1
|
Balañá ME, Labriola L, Salatino M, Movsichoff F, Peters G, Charreau EH, Elizalde PV. Correction: Activation of ErbB-2 via a hierarchical interaction between ErbB-2 and type I insulin-like growth factor receptor in mammary tumor cells. Oncogene 2023; 42:3087. [PMID: 37684409 DOI: 10.1038/s41388-023-02821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Affiliation(s)
- Maria Eugenia Balañá
- Instituto de Biología y Medicina Experimental (IBYME), Obligado 2490, Buenos Aires, 1428, Argentina
| | - Leticia Labriola
- Instituto de Biología y Medicina Experimental (IBYME), Obligado 2490, Buenos Aires, 1428, Argentina
| | - Mariana Salatino
- Instituto de Biología y Medicina Experimental (IBYME), Obligado 2490, Buenos Aires, 1428, Argentina
| | - Federico Movsichoff
- Instituto de Biología y Medicina Experimental (IBYME), Obligado 2490, Buenos Aires, 1428, Argentina
| | - Giselle Peters
- Instituto de Biología y Medicina Experimental (IBYME), Obligado 2490, Buenos Aires, 1428, Argentina
| | - Eduardo H Charreau
- Instituto de Biología y Medicina Experimental (IBYME), Obligado 2490, Buenos Aires, 1428, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Patricia V Elizalde
- Instituto de Biología y Medicina Experimental (IBYME), Obligado 2490, Buenos Aires, 1428, Argentina.
| |
Collapse
|
2
|
Madera S, Izzo F, Chervo MF, Dupont A, Chiauzzi VA, Bruni S, Petrillo E, Merin SS, De Martino M, Montero D, Levit C, Lebersztein G, Anfuso F, Roldán Deamicis A, Mercogliano MF, Proietti CJ, Schillaci R, Elizalde PV, Cordo Russo RI. Halting ErbB-2 isoforms retrograde transport to the nucleus as a new theragnostic approach for triple-negative breast cancer. Cell Death Dis 2022; 13:447. [PMID: 35534460 PMCID: PMC9084267 DOI: 10.1038/s41419-022-04855-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancer (TNBC) is clinically defined by the absence of estrogen and progesterone receptors and the lack of membrane overexpression or gene amplification of receptor tyrosine kinase ErbB-2/HER2. Due to TNBC heterogeneity, clinical biomarkers and targeted therapies for this disease remain elusive. We demonstrated that ErbB-2 is localized in the nucleus (NErbB-2) of TNBC cells and primary tumors, from where it drives growth. We also discovered that TNBC expresses both wild-type ErbB-2 (WTErbB-2) and alternative ErbB-2 isoform c (ErbB-2c). Here, we revealed that the inhibitors of the retrograde transport Retro-2 and its cyclic derivative Retro-2.1 evict both WTErbB-2 and ErbB-2c from the nucleus of BC cells and tumors. Using BC cells from several molecular subtypes, as well as normal breast cells, we demonstrated that Retro-2 specifically blocks proliferation of BC cells expressing NErbB-2. Importantly, Retro-2 eviction of both ErbB-2 isoforms from the nucleus resulted in a striking growth abrogation in multiple TNBC preclinical models, including tumor explants and xenografts. Our mechanistic studies in TNBC cells revealed that Retro-2 induces a differential accumulation of WTErbB-2 at the early endosomes and the plasma membrane, and of ErbB-2c at the Golgi, shedding new light both on Retro-2 action on endogenous protein cargoes undergoing retrograde transport, and on the biology of ErbB-2 splicing variants. In addition, we revealed that the presence of a functional signal peptide and a nuclear export signal (NES), both located at the N-terminus of WTErbB-2, and absent in ErbB-2c, accounts for the differential subcellular distribution of ErbB-2 isoforms upon Retro-2 treatment. Our present discoveries provide evidence for the rational repurposing of Retro-2 as a novel therapeutic agent for TNBC.
Collapse
Affiliation(s)
- Santiago Madera
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Franco Izzo
- New York Genome Center, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - María F Chervo
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Agustina Dupont
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Violeta A Chiauzzi
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Sofia Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Ezequiel Petrillo
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), C1428EHA, Buenos Aires, Argentina
| | - Sharon S Merin
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Diego Montero
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Claudio Levit
- Servicio de Ginecología, Sanatorio Sagrado Corazón, Buenos Aires, Argentina
| | | | - Fabiana Anfuso
- Servicio de Ginecología, Sanatorio Sagrado Corazón, Buenos Aires, Argentina
| | - Agustina Roldán Deamicis
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - María F Mercogliano
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Cecilia J Proietti
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Patricia V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| | - Rosalía I Cordo Russo
- Laboratory of Molecular Mechanisms of Carcinogenesis and Molecular Endocrinology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Abstract
Neuregulins, members of the largest subclass of growth factors of the epidermal growth factor family, mediate a myriad of cellular functions including survival, proliferation, and differentiation in normal tissues through binding to receptor tyrosine kinases of the ErbB family. However, aberrant neuregulin signaling in the tumor microenvironment is increasingly recognized as a key player in initiation and malignant progression of human cancers. In this chapter, we focus on the role of neuregulin signaling in the hallmarks of cancer, including cancer initiation and development, metastasis, as well as therapeutic resistance. Moreover, role of neuregulin signaling in the regulation of tumor microenvironment and targeting of neuregulin signaling in cancer from the therapeutic perspective are also briefly discussed.
Collapse
|
4
|
Hryciuk B, Pęksa R, Bieńkowski M, Szymanowski B, Radecka B, Winnik K, Żok J, Cichowska N, Iliszko M, Duchnowska R. Expression of Female Sex Hormone Receptors, Connective Tissue Growth Factor and HER2 in Gallbladder Cancer. Sci Rep 2020; 10:1871. [PMID: 32024900 PMCID: PMC7002405 DOI: 10.1038/s41598-020-58777-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/27/2019] [Indexed: 01/14/2023] Open
Abstract
Gallbladder cancer (GBC) is a highly malignant tumor with poorly understood etiology. An insight into phenotypic features of this malignancy may add to the knowledge of its carcinogenesis and pave the way to new therapeutic approaches. We assessed the expression of female sex hormone receptors (ERα, ERβ, PR), connective tissue growth factor (CTGF) and HER2 in GBC, and adjacent normal tissue (NT), and determined their prognostic impact. Immunohistochemical (IHC) expression of all biomarkers was performed in formalin-fixed, paraffin-embedded specimens in 60 Caucasian GBC patients (51 women and 9 men). ERβ, cytoPR and CTGF expression were found in 89%, 27%, 91% of GBC, and in 63%, 87%, 100% of NT, respectively. No ERα expression was found in GBC and NT. Strong (3+) HER2 expression by IHC or HER2 amplification was seen in five GBC (10.4%). A positive correlation was found between HER2 and CTGF and ERβ expression in GBC and matched NT. In the multivariate analysis, patient age >70 years, tumor size and ERβ expression in GBC was highly predictive for OS (p = 0.003). The correlation between HER2, CTGF and ERβ expression in GBC and NT may indicate the interaction of these pathways in physiological processes and gallbladder pathology.
Collapse
Affiliation(s)
- Beata Hryciuk
- Department of Oncology, Military Institute of Medicine, Warsaw, Poland
- Mazovian Center for Lung Diseases and Tuberculosis, Division III in Otwock, Otwock, Poland
| | - Rafał Pęksa
- Pathology Department, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | - Barbara Radecka
- University of Opole, Institute of Medical Science, Opole, Poland
| | - Kamil Winnik
- Pathology Department Provincial Specialist Hospital, Słupsk, Poland
| | - Jolanta Żok
- Department of Chemotherapy, Center of Pulmonology and Chemotherapy, Szklarska Poręba, Poland
| | - Natalia Cichowska
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Mariola Iliszko
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Renata Duchnowska
- Department of Oncology, Military Institute of Medicine, Warsaw, Poland.
| |
Collapse
|
5
|
Cenciarini ME, Proietti CJ. Molecular mechanisms underlying progesterone receptor action in breast cancer: Insights into cell proliferation and stem cell regulation. Steroids 2019; 152:108503. [PMID: 31562879 DOI: 10.1016/j.steroids.2019.108503] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
The ovarian steroid hormone progesterone and its nuclear receptor, the Progesterone Receptor (PR), play an essential role in the regulation of cell proliferation and differentiation in the mammary gland. In addition, experimental and clinical evidence demonstrate their critical role in controlling mammary gland tumorigenesis and breast cancer development. When bound to its ligand, the main action of PR is as a transcription factor, which regulates the expression of target genes networks. PR also activates signal transduction pathways through a rapid or non-genomic mechanism in breast cancer cells, an event that is fully integrated with its genomic effects. This review summarizes the molecular mechanisms of the ligand-activated PR actions that drive epithelial cell proliferation and the regulation of the stem cell population in the normal breast and in breast cancer.
Collapse
Affiliation(s)
- Mauro E Cenciarini
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina
| | - Cecilia J Proietti
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina.
| |
Collapse
|
6
|
Cordo Russo RI, Chervo MF, Madera S, Charreau EH, Elizalde PV. Nuclear ErbB-2: a Novel Therapeutic Target in ErbB-2-Positive Breast Cancer? Discov Oncol 2019; 10:64-70. [PMID: 30656558 DOI: 10.1007/s12672-018-0356-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Membrane overexpression of ErbB-2 (MErbB-2), a member of the ErbB family of receptor tyrosine kinases, occurs in 15-20% of breast cancers (BC) and constitutes a therapeutic target in this BC subtype (ErbB-2-positive). Although MErbB-2-targeted therapies have significantly improved patients' clinical outcome, resistance to available drugs is still a major issue in the clinic. Lack of accurate biomarkers for predicting responses to anti-ErbB-2 drugs at the time of diagnosis is also an important unresolved issue. Hence, a better understanding of the ErbB-2 signaling pathway constitutes a critical task in the battle against BC. In its canonical mechanism of action, MErbB-2 activates downstream signaling pathways, which transduce its proliferative effects in BC. The dogma of ErbB-2 mechanism of action has been challenged by the demonstration that MErbB-2 migrates to the nucleus, where it acts as a transcriptional regulator. Accumulating findings demonstrate that nuclear ErbB-2 (NErbB-2) is involved in BC growth and metastasis. Emerging evidence also reveal a role of NErbB-2 in the response to available anti-MErbB-2 agents. Here, we will review NErbB-2 function in BC and will particularly discuss the role of NErbB-2 as a novel target for therapy in ErbB-2-positive BC.
Collapse
Affiliation(s)
- Rosalía I Cordo Russo
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| | - María F Chervo
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Santiago Madera
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Eduardo H Charreau
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Patricia V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Piasecka D, Kitowska K, Czaplinska D, Mieczkowski K, Mieszkowska M, Turczyk L, Skladanowski AC, Zaczek AJ, Biernat W, Kordek R, Romanska HM, Sadej R. Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells. Oncotarget 2018; 7:86011-86025. [PMID: 27852068 PMCID: PMC5349893 DOI: 10.18632/oncotarget.13322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/07/2016] [Indexed: 02/02/2023] Open
Abstract
We have recently demonstrated that, fibroblast growth factor 2 (FGFR2), signalling via ribosomal S6 kinase 2 (RSK2), promotes progression of breast cancer (BCa). Loss of progesterone receptor (PR), whose activity in BCa cells can be stimulated by growth factor receptors (GFRs), is associated with poor patient outcome. Here we showed that FGF7/FGFR2 triggered phosphorylation of PR at Ser294, PR ubiquitination and subsequent receptor`s degradation via the 26S proteasome pathway in BCa cells. We further demonstrated that RSK2 mediated FGF7/FGFR2-induced PR downregulation. In addition, a strong synergistic effect of FGF7 and progesterone (Pg), reflected in the enhanced anchorage-independent growth and cell migration, was observed. Analysis of clinical material demonstrated that expression of PR inversely correlated with activated RSK (RSK-P) (p = 0.016). Patients with RSK-P(+)/PR(–) tumours had 3.629-fold higher risk of recurrence (p = 0.002), when compared with the rest of the cohort. Moreover, RSK-P(+)/PR(–) phenotype was shown as an independent prognostic factor (p = 0.006). These results indicate that the FGF7/FGFR2-RSK2 axis promotes PR turnover and activity, which may sensitize BCa cells to stromal stimuli and contribute to the progression toward steroid hormone negative BCa.
Collapse
Affiliation(s)
- Dominika Piasecka
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland.,Department of Pathology, Medical University of Lodz, Poland
| | - Kamila Kitowska
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Dominika Czaplinska
- Department of Cell Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Kamil Mieczkowski
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Magdalena Mieszkowska
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Lukasz Turczyk
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Andrzej C Skladanowski
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Anna J Zaczek
- Department of Cell Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdansk, Poland
| | | | | | - Rafal Sadej
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Poland
| |
Collapse
|
8
|
Kitowska K, Kowalska A, Mieszkowska M, Piasecka D, Skladanowski AC, Romanska HM, Sadej R. Progesterone impairs Herceptin effect on breast cancer cells. Oncol Lett 2018; 15:1817-1822. [PMID: 29434878 DOI: 10.3892/ol.2017.7493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
Breast cancer (BCa) is the most common cancer affecting women worldwide. Overexpression of human epidermal growth factor receptor 2 (HER2) occurs in ~20-25% of invasive ductal breast carcinomas and is associated with the more aggressive phenotype. Herceptin, a humanized antibody against HER2, is a standard therapy in HER2-overexpressing cases. Approximately one-third of patients relapse despite treatment. Therefore numerous studies have investigated the molecular mechanisms associated with Herceptin resistance. An interaction between HER2 signalling and steroid hormone receptor signalling pathways has been previously investigated, but the effect of this relationship on Herceptin resistance has never been studied. The present study analysed an impact of the steroid hormone, progesterone (PG), on Herceptin-dependent cell growth inhibition. Results indicated that Herceptin-inhibited proliferation of breast cancer cell lines overexpressing HER2 (BT474 and MCF/HER2) in 3D culture is abolished by PG. Furthermore, results demonstrated that PG led to the activation of HER2/HER3-mediated signalling. Moreover, PG treatment induced a shift of Herceptin-dependent cell cycle arrest in G1 phase towards S and G2 phases with concomitant upregulation of cyclin-dependent kinase 2 (CDK2) and downregulation of CDK inhibitor p27Kip1. These results demonstrate for the first time PG involvement in the failure of Herceptin treatment in vitro. The present observations suggest that cross-talk between PG- and HRG/HER2-initiated signalling pathways may lead to the acquisition of resistance to Herceptin in patients with BCa.
Collapse
Affiliation(s)
- Kamila Kitowska
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80-210, Poland
| | - Agnieszka Kowalska
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80-210, Poland
| | - Magdalena Mieszkowska
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80-210, Poland
| | - Dominika Piasecka
- Department of Pathology, Medical University of Lodz, Lodz 90-410, Poland
| | - Andrzej C Skladanowski
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80-210, Poland
| | - Hanna M Romanska
- Department of Pathology, Medical University of Lodz, Lodz 90-410, Poland
| | - Rafal Sadej
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80-210, Poland
| |
Collapse
|
9
|
Elizalde PV, Cordo Russo RI, Chervo MF, Schillaci R. ErbB-2 nuclear function in breast cancer growth, metastasis and resistance to therapy. Endocr Relat Cancer 2016; 23:T243-T257. [PMID: 27765799 DOI: 10.1530/erc-16-0360] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022]
Abstract
Approximately 15-20% of breast cancers (BC) show either membrane overexpression of ErbB-2 (MErbB-2), a member of the ErbBs family of receptor tyrosine kinases, or ERBB2 gene amplification. Until the development of MErbB-2-targeted therapies, this BC subtype, called ErbB-2-positive, was associated with increased metastatic potential and poor prognosis. Although these therapies have significantly improved overall survival and cure rates, resistance to available drugs is still a major clinical issue. In its classical mechanism, MErbB-2 activates downstream signaling cascades, which transduce its effects in BC. The fact that ErbB-2 is also present in the nucleus of BC cells was discovered over twenty years ago. Also, compelling evidence revealed a non-canonical function of nuclear ErbB-2 as a transcriptional regulator. As a deeper understanding of nuclear ErbB-2 actions would be crucial to the disclosure of its role as a biomarker and a target of therapy in BC, we will here review its function in BC, in particular, its role in growth, metastatic spreading and response to currently available MErbB-2-positive BC therapies.
Collapse
Affiliation(s)
- Patricia V Elizalde
- Laboratory of Molecular Mechanisms of CarcinogenesisInstituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Rosalía I Cordo Russo
- Laboratory of Molecular Mechanisms of CarcinogenesisInstituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Maria F Chervo
- Laboratory of Molecular Mechanisms of CarcinogenesisInstituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of CarcinogenesisInstituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| |
Collapse
|
10
|
Cordo Russo RI, Béguelin W, Díaz Flaqué MC, Proietti CJ, Venturutti L, Galigniana N, Tkach M, Guzmán P, Roa JC, O'Brien NA, Charreau EH, Schillaci R, Elizalde PV. Targeting ErbB-2 nuclear localization and function inhibits breast cancer growth and overcomes trastuzumab resistance. Oncogene 2015; 34:3413-28. [PMID: 25174405 DOI: 10.1038/onc.2014.272] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/08/2014] [Accepted: 07/19/2014] [Indexed: 12/11/2022]
Abstract
Membrane overexpression of ErbB-2/HER2 receptor tyrosine kinase (membrane ErbB-2 (MErbB-2)) has a critical role in breast cancer (BC). We and others have also shown the role of nuclear ErbB-2 (NErbB-2) in BC, whose presence we identified as a poor prognostic factor in MErbB-2-positive tumors. Current anti-ErbB-2 therapies, as with the antibody trastuzumab (Ttzm), target only MErbB-2. Here, we found that blockade of NErbB-2 action abrogates growth of BC cells, sensitive and resistant to Ttzm, in a scenario in which ErbB-2, ErbB-3 and Akt are phosphorylated, and ErbB-2/ErbB-3 dimers are formed. Also, inhibition of NErbB-2 presence suppresses growth of a preclinical BC model resistant to Ttzm. We showed that at the cyclin D1 promoter, ErbB-2 assembles a transcriptional complex with Stat3 (signal transducer and activator of transcription 3) and ErbB-3, another member of the ErbB family, which reveals the first nuclear function of ErbB-2/ErbB-3 dimer. We identified NErbB-2 as the major proliferation driver in Ttzm-resistant BC, and demonstrated that Ttzm inability to disrupt the Stat3/ErbB-2/ErbB-3 complex underlies its failure to inhibit growth. Furthermore, our results in the clinic revealed that nuclear interaction between ErbB-2 and Stat3 correlates with poor overall survival in primary breast tumors. Our findings challenge the paradigm of anti-ErbB-2 drug design and highlight NErbB-2 as a novel target to overcome Ttzm resistance.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Animals
- Antibodies, Monoclonal, Humanized/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Synergism
- Female
- Genes, Dominant/physiology
- Humans
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Targeted Therapy/methods
- Mutant Proteins/pharmacology
- Mutant Proteins/therapeutic use
- Protein Isoforms/pharmacology
- Protein Isoforms/therapeutic use
- Protein Transport/drug effects
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/physiology
- Trastuzumab
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- R I Cordo Russo
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - W Béguelin
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - M C Díaz Flaqué
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - C J Proietti
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - L Venturutti
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - N Galigniana
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - M Tkach
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - P Guzmán
- Departamento de Anatomía Patológica (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - J C Roa
- Departamento de Anatomía Patológica (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - N A O'Brien
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - E H Charreau
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - R Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - P V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| |
Collapse
|
11
|
Knutson TP, Lange CA. Tracking progesterone receptor-mediated actions in breast cancer. Pharmacol Ther 2014; 142:114-25. [PMID: 24291072 PMCID: PMC3943696 DOI: 10.1016/j.pharmthera.2013.11.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 12/13/2022]
Abstract
Ovarian steroid hormones contribute to breast cancer initiation and progression primarily through the actions of their nuclear transcription factors, the estrogen receptor alpha (ERα) and progesterone receptors (PRs). These receptors are important drivers of the luminal A and B subtypes of breast cancer, where estrogen-blocking drugs have been effective endocrine therapies for patients with these tumors. However, many patients do not respond, or become resistant to treatment. When endocrine therapies fail, the luminal subtypes of breast cancer are more difficult to treat because these subtypes are among the most heterogeneous in terms of mutation diversity and gene expression profiles. Recent evidence suggests that progestin and PR actions may be important drivers of luminal breast cancers. Clinical trial data has demonstrated that hormone replacement therapy with progestins drives invasive breast cancer and results in greater mortality. PR transcriptional activity is dependent upon cross-talk with growth factor signaling pathways that alter PR phosphorylation, acetylation, or SUMOylation as mechanisms for regulating PR target gene selection required for increased cell proliferation and survival. Site-specific PR phosphorylation is the primary driver of gene-selective PR transcriptional activity. However, PR phosphorylation and heightened transcriptional activity is coupled to rapid PR protein degradation; the range of active PR detected in tumors is likely to be dynamic. Thus, PR target gene signatures may provide a more accurate means of tracking PR's contribution to tumor progression rather than standard clinical protein-based (IHC) assays. Further development of antiprogestin therapies should be considered alongside antiestrogens and aromatase inhibitors.
Collapse
Affiliation(s)
- Todd P Knutson
- Departments of Medicine, Division of Hematology, Oncology, and Transplantation and Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carol A Lange
- Departments of Medicine, Division of Hematology, Oncology, and Transplantation and Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
12
|
Díaz Flaqué MC, Galigniana NM, Béguelin W, Vicario R, Proietti CJ, Russo RC, Rivas MA, Tkach M, Guzmán P, Roa JC, Maronna E, Pineda V, Muñoz S, Mercogliano MF, Charreau EH, Yankilevich P, Schillaci R, Elizalde PV. Progesterone receptor assembly of a transcriptional complex along with activator protein 1, signal transducer and activator of transcription 3 and ErbB-2 governs breast cancer growth and predicts response to endocrine therapy. Breast Cancer Res 2013; 15:R118. [PMID: 24345432 PMCID: PMC3978912 DOI: 10.1186/bcr3587] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/09/2013] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION The role of the progesterone receptor (PR) in breast cancer remains a major clinical challenge. Although PR induces mammary tumor growth, its presence in breast tumors is a marker of good prognosis. We investigated coordinated PR rapid and nonclassical transcriptional effects governing breast cancer growth and endocrine therapy resistance. METHODS We used breast cancer cell lines expressing wild-type and mutant PRs, cells sensitive and resistant to endocrine therapy, a variety of molecular and cellular biology approaches, in vitro proliferation studies and preclinical models to explore PR regulation of cyclin D1 expression, tumor growth, and response to endocrine therapy. We investigated the clinical significance of activator protein 1 (AP-1) and PR interaction in a cohort of 99 PR-positive breast tumors by an immunofluorescence protocol we developed. The prognostic value of AP-1/PR nuclear colocalization in overall survival (OS) was evaluated using Kaplan-Meier method, and Cox model was used to explore said colocalization as an independent prognostic factor for OS. RESULTS We demonstrated that at the cyclin D1 promoter and through coordinated rapid and transcriptional effects, progestin induces the assembly of a transcriptional complex among AP-1, Stat3, PR, and ErbB-2 which functions as an enhanceosome to drive breast cancer growth. Our studies in a cohort of human breast tumors identified PR and AP-1 nuclear interaction as a marker of good prognosis and better OS in patients treated with tamoxifen (Tam), an anti-estrogen receptor therapy. Rationale for this finding was provided by our demonstration that Tam inhibits rapid and genomic PR effects, rendering breast cancer cells sensitive to its antiproliferative effects. CONCLUSIONS We here provided novel insight into the paradox of PR action as well as new tools to identify the subgroup of ER+/PR + patients unlikely to respond to ER-targeted therapies.
Collapse
Affiliation(s)
- María C Díaz Flaqué
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Natalia M Galigniana
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Wendy Béguelin
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Rocío Vicario
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Cecilia J Proietti
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Rosalía Cordo Russo
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Martín A Rivas
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Mercedes Tkach
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | | | - Juan C Roa
- Universidad de La Frontera, Temuco, Chile
| | - Esteban Maronna
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
- Sanatorio Mater Dei, Buenos Aires, Argentina
| | | | | | | | - Eduardo H Charreau
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Patricio Yankilevich
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Roxana Schillaci
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Patricia V Elizalde
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| |
Collapse
|
13
|
Diaz Flaqué MC, Vicario R, Proietti CJ, Izzo F, Schillaci R, Elizalde PV. Progestin drives breast cancer growth by inducing p21(CIP1) expression through the assembly of a transcriptional complex among Stat3, progesterone receptor and ErbB-2. Steroids 2013. [PMID: 23178160 DOI: 10.1016/j.steroids.2012.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell cycle regulator p21(CIP1) has controversial biological effects in breast cancer since in spite of its role as cell cycle inhibitor and promoter of cellular senescence, it also induces cell proliferation and chemoteraphy resistance. We here explored the molecular mechanisms involved in progestin regulation of p21(CIP1) expression. We also investigated the biological effects of p21(CIP1) in breast cancer cells. We found that the synthetic progestin medroxyprogesterone acetate (MPA) upregulates p21(CIP1) protein expression via c-Src, signal transducer and activator of transcription 3 (Stat3) and ErbB-2 phosphorylation. Notably, we also found that ErbB-2 nuclear function plays a key role in MPA-induction of p21(CIP1) expression. Interestingly, we determined that progestin drives p21(CIP1) transcriptional activation via a novel nonclassical transcriptional mechanism in which progesterone receptor is recruited along with Stat3 and ErbB-2 to a Stat3 binding site at p21(CIP1) promoter. Our findings revealed that ErbB-2 functions as a coactivator of Stat3 in progestin induction of p21(CIP1) transcriptional activation. Furthermore, we demonstrated that blockage of p21(CIP1) expression strongly inhibited in vitro and in vivo progestin-induced breast cancer cell proliferation. These results further support the hypothesis that according to cell context and type of stimulus, p21(CIP1) is capable of inducing cell cycle progression. Moreover, we provided evidence that Stat3 and nuclear ErbB-2 are key players in progestin-induced p21(CIP1) regulation.
Collapse
Affiliation(s)
- María C Diaz Flaqué
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina
| | | | | | | | | | | |
Collapse
|
14
|
Tkach M, Rosemblit C, Rivas MA, Proietti CJ, Díaz Flaqué MC, Mercogliano MF, Beguelin W, Maronna E, Guzmán P, Gercovich FG, Deza EG, Elizalde PV, Schillaci R. p42/p44 MAPK-mediated Stat3Ser727 phosphorylation is required for progestin-induced full activation of Stat3 and breast cancer growth. Endocr Relat Cancer 2013; 20:197-212. [PMID: 23329648 DOI: 10.1530/erc-12-0194] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stat3 is a signaling node for multiple oncogenic pathways and is therefore frequently active in breast cancer. As experimental and clinical evidence reveals that progestins are key players in controlling mammary gland tumorigenesis, we studied Stat3 participation in this event. We have previously shown that progestins induce Stat3Tyr705 phosphorylation and its transcriptional activation in breast cancer cells. In this study, we demonstrate that progestins also induce Stat3 phosphorylation at Ser727 residue, which occurs via activation of c-Src/p42/p44 MAPK pathways in murine progestin-dependent C4HD cells and in T-47D cells. Expression of a Stat3S727A vector, which carries a serine-to-alanine substitution at codon 727, shows that Stat3Ser727 phosphorylation is required for full transcriptional activation of cyclin D1 gene expression by progestins and for in vivo Stat3 recruitment on cyclin D1 promoter. Transfection of Stat3S727A in murine and human breast cancer cells abolished progestin-induced in vitro and in vivo growth. Moreover, we found a positive correlation between progesterone receptor expression and nuclear localization of Stat3Ser727 phosphorylation in breast cancer biopsies. These data highlight Stat3 phosphorylation in Ser727 residue as a nongenomic action by progestins, necessary to promote breast cancer growth.
Collapse
Affiliation(s)
- Mercedes Tkach
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Differential regulation of neuregulin 1 expression by progesterone in astrocytes and neurons. ACTA ACUST UNITED AC 2012; 2:227-34. [PMID: 18049715 DOI: 10.1017/s1740925x07000385] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glial-neuronal interactions are crucial processes in neuromodulation and synaptic plasticity. The neuregulin 1 family of growth and differentiation factors have been implicated as bidirectional signaling molecules that are involved in mediating some of these interactions. We have shown previously that neuregulin 1 expression is regulated by the gonadal hormones progesterone and 17beta-estradiol in the CNS, which might represent a novel, indirect mechanism of the neuromodulatory actions of these gonadal hormones. In the present study, we sought to determine the effects of progesterone and 17beta-estradiol on neuregulin 1 expression in rat cortical astrocytes and neurons in vitro. We observed that progesterone increased the expression of neuregulin 1 mRNA and protein in a dose-dependent manner in cultured astrocytes, which was blocked by the progesterone receptor antagonist RU-486. In contrast, 17beta-estradiol did not increase either neuregulin 1 mRNA or protein in astrocytes. We observed no effect of either progesterone or 17beta-estradiol on neuregulin 1 mRNA and protein in rat cortical neurons in vitro. Finally, we observed that treatment of cortical neurons with recombinant NRG1-beta1 caused PSD-95 to localize in puncta similar to that observed following treatment with astrocyte-conditioned medium. These results demonstrate that progesterone regulates neuregulin 1 expression, principally in astrocytes. This might represent a novel mechanism of progesterone-mediated modulation of neurotransmission through the regulation of astrocyte-derived neuregulin 1.
Collapse
|
17
|
Rivas MA, Venturutti L, Huang YW, Schillaci R, Huang THM, Elizalde PV. Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development. Breast Cancer Res 2012; 14:R77. [PMID: 22583478 PMCID: PMC3446340 DOI: 10.1186/bcr3187] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 04/29/2012] [Accepted: 05/14/2012] [Indexed: 12/19/2022] Open
Abstract
Introduction Experimental and clinical evidence points to a critical role of progesterone and the nuclear progesterone receptor (PR) in controlling mammary gland tumorigenesis. However, the molecular mechanisms of progesterone action in breast cancer still remain elusive. On the other hand, micro RNAs (miRNAs) are short ribonucleic acids which have also been found to play a pivotal role in cancer pathogenesis. The role of miRNA in progestin-induced breast cancer is poorly explored. In this study we explored progestin modulation of miRNA expression in mammary tumorigenesis. Methods We performed a genome-wide study to explore progestin-mediated regulation of miRNA expression in breast cancer. miR-16 expression was studied by RT-qPCR in cancer cell lines with silenced PR, signal transducer and activator of transcription 3 (Stat3) or c-Myc, treated or not with progestins. Breast cancer cells were transfected with the precursor of miR-16 and proliferation assays, Western blots or in vivo experiments were performed. Target genes of miR-16 were searched through a bioinformatical approach, and the study was focused on cyclin E. Reporter gene assays were performed to confirm that cyclin E 3'UTR is a direct target of miR-16. Results We found that nine miRNAs were upregulated and seven were downregulated by progestin in mammary tumor cells. miR-16, whose function as a tumor suppressor in leukemia has already been shown, was identified as one of the downregulated miRNAs in murine and human breast cancer cells. Progestin induced a decrease in miR-16 levels via the classical PR and through a hierarchical interplay between Stat3 and the oncogenic transcription factor c-Myc. A search for miR-16 targets showed that the CCNE1 gene, encoding the cell cycle regulator cyclin E, contains conserved putative miR-16 target sites in its mRNA 3' UTR region. We found that, similar to the molecular mechanism underlying progestin-modulated miR-16 expression, Stat3 and c-Myc participated in the induction of cyclin E expression by progestin. Moreover, overexpression of miR-16 abrogated the ability of progestin to induce cyclin E upregulation, revealing that cyclin E is a novel target of miR-16 in breast cancer. Overexpression of miR-16 also inhibited progestin-induced breast tumor growth in vitro and in vivo, demonstrating for the first time, a role for miR-16 as a tumor suppressor in mammary tumorigenesis. We also found that the ErbB ligand heregulin (HRG) downregulated the expression of miR-16, which then participates in the proliferative activity of HRG in breast tumor cells. Conclusions In this study, we reveal the first progestin-regulated miRNA expression profile and identify a novel role for miR-16 as a tumor suppressor in progestin- and growth factor-induced growth in breast cancer.
Collapse
Affiliation(s)
- Martin A Rivas
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
18
|
Proietti CJ, Béguelin W, Flaqué MCD, Cayrol F, Rivas MA, Tkach M, Charreau EH, Schillaci R, Elizalde PV. Novel role of signal transducer and activator of transcription 3 as a progesterone receptor coactivator in breast cancer. Steroids 2011; 76:381-92. [PMID: 21184768 DOI: 10.1016/j.steroids.2010.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 12/19/2022]
Abstract
Interactions between progesterone receptor (PR) and signal transducer and activator of transcription 3 (Stat3)-mediated signaling pathways have already been described. In the present study, we explored the capacity of Stat3 to functionally interact with progesterone receptor (PR) and modulate PR transcriptional activation in breast cancer cells. We found that the synthetic progestin medroxyprogesterone acetate (MPA) induced the association of a PR/Stat3 complex in which Stat3 acts as a coactivator of PR. We demonstrated that Stat3 activation is required for MPA modulation of the endogenous genes bcl-X and p21(CIP1) which are involved in MPA-induced cell cycle regulation. Stat3 activity as a coactivator of PR was observed in both the classical and nonclassical ligand activated-PR transcriptional mechanisms, since the effects described were identified in the bcl-X promoter which contains a progesterone responsive element and in the p21(CIP1) promoter which carries Sp1 binding sites where PR is recruited via the transcription factor Sp1. The data herein presented identifies a potential therapeutic intervention for PR-positive breast tumors consisting of targeting Stat3 function or PR/Stat3 interaction which will result in the inhibition of PR function.
Collapse
Affiliation(s)
- Cecilia J Proietti
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Progesterone receptor induces ErbB-2 nuclear translocation to promote breast cancer growth via a novel transcriptional effect: ErbB-2 function as a coactivator of Stat3. Mol Cell Biol 2010; 30:5456-72. [PMID: 20876300 DOI: 10.1128/mcb.00012-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Progesterone receptor (PR) and ErbB-2 bidirectional cross talk participates in breast cancer development. Here, we identified a new mechanism of the PR and ErbB-2 interaction involving the PR induction of ErbB-2 nuclear translocation and the assembly of a transcriptional complex in which ErbB-2 acts as a coactivator of Stat3. We also highlighted that the function of ErbB-2 as a Stat3 coactivator drives progestin-induced cyclin D1 promoter activation. Notably, PR is also recruited together with Stat3 and ErbB-2 to the cyclin D1 promoter, unraveling a new and unexpected nonclassical PR genomic mechanism. The assembly of the nuclear Stat3/ErbB-2 transcriptional complex plays a key role in the proliferation of breast tumors with functional PR and ErbB-2. Our findings reveal a novel therapeutic intervention for PR- and ErbB-2-positive breast tumors via the specific blockage of ErbB-2 nuclear translocation.
Collapse
|
20
|
Bottino MC, Cerliani JP, Rojas P, Giulianelli S, Soldati R, Mondillo C, Gorostiaga MA, Pignataro OP, Calvo JC, Gutkind JS, Panomwat Amornphimoltham, Molinolo AA, Lüthy IA, Lanari C. Classical membrane progesterone receptors in murine mammary carcinomas: agonistic effects of progestins and RU-486 mediating rapid non-genomic effects. Breast Cancer Res Treat 2010; 126:621-36. [DOI: 10.1007/s10549-010-0971-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 05/26/2010] [Indexed: 12/19/2022]
|
21
|
Rivas MA, Tkach M, Beguelin W, Proietti CJ, Rosemblit C, Charreau EH, Elizalde PV, Schillaci R. Transactivation of ErbB-2 induced by tumor necrosis factor alpha promotes NF-kappaB activation and breast cancer cell proliferation. Breast Cancer Res Treat 2009; 122:111-24. [PMID: 19760502 DOI: 10.1007/s10549-009-0546-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 09/03/2009] [Indexed: 01/06/2023]
Abstract
Tumor necrosis factor alpha (TNFalpha) is a pleiotropic cytokine which, acting locally, induces tumor growth. Accumulating evidence, including our findings, showed that TNFalpha is mitogenic in breast cancer cells in vitro and in vivo. In the present study, we explored TNFalpha involvement on highly aggressive ErbB-2-overexpressing breast cancer cells. We found that TNFalpha induces ErbB-2 phosphorylation in mouse breast cancer C4HD cells and in the human breast cancer cell lines SK-BR-3 and BT-474. ErbB-2 phosphorylation at Tyr877 residue was mediated by TNFalpha-induced c-Src activation. Moreover, TNFalpha promoted ErbB-2/ErbB-3 heterocomplex formation, Akt activation and NF-kappaB transcriptional activation. Inhibition of ErbB-2 by addition of AG825, an epidermal growth factor receptor/ErbB-2-tyrosine kinase inhibitor, or knockdown of ErbB-2 by RNA interference strategy, blocked TNFalpha-induced NF-kappaB activation and proliferation. However, the humanized monoclonal antibody anti-ErbB-2 Herceptin could not inhibit TNFalpha ability to promote breast cancer growth. Interestingly, our work disclosed that TNFalpha is able to transactivate ErbB-2 and use it as an obligatory downstream signaling molecule in the generation of mitogenic signals. As TNFalpha has been shown to be present in the tumor microenvironment of a significant proportion of human infiltrating breast cancers, our findings would have clinical implication in ErbB-2-positive breast cancer treatment.
Collapse
Affiliation(s)
- Martín A Rivas
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chakraborty AK, Welsh A, Digiovanna MP. Co-targeting the insulin-like growth factor I receptor enhances growth-inhibitory and pro-apoptotic effects of anti-estrogens in human breast cancer cell lines. Breast Cancer Res Treat 2009; 120:327-35. [PMID: 19337828 DOI: 10.1007/s10549-009-0382-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 03/16/2009] [Indexed: 11/25/2022]
Abstract
The insulin-like growth factor I receptor (IGF1R) interacts with estrogen receptor-alpha (ERalpha) and HER2. We examined the effect of combinations of IGF1R antagonists (alpha-IR3, AG1024) and anti-estrogens (4-hydroxy tamoxifen, fulvestrant) in two human ER+ breast cancer cell lines: BT474 (HER2 overexpressing, IGF1R low) and MCF7 (HER2 non-overexpressing, IGF1R high). In BT474 cells, growth was inhibited by anti-estrogens, but not by IGF1R antagonists; however, adding IGF1R inhibitors to anti-estrogens enhanced growth inhibition. In MCF7 cells, growth was inhibited by IGF1R and ER antagonists and more so by their combination. In both cell lines, no single agents could induce apoptosis, but combining IGF1R inhibitors with anti-estrogens induced dramatic levels of apoptosis. IGF1R antagonists enhanced the ability of the anti-estrogens to inhibit ER transcriptional activity in BT474 cells, but not in MCF7 cells. The drug combination synergistically inhibited ER and IGF1R activity. Such combinations may be useful therapy for breast cancer.
Collapse
Affiliation(s)
- Ashok K Chakraborty
- Departments of Internal Medicine (Section of Medical Oncology) and Pharmacology, and the Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, Room WWW217, New Haven, CT 06510, USA
| | | | | |
Collapse
|
23
|
|
24
|
Activation of Stat3 by heregulin/ErbB-2 through the co-option of progesterone receptor signaling drives breast cancer growth. Mol Cell Biol 2008; 29:1249-65. [PMID: 19103753 DOI: 10.1128/mcb.00853-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cross talk between the steroid hormone receptors for estrogen and progesterone (PR) and the ErbB family of receptor tyrosine kinases appears to be a hallmark of breast cancer growth, but its underlying mechanism remains poorly explored. Here we have highlighted signal transducer and activator of transcription 3 (Stat3) as a key protein activated by heregulin (HRG), a ligand of the ErbB receptors, through co-opted, ligand-independent PR function as a signaling molecule. Stat3 activation was an absolute requirement in HRG-induced mammary tumor growth, and targeting Stat3 effectively inhibited growth of breast cancer cells with activated HRG/ErbB-2 and PR. Our findings unravel a novel potential therapeutic intervention in PR- and ErbB-2-positive breast tumors, involving the specific blockage of PR signaling activity.
Collapse
|
25
|
Chakraborty AK, Liang K, DiGiovanna MP. Co-targeting insulin-like growth factor I receptor and HER2: dramatic effects of HER2 inhibitors on nonoverexpressing breast cancer. Cancer Res 2008; 68:1538-45. [PMID: 18316619 DOI: 10.1158/0008-5472.can-07-5935] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The insulin-like growth factor I receptor (IGFIR) and HER2 display important signaling interactions in breast cancer. We examined the effect of combinations of antagonists of these receptors using two human breast cancer cell lines: BT474 (HER2+, IGFIR low) and MCF7 (HER2 low, IGFIR high). In BT474 cells, growth was inhibited by HER2 antagonists but not by IGFIR antagonists; however, IGFIR antagonists enhanced the effect of HER2 inhibitors. In MCF7 cells, growth was inhibited by IGFIR antagonists but not by HER2 antagonists; however, HER2 antagonism enhanced the effect of IGFIR inhibitors. Synergistic inhibition of soft agar growth was also observed. Although HER2 and IGFIR antagonists individually only minimally affected cell cycle, their combination gave a small enhancement of their effects. No single receptor-targeting drug was capable of inducing apoptosis, but combining antagonists of both receptors induced a dramatic degree of apoptosis in both cell lines. Induction of apoptosis was most striking in MCF7 cells using a Herceptin/IGFIR antagonist combination despite these cells being HER2 nonoverexpressing. Toward understanding the mechanism of these effects, we detected coassociation IGFIR and HER2 in both cell lines. Specific inhibitors of one of these receptors could cross-inhibit the activity of the other. Targeting both receptors gave the maximal inhibition of their downstream extracellular signal-regulated kinase 1/2 and AKT signaling pathways. Hence, such drug combinations may be clinically useful and may be beneficial even in tumors in which single drugs are inactive, as exemplified by the effect of the HER2/IGFIR inhibitor combination in HER2 nonoverexpressing MCF7 cells.
Collapse
Affiliation(s)
- Ashok K Chakraborty
- Department of Internal Medicine, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
26
|
Lacroix-Fralish ML, Tawfik VL, Nutile-McMenemy N, Deleo JA. Neuregulin 1 is a pronociceptive cytokine that is regulated by progesterone in the spinal cord: implications for sex specific pain modulation. Eur J Pain 2007; 12:94-103. [PMID: 17459743 DOI: 10.1016/j.ejpain.2007.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 02/01/2007] [Accepted: 03/11/2007] [Indexed: 11/15/2022]
Abstract
Sex differences in the magnitude of response to thermal and tactile stimuli have been demonstrated in both clinical and animal studies. Females typically display lower threshold responses to painful stimuli as compared to males. We have previously observed sexually dimorphic expression of the growth factor, neuregulin 1 (NRG1) following L5 nerve root ligation (LR) in male and female rats. In the present study, we sought to determine which gonadal hormones were involved in regulating NRG1 expression following L5 nerve root ligation. We observed that expression of NRG1 mRNA and the neuregulin receptors, ErbB2 and ErbB4 in the lumbar spinal cord was facilitated by the presence of progesterone in female rats following L5 nerve root ligation. An increase in NRG1 protein and NRG1 immunoreactivity was also observed in the ipsilateral spinal cord of progesterone treated female rats as compared to ovariectomized female rats and male rats at day 14 following LR. NRG1 immunoreactivity was equally colocalized with either the astrocytic marker, GFAP, and with NeuN labeled neurons 14days following L5 nerve root ligation. Intrathecal administration of recombinant NRG1-beta1 protein significantly decreased the hindpaw tactile withdrawal threshold in male rats, ovariectomized female rats, and progesterone treated female rats. These results demonstrate a role for progesterone-dependent regulation of glial and/or neuronal neuregulin 1 in female rats in mediating sex differences in nociception. Furthermore, our results suggest that NRG1 may be involved in central sensitization during the maintenance phase, but not in the initiation of persistent pain in female rats.
Collapse
|
27
|
Boonyaratanakornkit V, McGowan E, Sherman L, Mancini MA, Cheskis BJ, Edwards DP. The Role of Extranuclear Signaling Actions of Progesterone Receptor in Mediating Progesterone Regulation of Gene Expression and the Cell Cycle. Mol Endocrinol 2007; 21:359-75. [PMID: 17138644 DOI: 10.1210/me.2006-0337] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Human progesterone receptor (PR) contains a motif that interacts with the SH3 domain of Src and mediates rapid activation of Src and downstream MAPK (Erk-1/-2) without relying on the transcriptional activity of the receptor. Here we investigated the role and intracellular location of this nontranscriptional activity of PR. Progestin activation of Src/MAPK occurred outside the nucleus with the B isoform of PR that was distributed between the cytoplasm and nucleus, but not with PR-A that was predominantly nuclear. Breast cancer cells stably expressing wild-type PR-B or PR-B with disrupting point mutations in the SH3 domain binding motif (PR-BDeltaSH3) that do not affect the transcriptional activity of PR, were compared for effects of progestin on endogenous target gene expression and cell proliferation. Progestin induction of the cyclin D1 gene, which lacks a progesterone response element, was dependent on PR activation of the Src/MAPK pathway, whereas induction of the Sgk (serum and glucocorticoid regulated kinase) gene that contains a functional progesterone response element was unaffected by mutations that interfere with PR activation of Src. Progestin induction of cell cycle progression was also abrogated in cells expressing PR-BDeltaSH3, and no effect of progestin on cyclin D1 expression and cell cycle was observed in the presence of PR-A. These results highlight the importance of PR activation of the Src/MAPK signaling pathway for progesterone-induced transcription of select target genes and cell cycle progression.
Collapse
|
28
|
Schmitt M, Walker MP, Richards RG, Bocchinfuso WP, Fukuda T, Medina D, Kittrell FS, Korach KS, DiAugustine RP. Expression of heregulin by mouse mammary tumor cells: role in activation of ErbB receptors. Mol Carcinog 2006; 45:490-505. [PMID: 16482517 DOI: 10.1002/mc.20180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The inappropriate activation of one or more members of the ErbB family of receptor tyrosine kinases [ErbB-1 (EGFR), ErbB-2, ErbB-3, ErbB-4] has been linked with oncogenesis. ErbB-2 is frequently coexpressed with ErbB-3 in breast cancer cells and in the presence of the ligand heregulin (HRG) the ErbB-2/ErbB-3 receptors form a signaling heterodimer that can affect cell proliferation and apoptosis. The major goal of the present study was to determine whether endogenous HRG causes autocrine/paracrine activation of ErbB-2/ErbB-3 and contributes to the proliferation of mammary epithelial tumor cells. Tyrosine-phosphorylated (activated) ErbB-2 and ErbB-3 receptors were detected in the majority of extracts from tumors that had formed spontaneously or as a result of oncogene expression. HRG-1 transcripts and protein were found in the epithelial cells of most of these mouse mammary tumors. Various mouse mammary cell lines also contained activated ErbB-2/ErbB-3 and HRG transcripts. A approximately 50 kDa C-terminal fragment of pro-HRG was detected, which indicates that the HRG-1 precursor is readily processed by these cells. It is likely that the secreted mature HRG activated the ErbB-2/3 receptors. Addition of an antiserum against HRG to the mammary epithelial tumor cell line TM-6 reduced ErbB-3 Tyr-phosphorylation. Treatment with HRG-1 siRNA oligonucleotides or infection with a retroviral construct to stably express HRG siRNA effectively reduced HRG protein levels, ErbB-2/ErbB-3 activation, and the rate of proliferation, which could be reversed by the addition of HRG. The cumulative findings from these experiments show that coexpression of the HRG ligand contributes to activation of ErbB-2/Erb-3 in mouse mammary tumor cells in an autocrine or paracrine fashion.
Collapse
Affiliation(s)
- M Schmitt
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Salatino M, Beguelin W, Peters MG, Carnevale R, Proietti CJ, Galigniana MD, Vedoy CG, Schillaci R, Charreau EH, Sogayar MC, Elizalde PV. Progestin-induced caveolin-1 expression mediates breast cancer cell proliferation. Oncogene 2006; 25:7723-39. [PMID: 16799639 DOI: 10.1038/sj.onc.1209757] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Progestin regulation of gene expression was assessed in the progestin-dependent murine tumor line C4HD which requires MPA, a synthetic progestin, for in vivo growth and expresses high levels of progesterone receptor (PR). By using suppressive subtractive hybridization, caveolin-1 was identified as a gene whose expression was increased with in vivo MPA treatment. By Northern and Western blot analysis, we further confirmed that caveolin-1 mRNA and protein expression increased in MPA-treated tumors as compared with untreated tumors. When primary cultures of C4HD cells were treated in vitro with MPA, caveolin-1 levels also increased, effect that was abolished by pre-treatment with progestin antagonist RU486. In addition, MPA promoted strong caveolin-1 promoter transcriptional activation both in mouse and human breast cancer cells. We also showed that MPA regulation of caveolin-1 expression involved in activation of two signaling pathways: MAPK and PI-3K. Short-term MPA treatment of C4HD cells led to tyrosine phosphorylation of caveolin-1 protein, where Src was the kinase involved. Additionally, we showed that MPA-induced association of caveolin-1 and PR, which was detected by coimmunoprecipitation and by confocal microscopy. Finally, we proved that MPA-induced proliferation of C4HD cells was inhibited by suppression of caveolin-1 expression with antisense oligodeoxynucleotides to caveolin-1 mRNA. Furthermore, we observed that inhibition of caveolin-1 expression abrogated PR capacity to induced luciferase activity from a progesterone response element-driven reporter plasmid. Comprehensively, our results demonstrated for the first time that caveolin-1 expression is upregulated by progestin in breast cancer. We also demonstrated that caveolin-1 is a downstream effector of MPA that is partially responsible for the stimulation of growth of breast cancer cells.
Collapse
Affiliation(s)
- M Salatino
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dubey S, Siegfried JM, Traynor AM. Non-small-cell lung cancer and breast carcinoma: chemotherapy and beyond. Lancet Oncol 2006; 7:416-24. [PMID: 16648046 DOI: 10.1016/s1470-2045(06)70693-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Early screening, adjuvant and sequential systemic treatment, and hormonal therapy have benefits in treatment of breast cancer. Management of non-small-cell lung cancer (NSCLC) is progressing and will hopefully follow in the same footsteps as that of breast cancer. Only recently have clinical trials established adjuvant treatment as the standard of care in lung cancer. A growing number of effective cytotoxic and targeted agents have resulted in increased survival when used as sequential treatment in both breast cancer and NSCLC. The interaction between oestrogen receptors (ER) in the lung and epidermal growth factor receptor (EGFR) suggests a potential role for endocrine manipulation in the treatment of NSCLC. This complex interaction involves several types of ER receptors and different signalling pathways. Interactions between tobacco and oestrogen confound the effects of exogenous oestrogens on risk of lung cancer, but not on that of breast cancer. The optimum application of hormonal manipulation to prevent or treat lung cancer will depend on a more-complete understanding of lung-specific ER signalling. Early trials have assessed the interaction between the ER and EGFR signalling.
Collapse
Affiliation(s)
- Sarita Dubey
- Division of Hematology/Oncology, University of California, San Francisco, CA 94115, USA.
| | | | | |
Collapse
|
31
|
Fabris VT, Benavides F, Conti C, Merani S, Lanari C. Cytogenetic findings, Trp53 mutations, and hormone responsiveness in a medroxyprogesterone acetate induced murine breast cancer model. ACTA ACUST UNITED AC 2005; 161:130-9. [PMID: 16102583 DOI: 10.1016/j.cancergencyto.2005.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 01/28/2005] [Accepted: 02/01/2005] [Indexed: 11/16/2022]
Abstract
Medroxyprogesterone acetate (MPA)-induced mammary carcinomas express high levels of estrogen (ER) and progesterone receptors (PR) and when transplanted in syngeneic mice they show a progestin-dependent (PD) growth pattern. By successive transplantation, progestin-independent (PI) variants were generated and showed a different response to antihormone therapy. A diploid chromosome number (2n=40) was found in three of five PD tumors, with numbers in the triploid to tetraploid range in the other two. Some PI tumors were diploid, but most were aneuploid (8 of 12 tumors). The most frequent alterations found in PD and PI tumors were gains of chromosomes 3, 4, and 6 and losses of chromosomes 16 and X. Chromosomes 4 and 7 were involved in translocations in three of the four tumor families studied. single-strand conformation polymorphism analysis revealed a point mutation on the Trp53 gene in one of the PD tumors; this showed a stable diploid karyotype, suggesting that mutated Trp53 is not uniquely involved in chromosome instability. We have shown that hormone independence may be acquired without changes in ploidy, suggesting that the increase in ploidy is favored by successive transplantation. In our model, diploid tumors responded to hormone treatment but aneuploid tumors were either responsive or not.
Collapse
Affiliation(s)
- Victoria T Fabris
- Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
32
|
Abstract
The human epidermal growth factor (EGF) receptor (HER) family of receptor tyrosine kinases has frequently been implicated in cancer. Apart from overexpression or mutation of these receptors, also the aberrant autocrine or paracrine activation of HERs by EGF-like ligands may be important in cancer progression. Neuregulins constitute a family of EGF-like ligands that bind to HER3 or HER4, preferably forming heterodimers with the orphan receptor HER2. Mesenchymal neuregulin typically serves as a pro-survival and pro-differentiation signal for adjacent epithelia. Disruption of the balance between proliferation and differentiation, because of autocrine production by the epithelial cells, increased sensitivity to paracrine signals or disruption of the spatial organization, may lead to constitutive receptor activation, in the absence of receptor overexpression. Consequently, the analysis of ligand expression and/or activated receptors in tumor samples may broaden the group of patients that can benefit from targeted therapies.
Collapse
Affiliation(s)
- Christophe Stove
- Laboratory of Experimental Cancerology, Department of Radiotherapy and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | | |
Collapse
|
33
|
Proietti C, Salatino M, Rosemblit C, Carnevale R, Pecci A, Kornblihtt AR, Molinolo AA, Frahm I, Charreau EH, Schillaci R, Elizalde PV. Progestins induce transcriptional activation of signal transducer and activator of transcription 3 (Stat3) via a Jak- and Src-dependent mechanism in breast cancer cells. Mol Cell Biol 2005; 25:4826-40. [PMID: 15923602 PMCID: PMC1140598 DOI: 10.1128/mcb.25.12.4826-4840.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions between steroid hormone receptors and signal transducer and activator of transcription (Stat)-mediated signaling pathways have already been described. In the present study, we explored the capacity of progestins to modulate Stat3 transcriptional activation in an experimental model of hormonal carcinogenesis in which the synthetic progestin medroxyprogesterone acetate (MPA) induced mammary adenocarcinomas in BALB/c mice and in the human breast cancer cell line T47D. We found that C4HD epithelial cells, from the MPA-induced mammary tumor model, expressed Stat3 and that MPA treatment of C4HD cells up-regulated Stat3 protein expression. In addition, MPA induced rapid, nongenomic Stat3, Jak1, and Jak2 tyrosine phosphorylation in C4HD and T47D cells. MPA treatment of C4HD cells also resulted in rapid c-Src tyrosine phosphorylation. These effects were completely abolished by the progestin antagonist RU486. Abrogation of Jak1 and Jak2 activity by transient transfection of C4HD cells with dominant negative (DN) Jak1 or DN Jak2 vectors, or inhibition of Src activity by preincubation of cells with the Src family kinase inhibitor PP2, blocked the capacity of MPA to induce Stat3 phosphorylation. Treatment of C4HD cells with MPA induced Stat3 binding to DNA. In addition, MPA promoted strong Stat3 transcriptional activation in C4HD and T47D cells that was inhibited by RU486 and by blockage of Jak1, Jak2, and Src activities. To investigate the correlation between MPA-induced Stat3 activation and cell growth, C4HD cells were transiently transfected with a DN Stat3 expression vector, Stat3Y705-F, or with a constitutively activated Stat3 mutant, Stat3-C. While expression of Stat3Y705-F mutant had an inhibitory effect on MPA-induced growth of C4HD cells, transfection with the constitutively activated Stat3-C vector resulted in MPA-independent proliferation. Finally, we addressed the effect of targeting Stat3 in in vivo growth of C4HD breast tumors. Blockage of Stat3 activation by transfection of C4HD cells with the DN Stat3Y705-F expression vector significantly inhibited these cells' ability to form tumors in syngeneic mice. Our results have for the first time demonstrated that progestins are able to induce Stat3 transcriptional activation, which is in turn an obligatory requirement for progestin stimulation of both in vitro and in vivo breast cancer growth.
Collapse
Affiliation(s)
- Cecilia Proietti
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires 1428, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vanzulli SI, Soldati R, Meiss R, Colombo L, Molinolo AA, Lanari C. Estrogen or antiprogestin treatment induces complete regression of pulmonary and axillary metastases in an experimental model of breast cancer progression. Carcinogenesis 2005; 26:1055-63. [PMID: 15774491 DOI: 10.1093/carcin/bgi060] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this paper we demonstrate, using the C7-2-HI metastatic transplantable ductal mammary tumor, that endocrine therapy can induce complete regression of spontaneous lymph node and lung metastases in a mouse model of breast cancer progression. This tumor expresses high levels of estrogen and progesterone receptors and shows a high incidence of early axillary lymph nodes and lung metastases; using this model we had previously shown complete tumor regression of subcutaneous implants. Interestingly, although the metastases showed a more differentiated histology as compared with the primary growth, they underwent complete regression when treated with estrogens or antiprogestins. This phenomenon was associated with sustained cytostasis and apoptosis accompanied by increases in p21 and p27 expression and early tissue remodeling. These results highlight the essential role of PR in regulating cell proliferation in this model as well as its possible use as therapeutic target.
Collapse
Affiliation(s)
- Silvia I Vanzulli
- Laboratory of Hormonal Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
35
|
Salatino M, Schillaci R, Proietti CJ, Carnevale R, Frahm I, Molinolo AA, Iribarren A, Charreau EH, Elizalde PV. Inhibition of in vivo breast cancer growth by antisense oligodeoxynucleotides to type I insulin-like growth factor receptor mRNA involves inactivation of ErbBs, PI-3K/Akt and p42/p44 MAPK signaling pathways but not modulation of progesterone receptor activity. Oncogene 2004; 23:5161-74. [PMID: 15122317 DOI: 10.1038/sj.onc.1207659] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study addresses the effect of targeting type I insulin-like growth factor receptor (IGF-IR) with antisense strategies in in vivo growth of breast cancer cells. Our research was carried out on C4HD tumors from an experimental model of hormonal carcinogenesis in which the synthetic progestin medroxyprogesterone acetate (MPA) induced mammary adenocarcinomas in Balb/c mice. We employed two different experimental strategies. With the first one we demonstrated that direct intratumor injection of phosphorothioate antisense oligodeoxynucleotides (AS[S]ODNs) to IGF-IR mRNA resulted in a significant inhibition of C4HD tumor growth. In the second experimental strategy, we assessed the effect of intravenous (i.v.) injection of AS [S]ODN on C4HD tumor growth. This systemic treatment also resulted in significant reduction in tumor growth. The antitumor effect of IGF-IR AS[S]ODNs in both experimental protocols was due to a specific antisense mechanism, since growth inhibition was dose-dependent and no abrogation of tumor proliferation was observed in mice treated with phosphorothioate sense ODNs (S[S]ODNs). In addition, IGF-IR expression was inhibited in tumors from mice receiving AS[S]ODNs, as compared to tumors from control groups. We then investigated signal transduction pathways modulated in vivo by AS[S]ODNs treatment. Tumors from AS[S]ODN-treated mice of both intratumoral and intravenous protocols showed a significant decrease in the degree of insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation. Activation of two of the main IGF-IR signaling pathways, phosphatidylinositol 3-kinase (PI-3K)/Akt and p42/p44 mitogen-activated protein kinases (MAPK) was abolished in tumors growing in AS[S]ODN-treated animals. Moreover, ErbB-2 tyrosine phosphorylation was blocked by in vivo administration of AS[S]ODNs. On the other hand, we found no regulation of either progesterone receptor expression or activity by in vivo AS[S]ODNs administration. Our results for the first time demonstrated that breast cancer growth can be inhibited by direct in vivo administration of IGF-IR AS[S]ODNs.
Collapse
MESH Headings
- Animals
- Cell Division/drug effects
- Dose-Response Relationship, Drug
- Enzyme Activation
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Genes, erbB-1/drug effects
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Mitogen-Activated Protein Kinase 1/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 1/metabolism
- Neoplasm Transplantation
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/drug effects
- Receptor, IGF Type 1/metabolism
- Receptors, Progesterone/metabolism
- Signal Transduction/drug effects
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Mariana Salatino
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vázquez SM, Mladovan A, Garbovesky C, Baldi A, Lüthy IA. Three novel hormone-responsive cell lines derived from primary human breast carcinomas: functional characterization. J Cell Physiol 2004; 199:460-9. [PMID: 15095293 DOI: 10.1002/jcp.10466] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human breast cancer primary cultures are useful tools for the study of several aspects of cancer biology, including the effects of chemotherapy and acute gene expression in response to different hormonal/chemotherapy treatments. The present study reports the conditions for primary culture of breast cancer samples from untreated patients and the most effective collagenization method to dissociate human samples consisting in an overnight incubation with 1 mg/ml types II or IV collagenase and further incubation in DMEM:F12 (1:1) medium supplemented with glutamine, bovine insulin, penicillin-streptomycin, HEPES, estradiol, cortisol (F), tri-iodothyronine (T(3)), transferrine (TR), and 10% fetal calf serum (FCS). These conditions proved to be appropriate for both primary culture and the development of stable cell lines. Of the seven cell lines obtained, three fast growing and estrogen receptor (ER)+/progesterone receptor (PgR)+/EGF receptor (EGFR)+ have been characterized. The cells are able to grow both in soft agar and in nude mice, and express cytokeratins, all parameters characteristic of malignant epithelial cell lines. The cells also exhibit an increased proliferation rate in the presence of estradiol, progesterone, and EGF, suggesting the presence of the corresponding receptors. The mRNA expression of type alpha- and beta-ER as well as EGFR, was confirmed by RT-PCR. In conclusion, the novel cell lines described, arose from primary tumors and are sensitive to estradiol, progesterone, and EGF. This not only expands the repertoire of breast cancer cells available as potentially useful tools for examining most parameters in breast cancer "in vitro", but also provides unique new models to explore the complex regulation by steroids as well as growth factors in such cells.
Collapse
Affiliation(s)
- Stella Maris Vázquez
- Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
37
|
Argiris A, Wang CX, Whalen SG, DiGiovanna MP. Synergistic Interactions between Tamoxifen and Trastuzumab (Herceptin). Clin Cancer Res 2004; 10:1409-20. [PMID: 14977844 DOI: 10.1158/1078-0432.ccr-1060-02] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE HER-2/neu and estrogen receptor (ER) are critical in the biology of breast carcinoma, and both are validated therapeutic targets. Extensive interactions between the signaling pathways of these receptors have been demonstrated. This suggests that targeting both receptors simultaneously may have a dramatic effect on the biology of breast cancer. This hypothesis was tested in cell culture experiments. EXPERIMENTAL DESIGN ER-positive, HER-2/neu-overexpressing BT-474 human breast carcinoma cells were cultured in the presence of the anti-HER-2/neu therapeutic antibody trastuzumab (Herceptin), the antiestrogen tamoxifen, or both. The effects on cell growth, cell cycle distribution, clonogenicity, survival, and the level and activity of HER-2/neu were examined. RESULTS The combination of tamoxifen and Herceptin resulted in synergistic growth inhibition and enhancement of cell accumulation in the G(0)-G(1) phase of the cell cycle, with a decrease in cells in S phase. Clonogenicity was inhibited in the presence of each drug and more so by the combination, although prior exposure to drugs did not affect subsequent clonogenicity in drug-free media, and neither drug nor the combination induced apoptosis. Herceptin, but not tamoxifen, inhibited signaling by HER-2/neu. CONCLUSIONS The combination of tamoxifen and Herceptin is formally demonstrated to result in synergistic growth inhibition and enhancement of G(0)-G(1) cell cycle accumulation. In vitro, the individual drugs or combination produces a cytostatic effect. These results suggest that combined inhibition of ER and HER-2/neu signaling may represent a powerful approach to the treatment of breast cancer.
Collapse
Affiliation(s)
- Athanassios Argiris
- Yale University School of Medicine, Department of Internal Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
38
|
Labriola L, Salatino M, Proietti CJ, Pecci A, Coso OA, Kornblihtt AR, Charreau EH, Elizalde PV. Heregulin induces transcriptional activation of the progesterone receptor by a mechanism that requires functional ErbB-2 and mitogen-activated protein kinase activation in breast cancer cells. Mol Cell Biol 2003; 23:1095-111. [PMID: 12529413 PMCID: PMC140689 DOI: 10.1128/mcb.23.3.1095-1111.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The present study addresses the capacity of heregulin (HRG), a ligand of type I receptor tyrosine kinases, to transactivate the progesterone receptor (PR). For this purpose, we studied, on the one hand, an experimental model of hormonal carcinogenesis in which the synthetic progestin medroxyprogesterone acetate (MPA) induced mammary adenocarcinomas in female BALB/c mice and, on the other hand, the human breast cancer cell line T47D. HRG was able to exquisitely regulate biochemical attributes of PR in a way that mimicked PR activation by progestins. Thus, HRG treatment of primary cultures of epithelial cells of the progestin-dependent C4HD murine mammary tumor line and of T47D cells induced a decrease of protein levels of PRA and -B isoforms and the downregulation of progesterone-binding sites. HRG also promoted a significant increase in the percentage of PR localized in the nucleus in both cell types. DNA mobility shift assay revealed that HRG was able to induce PR binding to a progesterone response element (PRE) in C4HD and T47D cells. Transient transfections of C4HD and T47D cells with a plasmid containing a PRE upstream of a chloramphenicol acetyltransferase (CAT) gene demonstrated that HRG promoted a significant increase in CAT activity. In order to assess the molecular mechanisms underlying PR transactivation by HRG, we blocked ErbB-2 expression in C4HD and T47D cells by using antisense oligodeoxynucleotides to ErbB-2 mRNA, which resulted in the abolishment of HRG's capacity to induce PR binding to a PRE, as well as CAT activity in the transient-transfection assays. Although the inhibition of HRG binding to ErbB-3 by an anti-ErbB-3 monoclonal antibody suppressed HRG-induced PR activation, the abolishment of HRG binding to ErbB-4 had no effect on HRG activation of PR. To investigate the role of mitogen-activated protein kinases (MAPKs), we used the selective MEK1/MAPK inhibitor PD98059. Blockage of MAPK activation resulted in complete abrogation of HRG's capacity to induce PR binding to a PRE, as well as CAT activity. Finally, we demonstrate here for the first time that HRG-activated MAPK can phosphorylate both human and mouse PR in vitro.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Division/drug effects
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Enzyme Inhibitors/pharmacology
- Female
- Flavonoids/pharmacology
- Genes, erbB-2
- Hormone Antagonists/pharmacology
- Humans
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mifepristone/pharmacology
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Neuregulin-1/pharmacology
- Phosphorylation
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Transcriptional Activation/drug effects
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Leticia Labriola
- Instituto de Biología y Medicina Experimental, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Protein kinases, the enzymes responsible for phosphorylation of a wide variety of proteins, are the largest class of genes known to regulate growth, development, and neoplastic transformation of mammary gland. Mammary gland growth and maturation consist of a series of highly ordered events involving interactions among several distinct cell types that are regulated by complex interactions among many steroid hormones and growth factors. The mammary gland is one of the few organ systems in mammals that complete their morphologic development postnatally during two discrete physiologic states, puberty and pregnancy. Thus, the mammary gland is an excellent model for studying normal development and the early steps of tumor formation. The susceptibility of the mammary gland to tumorigenesis is influenced by its normal development, particularly during stages of puberty and pregnancy. Numerous experimental and epidemiological studies have suggested that specific details in the development of the mammary gland play a critical role in breast cancer risk. Mammary gland development is characterized by dynamic changes in the expression and functions of protein kinases. Perturbations in the regulated expression or function of protein kinases or their associated signaling pathways can lead to malignant transformation of the breast. For example, overexpression of several receptor-tyrosine kinases, including human epidermal growth factor receptor and HER2/Neu, has been shown to contribute to the development of breast cancer. Since receptor-tyrosine kinases regulate several essential processes such as mitogenesis, motility, invasion, cell survival, and angiogenesis, targeting receptor-tyrosine kinases may have important implications in designing strategies against breast cancer.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
40
|
Puricelli L, Proietti CJ, Proiettii CJ, Labriola L, Salatino M, Balañá ME, Aguirre Ghiso J, Lupu R, Pignataro OP, Charreau EH, Bal de Kier Joffé E, Elizalde PV. Heregulin inhibits proliferation via ERKs and phosphatidyl-inositol 3-kinase activation but regulates urokinase plasminogen activator independently of these pathways in metastatic mammary tumor cells. Int J Cancer 2002; 100:642-53. [PMID: 12209601 DOI: 10.1002/ijc.10533] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Heregulin (HRG) and type I receptor tyrosine kinase (RTK) expression was investigated in the highly invasive and metastatic LM3 cell line, our previously described model of metastasis for mammary cancer (Bal de Kier Joffe et al. [1986] Invasion Metastasis 6:302-12; Urtreger et al. [1997] Int J Oncol 11:489-96). Although LM3 cells do not express HRG, they exhibit high levels of ErbB-2 and ErbB-3 as well as moderate expression of ErbB-4. Addition of exogenous HRGbeta1 resulted in inhibition of both proliferation and migration of LM3 cells. HRGbeta1 was also able to decrease the activity of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase 9 (MMP-9), 2 key enzymes in the invasion and metastatic cascade. HRGbeta1 treatment of LM3 cells induced tyrosine phosphorylation of ErbB-2, ErbB-3 and ErbB-4 as well as the formation of ErbB-2/ErbB-3 and ErbB-2/ErbB-4 heterodimers. Assessment of the signaling pathways involved in HRGbeta1 action indicated that the addition of HRGbeta1 to LM3 cells resulted in activation of phosphatidylinositol 3- kinase (PI-3K) and in strong induction of the association of the p85 subunit of PI-3K with ErbB-3. HRGbeta1 also caused the rapid activation of ERK1/ERK2 and Stat3 and Stat5 (signal transducers and activators of transcription [STAT]). This is the first demonstration of the ability of HRGbeta1 to activate STATs in mammary tumor cells. Blockage of PI-3K activity with its chemical inhibitor wortmannin, or of MEK1/ERKs activity with PD98059, resulted in suppression of the ability of HRGbeta1 to inhibit LM3 cell growth. Notwithstanding the suppression of these 2 signaling pathways, HRGbeta1 still proved capable of inhibiting uPA activity. Therefore, our results provide evidence that signaling pathways involved in HRGbeta1-induced proliferation appear to be distinct from those involved in HRGbeta1 regulation of uPA, a protease that plays a pivotal role in invasion and metastasis.
Collapse
Affiliation(s)
- Lydia Puricelli
- Instituto de Oncología Angel H. Roffo, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Estrogen administration is associated with reduction in perimenopausal symptoms and the risk for several conditions affecting postmenopausal women. As estrogen administration also increases the risk for breast cancer, a common dilemma facing many women and their physicians is whether to use estrogen replacement therapy (ERT), a selective estrogen receptor modulator (SERM) that antagonises estrogenic effects in breast tissue but retains some estrogen agonist properties in other organs, or neither. For women with average to moderate risk of breast cancer and with perimenopausal symptoms, ERT may be the best short-term choice. For very high-risk women (>1% per year) with menopausal symptoms, alternatives to ERT might be offered and tried first. A diagnosis of ductal carcinoma in situ or invasive breast cancer within the last 2 to 5 years should be considered a relative contraindication for ERT unless the tumour was estrogen receptor negative. High-risk women without menopausal symptoms are the best candidates for the only currently approved drug for breast cancer risk reduction, tamoxifen. Although the drug is approved for women with a 5-year risk of breast cancer > or = 1.7% (0.34% per year), postmenopausal women most likely to experience a favourable benefit/risk ratio are those with a Gail estimated risk of >0.5% per year without a uterus or >1% per year if they retain their uterus. Tamoxifen should not be used in women with prior history of thromboembolic or precancerous uterine conditions. Tamoxifen is often used in Europe in conjunction with transdermal ERT in hysterectomised women without obvious loss of efficacy or increased risk of thromboembolism. Raloxifene is a second generation SERM with estrogen-like agonist effects on bone but with less uterine estrogen agonist activity than tamoxifen. Raloxifene may have less potent breast antiestrogenic effects than tamoxifen, particularly in a moderate- to high-estrogen environment. Raloxifene is approved for use in reducing risk of osteoporosis, but not breast cancer. Whether it is as effective as tamoxifen in reducing breast cancer risk in postmenopausal women is the subject of a current trial. All women regardless of breast cancer risk are advised to employ nonpharmacological risk reduction measures, including normalisation of bodyweight, exercise, adequate calcium and vitamin D intake, and avoidance of smoking and alcohol. The preventive options are best weighed during an individualised consultation where a woman's menopausal symptoms and risk for breast cancer and other diseases can be examined, and the options for improving postmenopausal health can be discussed.
Collapse
Affiliation(s)
- Carol J Fabian
- Division of Clinical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160-7820, USA.
| | | |
Collapse
|
42
|
Abstract
Gene amplification and/or overexpression of the c-erbB-2/HER2/neu tyrosine kinase are linked with poor prognosis in breast cancer. This is manifest in shorter disease-free intervals, increased risk of metastasis, and resistance to many types of therapy. The molecular mechanisms and signaling circuitry underlying these phenomena are now being elucidated. c-erbB-2, although having no known soluble ligand, is transactivated by heterodimerization with other family members (EGFR, c-erbB-3, c-erbB-4). Receptor activation potentiates tumor cell motility, protease secretion and invasion, and also modulates cell cycle checkpoint function, DNA repair, and apoptotic responses. Since it is expressed at low levels in normal adult tissues, c-erbB-2 is an ideal target for therapy. There is reason for optimism that agents targeting c-erbB-2 signaling will have profound and selective effects in breast cancer, either as single agents or more likely in combination with other therapeutic agents, to enhance their potency.
Collapse
Affiliation(s)
- S A Eccles
- CRC Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, United Kingdom.
| |
Collapse
|
43
|
Salatino M, Labriola L, Schillaci R, Charreau EH, Elizalde PV. Mechanisms of cell cycle arrest in response to TGF-beta in progestin-dependent and -independent growth of mammary tumors. Exp Cell Res 2001; 265:152-66. [PMID: 11281653 DOI: 10.1006/excr.2001.5175] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
TGF-beta1 modulation of cell cycle components was assessed in an experimental model in which the synthetic progestin medroxyprogesterone acetate (MPA) induced mammary tumors in Balb/c mice. TGF-beta1 inhibited both MPA-induced proliferation of progestin-dependent C4HD epithelial cells and proliferation of the progestin-independent variant cell type C4HI, arresting cells in G(1) phase of the cell cycle. Progestin-independent 60 epithelial cells evidenced reduced response to TGF-beta1 antiproliferative effects. TGF-beta1 inhibition of cyclins D1 and A expression and up-regulation of p21(CIP1) levels were the common findings in all three cell types. In addition, a significant content reduction of cyclin D1/cdk4 and cyclin A/cdk2 complexes was found after TGF-beta1 inhibition of MPA-dependent and -independent proliferation. TGF-beta1 inhibited cyclin D2 expression and up-regulated p27(KIP1) levels only when acting as inhibitor of MPA-induced proliferation of C4HD cells. Regulation of these two cell cycle components resulted in decreased cyclin D2/cdk2 complex and in increased p27(KIP1) association with cdk2 in C4HD cells treated with TGF-beta1. These two molecular mechanisms, unobserved in progestin-independent growth of C4HI or 60 cells, were associated with a significantly higher degree of inhibition of cdk2 kinase activity in C4HD cells compared to that found in TGF-beta-treated C4HI or 60 cells. Reduced sensitivity of 60 cells to the growth-inhibitory effects of TGF-beta1 correlated with significantly lower levels of p15(INK4B), p21(CIP1), and p27(KIP1) expressed in these cells, compared to the levels present in C4HD or C4HI cells, and correlated as well with lack of expression of p16(INK4). Thus, common targets were found to exist in TGF-beta1 inhibitory action on breast cancer cells, but regulation of specific targets was found when TGF-beta1-inhibited proliferation driven by the progesterone receptor.
Collapse
Affiliation(s)
- M Salatino
- Instituto de Biología y Medicina Experimental, Obligado 2490, Buenos Aires, 1428, Argentina
| | | | | | | | | |
Collapse
|
44
|
Balañá ME, Labriola L, Salatino M, Movsichoff F, Peters G, Charreau EH, Elizalde PV. Activation of ErbB-2 via a hierarchical interaction between ErbB-2 and type I insulin-like growth factor receptor in mammary tumor cells. Oncogene 2001; 20:34-47. [PMID: 11244498 DOI: 10.1038/sj.onc.1204050] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2000] [Revised: 10/19/2000] [Accepted: 10/23/2000] [Indexed: 11/09/2022]
Abstract
The present study focused on interactions between signaling pathways activated by progestins and by type I and II receptor tyrosine kinases (RTKs) in mammary tumors. An experimental model in which the synthetic progestin medroxyprogesterone acetate (MPA) induced mammary adenocarcinomas in Balb/c mice was used. MPA-stimulated proliferation, both in vivo and in vitro, of progestin-dependent tumors induced up-regulation of ErbB-2 protein levels and tyrosine phosphorylation of this receptor. Combinations of antisense oligodeoxynucleotides (ASODNs) directed to ErbB-2 mRNA with ASODNs directed to the insulin-like growth factor-I receptor (IGF-IR) were used to study the effect of the simultaneous block of these receptors on the MPA-induced proliferation of epithelial cells from the progestin-dependent C4HD line. Neither synergistic nor additive effects on the inhibition of MPA-induced proliferation of C4HD cells were observed as a result of the combination of these ASODNs. Suppression of IGF-IR expression by ASODNs resulted in complete abrogation of MPA-induced phosphorylation of ErbB-2 in C4HD cells, whereas blockage of ErbB-2 did not affect IGF-IR phosphorylation. These results show the existence of a hierarchical interaction between IGF-IR and ErbB-2, by means of which IGF-IR directs ErbB-2 phosphorylation. We demonstrated, for the first time, that this hierarchical interaction involves physical association of both receptors, resulting in the formation of a heteromeric complex. Furthermore, confocal laser microscopy experiments demonstrated that MPA was able to induce co-localization of ErbB-2 and IGF-IR. This hetero-oligomer was also found in MCF-7 human breast cancer cells in which association of IGF-IR and ErbB-2 was induced by heregulin and IGF-I. Oncogene (2001) 20, 34 - 47.
Collapse
MESH Headings
- Animals
- Enzyme Activation/drug effects
- Epithelial Cells/enzymology
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Macromolecular Substances
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/metabolism
- Medroxyprogesterone Acetate/pharmacology
- Mice
- Mice, Inbred BALB C
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Phosphorylation/drug effects
- Progesterone Congeners/pharmacology
- Receptor Cross-Talk/drug effects
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/metabolism
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/biosynthesis
- Receptor, IGF Type 1/metabolism
- Signal Transduction/drug effects
- Tumor Cells, Cultured
- Tyrosine/antagonists & inhibitors
- Tyrosine/metabolism
Collapse
Affiliation(s)
- M E Balañá
- Instituto de Biología y Medicina Experimental (IBYME), Obligado 2490, Buenos Aires 1428, Argentina
| | | | | | | | | | | | | |
Collapse
|