower in BALB/C than in C57Bl/6J mice, whereas activity of MAO-A is similar between strains. BALB/C mice, in comparison to C57Bl/6N mice, have higher basal content of dopamine in the mPFC, in both microdialysates and tissue content. Novelty stress (open field test) elicits a further increase in the microdialysate levels of dopamine in BALB/C, but not in C57Bl/6N mice; a subsequent accumulation of extracellular 3,4-dioxyphenylacetic acid (DOPAC) reaffirms the difference in catabolic capacity of monoaminergic systems between the strains. We demonstrated that in stress-susceptible BALB/C mice the novel anxiolytic afobazole, 5mg/kg, selectively mitigates trait anxiety; however it does not change the behavioral response in stress-resilient C57Bl/6N mice. Afobazole inhibits MAO-A in in vitro; it also lowers the microdialysate DOPAC levels in both strains (which testifies to its MAO-A inhibiting activity in vivo) and slightly suppresses dopamine release when elevated. Therefore, it is likely that the drug may mediate its anxiolytic activity via modulation of volume dopaminergic transmission at level of the mPFC.
Collapse
|
22
|
Jezierska J, Stevanin G, Watanabe H, Fokkens MR, Zagnoli F, Kok J, Goas JY, Bertrand P, Robin C, Brice A, Bakalkin G, Durr A, Verbeek DS. Identification and characterization of novel PDYN mutations in dominant cerebellar ataxia cases. J Neurol 2013; 260:1807-12. [PMID: 23471613 DOI: 10.1007/s00415-013-6882-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 11/08/2022]
Abstract
We have recently identified missense mutations in prodynorphin (PDYN), the precursor to dynorphin opioid peptides, as the cause for spinocerebellar ataxia (SCA23) in Dutch ataxia cases. We report a screen of PDYN for mutations in 371 cerebellar ataxia cases, which had a positive family history; most are of French origin. Sequencing revealed three novel putative missense mutations and one heterozygous two-base pair deletion in four independent SCA patients. These variants were absent in 400 matched controls and are located in the highly conserved dynorphin domain. To resolve the pathogenicity of the heterozygous variants, we assessed the peptide production of the mutant PDYN proteins. Two missense mutations raised dynorphin peptide levels, the two-base pair deletion terminated dynorphin synthesis, and one missense mutation did not affect PDYN processing. Given the outcome of our functional analysis, we may have identified at least two novel PDYN mutations in a French and a Moroccan SCA patient. Our data corroborates recent work that also showed that PDYN mutations only account for a small percentage (~0.1 %) of European SCA cases.
Collapse
Affiliation(s)
- Justyna Jezierska
- Department of Genetics, University of Groningen, University Medical Center Groningen, Oostersingel Entrance 47, P.O. Box 30 001, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Watanabe H, Mizoguchi H, Verbeek DS, Kuzmin A, Nyberg F, Krishtal O, Sakurada S, Bakalkin G. Non-opioid nociceptive activity of human dynorphin mutants that cause neurodegenerative disorder spinocerebellar ataxia type 23. Peptides 2012; 35:306-10. [PMID: 22531488 DOI: 10.1016/j.peptides.2012.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 02/04/2023]
Abstract
We previously identified four missense mutations in the prodynorphin gene that cause human neurodegenerative disorder spinocerebellar ataxia type 23 (SCA23). Three mutations substitute Leu(5), Arg(6), and Arg(9) to Ser (L5S), Trp (R6W) and Cys (R9C) in dynorphin A(1-17) (Dyn A), a peptide with both opioid activities and non-opioid neurodegenerative actions. It has been reported that Dyn A administered intrathecally (i.t.) in femtomolar doses into mice produces nociceptive behaviors consisting of hindlimb scratching along with biting and licking of the hindpaw and tail (SBL responses) through a non-opioid mechanism. We here evaluated the potential of the three mutant peptides to produce similar behaviors. Compared to the wild type (WT)-peptide, the relative potency of Dyn A R6W, L5S and R9C peptides for SBL responses was 50-, 33- and 2-fold higher, and Dyn A R6W and L5S induced the SBL responses at a 10-30-fold lower doses. Dyn A R6W was the most potent peptide. The SBL responses induced by Dyn A R6W were dose dependently inhibited by morphine (i.p.; 0.1-1 mg/kg) or MK-801, an NMDA ion channel blocker (i.t. co-administration; 5-7.5 nmol). CP-99,994, a tachykinin NK1 receptor antagonist (i.t. co-administration; 2 nmol) and naloxone (i.p.; 5 mg/kg) failed to block effects of Dyn A R6W. Thus, similarly to Dyn A WT, the SBL responses induced by Dyn A R6W may involve the NMDA receptor but are not mediated through the opioid and tachykinin NK1 receptors. Enhanced non-opioid excitatory activities of Dyn A mutants may underlie in part development of SCA23.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Opioid system and Alzheimer's disease. Neuromolecular Med 2012; 14:91-111. [PMID: 22527793 DOI: 10.1007/s12017-012-8180-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/04/2012] [Indexed: 12/15/2022]
Abstract
The opioid system may be involved in the pathogenesis of AD, including cognitive impairment, hyperphosphorylated tau, Aβ production, and neuroinflammation. Opioid receptors influence the regulation of neurotransmitters such as acetylcholine, norepinephrine, GABA, glutamate, and serotonin which have been implicated in the pathogenesis of AD. Opioid system has a close relation with Aβ generation since dysfunction of opioid receptors retards the endocytosis and degradation of BACE1 and γ-secretase and upregulates BACE1 and γ-secretase, and subsequently, the production of Aβ. Conversely, activation of opioid receptors increases the endocytosis of BACE1 and γ-secretase and downregulates BACE1 and γ-secretase, limiting the production of Aβ. The dysfunction of opioid system (opioid receptors and opioid peptides) may contribute to hyperphosphorylation of tau and neuroinflammation, and accounts for the degeneration of cholinergic neurons and cognitive impairment. Thus, the opioid system is potentially related to AD pathology and may be a very attractive drug target for novel pharmacotherapies of AD.
Collapse
|
25
|
Braida D, Donzelli A, Martucci R, Capurro V, Sala M. Learning and Memory Impairment Induced by Salvinorin A, the Principal Ingredient of Salvia divinorum, in Wistar Rats. Int J Toxicol 2011; 30:650-61. [DOI: 10.1177/1091581811418538] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of salvinorin A ( Salvia divinorum principal ingredient), a potent κ-opioid natural hallucinogen, on learning and memory were investigated. Wistar rats were tested in the 8-arm radial maze, for object recognition and passive avoidance tasks for spatial, episodic, and aversive memory. Attention was assessed using a latent inhibition task. Salvinorin A (80-640 μg/kg subcutaneous [sc]) did not affect short-term memory, but it impaired spatial long-term memory. Episodic and aversive memories were impaired by salvinorin A (160-640 μg/kg). Memory impairment was blocked by the selective κ-opioid receptor antagonist, nor-binaltorphimine ([nor-B]; 0.5-1 mg/kg, intraperitoneal [ip]). Salvinorin A (160 μg/kg) disrupted latent inhibition, after LiCl treatment, such as reduced sucrose intake, suggesting an attention would result in an impairment of cognitive behavior. These findings demonstrate for the first time that salvinorin A has deleterious effects on learning and memory, through a κ-opioid receptor mechanism.
Collapse
Affiliation(s)
- Daniela Braida
- Department of Pharmacology, Chemotherapy and Medical Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Andrea Donzelli
- Department of Pharmacology, Chemotherapy and Medical Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Roberta Martucci
- Department of Pharmacology, Chemotherapy and Medical Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Valeria Capurro
- Department of Pharmacology, Chemotherapy and Medical Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Mariaelvina Sala
- Department of Pharmacology, Chemotherapy and Medical Toxicology, Università degli Studi di Milano, Milan, Italy
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
26
|
Virok DP, Kis Z, Szegedi V, Juhász G, Zvara A, Müller G, Lévay G, Hársing LG, Rajkó R, Penke B, Janka Z, Janáky T, Puskás LG. Functional changes in transcriptomes of the prefrontal cortex and hippocampus in a mouse model of anxiety. Pharmacol Rep 2011; 63:348-61. [PMID: 21602590 DOI: 10.1016/s1734-1140(11)70501-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 10/06/2010] [Indexed: 12/13/2022]
Abstract
Anxiety is a multi-etiology disorder influenced by both genetic background and environment. To study the impact of a genetic predisposition, we developed a novel mouse model of anxiety using a combination of crossbreeding and behavioral selection. Comparison of the transcriptomes from the prefrontal cortex and hippocampus of anxious and control mice revealed that the numbers of significantly up- and down-regulated genes were modest, comprising approximately 2% of the tested genes. Functional analysis of the significantly altered gene sets showed that functional groups such as nervous system development, behavior, glial cell differentiation and synaptic transmission were significantly enriched among the up-regulated genes, whereas functional groups such as potassium ion transport, Wnt signaling and neuropeptidergic signaling were significantly enriched among the down-regulated genes. Many of the identified genes and functional groups have been previously linked to the molecular biology of anxiety, while several others, such as transthyretin, vasoactive intestinal polypeptide and various potassium ion channels, are novel or not as well described in this context. Supporting the gene expression data, we also found increased excitability in the hippocampi of anxious mice, which can be a phenotypic result of decreased potassium channel density. Our transcriptome screen showed that the initiation and/or effect of anxiety involve multiple pathways and cellular processes. The identified novel genes and pathways could be involved in the molecular pathogenesis of anxiety and provide potential targets for further drug development.
Collapse
Affiliation(s)
- Dezso P Virok
- Institute for Plant Genomics, Human Biotechnology and Bioenergy (BAY-GEN), 6726 Szeged Derkovits fasor 2., Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mika J, Obara I, Przewlocka B. The role of nociceptin and dynorphin in chronic pain: implications of neuro-glial interaction. Neuropeptides 2011; 45:247-61. [PMID: 21477860 DOI: 10.1016/j.npep.2011.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 01/08/2023]
Abstract
Nociceptin-opioid peptide (NOP) receptor, also known as opioid receptor like-1 (ORL1), was identified following the cloning of the kappa-opioid peptide (KOP) receptor, and the characterization of these receptors revealed high homology. The endogenous ligand of NOP, nociceptin (NOC), which shares high homology to dynorphin (DYN), was discovered shortly thereafter, and since then, it has been the subject of several investigations. Despite the many advances in our understanding of the involvement of NOC and DYN systems in pain, tolerance and withdrawal, the precise function of these systems has not been fully characterized. Here, we review the recent literature concerning the distribution of the NOC and DYN systems in the central nervous system and the involvement of these systems in nociceptive transmission, especially under chronic pain conditions. We discuss the use of endogenous and exogenous ligands of NOP and KOP receptors in pain perception, as well as the potential utility of NOP ligands in clinical practice for pain management. We also discuss the modulation of opioid effects by NOC and DYN. We emphasize the important role of neuro-glial interactions in the effects of NOC and DYN, focusing on their presence in neuronal and non-neuronal cells and the changes associated with chronic pain conditions. We also present the dynamics of immune and glial regulation of neuronal functions and the importance of this regulation in the roles of NOC and DYN under conditions of neuropathic pain and in the use of drugs that alter these systems for better control of neuropathic pain.
Collapse
Affiliation(s)
- Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | | | | |
Collapse
|
28
|
Sauriyal DS, Jaggi AS, Singh N. Extending pharmacological spectrum of opioids beyond analgesia: multifunctional aspects in different pathophysiological states. Neuropeptides 2011; 45:175-88. [PMID: 21208657 DOI: 10.1016/j.npep.2010.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 11/29/2022]
Abstract
Opioids are well known to exert potent central analgesic actions. In recent years, the numerous studies have unfolded the critical role of opioids in the pathophysiology of various diseases as well as in biological phenomenon of therapeutic interest. The endogenous ligands of opioid receptors are derived from three independent genes and their appropriate processing yields the major representative opioid peptides beta-endorphin, met-enkephalin, leu-enkephalin and dynorphin, respectively. These peptides and their derivatives exhibit different affinity and selectivity for the mu-, delta- and kappa-receptors located on the central and the peripheral neurons, neuroendocrine, immune, and mucosal cells and on many other organ systems. The present review article highlights the role of these peptides in central nervous system disorders such as depression, anxiety, epilepsy, and stress; gastrointestinal disorders such as diarrhea, postoperative ileus, ulceration, and irritable bowel syndrome; immune system and related inflammatory disorders such as osteoarthritis and rheumatoid arthritis; and others including respiratory, alcoholism and obesity/binge eating. Furthermore, the key role of opioids in different forms of pre- and post-conditioning including ischemic and pharmacological along with in remote preconditioning has also been described.
Collapse
|
29
|
Mechanisms of cellular uptake of cell-penetrating peptides. JOURNAL OF BIOPHYSICS 2011; 2011:414729. [PMID: 21687343 PMCID: PMC3103903 DOI: 10.1155/2011/414729] [Citation(s) in RCA: 677] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 01/24/2011] [Indexed: 11/25/2022]
Abstract
Recently, much attention has been given to the problem of drug delivery through the cell-membrane in order to treat and manage several diseases. The discovery of cell penetrating peptides (CPPs) represents a major breakthrough for the transport of large-cargo molecules that may be useful in clinical applications. CPPs are rich in basic amino acids such as arginine and lysine and are able to translocate over membranes and gain access to the cell interior. They can deliver large-cargo molecules, such as oligonucleotides, into cells. Endocytosis and direct penetration have been suggested as the two major uptake mechanisms, a subject still under debate. Unresolved questions include the detailed molecular uptake mechanism(s), reasons for cell toxicity, and the delivery efficiency of CPPs for different cargoes. Here, we give a review focused on uptake mechanisms used by CPPs for membrane translocation and certain experimental factors that affect the mechanism(s).
Collapse
|
30
|
Femenía T, Pérez-Rial S, Urigüen L, Manzanares J. Prodynorphin gene deletion increased anxiety-like behaviours, impaired the anxiolytic effect of bromazepam and altered GABAA receptor subunits gene expression in the amygdala. J Psychopharmacol 2011; 25:87-96. [PMID: 20530587 DOI: 10.1177/0269881110367724] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study evaluated the role of prodynorphin gene in the regulation of anxiety and associated molecular mechanisms. Emotional responses were assessed using the light-dark test, elevated plus maze and social interaction tests in prodynorphin knockout and wild-type mice. Corticotrophin releasing factor and proopiomelanocortin gene expressions in the hypothalamus were evaluated after restraint stress using in situ hybridization. The anxiolytic efficacy of bromazepam and GABA(A) receptor subunits gene expression in the amygdala were also assessed in both genotypes. The deletion of prodynorphin increased anxiety-like behaviours and proopiomelanocortin gene expression in the arcuate nucleus (two-fold). Moreover, the anxiolytic action of bromazepam was significantly attenuated in the mutant mice. Decreased GABA(A)γ(2) and increased GABA(A)β(2) gene expression receptor subunits were found in the amygdala of prodynorphin knockout mice. These results indicate that deletion of prodynorphin gene is associated with increased anxiety-like behaviours, enhanced sensibility response to stress stimuli, reduced anxiolytic efficacy of bromazepam and altered expression of the GABA(A) receptor subunits.
Collapse
Affiliation(s)
- Teresa Femenía
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | | | | | | |
Collapse
|
31
|
Vukojević V, Gräslund A, Bakalkin G. Fluorescence imaging with single-molecule sensitivity and fluorescence correlation spectroscopy of cell-penetrating neuropeptides. Methods Mol Biol 2011; 789:147-170. [PMID: 21922406 DOI: 10.1007/978-1-61779-310-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Neuropeptide-plasma membrane interactions in the absence of a corresponding specific receptor may result in neuropeptide translocation into the cell. Translocation across the plasma membrane may represent a previously unknown mechanism by which neuropeptides can signal information to the cell interior. We introduce here two complementary optical methods with single-molecule sensitivity, fluorescence imaging with avalanche photodiode detectors (APD imaging) and fluorescence correlation spectroscopy (FCS), and demonstrate how they may be applied for the analysis of neuropeptide ability to penetrate into live cells in real time. APD imaging enables us to visualize fluorescently labeled neuropeptide molecules at very low, physiologically relevant concentrations, whereas FCS enables us to characterize quantitatively their concentration and diffusion properties in different cellular compartments. Application of these methodologies for the analysis of the endogenous opioid peptide dynorphin A (Dyn A), a ligand for the kappa-opioid receptor (KOP), demonstrated that this neuropeptide may translocate across the plasma membrane of living cells and enter the cellular interior without binding to its cognate receptor.
Collapse
Affiliation(s)
- Vladana Vukojević
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
32
|
Dong YX, Fukuchi M, Inoue M, Takasaki I, Tabuchi A, Wu CF, Tsuda M. Pituitary adenylate cyclase-activating polypeptide (PACAP) is an upstream regulator of prodynorphin mRNA expression in neurons. Neurosci Lett 2010; 484:174-7. [DOI: 10.1016/j.neulet.2010.08.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
|
33
|
Schindler AG, Li S, Chavkin C. Behavioral stress may increase the rewarding valence of cocaine-associated cues through a dynorphin/kappa-opioid receptor-mediated mechanism without affecting associative learning or memory retrieval mechanisms. Neuropsychopharmacology 2010; 35:1932-42. [PMID: 20445500 PMCID: PMC2904851 DOI: 10.1038/npp.2010.67] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/05/2010] [Accepted: 04/07/2010] [Indexed: 11/09/2022]
Abstract
Stress exposure increases the risk of addictive drug use in human and animal models of drug addiction by mechanisms that are not completely understood. Mice subjected to repeated forced swim stress (FSS) before cocaine develop significantly greater conditioned place preference (CPP) for the drug-paired chamber than unstressed mice. Analysis of the dose dependency showed that FSS increased both the maximal CPP response and sensitivity to cocaine. To determine whether FSS potentiated CPP by enhancing associative learning mechanisms, mice were conditioned with cocaine in the absence of stress, then challenged after association was complete with the kappa-opioid receptor (KOR) agonist U50,488 or repeated FSS, before preference testing. Mice challenged with U50,488 60 min before CPP preference testing expressed significantly greater cocaine-CPP than saline-challenged mice. Potentiation by U50,488 was dose and time dependent and blocked by the KOR antagonist norbinaltorphimine (norBNI). Similarly, mice subjected to repeated FSS before the final preference test expressed significantly greater cocaine-CPP than unstressed controls, and FSS-induced potentiation was blocked by norBNI. Novel object recognition (NOR) performance was not affected by U50,488 given 60 min before assay, but was impaired when given 15 min before NOR assay, suggesting that KOR activation did not potentiate CPP by facilitating memory retrieval or expression. The results from this study show that the potentiation of cocaine-CPP by KOR activation does not result from an enhancement of associative learning mechanisms and that stress may instead enhance the rewarding valence of cocaine-associated cues by a dynorphin-dependent mechanism.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Analysis of Variance
- Anesthetics, Local/administration & dosage
- Animals
- Association Learning/drug effects
- Association Learning/physiology
- Behavior, Animal
- Cocaine/administration & dosage
- Conditioning, Operant/drug effects
- Cues
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Drug Interactions
- Dynorphins/metabolism
- Exploratory Behavior/drug effects
- Male
- Mental Recall/drug effects
- Mental Recall/physiology
- Mice
- Mice, Inbred C57BL
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Receptors, Opioid, kappa/metabolism
- Reward
- Stress, Psychological/physiopathology
- Swimming/psychology
Collapse
Affiliation(s)
- Abigail G Schindler
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Shuang Li
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Charles Chavkin
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
34
|
Endogenous kappa-opioid mediation of stress-induced potentiation of ethanol-conditioned place preference and self-administration. Psychopharmacology (Berl) 2010; 210:199-209. [PMID: 20401606 DOI: 10.1007/s00213-010-1844-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE Exposure to inescapable stressors increases both the rewarding properties and self-administration of cocaine through the signaling of the kappa-opioid receptor (KOR), but the effect of this signaling on other reinforcing agents remains unclear. OBJECTIVE The objective of this study is to test the hypothesis that signaling of the KOR mediates the forced swim stress (FSS)-induced potentiation of ethanol reward and self-administration. METHODS Male C57Bl/6J mice were tested in a biased ethanol-conditioned place preference (CPP) procedure, and both C57Bl/6J and prodynorphin gene-disrupted (Dyn -/-) mice were used in two-bottle free choice (TBC) assays, with or without exposure to FSS. To determine the role of the KOR in the resulting behaviors, the KOR agonist U50,488 (10 mg/kg) and antagonist nor-binaltorphimine (nor-BNI, 10 mg/kg) were administered prior to parallel testing. RESULTS C57Bl/6J mice exposed to repeated FSS 5 min prior to daily place conditioning with ethanol (0.8 g/kg) demonstrated a 4.4-fold potentiation of ethanol-CPP compared to unstressed mice that was prevented by nor-BNI pretreatment. Likewise, pretreatment with U50,488 90 min prior to daily ethanol place conditioning resulted in a 2.8-fold potentiation of ethanol-CPP. In the TBC assay, exposure to FSS significantly increased the consumption of 10% (v/v) ethanol by 19.3% in a nor-BNI-sensitive manner. Notably, Dyn -/- mice consumed a similar volume of ethanol as wild-type littermates and C57Bl/6J mice, but did not demonstrate significant stress-induced increases in consumption. CONCLUSIONS These data demonstrated a stress-induced potentiation of the rewarding effects and self-administration of ethanol mediated by KOR signaling.
Collapse
|
35
|
Dynorphin opioid peptides enhance acid-sensing ion channel 1a activity and acidosis-induced neuronal death. J Neurosci 2009; 29:14371-80. [PMID: 19906984 DOI: 10.1523/jneurosci.2186-09.2009] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) promotes neuronal damage during pathological acidosis. ASIC1a undergoes a process called steady-state desensitization in which incremental pH reductions desensitize the channel and prevent activation when the threshold for acid-dependent activation is reached. We find that dynorphin A and big dynorphin limit steady-state desensitization of ASIC1a and acid-activated currents in cortical neurons. Dynorphin potentiation of ASIC1a activity is independent of opioid or bradykinin receptor activation but is prevented in the presence of PcTx1, a peptide which is known to bind the extracellular domain of ASIC1a. This suggests that dynorphins interact directly with ASIC1a to enhance channel activity. Inducing steady-state desensitization prevents ASIC1a-mediated cell death during prolonged acidosis. This neuroprotection is abolished in the presence of dynorphins. Together, these results define ASIC1a as a new nonopioid target for dynorphin action and suggest that dynorphins enhance neuronal damage following ischemia by preventing steady-state desensitization of ASIC1a.
Collapse
|
36
|
Nandrolone decanoate administration elevates hippocampal prodynorphin mRNA expression and impairs Morris water maze performance in male rats. Neurosci Lett 2009; 467:189-93. [DOI: 10.1016/j.neulet.2009.09.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 09/11/2009] [Accepted: 09/22/2009] [Indexed: 11/18/2022]
|
37
|
Ogren SO, Kuteeva E, Elvander-Tottie E, Hökfelt T. Neuropeptides in learning and memory processes with focus on galanin. Eur J Pharmacol 2009; 626:9-17. [PMID: 19837050 DOI: 10.1016/j.ejphar.2009.09.070] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 08/27/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
Abstract
Neuropeptides represent by far the most common signalling molecules in the central nervous system. They are involved in a wide range of physiological functions and can act as neurotransmitters, neuromodulators or hormones in the central nervous system and in the periphery. Accumulating evidence during the past 40 years has implicated a number of neuropeptides in various cognitive functions including learning and memory. A major focus has been on the possibility that neuropeptides, by coexisting with classical neurotransmitters, can modulate classical transmitter function of importance for cognition. It has become increasingly clear that most transmitter systems in the brain can release a cocktail of signalling molecules including classical transmitters and several neuropeptides. However, the neuropeptides seem to come into action mainly under conditions of severe stress or aversive events, which have linked their action also to regulation of affective components of behaviour. This paper summarises some of the results of three neuropeptides, which can impact on hippocampal cognition by intrinsic (dynorphins, nociceptin) or extrinsic (galanin) modulation. The results obtained with these neuropeptides in rodent studies indicate that they are important for various aspects of hippocampal learning and memory as well as hippocampal plasticity. Recent studies in humans have also shown that dysregulation of these neuropeptides may be of importance for both neurodegenerative and neuropsychiatric disorders associated with cognitive impairments. It is concluded that compounds acting on neuropeptide receptor subtypes will represent novel targets for a number of disorders, which involve cognitive deficiencies.
Collapse
Affiliation(s)
- Sven Ove Ogren
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
38
|
McLaughlin RJ, Hill MN, Gorzalka BB. Monoaminergic neurotransmission contributes to cannabinoid-induced activation of the hypothalamic-pituitary-adrenal axis. Eur J Pharmacol 2009; 624:71-6. [PMID: 19818759 DOI: 10.1016/j.ejphar.2009.09.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 09/18/2009] [Accepted: 09/28/2009] [Indexed: 11/19/2022]
Abstract
Administration of high doses of cannabinoid CB(1) receptor agonists activates the hypothalamic-pituitary-adrenal (HPA) axis; however, the mechanism by which this occurs has not been well characterized. Both monoaminergic and glutamatergic neurotransmission are known to activate the HPA axis and cannabinoids have been found to modify levels of these neurotransmitters. Employing pharmacological antagonists to specific serotonergic, noradrenergic and glutamatergic receptor subtypes, we examined whether activation of these receptors is involved in the ability of a high dose of a cannabinoid CB(1) receptor agonist to activate the HPA axis. We characterized a robust induction of corticosterone secretion following administration of a 100 microg/kg dose of HU-210, a potent cannabinoid CB(1) receptor agonist. Pre-treatment with antagonists to the serotonergic type 1A (5-HT(1A); WAY100635; 0.5mg/kg) and 5-HT(2A/2C) (ketanserin; 1mg/kg) receptors significantly attenuated the HU-210-induced increase in corticosterone secretion. Similarly, the increase in corticosterone secretion following HU-210 administration was significantly reduced by pre-treatment with antagonists to the alpha(1)-adrenoceptor (prazosin; 1mg/kg) and beta-adrenoceptor (propanolol; 2.5mg/kg). However, pre-treatment with antagonists to the NMDA (MK-801; 0.1mg/kg) and AMPA/Kainate (DNQX; 10mg/kg) receptors did not modify activation of adrenocortical secretion evoked by HU-210. These data suggest that acute administration of exogenous cannabinoid ligands activates the HPA axis indirectly through an increase in serotonergic and noradrenergic neurotransmission.
Collapse
Affiliation(s)
- Ryan J McLaughlin
- Department of Psychology, University of British Columbia, Vancouver, B.C. V6T1Z4, Canada
| | | | | |
Collapse
|
39
|
Dynorphin, stress, and depression. Brain Res 2009; 1314:56-73. [PMID: 19782055 DOI: 10.1016/j.brainres.2009.09.074] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/14/2009] [Accepted: 09/17/2009] [Indexed: 12/29/2022]
Abstract
Stress is most often associated with aversive states. It rapidly induces the release of hormones and neuropeptides including dynorphin, which activates kappa opioid receptors (KORs) in the central and peripheral nervous systems. In animal models, many aversive effects of stress are mimicked or exacerbated by stimulation of KORs in limbic brain regions. Although KOR signaling during acute stress may increase physical ability (by producing analgesia) and motivation to escape a threat (by producing aversion), prolonged KOR signaling in response to chronic or uncontrollable stress can lead to persistent expression of behavioral signs that are characteristic of human depressive disorders (i.e., "prodepressive-like" signs). Accumulating evidence suggests that KORs contribute to the progressive amplification (sensitization) of stress-induced behaviors that occurs with repeated exposure to stress. Many of the aversive effects of stress are blocked by KOR antagonists, suggesting that these agents may have potential as therapeutics for stress-related conditions such as depression and anxiety disorders. This review summarizes current data on how KOR systems contribute to the acute (rapid), delayed, and cumulative molecular and behavioral effects of stress. We focus on behavioral paradigms that provide insight on interactions between stress and KOR function within each of these temporal categories. Using a simplified model, we consider the time course and mechanism of KOR-mediated effects in stress and suggest future directions that may be useful in determining whether KOR antagonists exert their therapeutic effects by preventing the development of stress-induced behaviors, the expression of stress-induced behaviors, or both.
Collapse
|
40
|
Schwarzer C. 30 years of dynorphins--new insights on their functions in neuropsychiatric diseases. Pharmacol Ther 2009; 123:353-70. [PMID: 19481570 PMCID: PMC2872771 DOI: 10.1016/j.pharmthera.2009.05.006] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/13/2009] [Indexed: 11/28/2022]
Abstract
Since the first description of their opioid properties three decades ago, dynorphins have increasingly been thought to play a regulatory role in numerous functional pathways of the brain. Dynorphins are members of the opioid peptide family and preferentially bind to kappa opioid receptors. In line with their localization in the hippocampus, amygdala, hypothalamus, striatum and spinal cord, their functions are related to learning and memory, emotional control, stress response and pain. Pathophysiological mechanisms that may involve dynorphins/kappa opioid receptors include epilepsy, addiction, depression and schizophrenia. Most of these functions were proposed in the 1980s and 1990s following histochemical, pharmacological and electrophysiological experiments using kappa receptor-specific or general opioid receptor agonists and antagonists in animal models. However, at that time, we had little information on the functional relevance of endogenous dynorphins. This was mainly due to the complexity of the opioid system. Besides actions of peptides from all three classical opioid precursors (proenkephalin, prodynorphin, proopiomelanocortin) on the three classical opioid receptors (delta, mu and kappa), dynorphins were also shown to exert non-opioid effects mainly through direct effects on NMDA receptors. Moreover, discrepancies between the distribution of opioid receptor binding sites and dynorphin immunoreactivity contributed to the difficulties in interpretation. In recent years, the generation of prodynorphin- and opioid receptor-deficient mice has provided the tools to investigate open questions on network effects of endogenous dynorphins. This article examines the physiological, pathophysiological and pharmacological implications of dynorphins in the light of new insights in part obtained from genetically modified animals.
Collapse
Affiliation(s)
- Christoph Schwarzer
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, A-6020 Innsbruck, Austria.
| |
Collapse
|
41
|
Kölsch H, Wagner M, Bilkei-Gorzó A, Toliat MR, Pentzek M, Fuchs A, Kaduszkiewicz H, van den Bussche H, Riedel-Heller SG, Angermeyer MC, Weyerer S, Werle J, Bickel H, Mösch E, Wiese B, Daerr M, Jessen F, Maier W, Dichgans M. Gene polymorphisms in prodynorphin (PDYN) are associated with episodic memory in the elderly. J Neural Transm (Vienna) 2009; 116:897-903. [PMID: 19468819 DOI: 10.1007/s00702-009-0238-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 04/30/2009] [Indexed: 01/07/2023]
Abstract
Cognitive functions show large variation in elderly people and are substantially heritable. Animal studies revealed that dynorphins influence cognition and memory, especially in aged animals. Thus, we tested the effect of four SNPs (rs7272891, rs1997794, rs2235751 and rs910080) and the VNTR promoter polymorphism in the prodynorphin gene (PDYN) on episodic memory and verbal fluency in a large (n = 1619) sample of elderly people (mean age: 80 +/- 3.39 years; range 75-90 years) recruited through the German study on ageing, cognition and dementia in primary care patients (AgeCoDe). We found that carriers of the minor alleles of rs1997794 (P < 0.002) and rs910080 (P < 0.005) presented with higher episodic memory scores than homozygote carriers of the major allele. Also, a three marker haplotype including these two SNPs and rs2235751 was associated with better episodic memory scores. Verbal fluency scores were non-significantly better in carriers of these respective alleles. Thus, our results suggest a role of PDYN gene variations in determining memory function also in elderly humans.
Collapse
Affiliation(s)
- Heike Kölsch
- Department of Psychiatry, University of Bonn, Sigmund-Freud-Strasse 25, Bonn 53105, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Braida D, Capurro V, Zani A, Rubino T, Viganò D, Parolaro D, Sala M. Potential anxiolytic- and antidepressant-like effects of salvinorin A, the main active ingredient of Salvia divinorum, in rodents. Br J Pharmacol 2009; 157:844-53. [PMID: 19422370 DOI: 10.1111/j.1476-5381.2009.00230.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Drugs targeting brain kappa-opioid receptors produce profound alterations in mood. In the present study we investigated the possible anxiolytic- and antidepressant-like effects of the kappa-opioid receptor agonist salvinorin A, the main active ingredient of Salvia divinorum, in rats and mice. EXPERIMENTAL APPROACH Experiments were performed on male Sprague-Dawley rats or male Albino Swiss mice. The anxiolytic-like effects were tested by using the elevated plus maze, in rats. The antidepressant-like effect was estimated through the forced swim (rats) and the tail suspension (mice) test. kappa-Opioid receptor involvement was investigated pretreating animals with the kappa-opioid receptor antagonist, nor-binaltorphimine (1 or 10 mgxkg(-1)), while direct or indirect activity at CB(1) cannabinoid receptors was evaluated with the CB(1) cannabinoid receptor antagonist, N-(piperidin-1-yl) -5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251, 0.5 or 3 mgxkg(-1)), binding to striatal membranes of naïve rats and assay of fatty acid amide hydrolase in prefrontal cortex, hippocampus and amygdala. KEY RESULTS Salvinorin A, given s.c. (0.001-1000 microgxkg(-1)), exhibited both anxiolytic- and antidepressant-like effects that were prevented by nor-binaltorphimine or AM251 (0.5 or 3 mgxkg(-1)). Salvinorin A reduced fatty acid amide hydrolase activity in amygdala but had very weak affinity for cannabinoid CB(1) receptors. CONCLUSIONS AND IMPLICATIONS The anxiolytic- and antidepressant-like effects of Salvinorin A are mediated by both kappa-opioid and endocannabinoid systems and may partly explain the subjective symptoms reported by recreational users of S. divinorum.
Collapse
Affiliation(s)
- Daniela Braida
- Department of Pharmacology, Chemotherapy and Medical Toxicology, University of Milan, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Endogenous kappa opioid activation mediates stress-induced deficits in learning and memory. J Neurosci 2009; 29:4293-300. [PMID: 19339623 DOI: 10.1523/jneurosci.6146-08.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We hypothesized that mice subjected to prolonged stress would demonstrate decreased performance in a learning and memory task attributable to the endogenous activation of the kappa opioid receptor (KOR). C57BL/6J mice were tested using the novel object recognition (NOR) assay at various time points after exposure to repeated forced swim stress (FSS). Unstressed mice demonstrated recognition of the novel object at the end of a procedure using three 10-min object interaction phases, with a recognition index (RI) for the novel object of 71.7+/-3.4%. However, 1 h after exposure to FSS, vehicle-pretreated mice displayed a significant deficit in performance (RI=58.2+/-4.1%) compared with unstressed animals. NOR was still significantly reduced 4 but not 24 h after FSS. Treatment with the KOR-selective antagonist norbinaltorphimine (10 mg/kg, i.p.) prevented the decline in learning and memory performance. Moreover, direct activation of the KOR induced performance deficits in NOR, as exogenous administration of the KOR agonist U50,488 [(+/-)-trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide] (0.3 mg/kg, i.p.) suppressed NOR (RI=56.0+/-3.9%). The effect of FSS on NOR performance was further examined in mice lacking the gene for the endogenous KOR agonist dynorphin (Dyn). Dyn gene-disrupted mice exposed to FSS did not show the subsequent learning and memory deficits (RI=66.8+/-3.8%) demonstrated by their wild-type littermates (RI=49.7+/-2.9%). Overall, these results suggest that stress-induced activation of the KOR may be both necessary and sufficient to produce subsequent deficits in novel object recognition.
Collapse
|
44
|
Wittmann W, Schunk E, Rosskothen I, Gaburro S, Singewald N, Herzog H, Schwarzer C. Prodynorphin-derived peptides are critical modulators of anxiety and regulate neurochemistry and corticosterone. Neuropsychopharmacology 2009; 34:775-85. [PMID: 18800067 PMCID: PMC2873573 DOI: 10.1038/npp.2008.142] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Stress and anxiety are mainly regulated by amygdala and hypothalamic circuitries involving several neurotransmitter systems and providing physiological responses to peripheral organs via the hypothalamic-pituitary-adrenal axis and other pathways. The role of endogenous opioid peptides in this process is largely unknown. Here we show for the first time that anxiolytic parameters of explorative behavior in mice lacking prodynorphin were increased 2-4-fold in the open field, the elevated plus maze and the light-dark test. Consistent with this, treatment of wild-type mice with selective kappa-opioid receptor antagonists GNTI or norbinaltorphimine showed the same effects. Furthermore, treatment of prodynorphin knockout animals with U-50488H, a selective kappa-opioid receptor agonist, fully reversed their anxiolytic phenotype. These behavioral data are supported by an approximal 30% reduction in corticotropin-releasing hormone (CRH) mRNA expression in the hypothalamic paraventricular nucleus and central amygdala and an accompanying 30-40% decrease in corticosterone serum levels in prodynorphin knockout mice. Although stress-induced increases in corticosterone levels were attenuated in prodynorphin knockout mice, they were associated with minor increases in depression-like behavior in the tail suspension and forced swim tests. Taken together, our data suggest a pronounced impact of endogenous prodynorphin-derived peptides on anxiety, but not stress coping ability and that these effects are mediated via kappa-opioid receptors. The delay in the behavioral response to kappa-opioid receptor agonists and antagonist treatment suggests an indirect control level for the action of dynorphin, probably by modulating the expression of CRH or neuropeptide Y, and subsequently influencing behavior.
Collapse
Affiliation(s)
- Walter Wittmann
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Eduard Schunk
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Iris Rosskothen
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Stefano Gaburro
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Herbert Herzog
- Neuroscience Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Christoph Schwarzer
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
45
|
Nociceptive behavior induced by the endogenous opioid peptides dynorphins in uninjured mice: evidence with intrathecal N-ethylmaleimide inhibiting dynorphin degradation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 85:191-205. [PMID: 19607971 DOI: 10.1016/s0074-7742(09)85015-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dynorphins, the endogenous opioid peptides derived from prodynorphin may participate not only in the inhibition, but also in facilitation of spinal nociceptive transmission. However, the mechanism of pronociceptive dynorphin actions, and the comparative potential of prodynorphin processing products to induce these actions were not fully elucidated. In our studies, we examined pronociceptive effects of prodynorphin fragments dynorphins A and B and big dynorphin consisting of dynorphins A and B, and focused on the mechanisms underlying these effects. Our principal finding was that big dynorphin was the most potent pronociceptive dynorphin; when administered intrathecally into mice at extremely low doses (1-10fmol), big dynorphin produced nociceptive behavior through the activation of the NMDA receptor ion-channel complex by acting on the polyamine recognition site. We next examined whether the endogenous dynorphins participate in the spinal nociceptive transmission using N-ethylmaleimide (NEM) that blocks dynorphin degradation by inhibiting cysteine proteases. Similar to big dynorphin and dynorphin A, NEM produced nociceptive behavior mediated through inhibition of the degradation of endogenous dynorphins, presumably big dynorphin that in turn activates the NMDA receptor ion-channel complex by acting on the polyamine recognition site. Our findings support the notion that endogenous dynorphins are critical neurochemical mediators of spinal nociceptive transmission in uninjured animals. This chapter will review above-described phenomena and their mechanism.
Collapse
|
46
|
Wang Q, Zengin A, Deng C, Li Y, Newell KA, Yang GY, Lu Y, Wilder-Smith EP, Zhao H, Huang XF. High dose of simvastatin induces hyperlocomotive and anxiolytic-like activities: The association with the up-regulation of NMDA receptor binding in the rat brain. Exp Neurol 2008; 216:132-8. [PMID: 19100736 DOI: 10.1016/j.expneurol.2008.11.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 11/07/2008] [Accepted: 11/19/2008] [Indexed: 11/28/2022]
Abstract
Statins are widely being used for the treatment of a variety of conditions beyond their original indication for lowering cholesterol. We have previously reported that simvastatin affected the dopaminergic system in the rat brain. This study aims to investigate locomotor and anxiety effects along with the regional changes of N-methyl-d-aspartate (NMDA) receptors in the rat brain after 4-week administration of simvastatin. Hyperlocomotive and anxiolytic-like activities in the rat were observed after chronic administration of high dose simvastatin (10 mg/kg/day). Distributions and alterations of NMDA receptors in the post-mortem rat brain were detected by [(3)H] MK-801 binding autoradiography. Simvastatin increased [(3)H] MK-801 binding, predominantly in the prefrontal cortex (20%, p=0.003), primary motor cortex (20%, p<0.001), cingulate cortex (28%, p<0.001), hippocampus (41%, p<0.001), caudate putamen (30%, p=0.029), nucleus accumbens (27%, p=0.035) and amygdala (45%, p<0.001) compared to controls. Significant positive correlations were identified between hyperlocomotive as well as anxiolytic-like activities and the upregulation of NMDA receptors in different brain regions. Our results also provide strong evidence that chronic high dose simvastatin administration is to exhibit NMDA antagonist-like effects, which would partially explain the anxiolytic and hyperlocomotor activities. These findings contribute to a better understanding of the critical roles of simvastatin in modulating psycho-neurodegenerative disorders, via NMDA receptors.
Collapse
Affiliation(s)
- Qing Wang
- Centre for Translational Neuroscience, School of Health Sciences, University of Wollongong, NSW, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Secondary structure transitions and aggregation induced in dynorphin neuropeptides by the detergent sodium dodecyl sulfate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2580-7. [DOI: 10.1016/j.bbamem.2008.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 07/16/2008] [Accepted: 07/16/2008] [Indexed: 11/22/2022]
|
48
|
Sharma HS. Interaction between amino acid neurotransmitters and opioid receptors in hyperthermia-induced brain pathology. PROGRESS IN BRAIN RESEARCH 2008; 162:295-317. [PMID: 17645925 DOI: 10.1016/s0079-6123(06)62015-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This review is focused on the possible interaction between amino acid neurotransmitters and opioid receptors in hyperthermia-induced brain dysfunction. A balance between excitatory and inhibitory amino acids appears to be necessary for normal brain function. Increased excitotoxicity and a decrease in inhibitory amino acid neurotransmission in hyperthermia are associated with brain pathology and cognitive impairment. This is supported by recent data from our laboratory that show a marked increase in glutamate and aspartate and a decrease in GABA and glycine in several brain areas following heat stress at the time of brain pathology. Blockade of multiple opioid receptors with naloxone restored the heat stress-induced decline in GABA and glycine and thwarted the elevation of glutamate and aspartate in the CNS. In naloxone-treated stressed animals, cognitive dysfunction and brain pathology are largely absent. Taken together, these new findings suggest that an intricate balance between excitatory and inhibitory amino acids is important for brain function in heat stress. In addition, opioid receptors play neuromodulatory roles in amino acid neurotransmission in hyperthermia.
Collapse
|
49
|
Hugonin L, Vukojević V, Bakalkin G, Gräslund A. Calcium influx into phospholipid vesicles caused by dynorphin neuropeptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1267-73. [PMID: 18339302 DOI: 10.1016/j.bbamem.2008.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 01/21/2008] [Accepted: 02/11/2008] [Indexed: 11/19/2022]
Abstract
Dynorphins, endogeneous opioid peptides, function as ligands to the opioid kappa receptors but also induce non-opioid excitotoxic effects. Dynorphin A can increase the intra-neuronal calcium concentration through a non-opioid and non-NMDA mechanism. In this investigation, we show that big dynorphin, dynorphin A and to some extent dynorphin A (1-13), but not dynorphin B, allow calcium to enter into large unilamellar phospholipid vesicles with partly negative headgroups. The effects parallel the previously studied potency of dynorphins to translocate through biological membranes and to cause calcein leakage from large unilamellar phospholipid vesicles. There is no calcium ion influx into vesicles with zwitterionic headgroups. We have also investigated if the dynorphins can translocate through the vesicle membranes and estimated the relative strength of interaction of the peptides with the vesicles by fluorescence resonance energy transfer. The results show that dynorphins do not translocate in this membrane model system. There is a strong electrostatic contribution to the interaction of the peptides with the membrane model system.
Collapse
Affiliation(s)
- Loïc Hugonin
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
50
|
Herzog CJ, Miot S, Mansuy IM, Giros B, Tzavara ET. Chronic valproate normalizes behavior in mice overexpressing calcineurin. Eur J Pharmacol 2008; 580:153-60. [DOI: 10.1016/j.ejphar.2007.10.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/12/2007] [Accepted: 10/18/2007] [Indexed: 11/28/2022]
|