1
|
Brouwer A, Carhart‐Harris RL, Raison CL. Psychotomimetic compensation versus sensitization. Pharmacol Res Perspect 2024; 12:e1217. [PMID: 38923845 PMCID: PMC11194300 DOI: 10.1002/prp2.1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
It is a paradox that psychotomimetic drugs can relieve symptoms that increase risk of and cooccur with psychosis, such as attention and motivational deficits (e.g., amphetamines), pain (e.g., cannabis) and symptoms of depression (e.g., psychedelics, dissociatives). We introduce the ideas of psychotomimetic compensation and psychotomimetic sensitization to explain this paradox. Psychotomimetic compensation refers to a short-term stressor or drug-induced compensation against stress that is facilitated by engagement of neurotransmitter/modulator systems (endocannabinoid, serotonergic, glutamatergic and dopaminergic) that mediate the effects of common psychotomimetic drugs. Psychotomimetic sensitization occurs after repeated exposure to stress and/or drugs and is evidenced by the gradual intensification and increase of psychotic-like experiences over time. Theoretical and practical implications of this model are discussed.
Collapse
Affiliation(s)
- Ari Brouwer
- Department of Human Development and Family Studies, School of Human EcologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Robin L. Carhart‐Harris
- Department of Neurology and PsychiatryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Charles L. Raison
- Department of Psychiatry, School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Vail Health Behavioral Health Innovation CenterVailColoradoUSA
- Center for the Study of Human HealthEmory UniversityAtlantaGeorgiaUSA
- Department of Spiritual HealthEmory University Woodruff Health Sciences CenterAtlantaGeorgiaUSA
| |
Collapse
|
2
|
Gobira PH, Joca SR, Moreira FA. Roles of cannabinoid CB1 and CB2 receptors in the modulation of psychostimulant responses. Acta Neuropsychiatr 2024; 36:67-77. [PMID: 35993329 DOI: 10.1017/neu.2022.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Addiction to psychostimulant drugs, such as cocaine, D-amphetamine, and methamphetamine, is a public health issue that substantially contributes to the global burden of disease. Psychostimulant drugs promote an increase in dopamine levels within the mesocorticolimbic system, which is central to the rewarding properties of such drugs. Cannabinoid receptors (CB1R and CB2R) are expressed in the main areas of this system and implicated in the neuronal mechanisms underlying the rewarding effect of psychostimulant drugs. Here, we reviewed studies focusing on pharmacological intervention targeting cannabinoid CB1R and CB2R and their interaction in the modulation of psychostimulant responses.
Collapse
Affiliation(s)
- P H Gobira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - S R Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - F A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
3
|
Marinho EAV, Oliveira-Lima AJ, Reis HS, Santos-Baldaia R, Wuo-Silva R, Hollais AW, Yokoyama TS, Frussa-Filho R, Berro LF. Context-dependent effects of the CB1 receptor antagonist rimonabant on morphine-induced behavioral sensitization in female mice. Front Pharmacol 2023; 14:1100527. [PMID: 36814501 PMCID: PMC9939462 DOI: 10.3389/fphar.2023.1100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction: The endocannabinoid system has been implicated in the neurobiology of opioid use disorder. While the CB1 receptor antagonist rimonabant has been shown to block some of the behavioral effects of opioids, studies suggest that the treatment environment (i.e., receiving treatment in the drug-associated environment, and/or novelty) can influence its effects. In the present study, we investigated the role of the treatment environment in the effects of rimonabant on the expression of morphine-induced behavioral sensitization. Methods: Adult female Swiss mice were submitted to a behavioral sensitization protocol, during which they received morphine (20 mg/kg, i.p.) in the open-field apparatus, and were subsequently treated with vehicle or rimonabant (1 or 10 mg/kg, i.p.) either in the open-field, in the home-cage or in an activity box (novel environment). The expression of conditioned locomotion (increased locomotor activity in the open-field apparatus in the absence of morphine) and of morphine-induced behavioral sensitization (increased locomotor activity in animals sensitized to morphine) was evaluated during asubsequent saline and morphine challenge, respectively. Results: Animals treated with morphine expressed behavioral sensitization, showing a significant increase in locomotor activity over time. Animals sensitized to morphine and treated with vehicle in the home-cage expressed conditioned locomotion, an effect that was blocked by home-cage treatment with rimonabant. During a saline challenge, only animals sensitized to morphine and treated with saline in the home-cage expressed morphine-induced conditioned locomotion. All morphine-treated animals that received saline during the treatment phase (control groups) expressed behavioral sensitization during the morphine challenge. Treatment with rimonabant in the open-field and in the activity box, but not in the home-cage, blocked the expression of morphine-induced behavioral sensitization. Discussion: Our findings suggest that CB1 receptor antagonism can modulate conditioned responses to morphine even when administered in the home-cage. However, exposure to the drug-associated environment or to a novel environment is necessary for the expression of rimonabant's effects on morphine-induced behavioral sensitization during a morphine challenge.
Collapse
Affiliation(s)
- Eduardo A. V. Marinho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil,Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Alexandre Justo Oliveira-Lima
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil,Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Henrique S. Reis
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Renan Santos-Baldaia
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Raphael Wuo-Silva
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Andre W. Hollais
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Thais S. Yokoyama
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Roberto Frussa-Filho
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Lais F. Berro
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil,Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil,Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States,*Correspondence: Lais F. Berro,
| |
Collapse
|
4
|
Fernández-Espejo E, Núñez-Domínguez L. Endocannabinoid-mediated synaptic plasticity and substance use disorders. Neurologia 2022; 37:459-465. [PMID: 30857785 DOI: 10.1016/j.nrl.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 01/15/2023] Open
Abstract
Drugs impact brain reward circuits, causing dependence and addiction, in a condition currently described as substance use disorders. Mechanisms of synaptic plasticity in these circuits are crucial in the development of addictive behaviour, and endocannabinoids, particularly anandamide and 2-arachidonyl-glycerol, participate in normal neuroplasticity. Substance use disorders are known to be associated with disruption of endocannabinoid-mediated synaptic plasticity, among other phenomena. Endocannabinoids mediate neuroplasticity in the short and the long term. In the short term, we may stress «inhibitory» phenomena, such as depolarisation-induced suppression of inhibition and depolarisation-induced suppression of excitation, and such «disinhibitory» phenomena as long-lasting disinhibition of neuronal activity, particularly in the striatum, and suppression of hippocampal GABA release. Drugs of abuse can also disrupt normal endocannabinoid-mediated long-term potentiation and long-term depression. Endocannabinoids are also involved in the development of drug-induced hypofrontality and sensitisation. In summary, substance abuse causes a disruption in the synaptic plasticity of the brain circuits involved in addiction, with the alteration of normal endocannabinoid activity playing a prominent role. This facilitates abnormal changes in the brain and the development of the addictive behaviours that characterise substance use disorders.
Collapse
Affiliation(s)
- E Fernández-Espejo
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, España.
| | | |
Collapse
|
5
|
Endocannabinoid-mediated synaptic plasticity and substance use disorders. NEUROLOGÍA (ENGLISH EDITION) 2022; 37:459-465. [PMID: 34538595 DOI: 10.1016/j.nrleng.2018.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/03/2018] [Indexed: 11/21/2022] Open
Abstract
Drugs impact brain reward circuits, causing dependence and addiction, in a condition currently described as substance use disorders. Mechanisms of synaptic plasticity in these circuits are crucial in the development of addictive behaviour, and endocannabinoids, particularly anandamide and 2-arachidonyl-glycerol, participate in normal neuroplasticity. Substance use disorders are known to be associated with disruption of endocannabinoid-mediated synaptic plasticity, among other phenomena. Endocannabinoids mediate neuroplasticity in the short and the long term. In the short term, we may stress "inhibitory" phenomena, such as depolarisation-induced suppression of inhibition and depolarisation-induced suppression of excitation, and such "disinhibitory" phenomena as long-lasting disinhibition of neuronal activity, particularly in the striatum, and suppression of hippocampal GABA release. Drugs of abuse can also disrupt normal endocannabinoid-mediated long-term potentiation and long-term depression. Endocannabinoids are also involved in the development of drug-induced hypofrontality and sensitisation. In summary, substance abuse causes a disruption in the synaptic plasticity of the brain circuits involved in addiction, with the alteration of normal endocannabinoid activity playing a prominent role. This facilitates abnormal changes in the brain and the development of the addictive behaviours that characterise substance use disorders.
Collapse
|
6
|
Karimi-Haghighi S, Razavi Y, Iezzi D, Scheyer AF, Manzoni O, Haghparast A. Cannabidiol and substance use disorder: Dream or reality. Neuropharmacology 2022; 207:108948. [PMID: 35032495 PMCID: PMC9157244 DOI: 10.1016/j.neuropharm.2022.108948] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Cannabidiol (CBD) is one of the major constituents of Cannabis sativa L. that lacks psychotomimetic and rewarding properties and inhibits the rewarding and reinforcing effects of addictive drugs such as cocaine, methamphetamine (METH), and morphine. Additionally, CBD's safety profile and therapeutic potential are currently evaluated in several medical conditions, including pain, depression, movement disorders, epilepsy, multiple sclerosis, Alzheimer's disease, ischemia, and substance use disorder. There is no effective treatment for substance use disorders such as addiction, and this review aims to describe preclinical and clinical investigations into the effects of CBD in various models of opioid, psychostimulant, cannabis, alcohol, and nicotine abuse. Furthermore, the possible mechanisms underlying the therapeutic potential of CBD on drug abuse disorders are reviewed. METHODS The current review considers and summarizes the preclinical and clinical investigations into CBD's effects in various models of drug abuse include opioids, psychostimulants, cannabis, alcohol, and nicotine. RESULTS Several preclinical and clinical studies have proposed that CBD may be a reliable agent to inhibit the reinforcing and rewarding impact of drugs. CONCLUSIONS While the currently available evidence converges to suggest that CBD could effectively reduce the rewarding and reinforcing effects of addictive drugs, more preclinical and clinical studies are needed before CBD can be added to the therapeutic arsenal for treating addiction.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Razavi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniela Iezzi
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Marseille, France
| | - Andrew F Scheyer
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Marseille, France
| | - Olivier Manzoni
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Marseille, France
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Daldegan-Bueno D, Maia LO, Glass M, Jutras-Aswad D, Fischer B. Co-exposure of cocaine and cannabinoids and its association with select biological, behavioural and health outcomes: A systematic scoping review of multi-disciplinary studies. Eur Neuropsychopharmacol 2021; 51:106-131. [PMID: 34273801 DOI: 10.1016/j.euroneuro.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/18/2023]
Abstract
Cocaine use entails severe health- and social-related harms globally. Treatment options for cocaine dependence are highly limited. Benefits of cannabinoids for addiction have been documented, making it opportune to examine existing data on the possible outcomes associated with cannabinoids and cocaine co-use. We conducted a systematic scoping review following the PRISMA guidelines of peer-reviewed, English-language studies published from 2000 to 2021 in four databases (Medline, Web-of-Science, CINAHL Plus, and PsycInfo), assessing the co-exposure of cannabis/cannabinoids with cocaine on behavioural, biological or health outcomes. Both quantitative and qualitative, as well as humans and pre-clinical animals' studies (n=46) were included. Pre-clinical studies (n=19) showed mostly protective effects of cannabidiol (CBD) administration on animal models of addiction (e.g., cocaine-craving, -relapse, and -withdrawal) and cocaine-toxicity. Tetrahydrocannabinol (THC) had more inconsistent results, with both protective and counter-protective effects. Human studies (n=27) were more heterogeneous and assessed natural ongoing cannabis and cocaine use or dependence. Quantitative-based studies showed mostly enhanced harms in several outcomes (e.g., cocaine use, mental health); two available clinical trials found no effect upon CBD administration on cocaine-related treatment outcomes. Qualitative data-based studies reported cannabis use as a substitute for or to alleviate harms of crack-cocaine use. While pre-clinical studies suggest a potential of cannabinoids, especially CBD, to treat cocaine addiction, the few trials conducted in humans found no benefits. Cannabis co-use by cocaine users commonly presents a risk factor, entailing enhanced harms for users. More rigorous, controlled trials are still necessary to investigate cannabinoids' potential considering pre-clinical findings and reported benefits from specific drug users.
Collapse
Affiliation(s)
- Dimitri Daldegan-Bueno
- Schools of Population Health and Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lucas O Maia
- Centre for Applied Research in Mental Health & Addiction, Simon Fraser University, Vancouver, Canada
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Otago, New Zealand
| | - Didier Jutras-Aswad
- Centre de Recherche, Centre Hospitalier Universitaire de Universite de Montreal (CHUM), Montreal, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Benedikt Fischer
- Schools of Population Health and Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Applied Research in Mental Health & Addiction, Simon Fraser University, Vancouver, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Psychiatry, Federal University of Sao Paulo (UNIFESP), Sao Paulo, Brazil.
| |
Collapse
|
8
|
Guzman AS, Avalos MP, De Giovanni LN, Euliarte PV, Sanchez MA, Mongi-Bragato B, Rigoni D, Bollati FA, Virgolini MB, Cancela LM. CB1R activation in nucleus accumbens core promotes stress-induced reinstatement of cocaine seeking by elevating extracellular glutamate in a drug-paired context. Sci Rep 2021; 11:12964. [PMID: 34155271 PMCID: PMC8217548 DOI: 10.1038/s41598-021-92389-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023] Open
Abstract
Preclinical models of stress-induced relapse to drug use have shown that the dysregulation of glutamatergic transmission within the nucleus accumbens (NA) contributes notably to the reinstatement of cocaine-seeking behavior in rodents. In this sense, there has been increasing interest in the cannabinoid type-1 receptor (CB1R), due to its crucial role in modulating glutamatergic neurotransmission within brain areas involved in drug-related behaviors. This study explored the involvement of CB1R within the NA subregions in the restraint stress-induced reinstatement of cocaine-conditioned place preference (CPP), as well as in the regulation of glutamatergic transmission, by using a pharmacological approach and the in vivo microdialysis sampling technique in freely moving rats. CB1R blockade by the antagonist/inverse agonist AM251 (5 nmol/0.5 μl/side) or CB1R activation by the agonist ACEA (0.01 fmol/0.5 μl/side), prevented or potentiated restraint stress-induced reinstatement of cocaine-CPP, respectively, after local administration into NAcore, but not NAshell. In addition, microdialysis experiments demonstrated that restraint stress elicited a significant increase in extracellular glutamate in NAcore under reinstatement conditions, with the local administration of AM251 or ACEA inhibiting or potentiating this, respectively. Interestingly, this rise specifically corresponded to the cocaine-associated CPP compartment. We also showed that this context-dependent change in glutamate paralleled the expression of cocaine-CPP, and disappeared after the extinction of this response. Taken together, these findings demonstrated the key role played by CB1R in mediating reinstatement of cocaine-CPP after restraint stress, through modulation of the context-specific glutamate release within NAcore. Additionally, CB1R regulation of basal extracellular glutamate was demonstrated and proposed as the underlying mechanism.
Collapse
Affiliation(s)
- Andrea S Guzman
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Maria P Avalos
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Laura N De Giovanni
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Pia V Euliarte
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Marianela A Sanchez
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Bethania Mongi-Bragato
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Daiana Rigoni
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Flavia A Bollati
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Miriam B Virgolini
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Liliana M Cancela
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina. .,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina.
| |
Collapse
|
9
|
Galaj E, Xi ZX. Possible Receptor Mechanisms Underlying Cannabidiol Effects on Addictive-like Behaviors in Experimental Animals. Int J Mol Sci 2020; 22:ijms22010134. [PMID: 33374481 PMCID: PMC7795330 DOI: 10.3390/ijms22010134] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 12/24/2022] Open
Abstract
Substance use disorder (SUD) is a serious public health problem worldwide for which available treatments show limited effectiveness. Since the legalization of cannabis and the approval of cannabidiol (CBD) by the US Food and Drug Administration, therapeutic potential of CBD for the treatment of SUDs and other diseases has been widely explored. In this mini-review article, we first review the history and evidence supporting CBD as a potential pharmacotherapeutic. We then focus on recent progress in preclinical research regarding the pharmacological efficacy of CBD and the underlying receptor mechanisms on addictive-like behavior. Growing evidence indicates that CBD has therapeutic potential in reducing drug reward, as assessed in intravenous drug self-administration, conditioned place preference and intracranial brain-stimulation reward paradigms. In addition, CBD is effective in reducing relapse in experimental animals. Both in vivo and in vitro receptor mechanism studies indicate that CBD may act as a negative allosteric modulator of type 1 cannabinoid (CB1) receptor and an agonist of type 2 cannabinoid (CB2), transient receptor potential vanilloid 1 (TRPV1), and serotonin 5-HT1A receptors. Through these multiple-receptor mechanisms, CBD is believed to modulate brain dopamine in response to drugs of abuse, leading to attenuation of drug-taking and drug-seeking behavior. While these findings suggest that CBD is a promising therapeutic candidate, further investigation is required to verify its safety, pharmacological efficacy and the underlying receptor mechanisms in both experimental animals and humans.
Collapse
|
10
|
Rodrigues LA, Caroba MES, Taba FK, Filev R, Gallassi AD. Evaluation of the potential use of cannabidiol in the treatment of cocaine use disorder: A systematic review. Pharmacol Biochem Behav 2020; 196:172982. [DOI: 10.1016/j.pbb.2020.172982] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/09/2022]
|
11
|
Ramos J, Hardin EJ, Grant AH, Flores-Robles G, Gonzalez AT, Cruz B, Martinez AK, Beltran NM, Serafine KM. The Effects of Eating a High Fat Diet on Sensitivity of Male and Female Rats to Methamphetamine and Dopamine D 1 Receptor Agonist SKF 82958. J Pharmacol Exp Ther 2020; 374:6-15. [PMID: 32265322 PMCID: PMC7288732 DOI: 10.1124/jpet.119.263293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/01/2020] [Indexed: 11/22/2022] Open
Abstract
Rats eating high fat chow are more sensitive to the behavioral effects of dopaminergic drugs, including methamphetamine and the dopamine D2/D3 receptor agonist quinpirole, than rats eating standard chow. However, limited work has explored possible sex differences regarding the impact of diet on drug sensitivity. It is also unknown whether eating high fat chow enhances sensitivity of rats to other dopamine (e.g., D1) receptor agonists. To explore these possibilities, male and female Sprague-Dawley rats eating standard laboratory chow (17% kcal from fat) or high fat chow (60% kcal from fat) were tested once per week for 6 weeks with dopamine D1 receptor agonist SKF 82958 (0.01-3.2 mg/kg) or methamphetamine (0.1-3.2 mg/kg) using cumulative dosing procedures. Eating high fat chow increased sensitivity of male and female rats to methamphetamine-induced locomotion; however, only female rats eating high fat chow were more sensitive to SKF 82958-induced locomotion. SKF 82958-induced eye blinking was also marginally, although not significantly, enhanced among female rats eating high fat chow, but not males. Further, although dopamine D2 receptor expression was significantly increased for SKF 82958-treated rats eating high fat chow regardless of sex, no differences were observed in dopamine D1 receptor expression. Taken together, the present study suggests that although eating high fat chow enhances sensitivity of both sexes to dopaminergic drugs, the mechanism driving this effect might be different for males versus females. These data further demonstrate the importance of studying both sexes simultaneously when investigating factors that influence drug sensitivity. SIGNIFICANCE STATEMENT: Although it is known that diet can impact sensitivity to some dopaminergic drugs, sex differences regarding this effect are not well characterized. This report demonstrates that eating a high fat diet enhances sensitivity to methamphetamine, regardless of sex; however, sensitivity to dopamine D1 receptor agonist SKF 82958 is increased only among females eating high fat chow, but not males. This suggests that the mechanism(s) driving diet-induced changes in drug sensitivity might be different between sexes.
Collapse
Affiliation(s)
- Jeremiah Ramos
- Department of Psychology (J.R., E.J.H., G.F.-R., A.T.G., B.C., A.K.M, N.M.B., K.M.S.), Department of Biological Sciences (A.H.G.), and the Border Biomedical Research Center (K.M.S.), The University of Texas at El Paso, El Paso, Texas
| | - Ethan J Hardin
- Department of Psychology (J.R., E.J.H., G.F.-R., A.T.G., B.C., A.K.M, N.M.B., K.M.S.), Department of Biological Sciences (A.H.G.), and the Border Biomedical Research Center (K.M.S.), The University of Texas at El Paso, El Paso, Texas
| | - Alice H Grant
- Department of Psychology (J.R., E.J.H., G.F.-R., A.T.G., B.C., A.K.M, N.M.B., K.M.S.), Department of Biological Sciences (A.H.G.), and the Border Biomedical Research Center (K.M.S.), The University of Texas at El Paso, El Paso, Texas
| | - Grace Flores-Robles
- Department of Psychology (J.R., E.J.H., G.F.-R., A.T.G., B.C., A.K.M, N.M.B., K.M.S.), Department of Biological Sciences (A.H.G.), and the Border Biomedical Research Center (K.M.S.), The University of Texas at El Paso, El Paso, Texas
| | - Adrian T Gonzalez
- Department of Psychology (J.R., E.J.H., G.F.-R., A.T.G., B.C., A.K.M, N.M.B., K.M.S.), Department of Biological Sciences (A.H.G.), and the Border Biomedical Research Center (K.M.S.), The University of Texas at El Paso, El Paso, Texas
| | - Bryan Cruz
- Department of Psychology (J.R., E.J.H., G.F.-R., A.T.G., B.C., A.K.M, N.M.B., K.M.S.), Department of Biological Sciences (A.H.G.), and the Border Biomedical Research Center (K.M.S.), The University of Texas at El Paso, El Paso, Texas
| | - Arantxa K Martinez
- Department of Psychology (J.R., E.J.H., G.F.-R., A.T.G., B.C., A.K.M, N.M.B., K.M.S.), Department of Biological Sciences (A.H.G.), and the Border Biomedical Research Center (K.M.S.), The University of Texas at El Paso, El Paso, Texas
| | - Nina M Beltran
- Department of Psychology (J.R., E.J.H., G.F.-R., A.T.G., B.C., A.K.M, N.M.B., K.M.S.), Department of Biological Sciences (A.H.G.), and the Border Biomedical Research Center (K.M.S.), The University of Texas at El Paso, El Paso, Texas
| | - Katherine M Serafine
- Department of Psychology (J.R., E.J.H., G.F.-R., A.T.G., B.C., A.K.M, N.M.B., K.M.S.), Department of Biological Sciences (A.H.G.), and the Border Biomedical Research Center (K.M.S.), The University of Texas at El Paso, El Paso, Texas
| |
Collapse
|
12
|
John WS, Martin TJ, Nader MA. Cannabinoid Modulation of Food-Cocaine Choice in Male Rhesus Monkeys. J Pharmacol Exp Ther 2020; 373:44-50. [PMID: 31941717 PMCID: PMC7076528 DOI: 10.1124/jpet.119.263707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/08/2020] [Indexed: 01/21/2023] Open
Abstract
Marijuana and other cannabinoid compounds are widely used by cocaine users. Preclinical animal studies suggest that these compounds can increase the reinforcing effects of cocaine under some schedules of cocaine self-administration and reinstatement, but not in all cases. To date, no studies have used a food-cocaine concurrent choice procedure, which allows for assessment of drug effects on response allocation, not just changes in cocaine self-administration. The goal of the present study was to examine the effects of compounds differing in their efficacy at the cannabinoid receptor (CBR) on cocaine self-administration using a food-drug choice procedure in monkeys. Four adult male rhesus monkeys were trained to self-administer cocaine in the context of an alternative food (1.0-g banana-flavored pellets) reinforcer, such that complete cocaine dose-response curves (0, 0.003-0.1 mg/kg per injection) were determined each session. Monkeys were tested acutely with the CBR full agonist CP 55,940 (0.001-0.01 mg/kg); the CBR partial agonist Δ9-tetrahydrocannabinol (THC; 0.03-0.3 mg/kg), which is also the primary active ingredient in marijuana and the CBR antagonist rimonabant (0.3-3.0 mg/kg). Cocaine choice increased in a dose-dependent manner. Acute treatment with CP 55,940 decreased cocaine choice, whereas THC and rimonabant enhanced the reinforcing effects of cocaine. Chronic (7-day) treatment with CP 55,940 resulted in tolerance to the decreases in cocaine choice. These findings with Δ9-THC provide support for a potential mechanism for co-abuse of marijuana and cocaine. Additional research with chronic treatment with full CBR agonists on attenuating the reinforcing strength of cocaine is warranted. SIGNIFICANCE STATEMENT: Co-abuse of tetrahydrocannabinol and cocaine is a significant public health problem. The use of animal models allows for the determination of how cannabinoid receptor stimulation or blockade influences the reinforcing strength of cocaine.
Collapse
Affiliation(s)
- William S John
- Departments of Physiology and Pharmacology (W.S.J., M.A.N.) and Anesthesiology (T.J.M.), Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thomas J Martin
- Departments of Physiology and Pharmacology (W.S.J., M.A.N.) and Anesthesiology (T.J.M.), Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Michael A Nader
- Departments of Physiology and Pharmacology (W.S.J., M.A.N.) and Anesthesiology (T.J.M.), Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
13
|
Calpe-López C, García-Pardo MP, Aguilar MA. Cannabidiol Treatment Might Promote Resilience to Cocaine and Methamphetamine Use Disorders: A Review of Possible Mechanisms. Molecules 2019; 24:molecules24142583. [PMID: 31315244 PMCID: PMC6680550 DOI: 10.3390/molecules24142583] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/10/2019] [Accepted: 07/14/2019] [Indexed: 12/12/2022] Open
Abstract
Currently, there are no approved pharmacotherapies for addiction to cocaine and other psychostimulant drugs. Several studies have proposed that cannabidiol (CBD) could be a promising treatment for substance use disorders. In the present work, the authors describe the scarce preclinical and human research about the actions of CBD on the effects of stimulant drugs, mainly cocaine and methamphetamine (METH). Additionally, the possible mechanisms underlying the therapeutic potential of CBD on stimulant use disorders are reviewed. CBD has reversed toxicity and seizures induced by cocaine, behavioural sensitization induced by amphetamines, motivation to self-administer cocaine and METH, context- and stress-induced reinstatement of cocaine and priming-induced reinstatement of METH seeking behaviours. CBD also potentiated the extinction of cocaine- and amphetamine-induced conditioned place preference (CPP), impaired the reconsolidation of cocaine CPP and prevented priming-induced reinstatement of METH CPP. Observational studies suggest that CBD may reduce problems related with crack-cocaine addiction, such as withdrawal symptoms, craving, impulsivity and paranoia (Fischer et al., 2015). The potential mechanisms involved in the protective effects of CBD on addiction to psychostimulant drugs include the prevention of drug-induced neuroadaptations (neurotransmitter and intracellular signalling pathways changes), the erasure of aberrant drug-memories, the reversion of cognitive deficits induced by psychostimulant drugs and the alleviation of mental disorders comorbid with psychostimulant abuse. Further, preclinical studies and future clinical trials are necessary to fully evaluate the potential of CBD as an intervention for cocaine and methamphetamine addictive disorders.
Collapse
Affiliation(s)
- Claudia Calpe-López
- Unit of Research "Neurobehavioural mechanisms and endophenotypes of addictive behavior", Department of Psychobiology, University of Valencia, Avda. Blasco Ibañez 21, 46010 Valencia, Spain
| | - M Pilar García-Pardo
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain
| | - Maria A Aguilar
- Unit of Research "Neurobehavioural mechanisms and endophenotypes of addictive behavior", Department of Psychobiology, University of Valencia, Avda. Blasco Ibañez 21, 46010 Valencia, Spain.
| |
Collapse
|
14
|
Scherma M, Masia P, Satta V, Fratta W, Fadda P, Tanda G. Brain activity of anandamide: a rewarding bliss? Acta Pharmacol Sin 2019; 40:309-323. [PMID: 30050084 DOI: 10.1038/s41401-018-0075-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022]
Abstract
Anandamide is a lipid mediator that acts as an endogenous ligand of CB1 receptors. These receptors are also the primary molecular target responsible for the pharmacological effects of Δ9-tetrahydrocannabinol, the psychoactive ingredient in Cannabis sativa. Several studies demonstrate that anandamide exerts an overall modulatory effect on the brain reward circuitry. Several reports suggest its involvement in the addiction-producing actions of other abused drugs, and it can also act as a behavioral reinforcer in animal models of drug abuse. Importantly, all these effects of anandamide appear to be potentiated by pharmacological inhibition of its metabolic degradation. Enhanced brain levels of anandamide after treatment with inhibitors of fatty acid amide hydrolase, the main enzyme responsible for its degradation, seem to affect the rewarding and reinforcing actions of many drugs of abuse. In this review, we will provide an overview from a preclinical perspective of the current state of knowledge regarding the behavioral pharmacology of anandamide, with a particular emphasis on its motivational/reinforcing properties. We will also discuss how modulation of anandamide levels through inhibition of enzymatic metabolic pathways could provide a basis for developing new pharmaco-therapeutic tools for the treatment of substance use disorders.
Collapse
|
15
|
Chye Y, Christensen E, Solowij N, Yücel M. The Endocannabinoid System and Cannabidiol's Promise for the Treatment of Substance Use Disorder. Front Psychiatry 2019; 10:63. [PMID: 30837904 PMCID: PMC6390812 DOI: 10.3389/fpsyt.2019.00063] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/28/2019] [Indexed: 11/16/2022] Open
Abstract
Substance use disorder is characterized by repeated use of a substance, leading to clinically significant distress, making it a serious public health concern. The endocannabinoid system plays an important role in common neurobiological processes underlying substance use disorder, in particular by mediating the rewarding and motivational effects of substances and substance-related cues. In turn, a number of cannabinoid drugs (e.g., rimonabant, nabiximols) have been suggested for potential pharmacological treatment for substance dependence. Recently, cannabidiol (CBD), a non-psychoactive phytocannabinoid found in the cannabis plant, has also been proposed as a potentially effective treatment for the management of substance use disorder. Animal and human studies suggest that these cannabinoids have the potential to reduce craving and relapse in abstinent substance users, by impairing reconsolidation of drug-reward memory, salience of drug cues, and inhibiting the reward-facilitating effect of drugs. Such functions likely arise through the targeting of the endocannabinoid and serotonergic systems, although the exact mechanism is yet to be elucidated. This article seeks to review the role of the endocannabinoid system in substance use disorder and the proposed pharmacological action supporting cannabinoid drugs' therapeutic potential in addictions, with a focus on CBD. Subsequently, this article will evaluate the underlying evidence for CBD as a potential treatment for substance use disorder, across a range of substances including nicotine, alcohol, psychostimulants, opioids, and cannabis. While early research supports CBD's promise, further investigation and validation of CBD's efficacy, across preclinical and clinical trials will be necessary.
Collapse
Affiliation(s)
- Yann Chye
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Erynn Christensen
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,The Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW, Australia
| | - Murat Yücel
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Luján MÁ, Castro-Zavala A, Alegre-Zurano L, Valverde O. Repeated Cannabidiol treatment reduces cocaine intake and modulates neural proliferation and CB1R expression in the mouse hippocampus. Neuropharmacology 2018; 143:163-175. [DOI: 10.1016/j.neuropharm.2018.09.043] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/04/2018] [Accepted: 09/26/2018] [Indexed: 12/18/2022]
|
17
|
Epigenetic mechanisms associated with addiction-related behavioural effects of nicotine and/or cocaine: implication of the endocannabinoid system. Behav Pharmacol 2018; 28:493-511. [PMID: 28704272 DOI: 10.1097/fbp.0000000000000326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The addictive use of nicotine (NC) and cocaine (COC) continues to be a major public health problem, and their combined use has been reported, particularly during adolescence. In neural plasticity, commonly induced by NC and COC, as well as behavioural plasticity related to the use of these two drugs, the involvement of epigenetic mechanisms, in which the reversible regulation of gene expression occurs independently of the DNA sequence, has recently been reported. Furthermore, on the basis of intense interactions with the target neurotransmitter systems, the endocannabinoid (ECB) system has been considered pivotal for eliciting the effects of NC or COC. The combined use of marijuana with NC and/or COC has also been reported. This article presents the addiction-related behavioural effects of NC and/or COC, based on the common behavioural/neural plasticity and combined use of NC/COC, and reviews the interacting role of the ECB system. The epigenetic processes inseparable from the effects of NC and/or COC (i.e. DNA methylation, histone modifications and alterations in microRNAs) and the putative therapeutic involvement of the ECB system at the epigenetic level are also discussed.
Collapse
|
18
|
Silva AAF, Barbosa-Souza E, Confessor-Carvalho C, Silva RRR, De Brito ACL, Cata-Preta EG, Silva Oliveira T, Berro LF, Oliveira-Lima AJ, Marinho EAV. Context-dependent effects of rimonabant on ethanol-induced conditioned place preference in female mice. Drug Alcohol Depend 2017; 179:317-324. [PMID: 28837947 DOI: 10.1016/j.drugalcdep.2017.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND The CB1 receptor antagonist rimonabant has been previously found to prevent behavioral effects of drugs of abuse in a context-dependent manner, suggesting an important role of endocannabinoid signaling in drug-induced environmental conditioning. The aim of the present study was to evaluate the effects of rimonabant on ethanol-induced conditioned place preference (CPP) in female mice. METHODS Animals were conditioned with saline or ethanol (1.8g/kg) during 8 sessions, and subsequently treated with either saline or rimonabant (1 or 10mg/kg) in the CPP environment previously associated with saline (unpaired) or ethanol (paired) for 6 consecutive days. Animals were then challenged with ethanol (1.8g/kg) in the ethanol-paired environment and ethanol-induced CPP was quantified on the following day. RESULTS While treatment with 1mg/kg rimonabant in the saline-associated environment had no effects on the subsequent expression of ethanol-induced CPP, it blocked the expression of CPP to ethanol when paired to the ethanol-associated environment. When given in the ethanol-paired environment, 10mg/kg rimonabant induced aversion to the ethanol-associated environment. The same aversion effect was observed for 10mg/kg rimonabant when given in the saline-associated environment, thereby potentiating the expression of ethanol-induced CPP. Importantly, rimonabant did not induce CPP or conditioned place aversion on its own. Controlling for the estrous cycle phase showed no influences of hormonal cycle on the development and expression of ethanol-induced CPP. CONCLUSIONS Our data suggest that rimonabant reduces the rewarding properties of ethanol by abolishing drug-environment conditioning in the CPP paradigm in a context-dependent manner.
Collapse
Affiliation(s)
- Aline A F Silva
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Evelyn Barbosa-Souza
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Cassio Confessor-Carvalho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Raiany R R Silva
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Ana Carolina L De Brito
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Elisangela G Cata-Preta
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Thaynara Silva Oliveira
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Lais F Berro
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA.
| | - Alexandre J Oliveira-Lima
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil
| | - Eduardo A V Marinho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0, Ilhéus, BA, Brazil.
| |
Collapse
|
19
|
Post-sensitization treatment with rimonabant blocks the expression of cocaine-induced behavioral sensitization and c-Fos protein in mice. Pharmacol Biochem Behav 2017; 156:16-23. [DOI: 10.1016/j.pbb.2017.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/27/2022]
|
20
|
Oliveira-Lima AJ, Marinho E, Santos-Baldaia R, Hollais AW, Baldaia MA, Talhati F, Ribeiro LT, Wuo-Silva R, Berro LF, Frussa-Filho R. Context-dependent efficacy of a counter-conditioning strategy with atypical neuroleptic drugs in mice previously sensitized to cocaine. Prog Neuropsychopharmacol Biol Psychiatry 2017; 73:49-55. [PMID: 27789219 DOI: 10.1016/j.pnpbp.2016.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/17/2016] [Accepted: 10/22/2016] [Indexed: 01/31/2023]
Abstract
RATIONALE We have previously demonstrated that treatment with ziprasidone and aripiprazole selectively inhibit the development of behavioral sensitization to cocaine in mice. We now investigate their effects on a counter-conditioning strategy in mice and the importance of the treatment environment for this phenomenon. OBJECTIVE Evaluate the context-specificity of ziprasidone and aripiprazole on conditioned locomotion to cocaine and cocaine-induced hyperlocomotion and behavioral sensitization in a counter-conditioning strategy in mice. METHODS Animals were sensitized with saline or cocaine injections in the open-field apparatus in a 15-day intermittent treatment and subsequently treated with vehicle, 5mg/kg ziprasidone or 0.1mg/kg aripiprazole paired to the open-field or the home-cage for 4 alternate days. Mice were then challenged with saline and cocaine in the open-field apparatus on subsequent days. RESULTS While treatment with ziprasidone decreased spontaneous locomotion and conditioned locomotion alike, treatment with aripiprazole specifically attenuated the expression of conditioned hyperlocomotion to cocaine. Ziprasidone and aripiprazole had no effects on cocaine-induced conditioned hyperlocomotion observed during saline challenge after drug withdrawal. Treatment with either ziprasidone or aripiprazole when previously given in the cocaine-paired environment attenuated the subsequent expression of behavioral sensitization to cocaine. Animals treated with aripiprazole in the open-field, but not in the home-cage, showed a blunted response to cocaine when receiving a cocaine challenge for the first time. CONCLUSIONS Both neuroleptic drugs showed a context-dependent effectiveness in attenuating long-term expression of cocaine-induced behavioral sensitization when administered in the cocaine-associated environment, with aripiprazole also showing effectiveness in blocking the expression of acute cocaine effects.
Collapse
Affiliation(s)
- A J Oliveira-Lima
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0 Ilhéus, BA, Brazil.
| | - Eav Marinho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Rod. Ilhéus/Itabuna, Km 16, 45662-0 Ilhéus, BA, Brazil
| | - R Santos-Baldaia
- Department of Physiology, Universidade Federal de São Paulo, R. Botucatu, 862, 04023062 São Paulo, SP, Brazil
| | - A W Hollais
- Department of Physiology, Universidade Federal de São Paulo, R. Botucatu, 862, 04023062 São Paulo, SP, Brazil
| | - M A Baldaia
- Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, 04023062 São Paulo, SP, Brazil
| | - F Talhati
- Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, 04023062 São Paulo, SP, Brazil
| | - L T Ribeiro
- Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, 04023062 São Paulo, SP, Brazil
| | - R Wuo-Silva
- Department of Physiology, Universidade Federal de São Paulo, R. Botucatu, 862, 04023062 São Paulo, SP, Brazil
| | - L F Berro
- Department of Psychobiology, Universidade Federal de São Paulo, R. Botucatu, 862, 04023062 São Paulo, SP, Brazil.
| | - R Frussa-Filho
- Department of Psychobiology, Universidade Federal de São Paulo, R. Botucatu, 862, 04023062 São Paulo, SP, Brazil; Department of Pharmacology, Universidade Federal de São Paulo, R. Botucatu, 862, 04023062 São Paulo, SP, Brazil
| |
Collapse
|
21
|
Delis F, Polissidis A, Poulia N, Justinova Z, Nomikos GG, Goldberg SR, Antoniou K. Attenuation of Cocaine-Induced Conditioned Place Preference and Motor Activity via Cannabinoid CB2 Receptor Agonism and CB1 Receptor Antagonism in Rats. Int J Neuropsychopharmacol 2016; 20:269-278. [PMID: 27994006 PMCID: PMC5408977 DOI: 10.1093/ijnp/pyw102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/07/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Studies have shown the involvement of cannabinoid (CB) receptors in the behavioral and neurobiological effects of psychostimulants. Most of these studies have focused on the role of CB1 receptors in the psychostimulant effects of cocaine, while very few have investigated the respective role of CB2 receptors. Further studies are warranted to elucidate the extent of CB receptor involvement in the expression of cocaine-induced effects. METHODS The role of CB1 and CB2 receptors in the rewarding and motor properties of cocaine was assessed in conditioned place preference, conditioned motor activity, and open field activity in rats. RESULTS The CB1 receptor antagonist rimonabant (3 mg/kg) decreased the acquisition and the expression of conditioned place preference induced by cocaine (20 mg/kg). Rimonabant inhibited cocaine-elicited conditioned motor activity when administered during the expression of cocaine-induced conditioned place preference. Rimonabant decreased ambulatory and vertical activity induced by cocaine. The CB2 receptor agonist JWH-133 (10 mg/kg) decreased the acquisition and the expression of cocaine-induced conditioned place preference. JWH-133 inhibited cocaine-elicited conditioned motor activity when administered during the acquisition and the expression of cocaine-induced conditioned place preference. JWH-133 decreased ambulatory activity and abolished vertical activity induced by cocaine. The effects of JWH-133 on cocaine conditioned and stimulated responses were abolished when the CB2 receptor antagonist/inverse agonist AM630 (5 mg/kg) was preadministered. CONCLUSIONS Cannabinoid CB1 and CB2 receptors modulate cocaine-induced rewarding behavior and appear to have opposite roles in the regulation of cocaine's reinforcing and psychomotor effects.
Collapse
Affiliation(s)
- Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (Dr Delis, Dr Polissidis, Ms Poulia, and Dr Anoniou)
| | - Alexia Polissidis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (Dr Delis, Dr Polissidis, Ms Poulia, and Dr Anoniou);,Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece (Dr Polissidis)
| | - Nafsika Poulia
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (Dr Delis, Dr Polissidis, Ms Poulia, and Dr Anoniou)
| | - Zuzana Justinova
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD (Drs Justinova and Goldberg)
| | - George G. Nomikos
- Global Clinical Science, Takeda Development Center Americas, Inc, Deerfield, IL (Dr Nomikos)
| | - Steven R. Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD (Drs Justinova and Goldberg)
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (Dr Delis, Dr Polissidis, Ms Poulia, and Dr Anoniou)
| |
Collapse
|
22
|
Martín-García E, Bourgoin L, Cathala A, Kasanetz F, Mondesir M, Gutiérrez-Rodriguez A, Reguero L, Fiancette JF, Grandes P, Spampinato U, Maldonado R, Piazza PV, Marsicano G, Deroche-Gamonet V. Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors. Neuropsychopharmacology 2016; 41:2192-205. [PMID: 26612422 PMCID: PMC4946049 DOI: 10.1038/npp.2015.351] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/13/2015] [Accepted: 11/19/2015] [Indexed: 01/19/2023]
Abstract
The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic, and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology.
Collapse
Affiliation(s)
- Elena Martín-García
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France,Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Lucie Bourgoin
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Adeline Cathala
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Fernando Kasanetz
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Miguel Mondesir
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Ana Gutiérrez-Rodriguez
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
| | - Leire Reguero
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
| | - Jean- François Fiancette
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
| | - Umberto Spampinato
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Rafael Maldonado
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Pier Vincenzo Piazza
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Giovanni Marsicano
- University of Bordeaux, Bordeaux, France,INSERM U862, Endocannabinoids and Neuroadaptation, NeuroCentre Magendie, Bordeaux, France
| | - Véronique Deroche-Gamonet
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France,CRI U862, Pathophysiology of Addiction, Neurocentre Magendie, 146 rue Léo Saignat, Bordeaux 33077, France, Tel: +33 5 57 57 36 80, Fax: +33 5 57 57 36 69, E-mail:
| |
Collapse
|
23
|
Rodríguez-Arias M, Roger-Sánchez C, Vilanova I, Revert N, Manzanedo C, Miñarro J, Aguilar MA. Effects of Cannabinoid Exposure during Adolescence on the Conditioned Rewarding Effects of WIN 55212-2 and Cocaine in Mice: Influence of the Novelty-Seeking Trait. Neural Plast 2015; 2016:6481862. [PMID: 26881125 PMCID: PMC4736006 DOI: 10.1155/2016/6481862] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/01/2015] [Accepted: 09/17/2015] [Indexed: 11/17/2022] Open
Abstract
Adolescent exposure to cannabinoids enhances the behavioural effects of cocaine, and high novelty-seeking trait predicts greater sensitivity to the conditioned place preference (CPP) induced by this drug. Our aim was to evaluate the influence of novelty-seeking on the effects of adolescent cannabinoid exposure. Adolescent male mice were classified as high or low novelty seekers (HNS and LNS) in the hole-board test. First, we evaluated the CPP induced by the cannabinoid agonist WIN 55212-2 (0.05 and 0.075 mg/kg, i.p.) in HNS and LNS mice. Then, HNS and LNS mice were pretreated i.p. with vehicle, WIN 55212-2 (0.1 mg/kg), or cannabinoid antagonist rimonabant (1 mg/kg) and were subsequently conditioned with WIN 55212-2 (0.05 mg/kg, i.p.) or cocaine (1 or 6 mg/kg, i.p.). Only HNS mice conditioned with the 0.075 mg/kg dose acquired CPP with WIN 55212-2. Adolescent exposure to this cannabinoid agonist increased the rewarding effects of 1 mg/kg of cocaine in both HNS and LNS mice, and in HNS mice it also increased the reinstating effect of a low dose of cocaine. Our results endorse a role for individual differences such as a higher propensity for sensation-seeking in the development of addiction.
Collapse
Affiliation(s)
- M. Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, 46010 Valencia, Spain
| | - C. Roger-Sánchez
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, 46010 Valencia, Spain
| | - I. Vilanova
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, 46010 Valencia, Spain
| | - N. Revert
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, 46010 Valencia, Spain
| | - C. Manzanedo
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, 46010 Valencia, Spain
| | - J. Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, 46010 Valencia, Spain
| | - M. A. Aguilar
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, 46010 Valencia, Spain
| |
Collapse
|
24
|
Marinho EAV, Oliveira-Lima AJ, Santos R, Hollais AW, Baldaia MA, Wuo-Silva R, Yokoyama TS, Takatsu-Coleman AL, Patti CL, Longo BM, Berro LF, Frussa-Filho R. Effects of rimonabant on the development of single dose-induced behavioral sensitization to ethanol, morphine and cocaine in mice. Prog Neuropsychopharmacol Biol Psychiatry 2015; 58:22-31. [PMID: 25496830 DOI: 10.1016/j.pnpbp.2014.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/01/2014] [Accepted: 11/18/2014] [Indexed: 11/19/2022]
Abstract
RATIONALE The endocannabinoid system has been implicated in the neurobiological mechanism underlying drug addiction, especially the primary rewarding dopamine-dependent processes. Therefore, endocannabinoid receptor antagonists, such as the CB1 cannabinoid antagonist rimonabant, have been proposed as candidates for preventive addiction therapies. OBJECTIVES Investigate the possible involvement of CB1 receptors in the development of behavioral sensitization to ethanol, morphine and cocaine in mice. METHODS We compared the effects of different doses of rimonabant (0.3, 1, 3 and 10mg/kg) on spontaneous locomotor activity in the open-field, hyperlocomotion induced by acute administration of ethanol (1.8g/kg), morphine (20mg/kg) or cocaine (10mg/kg) and on subsequent drug-induced locomotor sensitization using a two-injection protocol in mice. We also investigated a possible depressive-like effect of an acute rimonabant challenge at the highest dose and its potential anxiogenic property. RESULTS At the highest dose, rimonabant abolished ethanol- and cocaine-induced hyperlocomotion and behavioral sensitization without modifying spontaneous and central locomotor activity or inducing depressive-like behavior on the forced swim test in mice. The other doses of rimonabant also selectively blocked acute ethanol-induced central hyperlocomotion. Although rimonabant at 0.3 and 1mg/kg potentiated the central hyperlocomotion induced by acute morphine injection, it was effective in attenuating morphine-induced behavioral sensitization at all doses. CONCLUSIONS Because the neural basis of behavioral sensitization has been proposed to correspond to some components of addiction, our findings indicate that the endocannabinoid system might be involved in ethanol, cocaine and morphine abuse.
Collapse
Affiliation(s)
- Eduardo A V Marinho
- Departamento de Ciências da Saúde, Universidade Estadual de Santa Cruz - UESC, Ilhéus, BA, Brazil.
| | | | - Renan Santos
- Departamento de Fisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - André W Hollais
- Departamento de Fisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - Marilia A Baldaia
- Departamento de Farmacologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - Raphael Wuo-Silva
- Departamento de Fisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - Thais S Yokoyama
- Departamento de Fisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - André L Takatsu-Coleman
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - Camilla L Patti
- Departamento de Farmacologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - Beatriz M Longo
- Departamento de Fisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil; Departamento de Farmacologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - Laís F Berro
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil.
| | - Roberto Frussa-Filho
- Departamento de Farmacologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| |
Collapse
|
25
|
Moreira FA, Jupp B, Belin D, Dalley JW. Endocannabinoids and striatal function: implications for addiction-related behaviours. Behav Pharmacol 2015; 26:59-72. [PMID: 25369747 PMCID: PMC5398317 DOI: 10.1097/fbp.0000000000000109] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/26/2014] [Indexed: 12/24/2022]
Abstract
Since the identification and cloning of the major cannabinoid receptor expressed in the brain almost 25 years ago research has highlighted the potential of drugs that target the endocannabinoid system for treating addiction. The endocannabinoids, anandamide and 2-arachidonoyl glycerol, are lipid-derived metabolites found in abundance in the basal ganglia and other brain areas innervated by the mesocorticolimbic dopamine systems. Cannabinoid CB1 receptor antagonists/inverse agonists reduce reinstatement of responding for cocaine, alcohol and opiates in rodents. However, compounds acting on the endocannabinoid system may have broader application in treating drug addiction by ameliorating associated traits and symptoms such as impulsivity and anxiety that perpetuate drug use and interfere with rehabilitation. As a trait, impulsivity is known to predispose to addiction and facilitate the emergence of addiction to stimulant drugs. In contrast, anxiety and elevated stress responses accompany extended drug use and may underlie the persistence of drug intake in dependent individuals. In this article we integrate and discuss recent findings in rodents showing selective pharmacological modulation of impulsivity and anxiety by cannabinoid agents. We highlight the potential of selective inhibitors of endocannabinoid metabolism, directed at fatty acid amide hydrolase and monoacylglycerol lipase, to reduce anxiety and stress responses, and discuss novel mechanisms underlying the modulation of the endocannabinoid system, including the attenuation of impulsivity, anxiety, and drug reward by selective CB2 receptor agonists.
Collapse
Affiliation(s)
- Fabricio A. Moreira
- Department of Pharmacology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departments of Psychology
| | | | | | - Jeffrey W. Dalley
- Departments of Psychology
- Department of Psychiatry, Addenbrookes’s Hospital University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Mereu M, Tronci V, Chun LE, Thomas AM, Green JL, Katz JL, Tanda G. Cocaine-induced endocannabinoid release modulates behavioral and neurochemical sensitization in mice. Addict Biol 2015; 20:91-103. [PMID: 23910902 DOI: 10.1111/adb.12080] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The endocannabinoid system has been implicated in the development of synaptic plasticity induced by several drugs abused by humans, including cocaine. However, there remains some debate about the involvement of cannabinoid receptors/ligands in cocaine-induced plasticity and corresponding behavioral actions. Here, we show that a single cocaine injection in Swiss-Webster mice produces behavioral and neurochemical alterations that are under the control of the endocannabinoid system. This plasticity may be the initial basis for changes in brain processes leading from recreational use of cocaine to its abuse and ultimately to dependence. Locomotor activity was monitored with photobeam cell detectors, and accumbens shell/core microdialysate dopamine levels were monitored by high-performance liquid chromatography with electrochemical detection. Development of single-trial cocaine-induced behavioral sensitization, measured as increased distance traveled in sensitized mice compared to control mice, was paralleled by a larger stimulation of extracellular dopamine levels in the core but not the shell of the nucleus accumbens. Both the behavioral and neurochemical effects were reversed by CB1 receptor blockade produced by rimonabant pre-treatments. Further, both behavioral and neurochemical cocaine sensitization were facilitated by pharmacological blockade of endocannabinoid metabolism, achieved by inhibiting the fatty acid amide hydrolase enzyme. In conclusion, our results suggest that a single unconditioned exposure to cocaine produces sensitization through neuronal alterations that require regionally specific release of endocannabinoids. Further, the present results suggest that endocannabinoids play a primary role from the earliest stage of cocaine use, mediating the inception of long-term brain-adaptive responses, shaping central pathways and likely increasing vulnerability to stimulant abuse disorders.
Collapse
Affiliation(s)
- Maddalena Mereu
- Psychobiology Section; Molecular Targets & Medications Discovery Branch; Department of Health and Human Services; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| | - Valeria Tronci
- Psychobiology Section; Molecular Targets & Medications Discovery Branch; Department of Health and Human Services; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| | - Lauren E. Chun
- Psychobiology Section; Molecular Targets & Medications Discovery Branch; Department of Health and Human Services; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| | - Alexandra M. Thomas
- Psychobiology Section; Molecular Targets & Medications Discovery Branch; Department of Health and Human Services; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| | - Jennifer L. Green
- Psychobiology Section; Molecular Targets & Medications Discovery Branch; Department of Health and Human Services; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| | - Jonathan L. Katz
- Psychobiology Section; Molecular Targets & Medications Discovery Branch; Department of Health and Human Services; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| | - Gianluigi Tanda
- Psychobiology Section; Molecular Targets & Medications Discovery Branch; Department of Health and Human Services; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| |
Collapse
|
27
|
Fanarioti E, Mavrikaki M, Panagis G, Mitsacos A, Nomikos GG, Giompres P. Behavioral and neurochemical changes in mesostriatal dopaminergic regions of the rat after chronic administration of the cannabinoid receptor agonist WIN55,212-2. Int J Neuropsychopharmacol 2014; 18:pyu097. [PMID: 25522428 PMCID: PMC4438542 DOI: 10.1093/ijnp/pyu097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/14/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The endocannabinoid system interacts extensively with other neurotransmitter systems and has been implicated in a variety of functions, including regulation of basal ganglia circuits and motor behavior. The present study examined the effects of repeated administration of the nonselective cannabinoid receptor 1 agonist WIN55,212-2 on locomotor activity and on binding and mRNA levels of dopamine receptors and transporters and GABAA receptors in mesostriatal dopaminergic regions of the rat. METHODS Rats received systemic injections of WIN55,212-2 (0, 0.1, 0.3, or 1mg/kg, intraperitoneally) for 20 consecutive days. Locomotor activity was measured on days 1, 10, and 20. Following the last measurement, rats were euthanized and prepared for in vitro binding and in situ hybridization experiments. RESULTS Acutely, 0.3 and 1mg/kg of WIN55,212-2 produced hypolocomotion, which was sustained for the next 2 measurements, compared to vehicle. Repeated administration of WIN55,212-2 decreased the mRNA levels of the D2 autoreceptors in substantia nigra and ventral tegmental area and increased D1 receptor mRNA and binding in nucleus accumbens. Furthermore, both dopamine receptor and transporter binding and mRNA levels were decreased in substantia nigra. Moreover, repeated administration of WIN55,212-2 decreased GABAA receptor binding levels in dorsal striatum and substantia nigra. CONCLUSIONS Our data indicate that chronic WIN55,212-2 administration results in sustained effects on locomotor activity, similar to those observed after acute administration, and modulates the dopaminergic and GABAergic systems in a region-, dose-, and neurotransmitter-selective manner.
Collapse
MESH Headings
- Animals
- Basal Ganglia/drug effects
- Basal Ganglia/metabolism
- Behavior, Animal/drug effects
- Benzoxazines/administration & dosage
- Benzoxazines/pharmacology
- Cannabinoid Receptor Agonists/administration & dosage
- Cannabinoid Receptor Agonists/pharmacology
- Dopamine Plasma Membrane Transport Proteins/genetics
- Dopamine Plasma Membrane Transport Proteins/metabolism
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Dose-Response Relationship, Drug
- Injections, Intraperitoneal
- Male
- Morpholines/administration & dosage
- Morpholines/pharmacology
- Motor Activity/drug effects
- Naphthalenes/administration & dosage
- Naphthalenes/pharmacology
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Time Factors
Collapse
Affiliation(s)
- Eleni Fanarioti
- University of Patras, Department of Biology, Laboratory of Human and Animal Physiology, Patras, Greece (Drs Fanarioti and Giompres); University of Crete, Department of Psychology, Laboratory of Behavioral Neuroscience, Rethymno, Crete, Greece (Drs Mavrikaki and Panagis); University of Patras, Department of Medicine, Laboratory of Physiology, Patras (Dr Mitsacos); Takeda Development Center Americas Inc., Deerfield, IL (Dr Nomikos)
| | - Maria Mavrikaki
- University of Patras, Department of Biology, Laboratory of Human and Animal Physiology, Patras, Greece (Drs Fanarioti and Giompres); University of Crete, Department of Psychology, Laboratory of Behavioral Neuroscience, Rethymno, Crete, Greece (Drs Mavrikaki and Panagis); University of Patras, Department of Medicine, Laboratory of Physiology, Patras (Dr Mitsacos); Takeda Development Center Americas Inc., Deerfield, IL (Dr Nomikos)
| | - George Panagis
- University of Patras, Department of Biology, Laboratory of Human and Animal Physiology, Patras, Greece (Drs Fanarioti and Giompres); University of Crete, Department of Psychology, Laboratory of Behavioral Neuroscience, Rethymno, Crete, Greece (Drs Mavrikaki and Panagis); University of Patras, Department of Medicine, Laboratory of Physiology, Patras (Dr Mitsacos); Takeda Development Center Americas Inc., Deerfield, IL (Dr Nomikos)
| | - Ada Mitsacos
- University of Patras, Department of Biology, Laboratory of Human and Animal Physiology, Patras, Greece (Drs Fanarioti and Giompres); University of Crete, Department of Psychology, Laboratory of Behavioral Neuroscience, Rethymno, Crete, Greece (Drs Mavrikaki and Panagis); University of Patras, Department of Medicine, Laboratory of Physiology, Patras (Dr Mitsacos); Takeda Development Center Americas Inc., Deerfield, IL (Dr Nomikos)
| | - George G Nomikos
- University of Patras, Department of Biology, Laboratory of Human and Animal Physiology, Patras, Greece (Drs Fanarioti and Giompres); University of Crete, Department of Psychology, Laboratory of Behavioral Neuroscience, Rethymno, Crete, Greece (Drs Mavrikaki and Panagis); University of Patras, Department of Medicine, Laboratory of Physiology, Patras (Dr Mitsacos); Takeda Development Center Americas Inc., Deerfield, IL (Dr Nomikos)
| | - Panagiotis Giompres
- University of Patras, Department of Biology, Laboratory of Human and Animal Physiology, Patras, Greece (Drs Fanarioti and Giompres); University of Crete, Department of Psychology, Laboratory of Behavioral Neuroscience, Rethymno, Crete, Greece (Drs Mavrikaki and Panagis); University of Patras, Department of Medicine, Laboratory of Physiology, Patras (Dr Mitsacos); Takeda Development Center Americas Inc., Deerfield, IL (Dr Nomikos).
| |
Collapse
|
28
|
Bystrowska B, Smaga I, Frankowska M, Filip M. Changes in endocannabinoid and N-acylethanolamine levels in rat brain structures following cocaine self-administration and extinction training. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:1-10. [PMID: 24334211 DOI: 10.1016/j.pnpbp.2013.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/25/2013] [Accepted: 12/05/2013] [Indexed: 12/14/2022]
Abstract
Preclinical investigations have demonstrated that drugs of abuse alter the levels of lipid-based signalling molecules, including endocannabinoids (eCBs) and N-acylethanolamines (NAEs), in the rodent brain. In addition, several drugs targeting eCBs and/or NAEs are implicated in reward and/or seeking behaviours related to the stimulation of dopamine systems in the brain. In our study, the brain levels of eCBs (anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) and NAEs (oleoylethanolamide (OEA) and palmitoylethanolamide (PEA)) were analyzed via an LC-MS/MS method in selected brain structures of rats during cocaine self-administration and after extinction training according to the "yoked" control procedure. Repeated (14days) cocaine (0.5mg/kg/infusion) self-administration and yoked drug delivery resulted in a significant decrease (ca. 52%) in AEA levels in the cerebellum, whereas levels of 2-AG increased in the frontal cortex, the hippocampus and the cerebellum and decreased in the hippocampus and the dorsal striatum. In addition, we detected increases (>150%) in the levels of OEA and PEA in the limbic areas in both cocaine treated groups, as well as an increase in the tissue levels of OEA in the dorsal striatum in only the yoked cocaine group and increases in the tissue levels of PEA in the dorsal striatum (both cocaine groups) and the nucleus accumbens (yoked cocaine group only). Compared to the yoked saline control group, extinction training (10days) resulted in a potent reduction in AEA levels in the frontal cortex, the hippocampus and the nucleus accumbens and in 2-AG levels in the hippocampus, the dorsal striatum and the cerebellum. The decreases in the limbic and subcortical areas were more apparent for rats that self-administered cocaine. Following extinction, there was a region-specific change in the levels of NAEs in rats previously injected with cocaine; a potent increase (ca. 100%) in the levels of OEA and PEA was detected in the prefrontal cortex and the hippocampus, whilst a drop was noted in the striatal areas versus yoked saline yoked animals. Our findings support the previous pharmacological evidence that the eCB system and NAEs are involved in reinforcement and extinction of positively reinforced behaviours and that these lipid-derived molecules may represent promising targets for the development of new treatments for drug addiction.
Collapse
Affiliation(s)
- Beata Bystrowska
- Department of Toxicology, Collegium Medicum, Jagiellonian University, Medyczna 9, PL 30-688 Kraków, Poland.
| | - Irena Smaga
- Department of Toxicology, Collegium Medicum, Jagiellonian University, Medyczna 9, PL 30-688 Kraków, Poland
| | - Małgorzata Frankowska
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - Małgorzata Filip
- Department of Toxicology, Collegium Medicum, Jagiellonian University, Medyczna 9, PL 30-688 Kraków, Poland; Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
29
|
Hernandez G, Oleson EB, Gentry RN, Abbas Z, Bernstein DL, Arvanitogiannis A, Cheer JF. Endocannabinoids promote cocaine-induced impulsivity and its rapid dopaminergic correlates. Biol Psychiatry 2014; 75:487-98. [PMID: 24138924 PMCID: PMC3943889 DOI: 10.1016/j.biopsych.2013.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/13/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Impaired decision making, a hallmark of addiction, is hypothesized to arise from maladaptive plasticity in the mesolimbic dopamine pathway. The endocannabinoid system modulates dopamine activity through activation of cannabinoid type 1 receptors (CB1Rs). Here, we investigated whether impulsive behavior observed following cocaine exposure requires CB1R activation. METHODS We trained rats in a delay-discounting task. Following acquisition of stable performance, rats were exposed to cocaine (10 mg/kg, intraperitoneal) every other day for 14 days and locomotor activity was measured. Two days later, delay-discounting performance was re-evaluated. To assess reversal of impulsivity, injections of a CB1R antagonist (1.5 mg/kg, intraperitoneal) or vehicle were given 30 minutes before the task. During the second experiment, aimed at preventing impulsivity rather than reversing it, CB1Rs were antagonized before each cocaine injection. In this experiment, subsecond dopamine release was measured in the nucleus accumbens during delay-discounting sessions before and after cocaine treatment. RESULTS Blockade of CB1Rs reversed and prevented cocaine-induced impulsivity. Electrochemical results showed that during baseline and following disruption of endocannabinoid signaling, there was a robust increase in dopamine for immediate large rewards compared with immediate small rewards, but this effect reversed when the delay for the large reward was 10 seconds. In contrast, dopamine release always increased for one-pellet options at minimal or moderate delays in vehicle-treated rats. CONCLUSIONS Endocannabinoids play a critical role in changes associated with cocaine exposure. Cannabinoid type 1 receptor blockade may thus counteract maladaptive alterations in afferents to dopamine neurons, thereby preventing changes in dopaminergic activity underlying a loss of self-control.
Collapse
Affiliation(s)
| | - Erik B. Oleson
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, (Baltimore-Maryland)
| | - Ronny N. Gentry
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, (Baltimore-Maryland)
| | - Zarish Abbas
- Center for Studies in Behavioral Neurobiology, Concordia University (Montréal-Quebec)
| | - David L. Bernstein
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, (Baltimore-Maryland)
| | - A. Arvanitogiannis
- Center for Studies in Behavioral Neurobiology, Concordia University (Montréal-Quebec)
| | - Joseph F. Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, (Baltimore-Maryland),Department of Psychiatry, University of Maryland School of Medicine, (Baltimore-Maryland),Corresponding Author: 20 Penn Street, Baltimore MD, 21201. Phone: (410) 706 0112/Fax: (410) 706 2512.
| |
Collapse
|
30
|
Cagni P, Melo GC, de Jesus AG, Barros M. Cannabinoid type-1 receptor ligands, alone or in combination with cocaine, affect vigilance-related behaviors of marmoset monkeys. Brain Res 2014; 1550:27-35. [DOI: 10.1016/j.brainres.2014.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/04/2014] [Accepted: 01/10/2014] [Indexed: 12/19/2022]
|
31
|
Blanco-Calvo E, Rivera P, Arrabal S, Vargas A, Pavón FJ, Serrano A, Castilla-Ortega E, Galeano P, Rubio L, Suárez J, Rodriguez de Fonseca F. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat. Front Integr Neurosci 2014; 7:106. [PMID: 24409127 PMCID: PMC3884150 DOI: 10.3389/fnint.2013.00106] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 12/18/2013] [Indexed: 11/14/2022] Open
Abstract
Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2′-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion but not with the prevention of cocaine-induced sensitization.
Collapse
Affiliation(s)
- Eduardo Blanco-Calvo
- Departament de Pedagogia i Psicologia, Facultat de Ciències de l'Educació, Universitat de Lleida Lleida, Spain ; Laboratorio de Investigación-UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Patricia Rivera
- Laboratorio de Investigación-UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Sergio Arrabal
- Laboratorio de Investigación-UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Antonio Vargas
- Laboratorio de Investigación-UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Francisco Javier Pavón
- Laboratorio de Investigación-UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Antonia Serrano
- Laboratorio de Investigación-UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Estela Castilla-Ortega
- Laboratorio de Investigación-UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Pablo Galeano
- Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini, Universidad de Buenos Aires-CONICET Ciudad de Buenos Aires, Argentina
| | - Leticia Rubio
- Departamento de Anatomía y Medicina Legal y Forense, Facultad de Medicina, Universidad de Málaga Málaga, Spain
| | - Juan Suárez
- Laboratorio de Investigación-UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Fernando Rodriguez de Fonseca
- Laboratorio de Investigación-UGC de Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| |
Collapse
|
32
|
Olière S, Joliette-Riopel A, Potvin S, Jutras-Aswad D. Modulation of the endocannabinoid system: vulnerability factor and new treatment target for stimulant addiction. Front Psychiatry 2013; 4:109. [PMID: 24069004 PMCID: PMC3780360 DOI: 10.3389/fpsyt.2013.00109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/02/2013] [Indexed: 01/07/2023] Open
Abstract
Cannabis is one of the most widely used illicit substance among users of stimulants such as cocaine and amphetamines. Interestingly, increasing recent evidence points toward the involvement of the endocannabinoid system (ECBS) in the neurobiological processes related to stimulant addiction. This article presents an up-to-date review with deep insights into the pivotal role of the ECBS in the neurobiology of stimulant addiction and the effects of its modulation on addictive behaviors. This article aims to: (1) review the role of cannabis use and ECBS modulation in the neurobiological substrates of psychostimulant addiction and (2) evaluate the potential of cannabinoid-based pharmacological strategies to treat stimulant addiction. A growing number of studies support a critical role of the ECBS and its modulation by synthetic or natural cannabinoids in various neurobiological and behavioral aspects of stimulants addiction. Thus, cannabinoids modulate brain reward systems closely involved in stimulants addiction, and provide further evidence that the cannabinoid system could be explored as a potential drug discovery target for treating addiction across different classes of stimulants.
Collapse
Affiliation(s)
- Stéphanie Olière
- Addiction Psychiatry Research Unit, Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM) , Montreal, QC , Canada
| | | | | | | |
Collapse
|
33
|
Enayatfard L, Rostami F, Nasoohi S, Oryan S, Ahmadiani A, Dargahi L. Dual role of PPAR-γ in induction and expression of behavioral sensitization to cannabinoid receptor agonist WIN55,212-2. Neuromolecular Med 2013; 15:523-35. [PMID: 23794089 DOI: 10.1007/s12017-013-8238-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/06/2013] [Indexed: 01/14/2023]
Abstract
Behavioral sensitization (B.S.) is a pathophysiological animal model for stimulant-induced psychosis and addiction. Accumulated evidence indicates that inflammatory processes are involved in psychostimulants effects in the CNS. Cannabinoids like WIN55,212-2 act as potential activators of PPAR-γ and affects the inflammatory status of the CNS. The purpose of this study is to determine PPAR-γ role in induction and expression of B.S. and the coincident inflammatory responses developed by WIN55,212-2 (WIN). Using open-field test, locomotor activity was monitored in animals treated with intraperitoneal low-dose WIN single or repeated injections. Concurrent striatal COX-2 and TNF-α levels and PPAR-γ activity were determined by immunoblotting assay. Effects of concomitant chronic or acute PPAR-γ pharmacological inhibition (with GW9662) were then investigated on behavioral and biochemical variables. WIN enhanced locomotor activity and while administered chronically augmented cytosolic COX-2 and TNF-α and also PPAR-γ nuclear levels. GW9662 co-administration completely prevented the induction of sensitizing effects of chronic WIN and altered the inflammatory responses. However, the expression of B.S. was intensified with GW9662 as assessed by increased locomotion after WIN challenge following 48 h withdrawal. Neuroinflammation and locomotor excitability in animals received just a single-dose WIN were also escalated with GW9662. Our findings conclude that PPAR-γ could play different key roles during B.S. development by WIN. Although PPAR-γ is mostly known for neuroprotective and anti-inflammatory effects, our data indicate that it mediates the B.S. induction by chronic WIN. However, while the B.S. was induced, PPAR-γ could play a homeostatic role opposing the expressed B.S. escalation.
Collapse
Affiliation(s)
- Leili Enayatfard
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, 19615-1178, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
34
|
Hyperactivity induced by the dopamine D2/D3 receptor agonist quinpirole is attenuated by inhibitors of endocannabinoid degradation in mice. Int J Neuropsychopharmacol 2013; 16:661-76. [PMID: 22647577 DOI: 10.1017/s1461145712000569] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The present study was designed to investigate the effect of pharmacological inhibition of endocannabinoid degradation on behavioural actions of the dopamine D2/D3 receptor agonist quinpirole in male C57Bl/6J mice. In addition, we studied the effects of endocannabinoid degradation inhibition on both cocaine-induced psychomotor activation and behavioural sensitization. We analysed the effects of inhibition of the two main endocannabinoid degradation enzymes: fatty acid amide hydrolase (FAAH), using inhibitor URB597 (1 mg/kg); monoacylglycerol lipase (MAGL), using inhibitor URB602 (10 mg/kg). Administration of quinpirole (1 mg/kg) caused a temporal biphasic response characterized by a first phase of immobility (0-50 min), followed by enhanced locomotion (next 70 min) that was associated with the introduction of stereotyped behaviours (stereotyped jumping and rearing). Pretreatment with both endocannabinoid degradation inhibitors did not affect the hypoactivity actions of quinpirole. However, this pretreatment resulted in a marked decrease in quinpirole-induced locomotion and stereotyped behaviours. Administration of FAAH or MAGL inhibitors did not attenuate the acute effects of cocaine. Furthermore, these inhibitors did not impair the acquisition of cocaine-induced behavioural sensitization or the expression of cocaine-induced conditioned locomotion. Only MAGL inhibition attenuated the expression of an already acquired cocaine-induced behavioural sensitization. These results suggest that pharmacological inhibition of endocannabinoid degradation might exert a negative feedback on D2/D3 receptor-mediated hyperactivity. This finding might be relevant for therapeutic approaches for either psychomotor disorders (dyskinesia, corea) or disorganized behaviours associated with dopamine-mediated hyperactivity.
Collapse
|
35
|
Keeney BK, Meek TH, Middleton KM, Holness LF, Garland T. Sex differences in cannabinoid receptor-1 (CB1) pharmacology in mice selectively bred for high voluntary wheel-running behavior. Pharmacol Biochem Behav 2012; 101:528-37. [PMID: 22405775 DOI: 10.1016/j.pbb.2012.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 02/07/2012] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
Abstract
The endocannabinoid system (ECS) is involved in regulation of various physiological functions, including locomotion, antinociception, emotional states, and motivated behaviors. The ECS has been implicated in regulation of voluntary wheel running in mice via actions at the cannabinoid receptor-1 (CB1). Previously, we showed that four replicate lines of mice bred for high levels of voluntary wheel running (high-runner or HR lines) sex-specifically (females only) decreased running in response to antagonism of the CB1 receptor, as compared with four unselected Control lines. Here, we administered a CB1 receptor agonist, WIN 55,212-2 (WIN). We predicted that if CB1 activation is involved in the regulation of voluntary wheel running, then HR mice would show a greater response to CB1 agonism. Following our previous protocols, mice from generation 53 were acclimated to running wheels for 24 days, then received, in random order, either an intra-peritoneal injection of vehicle or a low (0.5 mg/kg), medium (1 mg/kg) or high dosage (3 mg/kg) of WIN. Each mouse received an injection and then experienced two nights without injections, for a total period of 12 days. Response to WIN was quantified as wheel revolutions, time spent running, and average running speed in the 10-120 min immediately following injection. Injection decreased wheel revolutions in all mice, but male HR mice decreased their running to a greater degree relative to Controls in response to the high dose of WIN over the entire period analyzed, whereas HR females showed a differential response relative to Controls only in the latter 70-120 min post-injection. These results, in conjunction with our previous study, show that (a) aspects of endocannabinoid signaling have diverged in four lines of mice bred for high levels of voluntary exercise and (b) male and female HR mice differ from one another in CB1 signaling as it relates to wheel running.
Collapse
Affiliation(s)
- Brooke K Keeney
- University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
36
|
López-Moreno JA, Echeverry-Alzate V, Bühler KM. The genetic basis of the endocannabinoid system and drug addiction in humans. J Psychopharmacol 2012; 26:133-43. [PMID: 21937688 DOI: 10.1177/0269881111416689] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cannabinoid receptor (CNR1) and the fatty acid amide hydrolase (FAAH) genes are located on chromosomes 6 and 1 in the 6q15 and 1p33 cytogenetic bands, respectively. CNR1 encodes a seven-transmembrane domain protein of 472 amino acids, whereas FAAH encodes one transmembrane domain of 579 amino acids. Several mutations found in these genes lead to altered mRNA stability and transcription rate or a reduction of the activity of the encoded protein. Increasing evidence shows that these functional mutations are related to dependence upon cocaine, alcohol, marijuana, heroin, nicotine and other drugs. One of the most compelling associations is with the C385A single nucleotide polymorphism (SNP), which is found in the FAAH gene. For all of the genetic polymorphisms reviewed here, it is difficult to form overall conclusions due to the high diversity of population samples being studied, ethnicity, the use of volunteers, heterogeneity of the recruitment criteria and the drug addiction phenotype studied. Care should be taken when generalizing the results from different studies. However, many works have repeatedly associated polymorphisms in the CNR1 and FAAH genes with drug-related behaviours; this suggests that these genes should be examined in further genetic studies focusing on drug addiction and other psychiatric disorders.
Collapse
|
37
|
Serrano A, Parsons LH. Endocannabinoid influence in drug reinforcement, dependence and addiction-related behaviors. Pharmacol Ther 2011; 132:215-41. [PMID: 21798285 PMCID: PMC3209522 DOI: 10.1016/j.pharmthera.2011.06.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 12/12/2022]
Abstract
The endogenous cannabinoid system is an important regulatory system involved in physiological homeostasis. Endocannabinoid signaling is known to modulate neural development, immune function, metabolism, synaptic plasticity and emotional state. Accumulating evidence also implicates brain endocannabinoid signaling in the etiology of drug addiction which is characterized by compulsive drug seeking, loss of control in limiting drug intake, emergence of a negative emotional state in the absence of drug use and a persistent vulnerability toward relapse to drug use during protracted abstinence. In this review we discuss the effects of drug intake on brain endocannabinoid signaling, evidence implicating the endocannabinoid system in the motivation for drug consumption, and drug-induced alterations in endocannabinoid function that may contribute to various aspects of addiction including dysregulated synaptic plasticity, increased stress responsivity, negative affective states, drug craving and relapse to drug taking. Current knowledge of genetic variants in endocannabinoid signaling associated with addiction is also discussed.
Collapse
Affiliation(s)
- Antonia Serrano
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
38
|
Sidhpura N, Parsons LH. Endocannabinoid-mediated synaptic plasticity and addiction-related behavior. Neuropharmacology 2011; 61:1070-87. [PMID: 21669214 PMCID: PMC3176941 DOI: 10.1016/j.neuropharm.2011.05.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/26/2011] [Accepted: 05/29/2011] [Indexed: 01/20/2023]
Abstract
Endogenous cannabinoids (eCBs) are retrograde messengers that provide feedback inhibition of both excitatory and inhibitory transmission in brain through the activation of presynaptic CB₁ receptors. Substantial evidence indicates that eCBs mediate various forms of short- and long-term plasticity in brain regions involved in the etiology of addiction. The present review provides an overview of the mechanisms through which eCBs mediate various forms of synaptic plasticity and discusses evidence that eCB-mediated plasticity is disrupted following exposure to a variety of abused substances that differ substantially in pharmacodynamic mechanism including alcohol, psychostimulants and cannabinoids. The possible involvement of dysregulated eCB signaling in maladaptive behaviors that evolve over long-term drug exposure is also discussed, with a particular focus on altered behavioral responses to drug exposure, deficient extinction of drug-related memories, increased drug craving and relapse, heightened stress sensitivity and persistent affective disruption (anxiety and depression).
Collapse
Affiliation(s)
- Nimish Sidhpura
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Loren H. Parsons
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
39
|
Fernandez-Espejo E, Rodriguez-Espinosa N. Psychostimulant Drugs and Neuroplasticity. Pharmaceuticals (Basel) 2011. [PMCID: PMC4058673 DOI: 10.3390/ph4070976] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Drugs of abuse induce plastic changes in the brain that seem to underlie addictive phenomena. These plastic changes can be structural (morphological) or synaptic (biochemical), and most of them take place in the mesolimbic and mesostriatal circuits. Several addiction-related changes in brain circuits (hypofrontality, sensitization, tolerance) as well as the outcome of treatment have been visualized in addicts to psychostimulants using neuroimaging techniques. Repeated exposure to psychostimulants induces morphological changes such as increase in the number of dendritic spines, changes in the morphology of dendritic spines, and altered cellular coupling through new gap junctions. Repeated exposure to psychostimulants also induces various synaptic adaptations, many of them related to sensitization and neuroplastic processes, that include up- or down-regulation of D1, D2 and D3 dopamine receptors, changes in subunits of G proteins, increased adenylyl cyclase activity, cyclic AMP and protein kinase A in the nucleus accumbens, increased tyrosine hydroxylase enzyme activity, increased calmodulin and activated CaMKII in the ventral tegmental area, and increased deltaFosB, c-Fos and AP-1 binding proteins. Most of these changes are transient, suggesting that more lasting plastic brain adaptations should take place. In this context, protein synthesis inhibitors block the development of sensitization to cocaine, indicating that rearrangement of neural networks must develop for the long-lasting plasticity required for addiction to occur. Self-administration studies indicate the importance of glutamate neurotransmission in neuroplastic changes underlying transition from use to abuse. Finally, plastic changes in the addicted brain are enhanced and aggravated by neuroinflammation and neurotrophic disbalance after repeated psychostimulants.
Collapse
Affiliation(s)
- Emilio Fernandez-Espejo
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-95-455-6584; Fax: +34-95-455-1769
| | | |
Collapse
|
40
|
Sensitization to cocaine is inhibited after intra-accumbal GR103691 or rimonabant, but it is enhanced after co-infusion indicating functional interaction between accumbens D(3) and CB1 receptors. Psychopharmacology (Berl) 2011; 214:949-59. [PMID: 21128069 DOI: 10.1007/s00213-010-2104-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
RATIONALE Dopamine D(3) receptors and cannabinoid CB(1) receptors are both expressed in the nucleus accumbens, and they have been involved in motor sensitization to cocaine. The objectives were: (1) to study the effects of blockade of these receptors on sensitization to repeated cocaine, by using GR103691, D(3) receptor blocker, and rimonabant, CB(1) receptor ligand, and (2) to discern if both receptors interact by co-infusing them. MATERIALS AND METHODS Cocaine (10 mg/kg) was injected daily for 3 days (induction phase) and later on day 8 (expression phase), and locomotor activity was measured during 2 h after cocaine. GR103691 and rimonabant were bilaterally injected (0.5 μl volume of each infusion) in the nucleus accumbens through cannulae (GR103691, 0, 4.85, and 9.7 μg/μl; rimonabant, 0, 0.5, and 1.5 μg/μl), before cocaine, during either induction or expression phases of sensitization. RESULTS The findings indicated that sensitizing effects of cocaine were abolished after D(3) receptor blocking during both induction and expression phases, as well as rimonabant infusion during the expression (not induction) phase. A functional interaction between both receptors was also observed, because if GR103691 was injected during induction and rimonabant during expression, sensitizing effects of cocaine were observed to be normal or further enhanced. CONCLUSION Dopamine D(3) receptors within the nucleus accumbens are critical for the development and consolidation of sensitization, and cannabinoid CB(1) receptors are critical for the expression of sensitization. Co-blockade of D(3) and CB(1) receptors exert opposite effects to blockade of these receptors separately, revealing the existence of a functional interaction between them.
Collapse
|
41
|
Lane EL, Daly CS, Smith GA, Dunnett SB. Context-driven changes in L-DOPA-induced behaviours in the 6-OHDA lesioned rat. Neurobiol Dis 2011; 42:99-107. [PMID: 21220017 DOI: 10.1016/j.nbd.2011.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/07/2010] [Accepted: 01/02/2011] [Indexed: 10/18/2022] Open
Abstract
Both contralateral rotational behaviour and dyskinetic abnormal involuntary movements (AIMs) are induced by the administration of l-DOPA in the unilateral 6-OHDA lesioned rat model of Parkinson's disease. Since rotational responses can be conditioned to environmental cues we have investigated the extent to which drug-induced AIMS may also be conditioned by exteroceptive cues and experience. In Experiment I, 6-OHDA lesioned rats received repeated daily injections of l-DOPA either in their home cage (control) or in association with a brief (20 mins) exposure to the rotometers (paired). To assess conditioning, all animals then received two tests in the rotometer bowls. Following injection of saline the paired group both rotated more contralaterally and displayed manifest AIMs, neither of which were exhibited by the control rats. Moreover, following injection of l-DOPA, the paired group showed a trend for increased AIMs compared to controls. Two further studies provided longer exposure to the conditioning environments in counterbalanced designs. Although, using these parameters, re-exposure in the presence of saline did not induce context-dependent AIMs, a strong context-specific component of the sensitised response to l-DOPA was seen; chronic administration of drug produced a significantly stronger behavioural response in animals paired with a particular environment for drug administration than controls. This data suggests that part of the sensitisation of behavioural responding to l-DOPA administration is not solely a pharmacological phenomenon, but is also conditioned to the environmental context in which the drug is administered. This has clear implications for the clinical observation and experimental measurement of drug-induced dyskinesia in Parkinson's disease patients and animal models.
Collapse
Affiliation(s)
- E L Lane
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK.
| | | | | | | |
Collapse
|
42
|
Morra JT, Glick SD, Cheer JF. Neural encoding of psychomotor activation in the nucleus accumbens core, but not the shell, requires cannabinoid receptor signaling. J Neurosci 2010; 30:5102-7. [PMID: 20371830 PMCID: PMC2873686 DOI: 10.1523/jneurosci.5335-09.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 02/16/2010] [Accepted: 03/09/2010] [Indexed: 11/21/2022] Open
Abstract
The current study aimed to further elucidate the role of endocannabinoid signaling in methamphetamine-induced psychomotor activation. Rats were treated with bilateral, intracranial microinjections of the cannabinoid CB1 receptor antagonists rimonabant (1 microg; 1 microl) or AM251 (1 microg; 1 microl), or vehicle (1 microl), followed by intravenous methamphetamine (3 mg/kg). Antagonist pretreatment in the nucleus accumbens core, but not shell, attenuated methamphetamine-induced stereotypy, while treatment in either brain region had no effect on drug-induced locomotion. In a parallel experiment, we recorded multiple single units in the nucleus accumbens of behaving rats treated with intravenous rimonabant (0.3 mg/kg) or vehicle, followed by methamphetamine (0.01, 0.1, 1, 3 mg/kg; cumulative dosing). We observed robust, phasic changes in neuronal firing time locked to the onset of methamphetamine-induced locomotion and stereotypy. Stereotypy encoding was observed in the core and was attenuated by CB1 receptor antagonism, while locomotor correlates were observed uniformly across the accumbens and were not affected by rimonabant. Psychomotor activation encoding was expressed predominantly by putative fast-spiking interneurons. We therefore propose that endocannabinoid modulation of psychomotor activation is preferentially driven by CB1 receptor-dependent interneuron activity in the nucleus accumbens core.
Collapse
Affiliation(s)
- Joshua T. Morra
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, and
| | - Stanley D. Glick
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, and
| | - Joseph F. Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
43
|
Intra-accumbens rimonabant is rewarding but induces aversion to cocaine in cocaine-treated rats, as does in vivo accumbal cannabinoid CB1 receptor silencing: critical role for glutamate receptors. Neuroscience 2010; 167:205-15. [PMID: 20167255 DOI: 10.1016/j.neuroscience.2010.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 11/22/2022]
Abstract
Reinforcing effects mediated by accumbal CB(1) receptors (CB(1)R) are controversial, as well as their role in the rewarding effects of cocaine. Accumbal glutamate and glutamate receptors have been proposed to be involved in CB(1)R-mediated effects on cocaine reward. Rewarding effects of cocaine can be evaluated with the conditioned place preference or CPP test. Rimonabant, a cannabinoid CB(1)R ligand, lentiviruses aimed at silencing CB(1)R, and selective glutamatergic ligands are good tools for studying the function of accumbal CB(1) and glutamate receptors. The objectives of the present study were (i) to discern the CPP effects of in vivo gene silencing of accumbal CB(1) receptors by means of lentiviruses containing siRNAs; (ii) to discern the CPP effects of intra-accumbens infusions of the cannabinoid CB(1)R ligand rimonabant, and to evaluate whether effects are due to receptor blockade or inverse agonism; (iii) to discern the role of CB(1)R located within the nucleus accumbens shell in the rewarding effects of cocaine, by means of local infusions of rimonabant, and (iv) to discern the role of glutamate receptors (AMPAR, NMDAR, mGluR2/3) in rimonabant-induced effects on CPP in cocaine-treated rats. The findings revealed that in vivo silencing of accumbal CB(1) receptors with Lenti-CB(1)R-siRNAs induced place aversion to cocaine, but intra-accumbal rimonabant induced place preference in its own right, indicating that this compound seems to act as inverse agonist on the CPP. Glutamate receptors participate in rimonabant-mediated place preference because it was abolished after blocking AMPA glutamate receptors, but not NMDAR or mGluR2/3. Finally, in cocaine-treated rats, local rimonabant induced place aversion to the drug (not place preference), and this effect was mediated by glutamate neurotransmission because it was abolished after blockade of AMPA, NMDA or mGlu2/3 receptors, even though only the blockade of mGlu2/3 autoreceptors restored the emergence of place preference to cocaine.
Collapse
|
44
|
Haller J, Barna I, Barsvari B, Gyimesi Pelczer K, Yasar S, Panlilio LV, Goldberg S. Interactions between environmental aversiveness and the anxiolytic effects of enhanced cannabinoid signaling by FAAH inhibition in rats. Psychopharmacology (Berl) 2009; 204:607-16. [PMID: 19259645 PMCID: PMC2719980 DOI: 10.1007/s00213-009-1494-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 02/05/2009] [Indexed: 11/30/2022]
Abstract
RATIONALE Since the discovery of endogenous cannabinoid signaling, the number of studies exploring its role in health and disease has increased exponentially. Fatty acid amide hydrolase (FAAH), the enzyme responsible for degradation of the endocannabinoid anandamide, has emerged as a promising target for anxiety-related disorders. FAAH inhibitors (e.g., URB597) increase brain levels of anandamide and induce anxiolytic-like effects in rodents. Recent findings, however, questioned the efficacy of URB597 as an anxiolytic. OBJECTIVES We tested here the hypothesis that conflicting findings are due to variations in the stressfulness of experimental conditions employed in various studies. RESULTS We found that URB597 (0.1-0.3 mg/kg) did not produce anxiolytic effects when the aversiveness of testing procedures was minimized by handling rats daily before experimentation, by habituating them to the experimental room, or by employing low illumination during testing. In contrast, URB597 had robust anxiolytic effects when the aversiveness of the testing environment was increased by eliminating habituation to the experimental room or by employing bright lighting conditions. Unlike URB597, the benzodiazepine chlordiazepoxide (5 mg/kg) had anxiolytic effects under all testing conditions. The anxiolytic effects of URB597 were abolished by the cannabinoid CB1-receptor antagonist AM251, showing that they were mediated by CB1 receptors. Close inspection of experimental conditions employed in earlier reports suggests that conflicting findings with URB597 can be explained by different testing conditions, such as those manipulated in the present study. CONCLUSIONS Our findings show that FAAH inhibition does not affect anxiety under mildly stressful circumstances but protects against the anxiogenic effects of aversive stimuli.
Collapse
Affiliation(s)
- J Haller
- Institute of Experimental Medicine, P.O. Box 67, Budapest, 1450, Hungary.
| | | | | | | | | | | | | |
Collapse
|
45
|
Li X, Hoffman AF, Peng XQ, Lupica CR, Gardner EL, Xi ZX. Attenuation of basal and cocaine-enhanced locomotion and nucleus accumbens dopamine in cannabinoid CB1-receptor-knockout mice. Psychopharmacology (Berl) 2009; 204:1-11. [PMID: 19099297 PMCID: PMC3729960 DOI: 10.1007/s00213-008-1432-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 12/01/2008] [Indexed: 11/24/2022]
Abstract
RATIONALE Effect of cannabinoid CB1 receptor deletion on cocaine's actions is controversial. This is partly based on findings in CB1-receptor-knockout (CB1(-/-)) mice with CD1 genetic background. OBJECTIVES In the present study, we used CB1(-/-) mice with a C57BL/6J genetic background to further investigate the role of CB1 receptors in cocaine's action. MATERIALS AND METHODS Locomotor activity was assessed using AccuScan locomotor chambers. Brain extracellular dopamine (DA) levels were measured by in vivo microdialysis and by fast-scan cyclic voltammetry in the nucleus accumbens (NAc). RESULTS CB1(-/-) mice displayed a significant reduction in basal levels of locomotion and extracellular DA, as well as in cocaine-enhanced locomotion and extracellular DA, as compared to their wild-type (CB1(+/+)) littermates. The reduction in basal and cocaine-enhanced DA appears to be related to a reduction in basal DA release, not to an increase in DA clearance, as indicated by fast-scan cyclic voltammetry in brain slices. Pharmacological blockade of CB1 receptors by SR141716 inhibited locomotion and NAc DA release in CB1(+/+) mice. CONCLUSIONS The present findings suggest an important role for CB1 receptors in mediating cocaine's behavioral and neurochemical effects.
Collapse
Affiliation(s)
- Xia Li
- Neuropsychopharmacology Section, Chemical Biology Research Branch, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Alexander F. Hoffman
- Neurophysiology Section, Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore MD 21224 USA
| | - Xiao-Qing Peng
- Neuropsychopharmacology Section, Chemical Biology Research Branch, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Carl R. Lupica
- Neurophysiology Section, Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore MD 21224 USA
| | - Eliot L. Gardner
- Neuropsychopharmacology Section, Chemical Biology Research Branch, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Zheng-Xiong Xi
- Neuropsychopharmacology Section, Chemical Biology Research Branch, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| |
Collapse
|
46
|
Differential response to a selective cannabinoid receptor antagonist (SR141716: rimonabant) in female mice from lines selectively bred for high voluntary wheel-running behaviour. Behav Pharmacol 2009; 19:812-20. [PMID: 19020416 DOI: 10.1097/fbp.0b013e32831c3b6b] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Exercise is a naturally rewarding behaviour in human beings and can be associated with feelings of euphoria and analgesia. The endocannabinoid system may play a role in the perception of neurobiological rewards during and after prolonged exercise. Mice from lines that have been selectively bred for high voluntary wheel running (high runner or HR lines) may have evolved neurobiological mechanisms that increase the incentive salience of endurance-type exercise. Here, we test the hypothesis that endocannabinoid signalling has been altered in the four replicate HR lines as compared with four nonselected control lines. After 18 days of acclimation to cages with attached wheels, we injected mice with rimonabant (SR141716), a selective cannabinoid CB1 receptor antagonist. During the time of normal peak running, each mouse received, in a randomized order, intraperitoneal injection of rimonabant (0.1 or 3.0 mg/kg) or vehicle, over 9 days. Drug response was quantified as wheel revolutions, time and speed 10-70 min postinjection. Rimonabant decreased running in all mice; however, female HR mice differentially decreased running speed and distance (but not time) as compared with control females. We conclude that altered endocannabinoid signalling plays a role in the high wheel running of female HR mice.
Collapse
|
47
|
Beardsley PM, Thomas BF, McMahon LR. Cannabinoid CB1 receptor antagonists as potential pharmacotherapies for drug abuse disorders. Int Rev Psychiatry 2009; 21:134-42. [PMID: 19367507 DOI: 10.1080/09540260902782786] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Since the discovery of the cannabinoid CB1 receptor (CB1R) in 1988, and subsequently of the CB2 receptor (CB2R) in 1993, there has been an exponential growth of research investigating the functions of the endocannabinoid system. The roles of CB1Rs have been of particular interest to psychiatry because of their selective presence within the CNS and because of their association with brain-reward circuits involving mesocorticolimbic dopamine systems. One potential role that has become of considerable focus is the ability of CB1Rs to modulate the effects of the drugs of abuse. Many drugs of abuse elevate dopamine levels, and the ability of CB1R antagonists or inverse agonists to modulate these elevations has suggested their potential application as pharmacotherapies for treating drug abuse disorders. With the identification of the selective CB1R antagonist, rimonabant, in 1994, and subsequently of other CB1R antagonists, there has been a rapid expansion of research investigating their ability to modulate the effects of the drugs of abuse. This review highlights some of the preclinical and clinical studies that have examined the effects of CB1R antagonists under conditions potentially predictive of their therapeutic efficacy as treatments for drug abuse disorders.
Collapse
Affiliation(s)
- Patrick M Beardsley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA.
| | | | | |
Collapse
|