1
|
Mamali PM, Dignon C, Ngwenya A, Maseko BC. Sex-Specific Behavioral Features of the Prenatal Valproic Acid Rat Model of Autism Spectrum Disorder. Brain Sci 2025; 15:388. [PMID: 40309826 PMCID: PMC12025559 DOI: 10.3390/brainsci15040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Background/Objectives: Autism is a complex neurodevelopmental disorder characterized by restricted behaviors and impaired social and communication skills. The exact cause of autism remains unknown. One promising animal model for studying autism is the valproic acid rat model. Due to a 1 to 4 bias for males in autism occurrence, most animal model studies investigate only males and neglect females. However, female autism often appears different from that observed in males. Females are said to be less regularly diagnosed because they can "mask" their symptoms. Female autism is as necessary to investigate as male autism. Methods: Fertile adult female Sprague-Dawley rats were impregnated and injected with valproic acid on gestational day 13. Male and female offspring were subjected to behavioral tests to investigate autistic symptoms. Tests included novel object recognition, balance-beam, Y-maze, hole-board, three-chamber, marble burying, olfactory, light/dark and hot plate tests. Results: The tests revealed that VPA-exposed rats had increased anxiety-like behaviors, hyperactivity, and impaired non-verbal communication. However, they did not display repetitive behaviors or cognitive impairments. Notably, male and female rats showed different autism-like traits, with both showing hyperactivity, and males (but not females) additionally showing impaired sociability and increased anxiety. Conclusions: The findings suggest that prenatal exposure to VPA induces autism-like behaviors in both male and female Sprague-Dawley rat offspring. However, males appear more impacted by VPA exposure as evinced by their display of more autism-like symptoms relative to females. This study provides support for including both sexes in all studies modelling autism, as outcomes are seemingly impacted by the sex being observed.
Collapse
Affiliation(s)
| | | | | | - Busisiwe Constance Maseko
- School of Anatomical Sciences, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa; (P.M.M.); (C.D.); (A.N.)
| |
Collapse
|
2
|
Tunçak S, Gören B, Uzbay T, Öz P. Assessment of Empathy-Like Behaviour in Valproic Acid-Induced Rat Model of Autism. Int J Dev Neurosci 2025; 85:e70008. [PMID: 40045552 DOI: 10.1002/jdn.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/28/2025] [Indexed: 05/13/2025] Open
Abstract
Prenatal VPA exposure is used to model ASD-like symptoms. Disrupted empathy is frequently observed in individuals with ASD, but empathy-like behaviour is not well documented in animal models. Pregnant Wistar Albino rats were administered either 400 mg/kg VPA or saline i.p. on E12.5. Empathy-like behaviour was assessed at P30 and P60 in both female and male offspring, who were also tested for olfactory discrimination, sociability, locomotor activity, and pre-pulse inhibition. Prenatal exposure to VPA significantly impaired empathy-like behaviour, as measured by the duration of time the subject spent with its sibling and the frequency of attempts to open the restrainer door. When P30 and P60 results were compared within groups, a developmental arrest in empathy-like behaviour was observed in the VPA group, whereas the control group showed improvement in their scores. Prenatal exposure to VPA also resulted in significantly decreased sociability and pre-pulse inhibition rates. In this study, an adapted version for measuring empathy-like behaviour has been proposed. This version involved a restrained sibling and no prior training, allowing the measurement to be independent of learning, memory, and stranger anxiety. The results show that VPA has negative effects on social development and is a valid tool for modelling ASD in both females and males.
Collapse
Affiliation(s)
- Süeda Tunçak
- Department of Physiology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Bülent Gören
- Department of Physiology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Tayfun Uzbay
- Neuropsychopharmacology Application and Research Center, TC Üsküdar University, İstanbul, Turkey
- Department of Internal Medicine, Faculty of Medicine, TC Üsküdar University, İstanbul, Turkey
| | - Pınar Öz
- Neuropsychopharmacology Application and Research Center, TC Üsküdar University, İstanbul, Turkey
- Department of Molecular Biology and Genetics (Engl.), Faculty of Engineering and Natural Sciences, TC Üsküdar University, İstanbul, Turkey
| |
Collapse
|
3
|
Echefu B, Becker M, Stein D, Ornoy A. Methods for Assessing Neurodevelopmental Disorders in Mice: A Critical Review of Behavioral Tests and Methodological Considerations Searching to Improve Reliability. NEUROSCI 2025; 6:27. [PMID: 40265357 PMCID: PMC12015833 DOI: 10.3390/neurosci6020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Many neurobehavioral tests are used for the assessment of human-like behaviors in animals. Most of them were developed in rodents and are used for the assessment of animal models that mimic human neurodevelopmental and neuropsychiatric disorders (NDDs). We have described tests for assessing social behavior, social interaction, and social communication; tests for restricted and repetitive behaviors; tests for cognitive impairment, for sensory stimuli, for anxiety like behavior, and for motor coordination deviations. These tests are used to demonstrate autistic-like behavior as well as other NDDs. We described possible general pitfalls in the performance of such studies, as well as probable individual errors for each group of tests assessing specific behavior. The mentioned pitfalls may induce crucial errors in the interpretation of the results, minimizing the reliability of specific models of defined human NDD. It is imperative to minimize these pitfalls and use sufficient and reliable tests that can demonstrate as many of the traits of the human disorder, grade the severity of the specific deviations and the severity of the tested NDD by using a scoring system. Due to possible gender differences in the clinical presentations of NDD, it is important to carry out studies on males and females.
Collapse
Affiliation(s)
- Boniface Echefu
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.); (D.S.)
| | - Maria Becker
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.); (D.S.)
| | - Dan Stein
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.); (D.S.)
| | - Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.); (D.S.)
- Jerusalem Multidisciplinary College, Jerusalem, Israel
- Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| |
Collapse
|
4
|
Mohamed AF, El-Gammal MA, El-Yamany MF, Khodeir AE. Sigma-1 receptor modulation by fluvoxamine ameliorates valproic acid-induced autistic behavior in rats: Involvement of chronic ER stress modulation, enhanced autophagy and M1/M2 microglia polarization. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111192. [PMID: 39510157 DOI: 10.1016/j.pnpbp.2024.111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. While, fluvoxamine (FVX) is an antidepressant and widely prescribed to ASD patients, clinical results are inconclusive and the mechanism of FVX in the management of ASD is unclear. This study determined the potential therapeutic impact of FVX, a sigma-1 receptor (S1R) agonist, against the valproic acid (VPA)-induced model of autism. On gestational day 12.5, Wistar pregnant rats were given a single intraperitoneal (i.p.) injection of either VPA (600 mg/kg) or normal saline (10 mL/kg, vehicle-control). Starting on postnatal day (PND) 21 to PND 50, FVX (30 mg/kg, P·O. daily) and NE-100, (S1R) antagonist, (1 mg/kg, i.p. daily) were given to male pups. Behavior tests and histopathological changes were identified at the end of the experiment. In addition, the cerebellum biomarkers of endoplasmic reticulum (ER) stress and autophagy were assessed. Microglial cell polarization to M1 and M2 phenotypes was also assessed. FVX effectively mitigated the histopathological alterations in the cerebellum caused by VPA. FVX enhanced sociability and stereotypic behaviors in addition to its noteworthy impact on autophagy enhancement, ER stress deterioration, and controlling microglial cell polarization. The current investigation confirmed that the S1R agonist, FVX, can lessen behavioral and neurochemical alterations in the VPA-induced rat model of autism.
Collapse
Affiliation(s)
- Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Governorate, Giza 11562, Egypt; Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt.
| | - Mohamad A El-Gammal
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt.
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Governorate, Giza 11562, Egypt.
| | - Ahmed E Khodeir
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt.
| |
Collapse
|
5
|
Lian B, He Y, Dong D, Quan L, Feng T, Li M. Developmental Trajectory of Autistic-Like Behaviors in a Prenatal Valproic Acid Rat Model of Autism. Dev Psychobiol 2025; 67:e70008. [PMID: 39648273 DOI: 10.1002/dev.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/17/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024]
Abstract
Autism spectrum disorders (ASDs) are characterized by deficits in social functioning, stereotyped patterns of behaviors, narrowed interests, and elevated anxiety. Certain ASD symptoms can persist, whereas others may improve throughout the lifespan, but the specific patterns of changes have not been clearly delineated. Using a valproic acid (VPA) rat model of ASD, the present study took a developmental approach and examined how autistic-like behaviors, including anxiety-like behavior, object obsession, and social functioning deficits, manifested differently in three critical periods representing preadolescent (postnatal day [PND] 25), adolescent (PND 45), and adulthood life stage (PND 75) in a sex-dependent manner. Starting on PNDs 25, 45, and 75, VPA- or saline-exposed male and female offspring were tested in an elevated plus maze (EPM) and a newly validated composite social and object interaction and a triple recognition test (object, spatial, and social recognition). Across the three age groups, VPA-exposed offspring did not exhibit enhanced anxiety-like behavior in the EPM nor enhanced object interaction ("object obsession") in the triple recognition test. However, both male and female preadolescent (PND 25) VPA-exposed offspring showed a significantly increased latency to initiate social contact than the saline-exposed controls, although their latencies to contact novel objects were comparable to those of the controls. Male preadolescent and adolescent VPA-exposed offspring, to a lesser extent the female preadolescent offspring, exhibited significantly lower levels of social interaction. These social functioning deficits were absent in adult VPA offspring. Additionally, prenatal VPA exposure did not cause an impairment of object recognition, spatial recognition, or social recognition of a familiar conspecific. Unexpectedly, it enhanced social recognition of a novel conspecific, but only in adolescent female offspring. These findings suggest that this rat model based on prenatal VPA exposure is valid in capturing early social motivational and functioning deficits but is limited in its capacity to model increased object obsession and enhanced anxiety as seen in ASD, as well as the developmental trajectory of non-social ASD symptoms. Recognizing these limitations is important as it informs us how to properly use this model to investigate the neurobiology of ASD and incentivizes us to develop better rodent models.
Collapse
Affiliation(s)
- Bin Lian
- Colleage of Teacher Education, Shaoxing University, Shaoxing, China
| | - Yihan He
- Colleage of Teacher Education, Shaoxing University, Shaoxing, China
| | - Da Dong
- Colleage of Teacher Education, Shaoxing University, Shaoxing, China
| | - Li Quan
- Colleage of Teacher Education, Qujing Normal University, Qujing, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Ming Li
- Department of Psychology, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Subtirelu R, Writer M, Teichner E, Patil S, Indrakanti D, Werner TJ, Alavi A. Potential Neuroimaging Biomarkers for Autism Spectrum Disorder: A Comprehensive Review of MR Imaging, fMR Imaging, and PET Studies. PET Clin 2025; 20:25-37. [PMID: 39482217 DOI: 10.1016/j.cpet.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Autism spectrum disorder (ASD) is a characteristically heterogeneous disorder, as multiple neurodevelopmental disorders are characterized by similar symptomology and behavior. Research has shown that individuals with ASD benefit from early intervention; neuroimaging data may reveal information that cannot be obtained from traditional behavioral analysis. This review discusses the use of structural MR imaging, functional MR imaging (fMR imaging), and PET in the detection of ASD. Larger datasets, standardized methods of collection and analysis, and more robust meta-analyses are required to implement the observed biomarkers and improve the lives of patients living with AUD.
Collapse
Affiliation(s)
- Robert Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Milo Writer
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Eric Teichner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street #100, Philadelphia, PA, USA
| | - Shiv Patil
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street #100, Philadelphia, PA, USA
| | - Deepak Indrakanti
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: implications for brain development and autism. Transl Psychiatry 2024; 14:482. [PMID: 39632793 PMCID: PMC11618798 DOI: 10.1038/s41398-024-03179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood-stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNA-seq data obtained from E12.5 fetal mouse brains 3 hours after VPA administration to the pregnant dam revealed that VPA rapidly and significantly increased or decreased the expression of approximately 7,300 genes. No significant sex differences in VPA-induced gene expression were observed. Expression of 399 autism risk genes was significantly altered by VPA as was expression of 258 genes that have been reported to modulate fetal brain development but are not otherwise linked to autism. Expression of genes associated with intracellular signaling pathways, neurogenesis, and excitation-inhibition balance as well as synaptogenesis, neuronal fate determination, axon and dendritic development, neuroinflammation, circadian rhythms, and epigenetic modulation of gene expression was dysregulated by VPA. Notably, at least 40 genes that are known to regulate embryonic neurogenesis were dysregulated by VPA. The goal of this study was to identify mouse genes that are: (a) significantly up- or downregulated by VPA in the fetal brain and (b) associated with autism and/or known to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity and, consequently behavior, in the adult. The genes meeting these criteria provide potential targets for future hypothesis-driven studies to elucidate the proximal causes of errors in brain connectivity underlying neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Susan G Dorsey
- Department of Pain and Translational Symptom Science University of Maryland School of Nursing, Baltimore, MD, 21201, USA
| | - Evelina Mocci
- Department of Pain and Translational Symptom Science University of Maryland School of Nursing, Baltimore, MD, 21201, USA
- Institute for Genome Sciences University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Malcolm V Lane
- Translational Toxicology/Department of Epidemiology and Public Health University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Bruce K Krueger
- Departments of Physiology and Psychiatry University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
8
|
Lu XY, Li MQ, Li YT, Yao JY, Zhang LX, Zeng ZH, Yu-Liu, Chen ZR, Li CQ, Zhou XF, Li F. Oral edaravone ameliorates behavioral deficits and pathologies in a valproic acid-induced rat model of autism spectrum disorder. Neuropharmacology 2024; 258:110089. [PMID: 39033904 DOI: 10.1016/j.neuropharm.2024.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Autism spectrum disorder (ASD) is neurodevelopmental disorder with a high incidence rate, characterized by social deficits and repetitive behaviors. There is currently no effective management available to treat the core symptoms of ASD; however, oxidative stress has been implicated in its pathogenesis. Edaravone (EDA), a free-radical scavenger, is used to treat amyotrophic lateral sclerosis (ALS) and acute ischemic stroke (AIS). Here, we hypothesized that an oral formula of EDA may have therapeutic efficacy in the treatment of core ASD symptoms. A rat model of autism was established by prenatal exposure to valproic acid (VPA), and the offsprings were orally treated with EDA at low (3 mg/kg), medium (10 mg/kg), and high (30 mg/kg) doses once daily for 28 days starting from postnatal day 25 (PND25). Oral EDA administration alleviated the core symptoms in VPA rats in a dose-dependent manner, including repetitive stereotypical behaviors and impaired social interaction. Furthermore, oral administration of EDA significantly reduced oxidative stress in a dose-dependent manner, as evidenced by a reduction in oxidative stress markers and an increase in antioxidants in the blood and brain. In addition, oral EDA significantly attenuated downstream pathologies, including synaptic and mitochondrial damage in the brain. Proteomic analysis further revealed that EDA corrected the imbalance in brain oxidative reduction and mitochondrial proteins induced by prenatal VPA administration. Overall, these findings demonstrate that oral EDA has therapeutic potential for ASD by targeting the oxidative stress pathway of disease pathogenesis and paves the way towards clinical studies.
Collapse
Affiliation(s)
- Xiao-Yu Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Meng-Qing Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | | | - Jia-Yu Yao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Lin-Xuan Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Ze-Hao Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Zhao-Rong Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Fu Zhou
- Suzhou Auzone Biotechnology, Suzhou, China; Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China.
| |
Collapse
|
9
|
Yoshida F, Nagatomo R, Utsunomiya S, Kimura M, Shun S, Kono R, Kato Y, Nao Y, Maeda K, Koyama R, Ikegaya Y, Lichtenthaler SF, Takatori S, Takemoto H, Ogawa K, Ito G, Tomita T. Soluble form of Lingo2, an autism spectrum disorder-associated molecule, functions as an excitatory synapse organizer in neurons. Transl Psychiatry 2024; 14:448. [PMID: 39443477 PMCID: PMC11500186 DOI: 10.1038/s41398-024-03167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a developmental disorder characterized by impaired social communication and repetitive behaviors. In recent years, a pharmacological mouse model of ASD involving maternal administration of valproic acid (VPA) has become widely used. Newborn pups in this model show an abnormal balance between excitatory and inhibitory (E/I) signaling in neurons and exhibit ASD-like behavior. However, the molecular basis of this model and its implications for the pathogenesis of ASD in humans remain unknown. Using quantitative secretome analysis, we found that the level of leucine-rich repeat and immunoglobulin domain-containing protein 2 (Lingo2) was upregulated in the conditioned medium of VPA model neurons. This upregulation was associated with excitatory synaptic organizer activity. The secreted form of the extracellular domain of Lingo2 (sLingo2) is produced by the transmembrane metalloprotease ADAM10 through proteolytic processing. sLingo2 was found to induce the formation of excitatory synapses in both mouse and human neurons, and treatment with sLingo2 resulted in an increased frequency of miniature excitatory postsynaptic currents in human neurons. These findings suggest that sLingo2 is an excitatory synapse organizer involved in ASD, and further understanding of the mechanisms by which sLingo2 induces excitatory synaptogenesis is expected to advance our understanding of the pathogenesis of ASD.
Collapse
Affiliation(s)
- Fumiaki Yoshida
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryota Nagatomo
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shun Utsunomiya
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd, Osaka, Japan
| | - Misaki Kimura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shiyori Shun
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Rena Kono
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuma Kato
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yosuke Nao
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuma Maeda
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd, Osaka, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- 5Department of Translational Neurobiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takemoto
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd, Osaka, Japan
- Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Ogawa
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd, Osaka, Japan
| | - Genta Ito
- Department of Biomolecular Chemistry, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
- Social Cooperation Program of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- Social Cooperation Program of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
10
|
King C, Rogers LG, Jansen J, Sivayokan B, Neyhard J, Warnes E, Hall SE, Plakke B. Adolescent treadmill exercise enhances hippocampal brain-derived neurotrophic factor (BDNF) expression and improves cognition in autism-modeled rats. Physiol Behav 2024; 284:114638. [PMID: 39004196 PMCID: PMC12032843 DOI: 10.1016/j.physbeh.2024.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by repetitive behaviors and altered communication abilities. Exercise is a low-cost intervention that could improve cognitive function and improve brain plasticity mechanisms. Here, the valproic acid (VPA) model was utilized to induce ASD-like phenotypes in rodents. Animals were exercised on a treadmill and performance was evaluated on a cognitive flexibility task. Biomarkers related to exercise and plasticity regulation were quantified from the prefrontal cortex, hippocampus, and skeletal muscle. Exercised VPA animals had higher levels of hippocampal BDNF compared to sedentary VPA animals and upregulated antioxidant enzyme expression in skeletal muscle. Cognitive improvements were demonstrated in both sexes, but in different domains of cognitive flexibility. This research demonstrates the benefits of exercise and provides evidence that molecular responses to exercise occur in both the central nervous system and in the periphery. These results suggest that improving regulation of BDNF via exercise, even at low intensity, could provide better synaptic regulation and cognitive benefits for individuals with ASD.
Collapse
Affiliation(s)
- Cole King
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Liza G Rogers
- Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jeremy Jansen
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Bhavana Sivayokan
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Jenna Neyhard
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Ellie Warnes
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Stephanie E Hall
- Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Bethany Plakke
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
11
|
Farrag EAE, Askar MH, Abdallah Z, Mahmoud SM, Abdulhai EA, Abdelrazik E, Nashar EME, Alasiri FM, Alqahtani ANS, Eldesoqui M, Eldib AM, Magdy A. Comparative effect of atorvastatin and risperidone on modulation of TLR4/NF-κB/NOX-2 in a rat model of valproic acid-induced autism. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:26. [PMID: 39350139 PMCID: PMC11742802 DOI: 10.1186/s12993-024-00250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that is significantly increasing, resulting in severe distress. The approved treatment for ASD only partially improves the sympoms, but it does not entirely reverse the symptoms. Developing novel disease-modifying drugs is essential for the continuous improvement of ASD. Because of its pleiotropic effect, atorvastatin has been garnered attention for treating neuronal degeneration. The present study aimed to investigate the therapeutic effects of atorvastatin in autism and compare it with an approved autism drug (risperidone) through the impact of these drugs on TLR4/NF-κB/NOX-2 and the apoptotic pathway in a valproic acid (VPA) induced rat model of autism. METHODS On gestational day 12.5, pregnant rats received a single IP injection of VPA (500 mg/kg), for VPA induced autism, risperidone and atorvastatin groups, or saline for control normal group. At postnatal day 21, male offsprings were randomly divided into four groups (n = 6): control, VPA induced autism, risperidone, and atorvastatin. Risperidone and atorvastatin were administered from postnatal day 21 to day 51. The study evaluated autism-like behaviors using the three-chamber test, the dark light test, and the open field test at the end of the study. Biochemical analysis of TLR4, NF-κB, NOX-2, and ROS using ELISA, RT-PCR, WB, histological examination with hematoxylin and eosin and immunohistochemical study of CAS-3 were performed. RESULTS Male offspring of prenatal VPA-exposed female rats exhibited significant autism-like behaviors and elevated TLR4, NF-κB, NOX-2, ROS, and caspase-3 expression. Histological analysis revealed structural alterations. Both risperidone and atorvastatin effectively mitigated the behavioral, biochemical, and structural changes associated with VPA-induced rat model of autism. Notably, atorvastatin group showed a more significant improvement than risperidone group. CONCLUSIONS The research results unequivocally demonstrated that atorvastatin can modulate VPA-induced autism by suppressing inflammation, oxidative stress, and apoptosis through TLR4/NF-κB/NOX-2 signaling pathway. Atorvastatin could be a potential treatment for ASD.
Collapse
Affiliation(s)
- Eman A E Farrag
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, 31516, Egypt.
| | - Mona H Askar
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Zienab Abdallah
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Safinaz M Mahmoud
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman A Abdulhai
- Department of Pediatrics, Faculty of Medicine, Mansoura, University, Mansoura, Egypt
| | - Eman Abdelrazik
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Mohamad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, 62529, Abha, Saudi Arabia
| | | | | | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, 13713, Diriyah, Riyadh, Saudi Arabia
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ali M Eldib
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
- Al Rayan National College of Medicine, Hejrah Street-Madinah, P.O. Box 41411, Al-Madinah, Kingdom of Saudi Arabia
| | - Alshimaa Magdy
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
12
|
Ornoy A, Echefu B, Becker M. Animal Models of Autistic-like Behavior in Rodents: A Scoping Review and Call for a Comprehensive Scoring System. Int J Mol Sci 2024; 25:10469. [PMID: 39408797 PMCID: PMC11477392 DOI: 10.3390/ijms251910469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Appropriate animal models of human diseases are a cornerstone in the advancement of science and medicine. To create animal models of neuropsychiatric and neurobehavioral diseases such as autism spectrum disorder (ASD) necessitates the development of sufficient neurobehavioral measuring tools to translate human behavior to expected measurable behavioral features in animals. If possible, the severity of the symptoms should also be assessed. Indeed, at least in rodents, adequate neurobehavioral and neurological tests have been developed. Since ASD is characterized by a number of specific behavioral trends with significant severity, animal models of autistic-like behavior have to demonstrate the specific characteristic features, namely impaired social interactions, communication deficits, and restricted, repetitive behavioral patterns, with association to several additional impairments such as somatosensory, motor, and memory impairments. Thus, an appropriate model must show behavioral impairment of a minimal number of neurobehavioral characteristics using an adequate number of behavioral tests. The proper animal models enable the study of ASD-like-behavior from the etiologic, pathogenetic, and therapeutic aspects. From the etiologic aspects, models have been developed by the use of immunogenic substances like polyinosinic-polycytidylic acid (PolyIC), lipopolysaccharide (LPS), and propionic acid, or other well-documented immunogens or pathogens, like Mycobacterium tuberculosis. Another approach is the use of chemicals like valproic acid, polychlorinated biphenyls (PCBs), organophosphate pesticides like chlorpyrifos (CPF), and others. These substances were administered either prenatally, generally after the period of major organogenesis, or, especially in rodents, during early postnatal life. In addition, using modern genetic manipulation methods, genetic models have been created of almost all human genetic diseases that are manifested by autistic-like behavior (i.e., fragile X, Rett syndrome, SHANK gene mutation, neuroligin genes, and others). Ideally, we should not only evaluate the different behavioral modes affected by the ASD-like behavior, but also assess the severity of the behavioral deviations by an appropriate scoring system, as applied to humans. We therefore propose a scoring system for improved assessment of ASD-like behavior in animal models.
Collapse
Affiliation(s)
- Asher Ornoy
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
- Hadassah Academic College, Jerusalem 9101001, Israel
- Hadassah Medical School, Hebrew University, Jerusalem 9112102, Israel
| | - Boniface Echefu
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| | - Maria Becker
- Department of Morphological Sciences and Teratology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel; (B.E.); (M.B.)
| |
Collapse
|
13
|
Desai NS, Zhong C, Kim R, Talmage DA, Role LW. A simple MATLAB toolbox for analyzing calcium imaging data in vitro and in vivo. J Neurosci Methods 2024; 409:110202. [PMID: 38906335 PMCID: PMC11289828 DOI: 10.1016/j.jneumeth.2024.110202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Fluorescence imaging of calcium dynamics in neuronal populations is powerful because it offers a way of relating the activity of individual cells to the broader population of nearby cells. The method's growth across neuroscience has particularly been driven by the introduction of sophisticated mathematical techniques related to motion correction, image registration, cell detection, spike estimation, and population characterization. However, for many researchers, making good use of these techniques has been difficult because they have been devised by different workers and impose differing - and sometimes stringent - technical requirements on those who seek to use them. NEW METHOD We have built a simple toolbox of analysis routines that encompass the complete workflow for analyzing calcium imaging data. The workflow begins with preprocessing of data, includes motion correction and longitudinal image registration, detects active cells using constrained non-negative matrix factorization, and offers multiple options for estimating spike times and characterizing population activity. The routines can be navigated through a simple graphical user interface. Although written in MATLAB, a standalone version for researchers who do not have access to MATLAB is included. RESULTS We have used the toolbox on two very different preparations: spontaneously active brain slices and microendoscopic imaging from deep structures in awake behaving mice. In both cases, the toolbox offered a seamless flow from raw data all the way through to prepared graphs. CONCLUSION The field of calcium imaging has benefited from the development of numerous innovative mathematical techniques. Here we offer a simple toolbox that allows ordinary researchers to fully exploit these techniques.
Collapse
Affiliation(s)
- Niraj S Desai
- Circuits, Synapses, and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 90892, USA.
| | - Chongbo Zhong
- Circuits, Synapses, and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 90892, USA
| | - Ronald Kim
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 90892, USA
| | - David A Talmage
- Genetics of Neuronal Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 90892, USA
| | - Lorna W Role
- Circuits, Synapses, and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 90892, USA.
| |
Collapse
|
14
|
Gouda B, Sinha SN, Sangaraju R, Huynh T, Patangay S, Venkata Mullapudi S, Mungamuri SK, Patil PB, Periketi MC. Extraction, Phytochemical profile, and neuroprotective activity of Phyllanthus emblica fruit extract against sodium valproate-induced postnatal autism in BALB/c mice. Heliyon 2024; 10:e34992. [PMID: 39157403 PMCID: PMC11327600 DOI: 10.1016/j.heliyon.2024.e34992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
The aim of the present study was to evaluate the effect of the ethyl acetate fraction of amla (EAFA) extract on valproic acid (VPA)-induced postnatal autism in BALB/c mice. Our study revealed that mice treated with VPA on postnatal day 14 (PND14) showed significant abnormal behaviours such as social interaction, social affiliation, anxiety, and motor coordination compared to the control group, while EAFA extract treatment (100 mg/kg) ameliorated these symptoms. Our study highlights the protective effect of EAFA extract on improving behavioural alterations, significantly restoring anti-oxidative enzymes such as GST and GR, and reducing MDA and NO levels. Furthermore, the EAFA-treated group significantly lowered the proinflammatory markers (IL-1β and TNF-α) and the expression of up-regulated 5-HT1D, 5-HT2A, and D2 receptor proteins. Based on histopathological studies, the percentage of neuronal injury in the EAFA-treated group as well as cellular structural changes were reduced using SEM analysis. In conclusion, the present study suggests that treatment with EAFA extract ameliorates VPA-induced autism due to its anti-oxidant and neuroprotective activity.
Collapse
Affiliation(s)
- Balaji Gouda
- Division of Food Safety, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania, Tarnaka, Hyderabad, Telangana- 500007, India
- Department of Pharmacy, University College of Technology, Osmania University, Hyderabad-500027, India
| | - Sukesh Narayan Sinha
- Division of Food Safety, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania, Tarnaka, Hyderabad, Telangana- 500007, India
| | - Rajendra Sangaraju
- Division of Food Safety, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania, Tarnaka, Hyderabad, Telangana- 500007, India
- Head of Biology, Department of Biosciences and Food Technology, STEM College, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| | - Tien Huynh
- Head of Biology, Department of Biosciences and Food Technology, STEM College, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| | - Shashikala Patangay
- Department of Pharmacy, University College of Technology, Osmania University, Hyderabad-500027, India
| | - Surekha Venkata Mullapudi
- Division of Pathology and Microbiology, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania, Tarnaka, Hyderabad, Telangana- 500007, India
| | - Sathish Kumar Mungamuri
- Division of Food Safety, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania, Tarnaka, Hyderabad, Telangana- 500007, India
| | - Pradeep B. Patil
- Animal Facility Division, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania, Tarnaka, Hyderabad, Telangana- 500007, India
| | - Madhusudhana Chary Periketi
- SEM Facility, Cell Biology Division, Indian Council of Medical Research-National Institute of Nutrition, Jamai-Osmania, Tarnaka, Hyderabad, Telangana- 500007, India
| |
Collapse
|
15
|
Sivayokan B, King C, Mali I, Payne M, Strating H, Warnes E, Bossmann SH, Plakke B. Aerobic exercise improves cognitive flexibility and modulates regional volume changes in a rat model of autism. Behav Brain Res 2024; 471:115136. [PMID: 38971431 PMCID: PMC12035974 DOI: 10.1016/j.bbr.2024.115136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Gestational exposure to valproic acid (VPA) is a risk factor for autism spectrum disorder (ASD). Rodents exposed to VPA in utero display common features of ASD, including volumetric dysregulation in higher-order cognitive regions like the medial prefrontal cortex (mPFC), the anterior cingulate cortex (ACC), and the hippocampus. Exercise has been shown in elderly populations to boost cognition and to buffer against brain volume losses with age. This study employed an adolescent treadmill exercise intervention to facilitate cognitive flexibility and regional brain volume regulation in rats exposed to VPA during gestation. It was found that exercise improved performance on extra-dimensional shifts of attention on a set-shifting task, which is indicative of improved cognitive flexibility. Exercise decreased frontal cortex volume in females, whereas in males exercise increased the ventral hippocampus. These findings suggest that aerobic exercise may be an effective intervention to counteract the altered development of prefrontal and hippocampal regions often observed in ASD.
Collapse
Affiliation(s)
- Bhavana Sivayokan
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Cole King
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Ivina Mali
- Kansas State University, Department of Chemistry, 1212 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Macy Payne
- Kansas State University, Department of Chemistry, 1212 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Hunter Strating
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Ellie Warnes
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Stefan H Bossmann
- Kansas State University, Department of Chemistry, 1212 Mid-Campus Dr. N, Manhattan, KS 66506, United States
| | - Bethany Plakke
- Kansas State University, Psychological Sciences, 1114 Mid-Campus Dr. N, Manhattan, KS 66506, United States.
| |
Collapse
|
16
|
Liu C, Guo Z, Pang J, Zhang Y, Yang Z, Cao J, Zhang T. Administration of Atosiban, an oxytocin receptor antagonist, ameliorates autistic-like behaviors in a female rat model of valproic acid-induced autism. Behav Brain Res 2024; 469:115052. [PMID: 38782096 DOI: 10.1016/j.bbr.2024.115052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Autism spectrum disorder (ASD) is a pervasive developmental disorder with gender differences. Oxytocin (OXT) is currently an important candidate drug for autism, but the lack of data on female autism is a big issue. It has been reported that the effect of OXT is likely to be different between male and female ASD patients. In the study, we specifically explored the role of the OXT signaling pathway in a VPA-induced female rat's model of autism. The data showed that there was an increase of either oxytocin or its receptor expressions in both the hippocampus and the prefrontal cortex of VPA-induced female offspring. To determine if the excess of OXT signaling contributed to autism symptoms in female rats, exogenous oxytocin and oxytocin receptor antagonists Atosiban were used in the experiment. It was found that exogenous oxytocin triggered autism-like behaviors in wild-type female rats by intranasal administration. More interestingly, several autism-like deficits including social interaction, anxiety, and repeat stereotypical sexual behavior in the VPA female offspring were significantly attenuated by oxytocin receptor antagonists Atosiban. Moreover, Atosiban also effectively improved the synaptic plasticity impairment induced by VPA in female offspring. Our results suggest that oxytocin receptor antagonists significantly improve autistic-like behaviors in a female rat model of valproic acid-induced autism.
Collapse
Affiliation(s)
- Chunhua Liu
- School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Zhengyang Guo
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, PR China
| | - Jiyi Pang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, PR China
| | - Yuying Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, PR China
| | - Zhuo Yang
- School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Jianting Cao
- Graduate School of Engineering, Saitama Institute of Technology, Fukaya 369-0217, Japan
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
17
|
Morel C, Paoli J, Camonin C, Marchal N, Grova N, Schroeder H. Comparison of predictive validity of two autism spectrum disorder rat models: Behavioural investigations. Neurotoxicology 2024; 103:39-49. [PMID: 38761921 DOI: 10.1016/j.neuro.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The valproic acid model has been shown to reproduce ASD-like behaviours observed in patients and is now widely validated for construct, face, and predictivity as ASD model in rat. The literature agrees on using a single exposition to 500 mg/kg of VPA at gestational day 12 to induce ASD phenotype with the intraperitoneal route being the most commonly used. However, some studies validated this model with repeated exposure by using oral route. The way of administration may be of great importance in the induction of the ASD phenotype and a comparison is greatly required. We compared two ASD models, one induced by a unique IP injection of 500 mg/kg of body weight at GD12 and the other one by repeated PO administration of 500 mg/kg of body weight/day between GD11 and GD13. The behavioural phenotypes of the offspring were assessed for the core signs of ASD (impaired social behaviour, stereotypical/repetitive behaviours, sensory/communication deficits) as well as anxiety as comorbidity, at developmental and juvenile stages in both sexes. The VPA IP model induced a more literature-compliant ASD phenotype than the PO one. These results confirmed that the mode of administration as well as the window of VPA exposure are key factors in the ASD-induction phenotype. Interestingly, the effects of VPA administration were similar at the developmental stage between both sexes and then tended to differ later in life.
Collapse
Affiliation(s)
- C Morel
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, Vandœuvre-lès-Nancy 54506, France; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS) - University of Lorraine, B.P. 184, Nancy 54511, France
| | - J Paoli
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, Vandœuvre-lès-Nancy 54506, France; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS) - University of Lorraine, B.P. 184, Nancy 54511, France
| | - C Camonin
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, Vandœuvre-lès-Nancy 54506, France
| | - N Marchal
- UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS) - University of Lorraine, B.P. 184, Nancy 54511, France
| | - N Grova
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, Vandœuvre-lès-Nancy 54506, France; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS) - University of Lorraine, B.P. 184, Nancy 54511, France; Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, Esch-Sur-Alzette L-4354, Luxembourg.
| | - H Schroeder
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, Vandœuvre-lès-Nancy 54506, France
| |
Collapse
|
18
|
Al Abed AS, Allen TV, Ahmed NY, Sellami A, Sontani Y, Rawlinson EC, Marighetto A, Desmedt A, Dehorter N. Parvalbumin interneuron activity in autism underlies susceptibility to PTSD-like memory formation. iScience 2024; 27:109747. [PMID: 38741709 PMCID: PMC11089364 DOI: 10.1016/j.isci.2024.109747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/13/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
A rising concern in autism spectrum disorder (ASD) is the heightened sensitivity to trauma, the potential consequences of which have been overlooked, particularly upon the severity of the ASD traits. We first demonstrate a reciprocal relationship between ASD and post-traumatic stress disorder (PTSD) and reveal that exposure to a mildly stressful event induces PTSD-like memory in four mouse models of ASD. We also establish an unanticipated consequence of stress, as the formation of PTSD-like memory leads to the aggravation of core autistic traits. Such a susceptibility to developing PTSD-like memory in ASD stems from hyperactivation of the prefrontal cortex and altered fine-tuning of parvalbumin interneuron firing. Traumatic memory can be treated by recontextualization, reducing the deleterious effects on the core symptoms of ASD in the Cntnap2 KO mouse model. This study provides a neurobiological and psychological framework for future examination of the impact of PTSD-like memory in autism.
Collapse
Affiliation(s)
- Alice Shaam Al Abed
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Tiarne Vickie Allen
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Noorya Yasmin Ahmed
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Azza Sellami
- Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U1215, INSERM, F-33000 Bordeaux, France
- Université de Bordeaux, F-33000 Bordeaux, France
| | - Yovina Sontani
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Elise Caitlin Rawlinson
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Aline Marighetto
- Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U1215, INSERM, F-33000 Bordeaux, France
- Université de Bordeaux, F-33000 Bordeaux, France
| | - Aline Desmedt
- Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U1215, INSERM, F-33000 Bordeaux, France
- Université de Bordeaux, F-33000 Bordeaux, France
| | - Nathalie Dehorter
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
19
|
King C, Mali I, Strating H, Fangman E, Neyhard J, Payne M, Bossmann SH, Plakke B. Region-Specific Brain Volume Changes Emerge in Adolescence in the Valproic Acid Model of Autism and Parallel Human Findings. Dev Neurosci 2024; 47:68-80. [PMID: 38679020 PMCID: PMC11511791 DOI: 10.1159/000538932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits, cognitive dysfunction, and stereotyped repetitive behaviors. Regional volume changes are commonly observed in individuals with ASD. To examine volumetric dysregulation across adolescence, the valproic acid (VPA) model was used to induce ASD-like phenotypes in rats. METHOD Regional volumes were obtained via magnetic resonance imaging at either postnatal day 28 or postnatal day 40 (P40), which correspond to early and late adolescence, respectively. RESULTS Consistent with prior research, VPA animals had reduced total brain volume compared to control animals. A novel outcome was that VPA animals had overgrown right hippocampi at P40. Differences in the pattern of development of the anterior cingulate cortex were also observed in VPA animals. Differences for the posterior cingulate were only observed in males, but not females. CONCLUSION These results demonstrate differences in region-specific developmental trajectories between control and VPA animals and suggest that the VPA model may capture regional volume changes consistent with human ASD. INTRODUCTION Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits, cognitive dysfunction, and stereotyped repetitive behaviors. Regional volume changes are commonly observed in individuals with ASD. To examine volumetric dysregulation across adolescence, the valproic acid (VPA) model was used to induce ASD-like phenotypes in rats. METHOD Regional volumes were obtained via magnetic resonance imaging at either postnatal day 28 or postnatal day 40 (P40), which correspond to early and late adolescence, respectively. RESULTS Consistent with prior research, VPA animals had reduced total brain volume compared to control animals. A novel outcome was that VPA animals had overgrown right hippocampi at P40. Differences in the pattern of development of the anterior cingulate cortex were also observed in VPA animals. Differences for the posterior cingulate were only observed in males, but not females. CONCLUSION These results demonstrate differences in region-specific developmental trajectories between control and VPA animals and suggest that the VPA model may capture regional volume changes consistent with human ASD.
Collapse
Affiliation(s)
- Cole King
- Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Ivina Mali
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Hunter Strating
- Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | | | - Jenna Neyhard
- Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Macy Payne
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | | | - Bethany Plakke
- Psychological Sciences, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
20
|
Sandhu A, Rawat K, Gautam V, Bhatia A, Grover S, Saini L, Saha L. Ameliorating effect of pioglitazone on prenatal valproic acid-induced behavioral and neurobiological abnormalities in autism spectrum disorder in rats. Pharmacol Biochem Behav 2024; 237:173721. [PMID: 38307465 DOI: 10.1016/j.pbb.2024.173721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopment disorder that mainly arises due to abnormalities in different brain regions, resulting in behavioral deficits. Besides its diverse phenotypical features, ASD is associated with complex and varied etiology, presenting challenges in understanding its precise neuro-pathophysiology. Pioglitazone was reported to have a fundamental role in neuroprotection in various other neurological disorders. The present study aimed to investigate the therapeutic potential of pioglitazone in the prenatal valproic acid (VPA)-model of ASD in Wistar rats. Pregnant female Wistar rats received VPA on Embryonic day (E.D12.5) to induce autistic-like-behavioral and neurobiological alterations in their offspring. VPA-exposed rats presented core behavioral symptoms of ASD such as deficits in social interaction, poor spatial and learning behavior, increased anxiety, locomotory and repetitive activity, and decreased exploratory activity. Apart from these, VPA exposure also stimulated neurochemical and histopathological neurodegeneration in various brain regions. We administered three different doses of pioglitazone i.e., 2.5, 5, and 10 mg/kg in rats to assess various parameters. Of all the doses, our study highlighted that 10 mg/kg pioglitazone efficiently attenuated the autistic symptoms along with other neurochemical alterations such as oxidative stress, neuroinflammation, and apoptosis. Moreover, pioglitazone significantly attenuated the neurodegeneration by restoring the neuronal loss in the hippocampus and cerebellum. Taken together, our study suggests that pioglitazone exhibits therapeutic potential in alleviating behavioral abnormalities induced by prenatal VPA exposure in rats. However, further research is needed to fully understand and establish pioglitazone's effectiveness in treating ASD.
Collapse
Affiliation(s)
- Arushi Sandhu
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), 4th Floor, Research Block B, Chandigarh 160012, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), 4th Floor, Research Block B, Chandigarh 160012, India
| | - Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), 4th Floor, Research Block B, Chandigarh 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education andResearch (PGIMER), 2nd Floor, Research Block B, Chandigarh 160012, India
| | - Sandeep Grover
- Department of Psychiatry, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Lokesh Saini
- Department of Paediatrics, All India Institute of Medical Sciences (AIIMS), Jodhpur 342001, Rajasthan, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), 4th Floor, Research Block B, Chandigarh 160012, India.
| |
Collapse
|
21
|
Mohtaj Khorassani Y, Moghimi A, Khakzad MR, Fereidoni M, Hassani D, Torbati Gah J. Effects of hyperbaric oxygen therapy on autistic behaviors and GRIN2B gene expression in valproic acid-exposed rats. Front Neurosci 2024; 18:1385189. [PMID: 38562305 PMCID: PMC10982371 DOI: 10.3389/fnins.2024.1385189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Autism is a complex neurodevelopmental condition characterized by deficits in social interaction, communication, and restricted repetitive behaviors. Hyperbaric oxygen therapy (HBOT) has emerged as a potential treatment for autism, although its effects on behavior and gene expression are not well understood. The GRIN2B gene, known for its involvement in encoding a glutamate receptor subunit crucial for neuron communication and associated with autism, was a focus of this study. Methods Using a rat model induced by prenatal exposure to valproic acid, we examined the impact of HBOT on autism-like behaviors and GRIN2B gene expression. Male Wistar rats were categorized into four groups: control, VPA (valproic acid-exposed), VPA+HBOT [2 atmosphere absolute (ATA)], and VPA+HBOT (2.5 ATA). The rats underwent several behavioral tests to assess social behavior, anxiety, stereotype and exploratory behaviors, and learning. Following the behavioral tests, the HBOT groups received 15 sessions of HBOT at pressures of 2 and 2.5 (ATA), and their behaviors were re-evaluated. Subsequently, real-time PCR was employed to measure GRIN2B gene expression in the frontal lobe. Results Our results indicated that HBOT significantly increased social interaction and exploratory behaviors in VPA-exposed rats, alongside elevated GRIN2B gene expression in their frontal lobe. Discussion Our findings imply that HBOT might have a potential role in ameliorating autism-related behaviors in the VPA rat model of autism through potential modulation of GRIN2B gene expression. However, additional research is essential to fully comprehend the underlying mechanisms and refine the HBOT protocol for optimizing its effectiveness in improving autism-related symptoms.
Collapse
Affiliation(s)
- Yalda Mohtaj Khorassani
- Rayan Research Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Moghimi
- Rayan Research Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Reza Khakzad
- Innovative Medical Research Center and Department of Immunology, Mashhad Medical Branch, Islamic Azad University, Mashhad, Iran
| | - Masoud Fereidoni
- Rayan Research Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Delaram Hassani
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Javad Torbati Gah
- Department of Biology, Faculty of Science, Mashhad Islamic Azad University, Mashhad, Iran
| |
Collapse
|
22
|
Javik Dorantes-Barrios C, Reyes-Meza V, Camacho-Candia JA, Pfaus JG, González-Flores O. Influence of environmental enrichment on sexual behavior and the process of learning and memory in a rat model of autism with valproic acid. Brain Res 2024; 1827:148738. [PMID: 38142724 DOI: 10.1016/j.brainres.2023.148738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Autism spectrum disorder (ASD) is a psychiatric disorder with severe behavioral consequences and no specific therapy. Its etiology is multifactorial, as it is caused by a complex interaction of genetic and environmental factors. In rats, prenatal exposure to the antiepileptic drug valproic acid (VPA) has been associated with an increased risk of autistic-like behaviors in offspring, including social behavior deficits, increased repetitive behaviors, and cognitive impairments. In addition, VPA-treated rats have shown altered sociosexual behaviors. However, the mechanisms underlying these alterations in reproductive processes in VPA-treated rats are not fully understood. Interestingly some abnormal behaviors in VPA autism models are improved by an enriched environment (EE). In the present study, we examined the effects of EE on memory performance and sexual behavior in male rats. We found that on postnatal day 90, EE reduced the time it took for both control and VPA-treated groups to find a hidden platform in the Morris water maze. On PND 100, prenatal exposure to VPA reduced total exploring time in object recognition tests. On PND 110, EE reduced mount and intromission latency and increased ejaculatory frequency in VPA-treated male rats. These results suggest that environmental stimuli significantly influence the onset of sexual behavior in VPA-treated male rats and that EE may be a potential tool for improving a variety of behavioral deficiencies in rodent models of autism.
Collapse
Affiliation(s)
- C Javik Dorantes-Barrios
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV. Tlaxcala, México; Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México.
| | - Verónica Reyes-Meza
- Centro Tlaxcala Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México.
| | - Josué A Camacho-Candia
- Facultad de Ciencias para el Desarrollo Humano, Universidad Autónoma de Tlaxcala, Tlaxcala, México.
| | - James G Pfaus
- Department of Psychology and Life Sciences, Charles University, Prague, Czech Republic Czech National Institute of Mental Health, Klecany, Czech Republic
| | - Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV. Tlaxcala, México.
| |
Collapse
|
23
|
Zarate-Lopez D, Torres-Chávez AL, Gálvez-Contreras AY, Gonzalez-Perez O. Three Decades of Valproate: A Current Model for Studying Autism Spectrum Disorder. Curr Neuropharmacol 2024; 22:260-289. [PMID: 37873949 PMCID: PMC10788883 DOI: 10.2174/1570159x22666231003121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with increased prevalence and incidence in recent decades. Its etiology remains largely unclear, but it seems to involve a strong genetic component and environmental factors that, in turn, induce epigenetic changes during embryonic and postnatal brain development. In recent decades, clinical studies have shown that inutero exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug, is an environmental factor associated with an increased risk of ASD. Subsequently, prenatal VPA exposure in rodents has been established as a reliable translational model to study the pathophysiology of ASD, which has helped demonstrate neurobiological changes in rodents, non-human primates, and brain organoids from human pluripotent stem cells. This evidence supports the notion that prenatal VPA exposure is a valid and current model to replicate an idiopathic ASD-like disorder in experimental animals. This review summarizes and describes the current features reported with this animal model of autism and the main neurobiological findings and correlates that help elucidate the pathophysiology of ASD. Finally, we discuss the general framework of the VPA model in comparison to other environmental and genetic ASD models.
Collapse
Affiliation(s)
- David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Ana Laura Torres-Chávez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Alma Yadira Gálvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara 44340, México
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
| |
Collapse
|
24
|
Anshu K, Nair AK, Srinath S, Laxmi TR. Altered Developmental Trajectory in Male and Female Rats in a Prenatal Valproic Acid Exposure Model of Autism Spectrum Disorder. J Autism Dev Disord 2023; 53:4390-4411. [PMID: 35976506 DOI: 10.1007/s10803-022-05684-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 10/15/2022]
Abstract
Early motor and sensory developmental delays precede Autism Spectrum Disorder (ASD) diagnosis and may serve as early indicators of ASD. The literature on sensorimotor development in animal models is sparse, male centered, and has mixed findings. We characterized early development in a prenatal valproic acid (VPA) model of ASD and found sex-specific developmental delays in VPA rats. We created a developmental composite score combining 15 test readouts, yielding a reliable gestalt measure spanning physical, sensory, and motor development, that effectively discriminated between VPA and control groups. Considering the heterogeneity in ASD phenotype, the developmental composite offers a robust metric that can enable comparison across different animal models of ASD and can serve as an outcome measure for early intervention studies.
Collapse
Affiliation(s)
- Kumari Anshu
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Main Road, Bengaluru, Karnataka, 560029, India
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Ajay Kumar Nair
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Main Road, Bengaluru, Karnataka, 560029, India
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, 53703, WI, USA
| | - Shoba Srinath
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Main Road, Bengaluru, Karnataka, 560029, India
| | - T Rao Laxmi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Main Road, Bengaluru, Karnataka, 560029, India.
| |
Collapse
|
25
|
Lima-Castañeda LÁ, Bringas ME, Aguilar-Hernandez L, Garcés-Ramírez L, Morales-Medina JC, Flores G. The antipsychotic olanzapine reduces memory deficits and neuronal abnormalities in a male rat model of Autism. J Chem Neuroanat 2023; 132:102317. [PMID: 37482145 DOI: 10.1016/j.jchemneu.2023.102317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
The prevalence of autism spectrum disorder (ASD), a neurodevelopmental condition that impacts social interaction and sensory processing, is rising. Valproic acid (VPA) exposure during pregnancy causes autistic-like traits in offspring. Olanzapine (OLZ), an atypical antipsychotic, is used to treat ASD. We assessed the impact of OLZ on behavior, neuromorphology, and nitric oxide (NO) levels in the hippocampus using prenatal VPA treatment in rats. It is commonly known that ASD patients exhibit sensory abnormalities. As such, we utilized the tail flick test to validate the ASD model. In the novel object recognition test (NORT), VPA exposure reduces the discrimination index (DI) in the first introduction to the novel object. Moreover, OLZ and vehicle-treated rats perform differently in the second exposition to the DI of the novel object, suggesting that OLZ reverses VPA-induced deficits in recognition memory. The latency to find the hidden platform in the Morris water maze test of memory and learning improves in VPA-exposed rats after OLZ administration, indicating that OLZ improves spatial memory in these rats. Administration of prenatal VPA induces neuronal hypotrophy and reduces spine density in pyramidal neurons of the CA1 region of the hippocampus. Treatment with OLZ corrects the neuromorphological changes brought on by VPA. In the CA1 region of the hippocampus, VPA treatment increases the number of neurons, which normalizes with OLZ treatment. OLZ increases the NO levels in the dorsal hippocampus in control rats. In rats exposed to VPA, the second-generation antipsychotic OLZ reduces memory-related and neuroplastic alterations. The current findings support the use of OLZ in this illness and further validate the use of prenatal VPA as a model of ASD.
Collapse
Affiliation(s)
- Luis Ángel Lima-Castañeda
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María Elena Bringas
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico
| | - Leonardo Aguilar-Hernandez
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico
| | - Linda Garcés-Ramírez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, AP 62, CP 90000 Tlaxcala, Mexico.
| | - Gonzalo Flores
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico.
| |
Collapse
|
26
|
Seyedinia SA, Tarahomi P, Abbarin D, Sedaghat K, Rashidy-Pour A, Yaribeygi H, Vafaei AA, Raise-Abdullahi P. Saffron and crocin ameliorate prenatal valproic acid-induced autistic-like behaviors and brain oxidative stress in the male offspring rats. Metab Brain Dis 2023; 38:2231-2241. [PMID: 37566156 DOI: 10.1007/s11011-023-01275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Autism is a neurobehavioral disease that induces cognitive and behavioral alterations, usually accompanied by oxidative stress in the brain. Crocus sativus (saffron) and its active ingredient, crocin, have potent antioxidative effects that may benefit autistic behaviors. This study aimed to determine the effects of saffron extract and crocin against brain oxidative stress and behavioral, motor, and cognitive deficits in an animal model of autism in male offspring rats. 14 female rats were randomly divided into the saline and valproic acid (VPA) groups. Then, they were placed with mature male rats to mate and produce offspring. VPA (500 mg/kg, i.p.) was injected on day 12.5 of pregnancy (gestational day, GD 12.5) to induce an experimental model of autism. 48 male pups were left undisturbed for 29 days. First-round behavioral tests (before treatments) were performed on 30-33 post-natal days (PND), followed by 28 days of treatment (PND 34-61) with saffron (30 mg/kg, IP), crocin (15 or 30 mg/kg, i.p.), or saline (2 ml/kg, i.p.). The second round of behavioral tests (after treatments) was performed on PND 62-65 to assess the effects of the treatments on behavioral and cognitive features. In the end, animals were sacrificed under deep anesthesia, and their brains were dissected to evaluate the brain oxidative stress parameters, including malondialdehyde (MDA), glutathione (GSH), and catalase (CAT). VPA injection into female rats increased anxiety-like behaviors, enhanced pain threshold, impaired motor functions, disturbed balance power, increased MDA, and decreased GSH and CAT in their male offspring. 28 days of treatment with saffron or crocin significantly ameliorated behavioral abnormalities, reduced MDA, and increased GSH and CAT levels. Brain oxidative stress has been implicated in the pathophysiology of autistic-like behaviors. Saffron and crocin ameliorate anxiety-like behaviors, pain responses, motor functions, and brain oxidative stress parameters in an experimental model of autism. Saffron and crocin may hold promise as herbal-based pharmacological treatments for individuals with autism. However, further histological evidence is needed to confirm their efficacy.
Collapse
Affiliation(s)
- Seyed Ali Seyedinia
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Parnia Tarahomi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Davood Abbarin
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Katayoun Sedaghat
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | | |
Collapse
|
27
|
Park G, Jang WE, Kim S, Gonzales EL, Ji J, Choi S, Kim Y, Park JH, Mohammad HB, Bang G, Kang M, Kim S, Jeon SJ, Kim JY, Kim KP, Shin CY, An JY, Kim MS, Lee YS. Dysregulation of the Wnt/β-catenin signaling pathway via Rnf146 upregulation in a VPA-induced mouse model of autism spectrum disorder. Exp Mol Med 2023; 55:1783-1794. [PMID: 37524878 PMCID: PMC10474298 DOI: 10.1038/s12276-023-01065-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 08/02/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder associated with impaired social behavior and communication, repetitive behaviors, and restricted interests. In addition to genetic factors, environmental factors such as prenatal drug exposure contribute to the development of ASD. However, how those prenatal factors induce behavioral deficits in the adult stage is not clear. To elucidate ASD pathogenesis at the molecular level, we performed a high-resolution mass spectrometry-based quantitative proteomic analysis on the prefrontal cortex (PFC) of mice exposed to valproic acid (VPA) in utero, a widely used animal model of ASD. Differentially expressed proteins (DEPs) in VPA-exposed mice showed significant overlap with ASD risk genes, including differentially expressed genes from the postmortem cortex of ASD patients. Functional annotations of the DEPs revealed significant enrichment in the Wnt/β-catenin signaling pathway, which is dysregulated by the upregulation of Rnf146 in VPA-exposed mice. Consistently, overexpressing Rnf146 in the PFC impaired social behaviors and altered the Wnt signaling pathway in adult mice. Furthermore, Rnf146-overexpressing PFC neurons showed increased excitatory synaptic transmission, which may underlie impaired social behavior. These results demonstrate that Rnf146 is critical for social behavior and that dysregulation of Rnf146 underlies social deficits in VPA-exposed mice.
Collapse
Affiliation(s)
- Gaeun Park
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Wooyoung Eric Jang
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Seoyeon Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Edson Luck Gonzales
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jungeun Ji
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Seunghwan Choi
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Yujin Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hwan Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | | | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Minkyung Kang
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Soobin Kim
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, 17104, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea.
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea.
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea.
| | - Min-Sik Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
- New Biology Research Center, DGIST, Daegu, 42988, Republic of Korea.
- Center for Cell Fate Reprogramming and Control, DGIST, Daegu, 42988, Republic of Korea.
| | - Yong-Seok Lee
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
| |
Collapse
|
28
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: Implications for brain development and autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538959. [PMID: 37205520 PMCID: PMC10187231 DOI: 10.1101/2023.05.01.538959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNAseq data ob-tained from E12.5 fetal mouse brains 3 hours after VPA administration revealed that VPA significant-ly increased or decreased the expression of approximately 7,300 genes. No significant sex differ-ences in VPA-induced gene expression were observed. Expression of genes associated with neu-rodevelopmental disorders (NDDs) such as autism as well as neurogenesis, axon growth and syn-aptogenesis, GABAergic, glutaminergic and dopaminergic synaptic transmission, perineuronal nets, and circadian rhythms was dysregulated by VPA. Moreover, expression of 399 autism risk genes was significantly altered by VPA as was expression of 252 genes that have been reported to play fundamental roles in the development of the nervous system but are not otherwise linked to autism. The goal of this study was to identify mouse genes that are: (a) significantly up- or down-regulated by VPA in the fetal brain and (b) known to be associated with autism and/or to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity in the postnatal and adult brain. The set of genes meeting these criteria pro-vides potential targets for future hypothesis-driven approaches to elucidating the proximal underly-ing causes of defective brain connectivity in NDDs such as autism.
Collapse
|
29
|
Biosca-Brull J, Guardia-Escote L, Basaure P, Cabré M, Blanco J, Pérez-Fernández C, Sánchez-Santed F, Domingo JL, Colomina MT. Exposure to chlorpyrifos during pregnancy differentially affects social behavior and GABA signaling elements in an APOE- and sex-dependent manner in a transgenic mouse model. ENVIRONMENTAL RESEARCH 2023; 224:115461. [PMID: 36796608 DOI: 10.1016/j.envres.2023.115461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The massive use of chlorpyrifos (CPF) has been associated with an increased prevalence of neurodevelopmental disorders. Some previous studies have shown that prenatal, but not postnatal, CPF exposure causes social behavior deficits in mice depending on sex while others have found that in transgenic mice models carrying the human apolipoprotein E (APOE) ε3 and ε4 allele confer different vulnerabilities to either behavioral or metabolic disorders after CPF exposure. This study aims to evaluate, in both sexes, how prenatal CPF exposure and APOE genotype impact on social behavior and its relation to changes in GABAergic and glutamatergic systems. For this purpose, apoE3 and apoE4 transgenic mice were exposed through the diet to 0 or 1 mg/kg/day of CPF, between gestational day 12 and 18. A three-chamber test was used to assess social behavior on postnatal day (PND) 45. Then, mice were sacrificed, and hippocampal samples were analyzed to study the gene expression of GABAergic and glutamatergic elements. Results showed that prenatal exposure to CPF impaired social novelty preference and increased the expression of GABA-A α1 subunit in females of both genotypes. In addition, the expression of GAD1, the ionic cotransporter KCC2 and the GABA-A α2 and α5 subunits were increased in apoE3 mice, whereas CPF treatment only accentuated the expression of GAD1 and KCC2. Nevertheless, future research is needed to evaluate whether the influences detected in the GABAergic system are present and functionally relevant in adults and old mice.
Collapse
Affiliation(s)
- Judit Biosca-Brull
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain.
| | - Laia Guardia-Escote
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain
| | - Pia Basaure
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
| | - Maria Cabré
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Tarragona, Spain
| | - Jordi Blanco
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain; Universitat Rovira i Virgili, Department of Basic Medical Sciences, Reus, Spain
| | - Cristian Pérez-Fernández
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain.
| |
Collapse
|
30
|
Moghaddam AH, Eslami A, Jelodar SK, Ranjbar M, Hasantabar V. Preventive effect of quercetin-Loaded nanophytosome against autistic-like damage in maternal separation model: The possible role of Caspase-3, Bax/Bcl-2 and Nrf2. Behav Brain Res 2023; 441:114300. [PMID: 36642103 DOI: 10.1016/j.bbr.2023.114300] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
The autism is an abnormality in the neuronal advance which starts before age 3 recognized by defective behaviors. This study aimed to make quercetin-loaded nanophytosomes (QNP) on behavioral deficits, cerebellar oxidative stress and apoptosis in an autistic-like model caused by maternal separation (MS). The newborn rats are randomly categorized into seven groups, including control, positive control, disease, and diseases treated with quercetin (10 and 40 mg/kg) and QNP (10 and 40 mg/kg). Pups exposed to MS for 3 h per day from postnatal days (PND) 1-9 showed behavioral impairment in adult rats compared to control group. The oral administration of quercetin and QNP was constantly started after the lactation period (21 postnatal days) for three weeks. Autistic-like behaviors, antioxidant parameters, and Nrf2, Bax/Bcl-2, and Caspase-3 expressions were surveyed in the cerebellum. Quercetin (40 mg/kg) treated improved some behavioral disorders. Also, the improvement of oxidative stress parameters, Nrf2 and apoptotic factors gene expression was observed in the cerebellum of quercetin (40 mg/kg) treated (p < 0.01). QNP treatment (10 and 40 mg/kg) significantly ameliorated anxiety-like behaviors, line crossing, and grooming index (p < 0.001), lipid peroxidation (p < 0.001), and increased catalase (CAT) (p < 0.001), superoxide dismutase (SOD) (p < 0.001), glutathione peroxidase (GPx) (p < 0.001) activity, and glutathione (GSH) levels (p < 0.05). Moreover, QNP significantly reduced Caspase-3 and Bax expression (p < 0.001), but increased Bcl-2, and Nrf2 expressions (p < 0.001). These findings indicated that QNP due to its high bioavailability was more effective than quercetin can be reduced autistic-like behavior, oxidative and apoptotic damages in the model of MS rats.
Collapse
Affiliation(s)
| | - Ali Eslami
- Department of Animal Sciences, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | | - Mojtaba Ranjbar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Vahid Hasantabar
- Department of Organic Polymer Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
31
|
Mali I, Payne M, King C, Maze TR, Davison T, Challans B, Bossmann SH, Plakke B. Adolescent female valproic acid rats have impaired extra-dimensional shifts of attention and enlarged anterior cingulate cortices. Brain Res 2023; 1800:148199. [PMID: 36509128 PMCID: PMC9835202 DOI: 10.1016/j.brainres.2022.148199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
In order to develop better treatments for autism spectrum disorder (ASD) it is critical to understand the developmental trajectory of the disorder and the accompanying brain changes. This study used the valproic acid (VPA) model to induce ASD-like symptoms in rodents. Prior studies have demonstrated that VPA animals are impaired on executive function tasks, paralleling results in humans with ASD. Here, VPA adolescent female rats were impaired on a set-shifting task and had enlarged frontal cortices compared to control females. The deficits observed in the VPA female rats mirrors results in females with ASD. In addition, adolescent VPA females with enlarged frontal cortices performed the worst across the entire task. These brain changes in adolescence are also found in adolescent humans with ASD. These novel findings highlight the importance of studying the brain at different developmental stages.
Collapse
Affiliation(s)
- Ivina Mali
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Macy Payne
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Cole King
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Tessa R Maze
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Taylor Davison
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Brandon Challans
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Stefan H Bossmann
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Bethany Plakke
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
32
|
Sakai K, Hara K, Tanemura K. Testicular histone hyperacetylation in mice by valproic acid administration affects the next generation by changes in sperm DNA methylation. PLoS One 2023; 18:e0282898. [PMID: 36893188 PMCID: PMC9997898 DOI: 10.1371/journal.pone.0282898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/25/2023] [Indexed: 03/10/2023] Open
Abstract
Various studies have described epigenetic inheritance through sperms. However, the detailed mechanisms remain unclear. In this study, we focused on DNA methylation in mice treated with valproic acid (VPA), an inducer of epigenomic changes, and analyzed the treatment effects on the sperm from the next generation of mice. The administration of 200 mg/kg/day VPA to mice for 4 weeks caused transient histone hyperacetylation in the testes and DNA methylation changes in the sperm, including promoter CpGs of genes related to brain function. Oocytes fertilized with VPA-treated mouse sperm showed methylation fluctuations at the morula stage. Pups that were fathered by these mice also showed behavioral changes in the light/dark transition test after maturation. Brain RNA-seq of these mice showed that the expression of genes related to neural functions were altered. Comparison of the sperm DNA methylation status of the next generation of mice with that of the parental generation revealed the disappearance of methylation changes observed in the sperm of the parental generation. These findings suggest that VPA-induced histone hyperacetylation may have brain function-related effects on the next generation through changes in sperm DNA methylation.
Collapse
Affiliation(s)
- Kazuya Sakai
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
- Department of Integrative Neuroscience, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
33
|
Kim UJ, Hong N, Ahn JC. Photobiomodulation Attenuated Cognitive Dysfunction and Neuroinflammation in a Prenatal Valproic Acid-Induced Autism Spectrum Disorder Mouse Model. Int J Mol Sci 2022; 23:ijms232416099. [PMID: 36555737 PMCID: PMC9785820 DOI: 10.3390/ijms232416099] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication and interaction disorders, as well as repetitive and restrictive behaviors. To date, no effective treatment strategies have been identified. However, photobiomodulation (PBM) is emerging as a promising treatment for neurological and neuropsychiatric disorders. We used mice exposed to valproic acid (VPA) as a model of ASD and found that pathological behavioral and histological changes that may have been induced by VPA were attenuated by PBM treatment. Pregnant mice that had been exposed to VPA were treated with PBM three times. Thereafter, we evaluated the offspring for developmental disorders, motor function, hyperactivity, repetitive behaviors, and cognitive impairment. PBM attenuated many of the pathological behaviors observed in the VPA-induced ASD mouse model. In addition, pathophysiological analyses confirmed that the increase in activated microglia and astrocytes observed in the VPA-induced ASD mouse model was attenuated by PBM treatment. This suggests that PBM can counteract the behavioral changes caused by neuroinflammation in ASD. Therefore, our data show that PBM has therapeutic potential and may reduce the prevalence of neurodevelopmental disorders such as ASD.
Collapse
Affiliation(s)
- Ui-Jin Kim
- Department of Medical Laser, Graduate School, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Namgue Hong
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Correspondence: (N.H.); (J.-C.A.)
| | - Jin-Chul Ahn
- Department of Biomedical Science, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Correspondence: (N.H.); (J.-C.A.)
| |
Collapse
|
34
|
Mansouri M, Pouretemad H, Bigdeli M, Ardalan M. Excessive audio-visual stimulation leads to impaired social behaviour with an effect on amygdala: Early life excessive exposure to digital devices in male rats. Eur J Neurosci 2022; 56:6174-6186. [PMID: 36215127 DOI: 10.1111/ejn.15837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022]
Abstract
Today, the effect of extreme early-life exposure to digital devices is suggested as a risk factor for neurodevelopmental disorders. However, the multitude of factors that influence brain development with subsequent behavioural abnormalities have not been fully elucidated. Herein, we simulated extreme early-life exposure to digital devices in rats by audio and visual stimulation and investigated its effects on autism-related behaviours and brain structural alteration. Male rat pups were exposed to excessive audio-visual stimulation (EAVS) from PND (post-natal day) 12 to PND 35, with and without maternal separation (MS). Autism-related behaviours including abnormal sociability, stereotype behaviours, anxiety and locomotor dysfunction were tested at PND 42. Brain structural alternation was examined by considering the amygdala, mPFC (medial prefrontal cortex) and hippocampal regions while performing 3D quantitative stereological analysis. We found that EAVS led to social behaviour deficit and higher locomotion in rats, which were associated with increases in the number of neurons and volume of the amygdala. We also showed that MS did not exaggerate the effect of extreme sensory stimulation on behaviour and the structure of the brain. This study proposed EAVS in rats as an animal model of early exposure to digital devices for investigating possible neurobiological alternations underlying autistic-like behaviours with an emphasis on the amygdala area.
Collapse
Affiliation(s)
- Monireh Mansouri
- Department of Cognitive Psychology, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Hamidreza Pouretemad
- Department of Cognitive Psychology, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran.,Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | - Mohammadreza Bigdeli
- Department of Cognitive Psychology, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran.,Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Maryam Ardalan
- Centre for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Translational Neuispschiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
35
|
Kumar H, Diwan V, Sharma B. Protective Effect of Nimodipine Against Valproic-acid Induced Biochemical and Behavioral Phenotypes of Autism. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2022; 20:725-736. [PMID: 36263647 PMCID: PMC9606438 DOI: 10.9758/cpn.2022.20.4.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/24/2022] [Accepted: 06/26/2022] [Indexed: 01/25/2023]
Abstract
Objective Present study was designed to investigate behavioral and biochemical role of nimodipine in prenatal valproic acid (Pre-VPA) induced autism in rats. Methods Valproic acid was utilized to induce autistic phenotypes in Wistar rats. The rats were assessed for social behavior. Hippocampus and prefrontal cortex (PFC) were utilized for various biochemical assessments, whereas cerebellum was used to assess blood brain barrier (BBB) permeability. Results Pre-VPA rats showed reduction social interaction. Pre-VPA administration were decreased PFC levels of interleukin- 10 (IL-10), and glutathione along with hippocampus cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF). Also, the animals have shown increase in PFC levels of IL-6, tumor necrosis factor-α, thiobarbituric acid reactive substance, Evans blue leakage and water content. Nimodipine countered Pre-VPA administered reduction in social interaction, CREB, BDNF, inflammation, oxidative stress, BBB permeability. Conclusion Pre-VPA has induced autistic phenotype, which were attenuated by nimodipine in rats. Nimodipine and other calcium channel blockers should further investigate to check the management of autism.
Collapse
Affiliation(s)
- Hariom Kumar
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Vishal Diwan
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
- CNS Pharmacology, Conscience Research, New Delhi, India
| |
Collapse
|
36
|
Zhang W, Huang J, Gao F, You Q, Ding L, Gong J, Zhang M, Ma R, Zheng S, Sun X, Zhang Y. Lactobacillus reuteri normalizes altered fear memory in male Cntnap4 knockout mice. EBioMedicine 2022; 86:104323. [PMID: 36395738 PMCID: PMC9672961 DOI: 10.1016/j.ebiom.2022.104323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a common neurodevelopmental disease, characterized by deficits in social communication, restricted and repetitive behaviours, and impaired fear memory processing. Severe gastrointestinal dysfunction and altered gut microbiome have been reported in ASD patients and animal models. Contactin associated protein-like 4 (CNTNAP4) has been suggested to be a novel risk gene, though its role in ASD remains unelucidated. METHODS Cntnap4-/- mice were generated to explore its role in ASD-related behavioural abnormalities. Electrophysiological recording was employed to examine GABAergic transmission in the basolateral amygdala (BLA) and prefrontal cortex. RNA-sequencing was performed to assess underlying mechanisms. 16S rDNA analysis was performed to explore changes in faecal microbial composition. Male Cntnap4-/- mice were fed with Lactobacillus reuteri (L. reuteri) or faecal microbiota to evaluate the effects of microbiota supplementation on the impaired fear conditioning mediated by Cntnap4 deficiency. FINDINGS Male Cntnap4-/- mice manifested deficiency in social behaviours and tone-cue fear conditioning. Notably, reduced GABAergic transmission and GABA receptor expression were found in the BLA but not the prefrontal cortex. In addition, gut Lactobacillus were less abundant in male Cntnap4-/- mice, and L. reuteri treatment or faecal microbiota transplantation rescued abnormal tone-cued fear memory and improved local GABAergic transmission in the BLA of male Cntnap4-/- mice. INTERPRETATION Cntnap4 shapes GABAergic transmission of amygdala and fear conditioning, and microbial intervention represents a promising therapy in ASD intervention. FUNDING National Natural Science Foundation of China, Science and Technology Planning Project of Guangzhou, Guangzhou Medical University, and China Postdoctoral Science Foundation.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jie Huang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Feng Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Qianglong You
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Junwei Gong
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Mengran Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Runfang Ma
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Shaohui Zheng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiangdong Sun
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yunlong Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
37
|
Biosca-Brull J, Guardia-Escote L, Blanco J, Basaure P, Cabré M, Sánchez-Santed F, Domingo JL, Colomina MT. Prenatal, but not postnatal exposure to chlorpyrifos affects social behavior of mice and the excitatory-inhibitory balance in a sex-dependent manner. Food Chem Toxicol 2022; 169:113423. [PMID: 36113784 DOI: 10.1016/j.fct.2022.113423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
The balance between excitatory and inhibitory neurotransmitters is essential for proper brain development. An imbalance between these two systems has been associated with neurodevelopmental disorders. On the other hand, literature also associates the massive use of pesticides with the increase of these disorders, with a particular focus on chlorpyrifos (CPF) a world-wide used organophosphate pesticide. This study was aimed at assessing social autistic-like behaviors on mice pre or postnatally exposed to CPF (0 or 1 mg/kg/day), in both sexes. In prenatal exposure, C57BL/6J pregnant mice were exposed to CPF through the diet, between gestational days (GD) 12 and 18, while a positive control group for some autistic behaviors was exposed to valproic acid (VPA) on GD 12 and 13. To assess postnatal exposure, C57BL/6J mice were orally exposed to the vehicle (corn oil) or CPF, from postnatal days (PND) 10-15. Social behavior and gene expression analysis were assessed on PND 45. Results showed social alterations only in males prenatally treated. GABA system was upregulated in CPF-treated females, whereas an increase in both systems was observed in both treated males. These findings suggest that males are more sensitive to prenatal CPF exposure, favoring the sex bias observed in ASD.
Collapse
Affiliation(s)
- Judit Biosca-Brull
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health (TECNATOX), Reus, Spain.
| | - Laia Guardia-Escote
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain
| | - Jordi Blanco
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health (TECNATOX), Reus, Spain; Universitat Rovira i Virgili, Department of Basic Medical Sciences, Reus, Spain
| | - Pia Basaure
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
| | - Maria Cabré
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Tarragona, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health (TECNATOX), Reus, Spain
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health (TECNATOX), Reus, Spain.
| |
Collapse
|
38
|
White AM, An X, Debiec J. Intact maternal buffering of stress response in infant rats despite altered responsivity towards maternal olfactory cues in the valproic acid model of autism-like behavior. Front Behav Neurosci 2022; 16:959485. [PMID: 36072089 PMCID: PMC9441625 DOI: 10.3389/fnbeh.2022.959485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Disrupted processing of social cues and altered social behaviors are among the core symptoms of autism spectrum disorders (ASDs), and they emerge as early as the first year of life. These differences in sensory abilities may affect the ability of children with ASDs to securely attach to a caregiver and experience caregiver buffering of stress. Prenatal exposure to valproic acid (VPA) has been used to model some aspects of ASDs in rodents. Here, we asked whether prenatal VPA exposure altered infant rats’ behavioral responsivity to maternal olfactory cues in an Odor Preference Test (OPT) and affected maternal buffering of infants’ stress responsivity to shock. In the odor preference test, 1-week old rats treated with VPA during pregnancy appeared to have impaired social recognition and/or may be less motivated to approach social odors in early infancy. These effects were particularly prominent in female pups. In 2-week old rats, VPA-exposed pups and saline-exposed pups showed similar preferences for home cage bedding. Although VPA-exposed pups may initially have a deficit in this attachment-related behavior they do recover typical responses to home cage bedding in later infancy. Both control and VPA-exposed pups showed robust stress hormone responses to repeated shocks, an effect which was blocked when a calm mother was present during shock exposure. No sex differences in the effect of maternal presence on the stress response to shock and no interactions between sex and prenatal drug exposure were observed. Although VPA-exposed pups may show impaired responsivity to maternal cues in early infancy, maternal presence is still capable of regulating the stress response in VPA-exposed pups. In this study we demonstrate the importance of utilizing multiple batteries of tests in assessing behavior, dissecting the behavior on one test into different components. Our results inform about the underlying behavioral characteristics of some of the ASD phenotypes, including sex differences reported by clinical studies, and could shed light on potential opportunities for intervention.
Collapse
Affiliation(s)
- Amanda M. White
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Amanda M. White
| | - Xianli An
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
- Department of Psychology, School of Educational Science, Yangzhou University, Yangzhou, China
| | - Jacek Debiec
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
39
|
Alpay M, Yucel F. Changes of Cerebellar Cortex in a Valproic Acid-Induced Rat Model of Autism. Int J Dev Neurosci 2022; 82:606-614. [PMID: 35831992 DOI: 10.1002/jdn.10213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/30/2022] [Accepted: 07/02/2022] [Indexed: 11/10/2022] Open
Abstract
In this study, 32 male Sprague-Dawley rats (8 for each group) were used in total to examine the effects of valproic acid on rat cerebellum. It was determined that the experimental group received valproic acid (600mg/kg) on embryonic day 15 and postnatal day 11, whereas the control group was treated with saline on the same days. Moreover, on the postnatal 30th day, the cerebellums of all pups were removed and prepared for light and electron microscopy. The numerical density of granule cells in the cerebellum of experimental groups of rats increased whereas the numerical density of Purkinje cells decreased. Furthermore, the granule cells had a smaller mean nuclear diameter in one of the experimental groups while the Purkinje cells had in both experimental groups than those in the comparison group. Thus, the numerical density of synaptic discs and their mean diameter in the cerebellar granular layer of experimental groups were significantly decreased compared to the corresponding controls; also, the synapse-to-neurons ratio, a parameter indicating interneural connectivity, was the same. Consequently, it was seen that valproic acid administration to pups in prenatal or early postnatal days causes changes in number of neurons and synapses in the cerebellum of rats.
Collapse
Affiliation(s)
- Meltem Alpay
- Department of Anatomy, Faculty of Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Ferruh Yucel
- Department of Anatomy, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
40
|
Chu MC, Wu HF, Lee CW, Chung YJ, Chi H, Chen PS, Lin HC. Generational synaptic functions of GABA A receptor β3 subunit deteriorations in an animal model of social deficit. J Biomed Sci 2022; 29:51. [PMID: 35821032 PMCID: PMC9277936 DOI: 10.1186/s12929-022-00835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Disruption of normal brain development is implicated in numerous psychiatric disorders with neurodevelopmental origins, including autism spectrum disorder (ASD). Widespread abnormalities in brain structure and functions caused by dysregulations of neurodevelopmental processes has been recently shown to exert adverse effects across generations. An imbalance between excitatory/inhibitory (E/I) transmission is the putative hypothesis of ASD pathogenesis, supporting by the specific implications of inhibitory γ-aminobutyric acid (GABA)ergic system in autistic individuals and animal models of ASD. However, the contribution of GABAergic system in the neuropathophysiology across generations of ASD is still unknown. Here, we uncover profound alterations in the expression and function of GABAA receptors (GABAARs) in the amygdala across generations of the VPA-induced animal model of ASD. METHODS The F2 generation was produced by mating an F1 VPA-induced male offspring with naïve females after a single injection of VPA on embryonic day (E12.5) in F0. Autism-like behaviors were assessed by animal behavior tests. Expression and functional properties of GABAARs and related proteins were examined by using western blotting and electrophysiological techniques. RESULTS Social deficit, repetitive behavior, and emotional comorbidities were demonstrated across two generations of the VPA-induced offspring. Decreased synaptic GABAAR and gephyrin levels, and inhibitory transmission were found in the amygdala from two generations of the VPA-induced offspring with greater reductions in the F2 generation. Weaker association of gephyrin with GABAAR was shown in the F2 generation than the F1 generation. Moreover, dysregulated NMDA-induced enhancements of gephyrin and GABAAR at the synapse in the VPA-induced offspring was worsened in the F2 generation than the F1 generation. Elevated glutamatergic modifications were additionally shown across generations of the VPA-induced offspring without generation difference. CONCLUSIONS Taken together, these findings revealed the E/I synaptic abnormalities in the amygdala from two generations of the VPA-induced offspring with GABAergic deteriorations in the F2 generation, suggesting a potential therapeutic role of the GABAergic system to generational pathophysiology of ASD.
Collapse
Affiliation(s)
- Ming-Chia Chu
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Han-Fang Wu
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Chi-Wei Lee
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Yueh-Jung Chung
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Hsiang Chi
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan. .,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan. .,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
41
|
Li Y, Zhao Y, Lu Y, Lu X, Hu Y, Li Q, Shuai M, Li R. Autism spectrum disorder-like behavior induced in rat offspring by perinatal exposure to di-(2-ethylhexyl) phthalate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52083-52097. [PMID: 35254616 DOI: 10.1007/s11356-022-19531-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Autism spectrum disorders (ASD), also known as childhood autism, is a common neurological developmental disorder. Although it is generally believed that genetic factors are a primary cause for ASD development, more and more studies show that an increasing number of ASD diagnoses are related to environmental exposure. Epidemiological studies indicated that perinatal exposure to endocrine disruptors might cause neurodevelopmental disorders in children. Di-(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in many products. To explore the neurodevelopmental effect induced by perinatal exposure to DEHP on rat offspring, and the potential mechanisms, female Wistar rats were exposed to 1, 10, and 100 mg/kg/day DEHP during pregnancy and lactation, while valproic acid (VPA) was used as a positive control. The behavior tests showed that rat pups exposed to VPA and 100 mg/kg/day DEHP were not good as those from the control group in both their socialability and social novelty. Expression of mTOR pathway-related components increased while the number of autophagosomes decreased in the brain tissue of the rat offspring exposed to 100 mg/kg/day DEHP. In addition, perinatal exposure to DEHP at all dosages decreased the level of autophagy proteins LC3II and Beclin1 in the brain tissue of rat pups. Our results indicated that perinatal DEHP exposure would induce ASD-like behavioral changes in rat offspring, which might be mediated by activation of the mTOR signaling pathway, and inhibition of autophagy in the brain.
Collapse
Affiliation(s)
- Yao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, People's Republic of China
- Office of the Youth League Committee, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yun Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yu Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, People's Republic of China
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xianxian Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yingdan Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Qiulin Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Menglei Shuai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
42
|
Sabzalizadeh M, Mollashahi M, Afarinesh MR, Mafi F, Joushy S, Sheibani V. Sex difference in cognitive behavioral alterations and barrel cortex neuronal responses in rats exposed prenatally to valproic acid under continuous environmental enrichment. Int J Dev Neurosci 2022; 82:513-527. [PMID: 35738908 DOI: 10.1002/jdn.10206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022] Open
Abstract
Autism spectrum disorder is a developmental disorder that can affect social interactions and sensory-motor behaviors. The present study investigates the effect of environmental enrichment (EE) on behavioral alterations and neuron responses associated with the barrel cortex of young adult female and male rats exposed prenatally to valproic acid (VPA). Pregnant female rats were pretreated with either saline or VPA (500 mg/kg, IP) on day 12.5 of gestation. Male and female pups were exposed to either EE or standard-setting (non-enrichment) conditions for 1 month (between postnatal day [PND] 30 and 63-65) and were divided into non-EE (control), EE, VPA, and VPA + EE groups. Three-chamber sociability and social novelty, acoustic startle reflex, and texture discrimination tests were conducted on PND 62. Responses of barrel cortex neurons of male pups were evaluated using the extracellular single-unit recording technique on PND 63-65. Results showed that the performance of rats of both sexes in social interactions, texture discrimination tasks, and acoustic startle reflex significantly decreased in the VPA groups compared with the control rats (P < 0.05). In this regard, EE attenuated the altered deficit performance observed in the VPA animals compared with the VPA-EE animals (P < 0.05). The performance of females was better than males in the discrimination tasks and acoustic startle reflex. In contrast, males were better than females in the three-chamber social interaction test. Additionally, the excitatory receptive field response magnitude of the barrel cortex neurons in the VPA + EE group increased compared with the VPA group (P < 0.05). The results suggest that continuous EE can attenuate cognitive function disturbances in autistic-like rats and, at least at the behavioral level, the effects depend on sex.
Collapse
Affiliation(s)
- Mansoureh Sabzalizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahtab Mollashahi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Mafi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushy
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
43
|
Novel role of peroxisome proliferator activated receptor-α in valproic acid rat model of autism: Mechanistic study of risperidone and metformin monotherapy versus combination. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110522. [PMID: 35131336 DOI: 10.1016/j.pnpbp.2022.110522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder of heterogenous etiology exhibiting a challenge in understanding its exact neuro-pathophysiology. Recently, peroxisome proliferator activated receptor (PPAR)-α activation was found to play a fundamental role in neuroprotection and improving autistic-like-behaviors in experimental animal models of ASD through alleviating neuroinflammation, oxidative-stress, astrocyte reactivity, tauopathy in addition to its favorable role in metabolic regulation, thus attracting attention as a possible target in treatment of ASD. This study aimed to investigate the role of PPAR-α, astrocytic dysfunction and tauopathy in ASD and detect the possible neuroprotective effects of metformin (MET), through PPAR-α activation, and risperidone (RIS) either monotherapy or in combination in alleviating autistic-like-changes at behavioral and neurobiological levels in male Wistar rats. Pregnant female Wistar rats received valproic-acid (VPA) to induce autistic-like-behavioral and neurobiological alterations in their offspring. Chronic intra-peritoneal MET (100 mg/kg/day) and RIS (1 mg/kg/day) either monotherapy or in combination started from postnatal day (PND) 24 till PND61 (38 days). Prenatal VPA exposure simulated the autistic core behaviors associated with neurochemical and histopathological neurodevelopmental degenerative changes. Both MET and RIS either monotherapy or in combination were able to reverse these changes. The effect of MET was comparable to RIS. Moreover, MET was able to alleviate the RIS induced weight gain and improve cognitive functions highlighting its promising adjunctive role in alleviating ASD pathophysiology. Our study highlighted the favorable effects of MET and RIS both in monotherapy and in combination in alleviating the autistic-like-changes and proposed PPAR-α activation along with restoring astrocytes homeostasis as promising targets in novel therapeutic strategies in ASD.
Collapse
|
44
|
Epigenetics of Autism Spectrum Disorder: Histone Deacetylases. Biol Psychiatry 2022; 91:922-933. [PMID: 35120709 DOI: 10.1016/j.biopsych.2021.11.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/08/2023]
Abstract
The etiology of autism spectrum disorder (ASD) remains unknown, but gene-environment interactions, mediated through epigenetic mechanisms, are thought to be a key contributing factor. Prenatal environmental factors have been shown to be associated with both increased risk of ASD and altered histone deacetylases (HDACs) or acetylation levels. The relationship between epigenetic changes and gene expression in ASD suggests that alterations in histone acetylation, which lead to changes in gene transcription, may play a key role in ASD. Alterations in the acetylome have been demonstrated for several genes in ASD, including genes involved in synaptic function, neuronal excitability, and immune responses, which are mechanisms previously implicated in ASD. We review preclinical and clinical studies that investigated HDACs and autism-associated behaviors and discuss risk genes for ASD that code for proteins associated with HDACs. HDACs are also implicated in neurodevelopmental disorders with a known genetic etiology, such as 15q11-q13 duplication and Phelan-McDermid syndrome, which share clinical features and diagnostic comorbidities (e.g., epilepsy, anxiety, and intellectual disability) with ASD. Furthermore, we highlight factors that affect the behavioral phenotype of acetylome changes, including sensitive developmental periods and brain region specificity in the context of epigenetic programming.
Collapse
|
45
|
Jure R. The “Primitive Brain Dysfunction” Theory of Autism: The Superior Colliculus Role. Front Integr Neurosci 2022; 16:797391. [PMID: 35712344 PMCID: PMC9194533 DOI: 10.3389/fnint.2022.797391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
A better understanding of the pathogenesis of autism will help clarify our conception of the complexity of normal brain development. The crucial deficit may lie in the postnatal changes that vision produces in the brainstem nuclei during early life. The superior colliculus is the primary brainstem visual center. Although difficult to examine in humans with present techniques, it is known to support behaviors essential for every vertebrate to survive, such as the ability to pay attention to relevant stimuli and to produce automatic motor responses based on sensory input. From birth to death, it acts as a brain sentinel that influences basic aspects of our behavior. It is the main brainstem hub that lies between the environment and the rest of the higher neural system, making continuous, implicit decisions about where to direct our attention. The conserved cortex-like organization of the superior colliculus in all vertebrates allows the early appearance of primitive emotionally-related behaviors essential for survival. It contains first-line specialized neurons enabling the detection and tracking of faces and movements from birth. During development, it also sends the appropriate impulses to help shape brain areas necessary for social-communicative abilities. These abilities require the analysis of numerous variables, such as the simultaneous evaluation of incoming information sustained by separate brain networks (visual, auditory and sensory-motor, social, emotional, etc.), and predictive capabilities which compare present events to previous experiences and possible responses. These critical aspects of decision-making allow us to evaluate the impact that our response or behavior may provoke in others. The purpose of this review is to show that several enigmas about the complexity of autism might be explained by disruptions of collicular and brainstem functions. The results of two separate lines of investigation: 1. the cognitive, etiologic, and pathogenic aspects of autism on one hand, and two. the functional anatomy of the colliculus on the other, are considered in order to bridge the gap between basic brain science and clinical studies and to promote future research in this unexplored area.
Collapse
|
46
|
Shridhar S, Mishra P, Narayanan R. Dominant role of adult neurogenesis-induced structural heterogeneities in driving plasticity heterogeneity in dentate gyrus granule cells. Hippocampus 2022; 32:488-516. [PMID: 35561083 PMCID: PMC9322436 DOI: 10.1002/hipo.23422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 02/02/2023]
Abstract
Neurons and synapses manifest pronounced variability in the amount of plasticity induced by identical activity patterns. The mechanisms underlying such plasticity heterogeneity, which have been implicated in context‐specific resource allocation during encoding, have remained unexplored. Here, we employed a systematic physiologically constrained parametric search to identify the cellular mechanisms behind plasticity heterogeneity in dentate gyrus granule cells. We used heterogeneous model populations to ensure that our conclusions were not biased by parametric choices in a single hand‐tuned model. We found that each of intrinsic, synaptic, and structural heterogeneities independently yielded heterogeneities in synaptic plasticity profiles obtained with two different induction protocols. However, among the disparate forms of neural‐circuit heterogeneities, our analyses demonstrated the dominance of neurogenesis‐induced structural heterogeneities in driving plasticity heterogeneity in granule cells. We found that strong relationships between neuronal intrinsic excitability and plasticity emerged only when adult neurogenesis‐induced heterogeneities in neural structure were accounted for. Importantly, our analyses showed that it was not imperative that the manifestation of neural‐circuit heterogeneities must translate to heterogeneities in plasticity profiles. Specifically, despite the expression of heterogeneities in structural, synaptic, and intrinsic neuronal properties, similar plasticity profiles were attainable across all models through synergistic interactions among these heterogeneities. We assessed the parametric combinations required for the manifestation of such degeneracy in the expression of plasticity profiles. We found that immature cells showed physiological plasticity profiles despite receiving afferent inputs with weak synaptic strengths. Thus, the high intrinsic excitability of immature granule cells was sufficient to counterbalance their low excitatory drive in the expression of plasticity profile degeneracy. Together, our analyses demonstrate that disparate forms of neural‐circuit heterogeneities could mechanistically drive plasticity heterogeneity, but also caution against treating neural‐circuit heterogeneities as proxies for plasticity heterogeneity. Our study emphasizes the need for quantitatively characterizing the relationship between neural‐circuit and plasticity heterogeneities across brain regions.
Collapse
Affiliation(s)
- Sameera Shridhar
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Poonam Mishra
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
47
|
Galizio A, Odum AL. Reinforced behavioral variability in the valproate rat model of autism spectrum disorder. J Exp Anal Behav 2022; 117:576-596. [PMID: 35467762 DOI: 10.1002/jeab.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 11/05/2022]
Abstract
Individuals diagnosed with autism spectrum disorder (ASD) tend to display restricted, repetitive behaviors and deficits in social interaction. Rats exposed to valproate (VPA) in utero have been shown to model symptoms of ASD. In previous research, VPA rats engaged in less social interaction and more repetitive responding than controls. The purpose of the present study was to further investigate behavioral variability in the VPA rat model of ASD by testing VPA and control rats in a reinforced-behavioral-variability operant task. In this procedure, rats emitted sequences of lever presses, some of which produced food. During baseline, food was delivered probabilistically, and variability was not required. Next, rats were exposed either to a variability contingency, in which food was only delivered following sequences that differed sufficiently from previous sequences (i.e., variability required), or to a yoked contingency, in which variability was not required. We hypothesized that VPA rats would behave less variably than controls in this task. However, VPA and control rats responded similarly variably when variability was required. Furthermore, VPA rats behaved slightly more variably than controls during baseline and yoked conditions, when variability was not required. These findings contribute to the complex literature surrounding the VPA rat model of ASD.
Collapse
Affiliation(s)
- Ann Galizio
- Utah State University, Department of Psychology
| | - Amy L Odum
- Utah State University, Department of Psychology
| |
Collapse
|
48
|
Perdikaris P, Dermon CR. Behavioral and neurochemical profile of MK-801 adult zebrafish model: Forebrain β 2-adrenoceptors contribute to social withdrawal and anxiety-like behavior. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110494. [PMID: 34896197 DOI: 10.1016/j.pnpbp.2021.110494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 01/29/2023]
Abstract
Deficits in social communication and interaction are core clinical symptoms characterizing multiple neuropsychiatric conditions, including autism spectrum disorder (ASD) and schizophrenia. Interestingly, elevated anxiety levels are a common comorbid psychopathology characterizing individuals with aberrant social behavior. Despite recent progress, the underlying neurobiological mechanisms that link anxiety with social withdrawal remain poorly understood. The present study developed a zebrafish pharmacological model displaying social withdrawal behavior, following a 3-h exposure to 4 μΜ (+)-MK-801, a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, for 7 days. Interestingly, MK-801-treated zebrafish displayed elevated anxiety levels along with higher frequency of stereotypical behaviors, rendering this zebrafish model appropriate to unravel a possible link of catecholaminergic and ASD-like phenotypes. MK-801-treated zebrafish showed increased telencephalic protein expression of metabotropic glutamate 5 receptor (mGluR5), dopamine transporter (DAT) and β2-adrenergic receptors (β2-ARs), supporting the presence of excitation/inhibition imbalance along with altered dopaminergic and noradrenergic activity. Interestingly, β2-ARs expression, was differentially regulated across the Social Decision-Making (SDM) network nodes, exhibiting increased levels in ventral telencephalic area (Vv), a key-area integrating reward and social circuits but decreased expression in dorso-medial telencephalic area (Dm) and anterior tuberal nucleus (ATN). Moreover, the co-localization of β2-ARs with elements of GABAergic and glutamatergic systems, as well as with GAP-43, a protein indicating increased brain plasticity potential, support the key-role of β2-ARs in the MK-801 zebrafish social dysfunctions. Our results highlight the importance of the catecholaminergic neurotransmission in the manifestation of ASD-like behavior, representing a site of potential interventions for amelioration of ASD-like symptoms.
Collapse
Affiliation(s)
- Panagiotis Perdikaris
- Human and Animal Physiology Laboratory, Department of Biology, University of Patras, Rio, 26500 Patras, Greece
| | - Catherine R Dermon
- Human and Animal Physiology Laboratory, Department of Biology, University of Patras, Rio, 26500 Patras, Greece.
| |
Collapse
|
49
|
Chen SY, Yao J, Hu YD, Chen HY, Liu PC, Wang WF, Zeng YH, Zhuang CW, Zeng SX, Li YP, Yang LY, Huang ZX, Huang KQ, Lai ZT, Hu YH, Cai P, Chen L, Wu S. Control of Behavioral Arousal and Defense by a Glutamatergic Midbrain-Amygdala Pathway in Mice. Front Neurosci 2022; 16:850193. [PMID: 35527820 PMCID: PMC9070111 DOI: 10.3389/fnins.2022.850193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
In response to external threatening signals, animals evolve a series of defensive behaviors that depend on heightened arousal. It is believed that arousal and defensive behaviors are coordinately regulated by specific neurocircuits in the central nervous system. The ventral tegmental area (VTA) is a key structure located in the ventral midbrain of mice. The activity of VTA glutamatergic neurons has recently been shown to be closely related to sleep–wake behavior. However, the specific role of VTA glutamatergic neurons in sleep–wake regulation, associated physiological functions, and underlying neural circuits remain unclear. In the current study, using an optogenetic approach and synchronous polysomnographic recording, we demonstrated that selective activation of VTA glutamatergic neurons induced immediate transition from sleep to wakefulness and obviously increased the amount of wakefulness in mice. Furthermore, optogenetic activation of VTA glutamatergic neurons induced multiple defensive behaviors, including burrowing, fleeing, avoidance and hiding. Finally, viral-mediated anterograde activation revealed that projections from the VTA to the central nucleus of the amygdala (CeA) mediated the wake- and defense-promoting effects of VTA glutamatergic neurons. Collectively, our results illustrate that the glutamatergic VTA is a key neural substrate regulating wakefulness and defensive behaviors that controls these behaviors through its projection into the CeA. We further discuss the possibility that the glutamatergic VTA-CeA pathway may be involved in psychiatric diseases featuring with excessive defense.
Collapse
Affiliation(s)
- Shang-Yi Chen
- Department of Epidemiology and Health Statistics, The School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jing Yao
- Fujian Province Key Laboratory of Environment and Health, The School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yu-Duan Hu
- Department of Epidemiology and Health Statistics, The School of Public Health, Fujian Medical University, Fuzhou, China
| | - Hui-Yun Chen
- Fujian Province Key Laboratory of Environment and Health, The School of Public Health, Fujian Medical University, Fuzhou, China
| | - Pei-Chang Liu
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wen-Feng Wang
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Yu-Hang Zeng
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Cong-Wen Zhuang
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Shun-Xing Zeng
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Yue-Ping Li
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Liu-Yun Yang
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Zi-Xuan Huang
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Kai-Qi Huang
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Zhen-Ting Lai
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Yong-Huai Hu
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Ping Cai
- Fujian Province Key Laboratory of Environment and Health, The School of Public Health, Fujian Medical University, Fuzhou, China
- *Correspondence: Ping Cai,
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Li Chen,
| | - Siying Wu
- Department of Epidemiology and Health Statistics, The School of Public Health, Fujian Medical University, Fuzhou, China
- Siying Wu,
| |
Collapse
|
50
|
Novel probiotic treatment of autism spectrum disorder associated social behavioral symptoms in two rodent models. Sci Rep 2022; 12:5399. [PMID: 35354898 PMCID: PMC8967893 DOI: 10.1038/s41598-022-09350-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/22/2022] [Indexed: 02/08/2023] Open
Abstract
The prevalence of autism spectrum disorder (ASD) has rapidly increased in the past decades, and several studies report about the escalating use of antibiotics and the consequent disruption of the gastrointestinal microbiome leading to the development of neurobehavioral symptoms resembling to those of ASD. The primary purpose of this study was to investigate whether depletion of the gastrointestinal microbiome via antibiotics treatment could induce ASD-like behavioral symptoms in adulthood. To reliably evaluate that, validated valproic acid (VPA) ASD animal model was introduced. At last, we intended to demonstrate the assessed potential benefits of a probiotic mixture (PM) developed by our research team. Male Wistar rats were used to create antibiotics treated; antibiotics and PM treated; PM treated, VPA treated; VPA and PM treated; and control groups. In all investigations we focused on social behavioral disturbances. Antibiotics-induced microbiome alterations during adulthood triggered severe deficits in social behavior similar to those observed in the VPA model. Furthermore, it is highlighted that our PM proved to attenuate both the antibiotics- and the VPA-generated antisocial behavioral symptoms. The present findings underline potential capacity of our PM to improve social behavioral alterations thus, indicate its promising therapeutic power to attenuate the social-affective disturbances of ASD.
Collapse
|