1
|
Omdahl KI, Bermea RS, Fleming R, Kimler K, Kaminski J, Hariri LP, Ly A, Rui X, Cagnin L, Lane J, Gerdemann U, Blazar BR, Tkachev V, Kean LS. Organ-specific microenvironments drive divergent T cell evolution in acute graft-versus-host disease. Sci Transl Med 2025; 17:eads1298. [PMID: 39879321 DOI: 10.1126/scitranslmed.ads1298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/28/2024] [Indexed: 01/31/2025]
Abstract
Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing. Transcriptional profiling revealed substantial biological differences between T cells infiltrating the lung and liver during aGVHD. These included enrichment for transcriptional pathways controlling extracellular matrix remodeling and chemotaxis in the lung and enrichment for transcriptional pathways linked to nucleic acid metabolism and proliferation in the liver. Single-cell RNA sequencing and TCR sequencing substantiated divergent organ-specific transcriptional programing of tissue-infiltrating T cells, which was linked to clonal expansion, with expanded clones progressively enriched for C-X3-C motif chemokine receptor 1 (CX3CR1)-expressing CD8 effector T cells in the lung and eomesodermin (EOMES)-expressing CD8 effector-memory T cells in the liver. This divergent evolution of T cells was maintained even for T cells sharing the same TCRs, indicating its independence from antigen specificity. Together, these results provide insights into the role that tissue microenvironment-derived signals play in local T cell transcriptional programming during alloimmune-mediated clonal expansion and suggest potential opportunities to develop tissue-specific therapeutics to curtail pathogenic immunity after transplant.
Collapse
Affiliation(s)
- Kayleigh Ingersoll Omdahl
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Rene S Bermea
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Lung Transplant Program, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Ryan Fleming
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kyle Kimler
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - James Kaminski
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lida P Hariri
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amy Ly
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xianliang Rui
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lorenzo Cagnin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jennifer Lane
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ulrike Gerdemann
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Bruce R Blazar
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
2
|
Jiang Y, Qi S, Zhang R, Zhao R, Fu Y, Fang Y, Shao M. Diagnosis of hepatocellular carcinoma using liquid biopsy-based biomarkers: a systematic review and network meta-analysis. Front Oncol 2025; 14:1483521. [PMID: 39935848 PMCID: PMC11810725 DOI: 10.3389/fonc.2024.1483521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/31/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction The diagnostic performance of liquid biopsy-based biomarkers for HCC was comprehensively compared in this network meta-analysis (NMA). Methods A thorough literature search was conducted to identify all comparative studies from January 1, 2000, to January 11, 2024. The QUADAS-2 tool was utilized to appraise the quality of studies involving diagnostic performance. R (v4.3.3) and an ANOVA model-based NMA were used to assess the diagnostic accuracy of each biomarker. Results This study included 82 studies comprising a total of 15,024 patients.CircRNA demonstrated significantly superior performance in distinguishing HCC from healthy populations (superiority index: 3.550 (95% CI [0.143-3])) compared to other diagnostic biomarkers for HCC. "mRNA exhibited significantly superior performance in distinguishing HCC from liver disease patients (superiority index:10.621 (95% CI [7-11])) compared to other diagnostic biomarkers for HCC. Further subgroup analysis of the top-ranking liquid biopsy-based diagnostic biomarkers revealed that hsa_circ_000224 (superiority index: 3.091 (95% CI[0.143-9]) ranked remarkably higher in distinguishing HCC from both healthy populations and liver disease patients. Subgroup analysis of mRNA demonstrated that KIAA0101 mRNA (superiority index: 2.434 (95% CI [0.2-5]) ranked remarkably higher in distinguishing HCC from healthy populations and liver disease patients, respectively. Discussion The results of this meta-analysis show that circRNA and mRNA are the first choice for HCC diagnosis. Subsequent analysis of circRNA and mRNA highlighted hsa_circ_000224, hsa_circ_0003998, KIAA0101 mRNA and GPC-3mRNA as the optimal diagnostic biomarkers for distinguishing HCC from healthy populations and liver disease patients, respectively. Well-structured prospective studies are crucial to comprehensively validate these findings. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/,identifier CRD42024521299.
Collapse
Affiliation(s)
- Yutong Jiang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Shangwen Qi
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Rongrong Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruixia Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yu Fu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yuxuan Fang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingyi Shao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Sun L, Shao W, Lin Z, Lin J, Zhao F, Yu J. Single-cell RNA sequencing explored potential therapeutic targets by revealing the tumor microenvironment of neuroblastoma and its expression in cell death. Discov Oncol 2024; 15:409. [PMID: 39235657 PMCID: PMC11377405 DOI: 10.1007/s12672-024-01286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial solid tumor in childhood and is closely related to the early development and differentiation of neuroendocrine (NE) cells. The disease is mainly represented by high-risk NB, which has the characteristics of high mortality and difficult treatment. The survival rate of high-risk NB patients is not ideal. In this article, we not only conducted a comprehensive study of NB through single-cell RNA sequencing (scRNA-seq) but also further analyzed cuproptosis, a new cell death pathway, in order to find clinical treatment targets from a new perspective. MATERIALS AND METHODS The Seurat software was employed to process the scRNA-seq data. This was followed by the utilization of GO enrichment analysis and GSEA to unveil pertinent enriched pathways. The inferCNV software package was harnessed to investigate chromosomal copy number variations. pseudotime analyses involved the use of Monocle 2, CytoTRACE, and Slingshot software. CellChat was employed to analyze the intercellular communication network for NB. Furthermore, PySCENIC was deployed to review the profile of transcription factors. RESULT Using scRNA-seq, we studied cells from patients with NB. NE cells exhibited superior specificity in contrast to other cell types. Among NE cells, C1 PCLAF + NE cells showed a close correlation with the genesis and advancement of NB. The key marker genes, cognate receptor pairing, developmental trajectories, metabolic pathways, transcription factors, and enrichment pathways in C1 PCLAF + NE cells, as well as the expression of cuproptosis in C1 PCLAF + NE cells, provided new ideas for exploring new therapeutic targets for NB. CONCLUSION The results revealed the specificity of malignant NE cells in NB, especially the key subset of C1 PCLAF + NE cells, which enhanced our understanding of the key role of the tumor microenvironment in the complexity of cancer progression. Of course, cell death played an important role in the progression of NB, which also promoted our research on new targets. The scrutiny of these findings proved advantageous in uncovering innovative therapeutic targets, thereby bolstering clinical interventions.
Collapse
Affiliation(s)
- Lei Sun
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Wenwen Shao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Jingheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Fu Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Juan Yu
- Pediatric Tuina Health Care Clinic, Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369, Jingshi Road, Jinan, 250014, Shandong, China.
| |
Collapse
|
4
|
Zhu C, Fang X, Liu X, Jiang C, Ren W, Huang W, Jiang Y, Wang D. Squalene monooxygenase facilitates bladder cancer development in part by regulating PCNA. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119681. [PMID: 38280406 DOI: 10.1016/j.bbamcr.2024.119681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Bladder cancer (BC) is one of the most common cancers worldwide. Although the treatment and survival rate of BC are being improved, the risk factors and the underlying mechanisms causing BC are incompletely understood. Squalene monooxygenase (SQLE) has been associated with the occurrence and development of multiple cancers but whether it contributes to BC development is unclear. In this study, we performed bioinformatics analysis on paired BC and adjacent non-cancerous tissues and found that SQLE expression is significantly upregulated in BC samples. Knockdown of SQLE impairs viability, induces apoptosis, and inhibits the migration and invasion of BC cells. RNA-seq data reveals that SQLE deficiency leads to dysregulated expression of genes regulating proliferation, migration, and apoptosis. Mass spectrometry-directed interactome screening identifies proliferating cell nuclear antigen (PCNA) as an SQLE-interacting protein and overexpression of PCNA partially rescues the impaired viability, migration, and invasion of BC cells caused by SQLE knockdown. In addition, we performed xenograft assays and confirmed that SQLE deficiency inhibits BC growth in vivo. In conclusion, these data suggest that SQLE promotes BC development and SQLE inhibition may be therapeutically useful in BC treatment.
Collapse
Affiliation(s)
- Changyan Zhu
- Department of Urology, Fuzong clinical medical college of Fujian Medical University, Fuzhou 350025, China
| | - Xiao Fang
- Department of Urology, Fuzong clinical medical college of Fujian Medical University, Fuzhou 350025, China; Department of Urology, MengChao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
| | - Xiangshen Liu
- Department of Urology, Fuzong clinical medical college of Fujian Medical University, Fuzhou 350025, China
| | - Chengxi Jiang
- Department of Urology, Fuzong clinical medical college of Fujian Medical University, Fuzhou 350025, China
| | - Wenjun Ren
- Department of Urology, Fuzong clinical medical college of Fujian Medical University, Fuzhou 350025, China
| | - Wenmao Huang
- Department of Urology, Fuzong clinical medical college of Fujian Medical University, Fuzhou 350025, China
| | - Yanyan Jiang
- Department of Ultrasonography, Fuzong clinical medical college of Fujian Medical University, Fuzhou 350025, China.
| | - Dong Wang
- Department of Urology, Fuzong clinical medical college of Fujian Medical University, Fuzhou 350025, China.
| |
Collapse
|
5
|
Zhang H, Xu Y, Han H, Ye X, Cheng L, Shen Y, Wan X. Comprehensive Analysis Identifies Hyaluronan Mediated Motility Receptor and Cell Division Cycle 25C as Potential Prognostic Biomarkers in Head and Neck Squamous Cell Carcinoma. Cancer Control 2024; 31:10732748241287904. [PMID: 39323031 PMCID: PMC11440566 DOI: 10.1177/10732748241287904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
INTRODUCTION Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, but its pathogenic mechanisms remain unclear. This study aimed to identify the potential biomarkers underlying the diagnosis and treatment of HNSCC. METHODS Weighted gene co-expression network analysis (WGCNA) followed by pathway enrichment analysis, analysis of infiltrating immune cells, survival analysis, and methylation analysis were applied to identify the potential hub genes underlying the prognosis of HNSCC. The expression of hub genes was validated by immunofluorescence staining. RESULTS A total of 10,274 differentially expressed genes (DEGs) were identified. Through WGCNA, the yellow module (R2 = 0.33, P = 2e-14) was confirmed to be the most significantly associated with the histological grade of HNSCC, and the "Cell Cycle" proved to be the most enriched signaling pathway. Based on the results of survival analysis and immune cell infiltration, 10 hub genes (HMMR, CENPK, AURKA, CDC25C, FEN1, CKS1B, MAJIN, PCLAF, SPC25, and STAG3) were identified. Eight of these (excluding MAJIN and STAG3) were confirmed by performing survival analysis using another dataset (GSE41613). Further, we identified 4 methylation loci in 3 hub genes (cg15122828 and cg20554926 in HMMR, cg12519992 in CDC25C, and cg2655739 in KIAA0101/PCLAF) as being significantly related to survival. Finally, we demonstrated the high mRNA and protein expression of HMMR and CDC25C in HNSCC patients. CONCLUSION Two real hub genes (HMMR and CDC25C) and 3 methylation loci were identified that could potentially serve as prognostic and therapeutic targets for HNSCC, which is significant for studying the pathological mechanisms underlying HNSCC and for developing novel therapies for this disease.
Collapse
Affiliation(s)
- Hongrui Zhang
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Yi Xu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haijun Han
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xiongwei Ye
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Lu Cheng
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Yueshuang Shen
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Xiaochen Wan
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
6
|
Li Y, Zeng ZW, Chen D, Gu ZC, Yan WL, Yue LY, Zhu RG, Zhao YL, Chen L, Zhao QJ, He B. Facilitated Drug Repurposing with Artemisinin-Derived PROTACs: Unveiling PCLAF as a Therapeutic Target. J Med Chem 2023; 66:11335-11350. [PMID: 37552639 DOI: 10.1021/acs.jmedchem.3c00824] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Artemisinin, a prominent anti-malaria drug, is being investigated for its potential as a repurposed cancer treatment. However, its effectiveness in tumor cell lines remains limited, and its mechanism of action is unclear. To make more progress, the PROteolysis-TArgeting chimera (PROTAC) technique has been applied to design and synthesize novel artemisinin derivatives in this study. Among them, AD4, the most potent compound, exhibited an IC50 value of 50.6 nM in RS4;11 cells, over 12-fold better than that of its parent compound, SM1044. This was supported by prolonged survival of RS4;11-transplanted NOD/SCID mice. Meanwhile, AD4 effectively degraded PCLAF in RS4;11 cells and thus activated the p21/Rb axis to exert antitumor activity by directly targeting PCLAF. The discovery of AD4 highlights the great potential of using PROTACs to improve the efficacy of natural products, identify therapeutic targets, and facilitate drug repurposing. This opens a promising avenue for transforming other natural products into effective therapies.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Functions and Applications of Medicinal, Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| | - Zi Wei Zeng
- State Key Laboratory of Functions and Applications of Medicinal, Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| | - Di Chen
- State Key Laboratory of Functions and Applications of Medicinal, Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| | - Zhi Cheng Gu
- State Key Laboratory of Functions and Applications of Medicinal, Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| | - Wan Li Yan
- State Key Laboratory of Functions and Applications of Medicinal, Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| | - Ling Yun Yue
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Ren Guang Zhu
- State Key Laboratory of Functions and Applications of Medicinal, Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| | - Yong Long Zhao
- State Key Laboratory of Functions and Applications of Medicinal, Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal, Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| | - Qing Jie Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal, Plants Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
7
|
Miyashita R, Nishiyama A, Qin W, Chiba Y, Kori S, Kato N, Konishi C, Kumamoto S, Kozuka-Hata H, Oyama M, Kawasoe Y, Tsurimoto T, Takahashi TS, Leonhardt H, Arita K, Nakanishi M. The termination of UHRF1-dependent PAF15 ubiquitin signaling is regulated by USP7 and ATAD5. eLife 2023; 12:79013. [PMID: 36734974 PMCID: PMC9943068 DOI: 10.7554/elife.79013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 02/02/2023] [Indexed: 02/04/2023] Open
Abstract
UHRF1-dependent ubiquitin signaling plays an integral role in the regulation of maintenance DNA methylation. UHRF1 catalyzes transient dual mono-ubiquitylation of PAF15 (PAF15Ub2), which regulates the localization and activation of DNMT1 at DNA methylation sites during DNA replication. Although the initiation of UHRF1-mediated PAF15 ubiquitin signaling has been relatively well characterized, the mechanisms underlying its termination and how they are coordinated with the completion of maintenance DNA methylation have not yet been clarified. This study shows that deubiquitylation by USP7 and unloading by ATAD5 (ELG1 in yeast) are pivotal processes for the removal of PAF15 from chromatin. On replicating chromatin, USP7 specifically interacts with PAF15Ub2 in a complex with DNMT1. USP7 depletion or inhibition of the interaction between USP7 and PAF15 results in abnormal accumulation of PAF15Ub2 on chromatin. Furthermore, we also find that the non-ubiquitylated form of PAF15 (PAF15Ub0) is removed from chromatin in an ATAD5-dependent manner. PAF15Ub2 was retained at high levels on chromatin when the catalytic activity of DNMT1 was inhibited, suggesting that the completion of maintenance DNA methylation is essential for the termination of UHRF1-mediated ubiquitin signaling. This finding provides a molecular understanding of how the maintenance DNA methylation machinery is disassembled at the end of the S phase.
Collapse
Affiliation(s)
- Ryota Miyashita
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Weihua Qin
- Faculty of Biology, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Satomi Kori
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City UniversityYokohamaJapan
| | - Norie Kato
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City UniversityYokohamaJapan
| | - Chieko Konishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Soichiro Kumamoto
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Yoshitaka Kawasoe
- Laboratory of Chromosome Biology, Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | - Toshiki Tsurimoto
- Laboratory of Chromosome Biology, Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | - Tatsuro S Takahashi
- Laboratory of Chromosome Biology, Department of Biology, Faculty of Science, Kyushu UniversityFukuokaJapan
| | | | - Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City UniversityYokohamaJapan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
8
|
PCLAF promotes neuroblastoma G1/S cell cycle progression via the E2F1/PTTG1 axis. Cell Death Dis 2022; 13:178. [PMID: 35210406 PMCID: PMC8873510 DOI: 10.1038/s41419-022-04635-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/20/2022]
Abstract
PCLAF (PCNA clamp-associated factor), also known as PAF15/ KIAA0101, is overexpressed in most human cancers and is a predominant regulator of tumor progression. However, its biological function in neuroblastoma remains unclear. PCLAF is extremely overexpressed in neuroblastoma and is associated with poor prognosis. Through the analysis of various data sets, we found that the high expression of PCLAF is positively correlated with increased stage and high risk of neuroblastoma. Most importantly, knocking down PCLAF could restrict the proliferation of neuroblastoma cells in vitro and in vitro. By analyzing RNA-seq data, we found that the enrichment of cell cycle-related pathway genes was most significant among the differentially expressed downregulated genes after reducing the expression of PCLAF. In addition, PCLAF accelerated the G1/S transition of the neuroblastoma cell cycle by activating the E2F1/PTTG1 signaling pathway. In this study, we reveal the mechanism by which PCLAF facilitates cell cycle progression and recommend that the PCLAF/E2F1/PTTG1 axis is a therapeutic target in neuroblastoma.
Collapse
|
9
|
Liu J, He Y, Li C, Zhou R, Yuan Q, Hou J, Wu G. Increased KIAA0101 gene expression associated with poor prognosis in breast cancer. Transl Cancer Res 2022; 10:4009-4019. [PMID: 35116699 PMCID: PMC8797655 DOI: 10.21037/tcr-20-3064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/14/2021] [Indexed: 12/29/2022]
Abstract
Background Breast cancer (BC) has long been a major death threat facing women worldwide. With the development of comprehensive treatment methods, the prognosis of BC was improved but still unsatisfactory. This study was aimed to identify the key genes in BC tumorigenesis and investigate potential prognostic predictors. Methods Differential expression genes were analyzed in TCGA BRCA dataset using Genevestigator software. The expression profile of target gene was explored, and the correlations between selected genes with important clinical parameters were evaluated as well. The prognostic values of target genes were also carried out through Kaplan-Meier plotter OncoLnc and BC gene-expression miner. Results KIAA0101 gene was selected for further analysis from the differential expression genes identified. At both mRNA and protein levels, the expression of KIAA0101 in BC was higher than that in normal tissues. Further analysis indicated that overexpression of KIAA0101 was significantly correlated with worse clinical outcome parameters. KIAA0101 was highly expressed in older patients, in the luminal group, and in patients with advanced stages. Moreover, BC patients with elevated KIAA0101 expression had worse overall survival (OS), relapse-free survival (RFS), distant metastasis-free survival (DMFS) and disease-free survival (DFS). Conclusions Taken together, KIAA0101 could be considered as a diagnostic biomarker or predictor for BC prognosis.
Collapse
Affiliation(s)
- Jiuyang Liu
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yukun He
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengxin Li
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rui Zhou
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qianqian Yuan
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinxuan Hou
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gaosong Wu
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Wang K, Li J, Zhou B. KIAA0101 knockdown inhibits glioma progression and glycolysis by inactivating the PI3K/AKT/mTOR pathway. Metab Brain Dis 2022; 37:489-499. [PMID: 34792707 DOI: 10.1007/s11011-021-00863-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022]
Abstract
KIAA0101, a proliferating cell nuclear antigen (PCNA)-associated factor, is reported to be overexpressed and identified as an oncogene in several human malignancies. The purpose of this study is to determine the function and possible mechanism of KIAA0101 in glioma progression. KIAA0101 expression in glioma patients was analyzed by GSE50161 and GEPIA datasets. Kaplan-Meier survival analysis was used to evaluate the survival distributions. KIAA0101 expression in glioma cells were detected by qRT-PCR and western blot analyses. The function of KIAA0101 was investigated using MTT, flow cytometry, caspase-3 activity, and Transwell assays. Additionally, glycolytic flux was determined by measuring extracellular acidification rate (ECAR), glucose consumption, lactate production, and adenosine triphosphate (ATP) level. The changes of phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway were detected by western blot analysis. Results showed that KIAA0101 was upregulated in glioma tissues and cells. High KIAA0101 expression predicted a poor prognosis in glioma patients. KIAA0101 depletion impeded cell proliferation, migration, and invasion and triggered apoptosis in glioma cells. KIAA0101 silencing reduced the ECAR, glucose consumption, lactate production, and ATP level in glioma cells, suggesting that KIAA0101 knockdown inhibited glycolysis in glioma cells. Mechanistically, KIAA0101 knockdown inhibited the PI3K/AKT/mTOR pathway. In conclusion, KIAA0101 silencing inhibited glioma progression and glycolysis by inactivating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, 223002, China
| | - Jinxiao Li
- Department of Neurosurgery, Xinyi People's Hospital, Xuzhou, 221400, China
| | - Botao Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, 32 Meijian Road, Xuzhou, 221006, China.
| |
Collapse
|
11
|
Wang W, Yang C, Deng H. Overexpression of 15-Hydroxyprostaglandin Dehydrogenase Inhibits A549 Lung Adenocarcinoma Cell Growth via Inducing Cell Cycle Arrest and Inhibiting Epithelial-Mesenchymal Transition. Cancer Manag Res 2021; 13:8887-8900. [PMID: 34876851 PMCID: PMC8643138 DOI: 10.2147/cmar.s331222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose Lung cancer is one of the most commonly diagnosed cancer as well as the leading cause of cancer-related mortality worldwide, among which lung adenocarcinoma (LUAD) is the most frequent form of lung cancer. Previous studies have shown that 15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes the oxidation of prostaglandins to reduce their biological activities and behaves as a tumor suppressor in various cancers. Thus, we aimed to systematically examine the effects of 15-PGDH overexpression on cellular processes in lung adenocarcinoma cells. Methods The stable 15-PGDH-overexpressing A549 cell line was constructed using lentivirus particles. CCK-8 assay was used to determine the cell proliferation rate and sensitivity to cisplatin. Tandem mass tag (TMT)-based quantitative proteomic analysis was used to identify differentially expressed proteins between control and 15-PGDH-overexpression cells. The cell cycle was determined by a flow cytometer. The expression levels of mesenchymal and epithelial markers were measured using Western blotting. Wound healing and transwell assays were used to detect the cell migration and cell invasion ability, respectively. Results Analysis of datasets in The Cancer Genome Atlas revealed that the PGDH gene expression level in the lung adenocarcinoma tissues was significantly lower than that in the pericarcinous tissues. 15-PGDH overexpression in A549 cells reduced cell proliferation rate. Quantitative proteomics revealed that 15-PGDH overexpression inhibited PI3K/AKT/mTOR signaling pathway, which is a signaling pathway driving tumor cell growth and epithelial-mesenchymal transition (EMT) process. In addition, both cell cycle and DNA repair-related proteins were down-regulated in 15-PGDH overexpressed cells. 15-PGDH overexpression induced G1/S cell cycle arrest and increased susceptibility to DNA damaging reagent cisplatin. Importantly, overexpression of 15-PGDH inhibited EMT process with the downregulation of β-catenin and Snail-1 as well as upregulation of E-cadherin and ZO-1. Conclusion 15-PGDH is a tumor suppressor in lung cancer and may serve as a potential therapeutic target to prevent lung adenocarcinoma.
Collapse
Affiliation(s)
- Weixuan Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Changmei Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
12
|
Liu LJ, Liao JM, Zhu F. Proliferating cell nuclear antigen clamp associated factor, a potential proto-oncogene with increased expression in malignant gastrointestinal tumors. World J Gastrointest Oncol 2021; 13:1425-1439. [PMID: 34721775 PMCID: PMC8529917 DOI: 10.4251/wjgo.v13.i10.1425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers, including malignancies in the gastrointestinal tract and accessory organs of digestion, represent the leading cause of death worldwide due to the poor prognosis of most GI cancers. An investigation into the potential molecular targets of prediction, diagnosis, prognosis, and therapy in GI cancers is urgently required. Proliferating cell nuclear antigen (PCNA) clamp associated factor (PCLAF), which plays an essential role in cell proliferation, apoptosis, and cell cycle regulation by binding to PCNA, is a potential molecular target of GI cancers as it contributes to a series of malignant properties, including tumorigenesis, epithelial-mesenchymal transition, migration, and invasion. Furthermore, PCLAF is an underlying plasma prediction target in colorectal cancer and liver cancer. In addition to GI cancers, PCLAF is also involved in other types of cancers and autoimmune diseases. Several pivotal pathways, including the Rb/E2F pathway, NF-κB pathway, and p53-p21 cascade, are implicated in PCLAF-mediated diseases. PCLAF also contributes to some diseases through dysregulation of the p53 pathway, WNT signal pathway, MEK/ERK pathway, and PI3K/AKT/mTOR signal cascade. This review mainly describes in detail the role of PCLAF in physiological status and GI cancers. The signaling pathways involved in PCLAF are also summarized. Suppression of the interaction of PCLAF/PCNA or the expression of PCLAF might be potential biological therapeutic strategies for GI cancers.
Collapse
Affiliation(s)
- Li-Juan Liu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jian-Ming Liao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
13
|
Abstract
Perfectly orchestrated periodic gene expression during cell cycle progression is essential for maintaining genome integrity and ensuring that cell proliferation can be stopped by environmental signals. Genetic and proteomic studies during the past two decades revealed remarkable evolutionary conservation of the key mechanisms that control cell cycle-regulated gene expression, including multisubunit DNA-binding DREAM complexes. DREAM complexes containing a retinoblastoma family member, an E2F transcription factor and its dimerization partner, and five proteins related to products of Caenorhabditis elegans multivulva (Muv) class B genes lin-9, lin-37, lin-52, lin-53, and lin-54 (comprising the MuvB core) have been described in diverse organisms, from worms to humans. This review summarizes the current knowledge of the structure, function, and regulation of DREAM complexes in different organisms, as well as the role of DREAM in human disease. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hayley Walston
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA;
| | - Audra N Iness
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Larisa Litovchick
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA; .,Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA.,Massey Cancer Center, Richmond, Virginia 23298, USA
| |
Collapse
|
14
|
Kumar Bhardwaj V, Purohit R. Taming the ringmaster of the genome (PCNA): Phytomolecules for anticancer therapy against a potential non-oncogenic target. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Tantiwetrueangdet A, Panvichian R, Sornmayura P, Leelaudomlipi S, Macoska JA. PCNA-associated factor (KIAA0101/PCLAF) overexpression and gene copy number alterations in hepatocellular carcinoma tissues. BMC Cancer 2021; 21:295. [PMID: 33743635 PMCID: PMC7981960 DOI: 10.1186/s12885-021-07994-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/28/2021] [Indexed: 02/06/2023] Open
Abstract
Background PCNA-associated factor, the protein encoded by the KIAA0101/PCLAF gene, is a cell-cycle regulated oncoprotein that regulates DNA synthesis, maintenance of DNA methylation, and DNA-damage bypass, through the interaction with the human sliding clamp PCNA. KIAA0101/PCLAF is overexpressed in various cancers, including hepatocellular carcinoma (HCC). However, it remains unknown whether KIAA0101/PCLAF overexpression is coupled to gene amplification in HCC. Methods KIAA0101/PCLAF mRNA expression levels were assessed by quantitative real-time PCR (qRT-PCR) in 40 pairs of snap-frozen HCC and matched-non-cancerous tissues. KIAA0101/PCLAF gene copy numbers were evaluated by droplet digital PCR (ddPCR) in 36 pairs of the tissues, and protein expression was detected by immunohistochemistry (IHC) in 81 pairs of formalin-fixed paraffin-embedded (FFPE) tissues. The KIAA0101/PCLAF gene copy number alteration and RNA expression was compared by Spearman correlation. The relationships between KIAA0101 protein expression and other clinicopathological parameters, including Ki-67, p53, and HBsAg protein expression in HCC tissues, were evaluated using Chi-square test. Results Our results demonstrated that KIAA0101/PCLAF mRNA levels were significantly higher in HCC than in the matched-non-cancerous tissues (p < 0.0001). The high KIAA0101/PCLAF mRNA levels in HCC were associated with poor patient survival. The KIAA0101/PCLAF gene was not amplified in HCC, and KIAA0101/PCLAF gene copy numbers were not associated with KIAA0101/PCLAF transcript levels. KIAA0101 protein was overexpressed in the majority of HCC tissues (77.8%) but was not detectable in matched-non-cancerous tissues. Significant correlations between the expression of KIAA0101 protein in HCC tissues and p53 tumor suppressor protein (p = 0.002) and Ki-67 proliferation marker protein (p = 0.017) were found. However, KIAA0101 protein levels in HCC tissues were not correlated with patient age, tumor size, serum AFP level, or the HBsAg expression. Conclusions KIAA0101/PCLAF mRNA and protein overexpression is frequently observed in HCC but without concurrent KIAA0101/PCLAF gene amplification. Significant correlations between the expression of KIAA0101 protein and p53 and Ki-67 proteins were observed in this study. Thus, detection of KIAA0101/PCLAF mRNA/protein might be used, along with the detection of p53 and Ki-67 proteins, as potential biomarkers to select candidate patients for further studies of novel HCC treatment related to these targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07994-3.
Collapse
Affiliation(s)
| | - Ravat Panvichian
- Department of Internal Medicine, Division of Medical Oncology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Rama 6 Road, Rajthevi, Bangkok, 10400, Thailand.
| | - Pattana Sornmayura
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Surasak Leelaudomlipi
- Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jill A Macoska
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
16
|
Kim MJ, Cervantes C, Jung YS, Zhang X, Zhang J, Lee SH, Jun S, Litovchick L, Wang W, Chen J, Fang B, Park JI. PAF remodels the DREAM complex to bypass cell quiescence and promote lung tumorigenesis. Mol Cell 2021; 81:1698-1714.e6. [PMID: 33626321 PMCID: PMC8052288 DOI: 10.1016/j.molcel.2021.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/15/2020] [Accepted: 01/29/2021] [Indexed: 01/01/2023]
Abstract
The DREAM complex orchestrates cell quiescence and the cell cycle. However, how the DREAM complex is deregulated in cancer remains elusive. Here, we report that PAF (PCLAF/KIAA0101) drives cell quiescence exit to promote lung tumorigenesis by remodeling the DREAM complex. PAF is highly expressed in lung adenocarcinoma (LUAD) and is associated with poor prognosis. Importantly, Paf knockout markedly suppressed LUAD development in mouse models. PAF depletion induced LUAD cell quiescence and growth arrest. PAF is required for the global expression of cell-cycle genes controlled by the repressive DREAM complex. Mechanistically, PAF inhibits DREAM complex formation by binding to RBBP4, a core DREAM subunit, leading to transactivation of DREAM target genes. Furthermore, pharmacological mimicking of PAF-depleted transcriptomes inhibited LUAD tumor growth. Our results unveil how the PAF-remodeled DREAM complex bypasses cell quiescence to promote lung tumorigenesis and suggest that the PAF-DREAM axis may be a therapeutic vulnerability in lung cancer.
Collapse
Affiliation(s)
- Moon Jong Kim
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher Cervantes
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Youn-Sang Jung
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Xiaoshan Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sung Ho Lee
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Larisa Litovchick
- Department of Internal Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Liu J, Gao L, Liao J, Yang J, Yuan F, Chen Q. Kiaa0101 serves as a prognostic marker and promotes invasion by regulating p38/snail1 pathway in glioma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:260. [PMID: 33708887 PMCID: PMC7940917 DOI: 10.21037/atm-20-3219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Kiaa0101, a regulator of cell proliferation, is overexpressed in many malignant tumors. However, its role in promoting invasion of glioma is poorly understood. Here, we investigated the effects of Kiaa0101 on glioma invasion and elucidated the underlying mechanisms of action. Methods We analyzed Kiaa0101 expression using datasets from four public databases, namely TCGA, CGGA, Gravendeel and Rembrandt as well as experimentally on 123 glioma samples via western blot (WB), RT-PCR and immunohistochemistry (IHC). We further quantified migration and invasion using wound healing and transwell assays. WB, IHC and immunofluorescence (IF) were used to detect expression of invasion related markers. Moreover, we detected tumor invasion of glioma cells in vivo in 5-week-old Balb/c nude mice. Results Kiaa0101 was upregulated in glioma, relative to non-tumor brain tissues, with the expression increasing with increase in glioma grade. Kiaa0101 mRNA expression was especially enriched in isocitrate dehydrogenase (IDH)1 wild-type glioma. Kaplan-Meier analysis, based on the aforementioned datasets, revealed that high Kiaa0101 levels were significantly associated with worse overall survival. Besides, shRNA-mediated Kiaa0101 knockdown inhibited migration and invasion of glioma cells by reducing snail1 expression both in vitro and in vivo, whereas its upregulation enhanced malignant behaviors of these cells. Furthermore, Kiaa0101 regulated snail1 expression by activating the p38MAPK signaling pathway. Conclusions Our findings strongly indicate that Kiaa0101 is a prognostic biomarker for malignant tumors, and its inhibition may be an effective strategy for treating glioma.
Collapse
Affiliation(s)
- Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianmin Liao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji'an Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan'en Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Fei G, Cao M, Ge C, Xie Y. Different anaesthesia methods affect the development of hepatoblastoma after platelet activation. Int J Exp Pathol 2021; 102:51-56. [PMID: 33410572 DOI: 10.1111/iep.12378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/18/2020] [Accepted: 08/30/2020] [Indexed: 01/05/2023] Open
Abstract
This study aims to compare the influence of different anaesthesia methods on the mechanisms involved in the development of hepatoblastoma (HB). HB rabbit models were constructed and divided into three groups: disoprofol, pentobarbital sodium and HB groups. After anaesthesia, rabbit blood was collected from the tail vein. Haematological analysis (platelets) and an ELISA was used to measure the thrombopoietin (TPO) and 5-hydroxytryptamine (5-HT). Flow cytometry was used to determine expression of P-selectin and PAF. The expression of 5-HTR2B, PCNA, vWF, P70s6k, 4E-BP1, mTOR and FRAP was determined in the tumour itself or in vascular tissues obtained from the rabbits. The platelet content in the disoprofol group. The content or expression of TPO, 5-HT, P-selectin, PAF, 5-HTR2B, PCNA, vWF, P70s6k, 4E-BP1, mTOR and FRAP was significantly higher in the disoprofol group compared to pentobarbital sodium and HB groups. Expression of these molecules was much higher in the pentobarbital sodium group compared with the HB group. These findings suggest that disoprofol anaesthesia can promote HB development via the mTOR/p70S6K1 and FRAP signalling pathway.
Collapse
Affiliation(s)
- Guoxiong Fei
- Department of Anaesthesiology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Meili Cao
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Shanghai, China
| | - Chunlin Ge
- Department of Anaesthesiology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Yan Xie
- Department of Anaesthesiology, Shanghai Xuhui Central Hospital, Shanghai, China
| |
Collapse
|
19
|
Chen Y, Jin Y, Ying H, Zhang P, Chen M, Hu X. Synergistic effect of PAF inhibition and X-ray irradiation in non-small cell lung cancer cells. Strahlenther Onkol 2020; 197:343-352. [PMID: 33231712 DOI: 10.1007/s00066-020-01708-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/23/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Proliferating cell nuclear antigen-associated factor (PAF) is involved in cancer cell growth and associated with cell death induced by ultraviolet (UV) radiation. However, the contribution of PAF to radiotherapy sensitivity in non-small cell lung cancer (NSCLC) is unknown. The aim of this study was to investigate the relationship between PAF expression and radiotherapy response in NSCLC. METHODS Associations between PAF expression and patient survival outcomes were evaluated using publicly available online gene expression datasets. RNA interference was performed to knockdown PAF expression in the NSCLC cells. The effects of PAF knockdown on cell proliferation, migration, apoptosis, DNA damage, and activation of MEK/ERK and Wnt/β-catenin signaling pathways following X‑ray irradiation were evaluated in vitro. RESULTS PAF was found to be overexpressed in lung cancer tissues compared with normal samples, and elevated PAF expression was significantly correlated with inferior patient survival. In vitro, knockdown of PAF inhibited cell proliferation, cell apoptosis, and migration induced by X‑ray irradiation. Moreover, X‑ray-induced intracellular DNA strand damage was more obvious following PAF knockdown. Additionally, PAF knockdown inhibited activation of the MEK/ERK and Wnt/β-catenin signaling pathways in X‑ray-irradiated A549 cells. CONCLUSION These data demonstrate that reduced expression of PAF enhances radiosensitivity in NSCLC cells. Mechanistically, inhibition of the MEK/ERK and Wnt/β-catenin signaling pathways caused by PAF interference may lead to impaired cell function and enhance sensitivity to X‑rays. Targeting PAF may therefore serve as a potential therapeutic strategy to increase the efficiency of radiotherapy in NSCLC patients, ultimately improving patient survival.
Collapse
Affiliation(s)
- Yamei Chen
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Ying Jin
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.,Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Hangjie Ying
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Peng Zhang
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Ming Chen
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China. .,Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
| | - Xiao Hu
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China. .,Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Sun T, An Q, Yan R, Li K, Zhu K, Dang C, Yuan D. MicroRNA‑216a‑5p suppresses esophageal squamous cell carcinoma progression by targeting KIAA0101. Oncol Rep 2020; 44:1971-1984. [PMID: 32901882 PMCID: PMC7551273 DOI: 10.3892/or.2020.7751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
The KIAA0101 protein (also referred to as NS5ATP9 or Paf15) is overexpressed in esophageal squamous cell carcinoma (ESCC) and is associated with disease progression and poor patient survival, but how KIAA0101 expression is regulated remains unknown. The relationship between tumor miR-216a-5p expression and prognosis in patients with ESCC was revealed by survival analyses. Quantitative reverse-transcriptase PCR and western blot analysis were used to evaluate miR-216a-5p and KIAA0101 expression in human ESCC tissues and cell lines. The targeting of KIAA0101 by miR-216a-5p was verified by dual-luciferase reporter assays. The EC9706 and TE1 cell lines were transfected with miR-216a-5p mimics and inhibitor, or KIAA0101-specific shRNA and KIAA0101-expressing plasmids, in order to evaluate the effect of manipulating miR-216a-5p and KIAA0101 expression on ESCC cell proliferation, cell cycle progression, migration, and invasion. miR-216a-5p was lowly expressed and inversely correlated with KIAA0101 protein expression in ESCC tissues and cell lines. Lower miR-216a-5p expression was associated with worse prognosis in patients with ESCC. miR-216a-5p negatively regulated KIAA0101 expression by directly targeting the 3′-untranslated region of the KIAA0101 mRNA. Overexpression of miR-216a-5p suppressed the proliferation, migration, and invasion of the ESCC cell lines, whereas inhibition of miR-216a-5p had the opposite effects. Meanwhile, KIAA0101 promoted ESCC migration and invasion, and its overexpression abolished the antitumor effects of miR-216a-5p mimics. As a tumor suppressor, miR-216a-5p targets KIAA0101 to inhibit the proliferation, migration, and invasion of ESCC. Therefore, the miR-216a-5p/KIAA0101 axis may be a potential target for ESCC treatment.
Collapse
Affiliation(s)
- Tuanhe Sun
- Department of Surgical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| | - Qi An
- Department of Rheumatism and Immunology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| | - Rong Yan
- Department of Surgical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| | - Kang Li
- Department of Surgical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| | - Kun Zhu
- Department of Surgical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| | - Chengxue Dang
- Department of Surgical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| | - Dawei Yuan
- Department of Surgical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| |
Collapse
|
21
|
Prognostic value and underlying mechanism of KIAA0101 in hepatocellular carcinoma: database mining and co-expression analysis. Aging (Albany NY) 2020; 12:16420-16436. [PMID: 32855364 PMCID: PMC7485719 DOI: 10.18632/aging.103704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Although KIAA0101 is involved in many diseases, its expression and prognostic value in HCC remain undefined. According to CCLE, KIAA0101 is highly expressed in HCC, with a weak positive correlation between copy number and gene expression. Four studies involving 760 samples in ONCOMINE report elevated KIAA0101 expression in HCC (p=3.11E-22). The KM plotter revealed high KIAA0101 expression to be associated with worse overall survival in HCC (HR=2.09, p=4.1e-05); this prognostic power was stronger for male than female, early-stage than advanced-stage, and Asian than Caucasian patients. RNA sequencing data for 8 pairs of HCC and adjacent tissue samples validated the significantly high KIAA0101 level (p=0.00497). Moreover, functional annotations of 31 KIAA0101-coexpressed genes show enrichment of terms associated with mitosis, cytoskeleton construction, and chromosome segregation. Among 9 genes having STRING-validated protein-protein interactions with KIAA0101, two are involved in virus-related pathways. Alternative splicing analysis indicated higher expression of variant 1 and variant 2 in HCC and no significant differences in exon usage of KIAA0101 between cancer and normal tissues. These findings support that KIAA0101 is a potential prognostic biomarker for HCC and highlight the association between virus infection and the mechanism underlying the process by which KIAA0101 contributes to poor prognosis of patients.
Collapse
|
22
|
Singh AR, Gu JJ, Zhang Q, Torka P, Sundaram S, Mavis C, Hernandez-Ilizaliturri FJ. Metformin sensitizes therapeutic agents and improves outcome in pre-clinical and clinical diffuse large B-cell lymphoma. Cancer Metab 2020; 8:10. [PMID: 32647571 PMCID: PMC7336499 DOI: 10.1186/s40170-020-00213-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The treatment of diffuse large B-cell lymphoma (DLBCL) is limited by the development of resistance to therapy, and there is a need to develop novel therapeutic strategies for relapsed and refractory aggressive lymphoma. Metformin is an oral agent for type 2 diabetes that has been shown to decrease cancer risk and lower mortality in other types of cancer. METHODS We performed a retrospective analysis of the RPCCC database looking at patients with DLBCL treated with front-line chemotherapy. We also performed pre-clinical studies looking at the effect of metformin on cell viability, cell number, Ki67, ATP production, apoptosis, ROS production, mitochondrial membrane potential, cell cycle, effect with chemotherapeutic agents, and rituximab. Finally, we studied mouse models to see the anti-tumor effect of metformin. RESULTS Among diabetic patients, metformin use was associated with improved progression-free survival (PFS) and overall survival (OS) compared to diabetic patients not on metformin. Our pre-clinical studies showed metformin is itself capable of anti-tumor effects and causes cell cycle arrest in the G1 phase. Metformin induces apoptosis, ROS production, and increased mitochondrial membrane permeability. Metformin exhibited additive/synergistic effects when combined with traditional chemotherapy or rituximab in vitro. In vivo, metformin in combination with rituximab showed improved survival compared with rituximab monotherapy. CONCLUSIONS Our retrospective analysis showed that metformin with front-line chemotherapy in diabetic patients resulted in improved PFS and OS. Our pre-clinical studies demonstrate metformin has potential to re-sensitize resistant lymphoma to the chemo-immunotherapy and allow us to develop a hypothesis as to its activity in DLBCL.
Collapse
Affiliation(s)
| | - Juan J. Gu
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, USA
- Department Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Qunling Zhang
- Department of Medical Oncology Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| | - Pallawi Torka
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Suchitra Sundaram
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Cory Mavis
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, USA
- Department Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Francisco J. Hernandez-Ilizaliturri
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, USA
- Department Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| |
Collapse
|
23
|
González-Magaña A, Blanco FJ. Human PCNA Structure, Function and Interactions. Biomolecules 2020; 10:biom10040570. [PMID: 32276417 PMCID: PMC7225939 DOI: 10.3390/biom10040570] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is an essential factor in DNA replication and repair. It forms a homotrimeric ring that embraces the DNA and slides along it, anchoring DNA polymerases and other DNA editing enzymes. It also interacts with regulatory proteins through a sequence motif known as PCNA Interacting Protein box (PIP-box). We here review the latest contributions to knowledge regarding the structure-function relationships in human PCNA, particularly the mechanism of sliding, and of the molecular recognition of canonical and non-canonical PIP motifs. The unique binding mode of the oncogene p15 is described in detail, and the implications of the recently discovered structure of PCNA bound to polymerase δ are discussed. The study of the post-translational modifications of PCNA and its partners may yield therapeutic opportunities in cancer treatment, in addition to illuminating the way PCNA coordinates the dynamic exchange of its many partners in DNA replication and repair.
Collapse
Affiliation(s)
- Amaia González-Magaña
- CIC bioGUNE, Bizkaia Science and Technology Park, bld 800, 48160 Derio, Bizkaia, Spain;
| | - Francisco J. Blanco
- CIC bioGUNE, Bizkaia Science and Technology Park, bld 800, 48160 Derio, Bizkaia, Spain;
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 6 solairua, 48013 Bilbao, Bizkaia, Spain
- Correspondence:
| |
Collapse
|
24
|
González-Magaña A, de Opakua AI, Merino N, Monteiro H, Diercks T, Murciano-Calles J, Luque I, Bernadó P, Cordeiro TN, Biasio AD, Blanco FJ. Double Monoubiquitination Modifies the Molecular Recognition Properties of p15 PAF Promoting Binding to the Reader Module of Dnmt1. ACS Chem Biol 2019; 14:2315-2326. [PMID: 31479228 DOI: 10.1021/acschembio.9b00679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The proliferating cell nuclear antigen (PCNA)-associated factor p15PAF is a nuclear protein that acts as a regulator of DNA repair during DNA replication. The p15PAF gene is overexpressed in several types of human cancer, and its function is regulated by monoubiquitination of two lysines (K15 and K24) at the protein N-terminal region. We have previously shown that p15PAF is an intrinsically disordered protein which partially folds upon binding to PCNA and independently contacts DNA through its N-terminal tail. Here we present an NMR conformational characterization of p15PAF monoubiquitinated at both K15 and K24 via a disulfide bridge mimicking the isopeptide bond. We show that doubly monoubiquitinated p15PAF is monomeric, intrinsically disordered, and binds to PCNA as nonubiquitinated p15PAF does but interacts with DNA with reduced affinity. Our SAXS-derived conformational ensemble of doubly monoubiquitinated p15PAF shows that the ubiquitin moieties, separated by eight disordered residues, form transient dimers because of the high local effective ubiquitin concentration. This observation and the sequence similarity with histone H3 N-terminal tail suggest that doubly monoubiquitinated p15PAF is a binding target of DNA methyl transferase Dnmt1, as confirmed by calorimetry. Therefore, doubly monoubiquitinated p15PAF directly interacts with PCNA and recruits Dnmt1 for maintenance of DNA methylation during replication.
Collapse
Affiliation(s)
| | | | | | - Hugo Monteiro
- Instituto de Tecnologia Química e Biológica António Xabier, ITQB NOVA, 2780-157 Oeiras, Portugal
| | | | - Javier Murciano-Calles
- Department of Physical Chemistry and Institute of Biotechnology, Universidad de Granada, Granada 18071, Spain
| | - Irene Luque
- Department of Physical Chemistry and Institute of Biotechnology, Universidad de Granada, Granada 18071, Spain
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM, CNRS, and Université Montpellier, 34090 Montpellier, France
| | - Tiago N. Cordeiro
- Instituto de Tecnologia Química e Biológica António Xabier, ITQB NOVA, 2780-157 Oeiras, Portugal
| | - Alfredo De Biasio
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Leicester LE1 7RH, U.K
| | - Francisco J. Blanco
- CIC bioGUNE, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
25
|
Tehseen M, Raducanu VS, Rashid F, Shirbini A, Takahashi M, Hamdan SM. Proliferating cell nuclear antigen-agarose column: A tag-free and tag-dependent tool for protein purification affinity chromatography. J Chromatogr A 2019; 1602:341-349. [DOI: 10.1016/j.chroma.2019.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
|
26
|
Li L, Zhao J, Zhou L, Chen J, Ma Y, Yu Y, Cheng J. Tenofovir alafenamide fumarate attenuates bleomycin-induced pulmonary fibrosis by upregulating the NS5ATP9 and TGF-β1/Smad3 signaling pathway. Respir Res 2019; 20:163. [PMID: 31331325 PMCID: PMC6647111 DOI: 10.1186/s12931-019-1102-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Background Pulmonary fibrosis is a progressive and irreversible disease for which therapeutic options are currently limited. A recent in vivo study showed that tenofovir, a nucleotide analogue reverse transcriptase inhibitor, had direct antifibrotic effects on skin and liver fibrosis. Another study in vitro revealed that NS5ATP9 inhibited the activation of human hepatic stellate cells. Because of the similarity of fibrotic diseases, we hypothesized that tenofovir alafenamide fumarate (TAF), the prodrug of tenofovir, and NS5ATP9, is related to and plays a role in the suppression of pulmonary fibrosis. Methods We investigated the influence of NS5ATP9 on fibrosis in vitro. Human lung fibroblasts (HFL1) were transfected with short interfering RNAs or overexpression plasmids of NS5ATP9 before stimulation by human recombinant transforming growth factor-β1. The effect of TAF was evaluated in a bleomycin-induced fibrosis murine model. Male C57BL/6 mice were treated with bleomycin on day 0 by intratracheal injection and intragastrically administered TAF or vehicle. Left lung sections were fixed for histological analysis, while homogenates of the right lung sections and HFL1 cells were analyzed by western blotting and quantitative reverse transcription polymerase chain reaction. Results NS5ATP9 suppressed the activation of lung fibroblasts. Upregulation of collagen type 3 (α 1 chain) and α-smooth muscle actin was observed in HFL1 cells when NS5ATP9 was silenced, and vice-versa. TAF also showed anti-fibrotic effects in mice, as demonstrated by histological analysis of fibrosis and expression of extracellular matrix components in the lung sections. Additionally, TAF inhibited transforming growth factor-β1 and phosphorylated-Smad3 synthesis in HFL1 cells and the murine model, which was accompanied by upregulation of NS5ATP9. Conclusions Our results suggest that NS5ATP9 forms a negative feedback pathway in pulmonary fibrosis and TAF has anti-fibrotic properties as it upregulates the expression level of NS5ATP9. As TAF has been shown to be safe and well-tolerated in humans, TAF and NS5ATP9 may be useful for developing novel therapeutics for pulmonary fibrosis. Electronic supplementary material The online version of this article (10.1186/s12931-019-1102-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lingxia Li
- Department of Infectious Diseases, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China.,Peking University Ditan Teaching Hospital, Beijing 100015, China; Beijing; Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Jing Zhao
- Peking University Ditan Teaching Hospital, Beijing 100015, China; Beijing; Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Li Zhou
- Peking University Ditan Teaching Hospital, Beijing 100015, China; Beijing; Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China.,Department of Infectious Disease, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jie Chen
- Peking University Ditan Teaching Hospital, Beijing 100015, China; Beijing; Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China.,Department of Infectious Disease, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yuanyuan Ma
- Laboratory Animal Center, Peking University First Hospital, Beijing, 100034, China
| | - Yanyan Yu
- Department of Infectious Diseases, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| | - Jun Cheng
- Peking University Ditan Teaching Hospital, Beijing 100015, China; Beijing; Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China. .,Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, No.8 East Jingshun Street, Chaoyang District, Beijing, 100015, China.
| |
Collapse
|
27
|
De March M, Barrera-Vilarmau S, Crespan E, Mentegari E, Merino N, Gonzalez-Magaña A, Romano-Moreno M, Maga G, Crehuet R, Onesti S, Blanco FJ, De Biasio A. p15PAF binding to PCNA modulates the DNA sliding surface. Nucleic Acids Res 2019; 46:9816-9828. [PMID: 30102405 PMCID: PMC6182140 DOI: 10.1093/nar/gky723] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
p15PAF is an oncogenic intrinsically disordered protein that regulates DNA replication and lesion bypass by interacting with the human sliding clamp PCNA. In the absence of DNA, p15PAF traverses the PCNA ring via an extended PIP-box that contacts the sliding surface. Here, we probed the atomic-scale structure of p15PAF–PCNA–DNA ternary complexes. Crystallography and MD simulations show that, when p15PAF occupies two subunits of the PCNA homotrimer, DNA within the ring channel binds the unoccupied subunit. The structure of PCNA-bound p15PAF in the absence and presence of DNA is invariant, and solution NMR confirms that DNA does not displace p15PAF from the ring wall. Thus, p15PAF reduces the available sliding surfaces of PCNA, and may function as a belt that fastens the DNA to the clamp during synthesis by the replicative polymerase (pol δ). This constraint, however, may need to be released for efficient DNA lesion bypass by the translesion synthesis polymerase (pol η). Accordingly, our biochemical data show that p15PAF impairs primer synthesis by pol η–PCNA holoenzyme against both damaged and normal DNA templates. In light of our findings, we discuss the possible mechanistic roles of p15PAF in DNA replication and suppression of DNA lesion bypass.
Collapse
Affiliation(s)
- Matteo De March
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Trieste 34149, Italy
| | - Susana Barrera-Vilarmau
- Institute of Advanced Chemistry of Catalonia (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Emmanuele Crespan
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Elisa Mentegari
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Nekane Merino
- CIC bioGUNE, Parque Tecnológico de Bizkaia Edificio 800, 48160 Derio, Spain
| | | | | | - Giovanni Maga
- Institute of Molecular Genetics, IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Ramon Crehuet
- Institute of Advanced Chemistry of Catalonia (IQAC), CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Silvia Onesti
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Trieste 34149, Italy
| | - Francisco J Blanco
- CIC bioGUNE, Parque Tecnológico de Bizkaia Edificio 800, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Alfredo De Biasio
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A., Trieste 34149, Italy.,Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester LE1 7HB, UK
| |
Collapse
|
28
|
Ren J, Du Y, Li S, Ma S, Jiang Y, Wu C. Robust network-based regularization and variable selection for high-dimensional genomic data in cancer prognosis. Genet Epidemiol 2019; 43:276-291. [PMID: 30746793 PMCID: PMC6446588 DOI: 10.1002/gepi.22194] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022]
Abstract
In cancer genomic studies, an important objective is to identify prognostic markers associated with patients' survival. Network-based regularization has achieved success in variable selections for high-dimensional cancer genomic data, because of its ability to incorporate the correlations among genomic features. However, as survival time data usually follow skewed distributions, and are contaminated by outliers, network-constrained regularization that does not take the robustness into account leads to false identifications of network structure and biased estimation of patients' survival. In this study, we develop a novel robust network-based variable selection method under the accelerated failure time model. Extensive simulation studies show the advantage of the proposed method over the alternative methods. Two case studies of lung cancer datasets with high-dimensional gene expression measurements demonstrate that the proposed approach has identified markers with important implications.
Collapse
Affiliation(s)
- Jie Ren
- Department of Statistics, Kansas State University, Manhattan, KS
| | - Yinhao Du
- Department of Statistics, Kansas State University, Manhattan, KS
| | - Shaoyu Li
- Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC
| | - Shuangge Ma
- Department of Biostatistics, Yale University, New Haven, CT
| | - Yu Jiang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN
| | - Cen Wu
- Department of Statistics, Kansas State University, Manhattan, KS
| |
Collapse
|
29
|
Nagaprashantha LD, Singhal J, Chikara S, Gugiu G, Horne D, Awasthi S, Salgia R, Singhal SS. 2′-Hydroxyflavanone induced changes in the proteomic profile of breast cancer cells. J Proteomics 2019; 192:233-245. [DOI: 10.1016/j.jprot.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/03/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
|
30
|
Jin C, Liu Z, Li Y, Bu H, Wang Y, Xu Y, Qiu C, Yan S, Yuan C, Li R, Diao N, Zhang Z, Wang X, Liu L, Kong B. PCNA-associated factor P15PAF, targeted by FOXM1, predicts poor prognosis in high-grade serous ovarian cancer patients. Int J Cancer 2018; 143:2973-2984. [PMID: 30129654 DOI: 10.1002/ijc.31800] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/24/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Chengjuan Jin
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
- Department of Obstetrics and Gynecology; Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University; 650 XinSongjiang Road, Shanghai People's Republic of China
| | - Zhaojian Liu
- Department of Cell Biology; Shandong University School of Medicine; 44 Wenhua Xi Road, Jinan China
| | - Yingwei Li
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Hualei Bu
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Yu Wang
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Ying Xu
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Chunping Qiu
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Shi Yan
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Rongrong Li
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Nannan Diao
- Institute of Diagnostics, School of Medicine; Shandong University; 44 Wenhua Xi Road, Jinan China
| | - Zhiwei Zhang
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Xiangxiang Wang
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Lidong Liu
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Beihua Kong
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| |
Collapse
|
31
|
Kim MJ, Xia B, Suh HN, Lee SH, Jun S, Lien EM, Zhang J, Chen K, Park JI. PAF-Myc-Controlled Cell Stemness Is Required for Intestinal Regeneration and Tumorigenesis. Dev Cell 2018. [PMID: 29533773 DOI: 10.1016/j.devcel.2018.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The underlying mechanisms of how self-renewing cells are controlled in regenerating tissues and cancer remain ambiguous. PCNA-associated factor (PAF) modulates DNA repair via PCNA. Also, PAF hyperactivates Wnt/β-catenin signaling independently of PCNA interaction. We found that PAF is expressed in intestinal stem and progenitor cells (ISCs and IPCs) and markedly upregulated during intestinal regeneration and tumorigenesis. Whereas PAF is dispensable for intestinal homeostasis, upon radiation injury, genetic ablation of PAF impairs intestinal regeneration along with the severe loss of ISCs and Myc expression. Mechanistically, PAF conditionally occupies and transactivates the c-Myc promoter, which induces the expansion of ISCs/IPCs during intestinal regeneration. In mouse models, PAF knockout inhibits Apc inactivation-driven intestinal tumorigenesis with reduced tumor cell stemness and suppressed Wnt/β-catenin signaling activity, supported by transcriptome profiling. Collectively, our results unveil that the PAF-Myc signaling axis is indispensable for intestinal regeneration and tumorigenesis by positively regulating self-renewing cells.
Collapse
Affiliation(s)
- Moon Jong Kim
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bo Xia
- Center for Cardiovascular Regeneration, Houston Methodist Hospital Research Institute, Houston, TX, USA; Department of Cardiothoracic Surgery, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Han Na Suh
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sung Ho Lee
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Esther M Lien
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kaifu Chen
- Center for Cardiovascular Regeneration, Houston Methodist Hospital Research Institute, Houston, TX, USA; Department of Cardiothoracic Surgery, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and Health Science Center, Houston, TX 77030, USA; Program in Genetics and Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Yan R, Zhu K, Dang C, Lan K, Wang H, Yuan D, Chen W, Meltzer SJ, Li K. Paf15 expression correlates with rectal cancer prognosis, cell proliferation and radiation response. Oncotarget 2018; 7:38750-38761. [PMID: 27246972 PMCID: PMC5122426 DOI: 10.18632/oncotarget.9606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/26/2016] [Indexed: 01/12/2023] Open
Abstract
Paf15, which participates in DNA repair, is overexpressed in numerous solid tumors. Blocking of Paf15 inhibits the growth of many types of cancer cells; while simultaneously enhancing cellular sensitivity to UV radiation. However, its expression and function in rectal cancer (RC) remain unknown. The current study was undertaken to assess the association of Paf15 expression with RC prognosis, as well as to explore the participation of Paf15 in the response of RC cells to irradiation. Increased Paf15 expression was observed in RC tissues and associated with pTNM stage and poor survival. In vitro, Paf15 induced increased RC cell proliferation while accelerating cell cycle progression, inhibiting cell death, and protecting against gamma radiation-induced DNA damage in RC cells. In conclusion, increased Paf15 expression is associated with increased RC proliferation, decreased patient survival, and a worse radiotherapeutic response.
Collapse
Affiliation(s)
- Rong Yan
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China.,Department of Medicine (GI Division) and Oncology, Johns Hopkins School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Kun Zhu
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Ke Lan
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Haonan Wang
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Dawei Yuan
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Wei Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Stephen J Meltzer
- Department of Medicine (GI Division) and Oncology, Johns Hopkins School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
33
|
KIAA0101 is associated with human renal cell carcinoma proliferation and migration induced by erythropoietin. Oncotarget 2017; 7:13520-37. [PMID: 26575329 PMCID: PMC4924658 DOI: 10.18632/oncotarget.5876] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/30/2015] [Indexed: 12/21/2022] Open
Abstract
Erythropoietin (EPO) is a frequently prescribed anti-anemic drug for patients with advanced renal carcinoma. However, recent evidence from clinical studies suggested that EPO accelerated tumor progression and jeopardized the 5-year survival. Herein, we show, starting from the in silico microarray bioinformatics analysis, that activation of Erythropoietin signaling pathway enhanced renal clear carcinoma (RCC) progression. EPO accelerated the proliferative and migratory ability in 786-O and Caki-2 cells. Moreover, comparative proteomics expression profiling suggested that exogenous EPO stimulated RCC progression via up-regulation of KIAA0101 expression. Loss of KIAA0101 impeded the undesirable propensity of EPO in RCC. Finally, low expression of KIAA0101 was associated with the excellent prognosis and prognosticated a higher 5-year survival in human patients with renal carcinoma. Overall, KIAA0101 appears to be a key promoter of RCC malignancy induced by EPO, which provide mechanistic insights into KIAA0101 functions, and pave the road to develop new therapeutics for treatment of cancer-related and chemotherapy-induced anemia in patients with RCC.
Collapse
|
34
|
Ubiquitome Analysis Reveals PCNA-Associated Factor 15 (PAF15) as a Specific Ubiquitination Target of UHRF1 in Embryonic Stem Cells. J Mol Biol 2017; 429:3814-3824. [DOI: 10.1016/j.jmb.2017.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/26/2017] [Accepted: 10/12/2017] [Indexed: 12/30/2022]
|
35
|
De March M, De Biasio A. The dark side of the ring: role of the DNA sliding surface of PCNA. Crit Rev Biochem Mol Biol 2017; 52:663-673. [DOI: 10.1080/10409238.2017.1364218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Matteo De March
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A, Trieste, Italy
| | - Alfredo De Biasio
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A, Trieste, Italy
| |
Collapse
|
36
|
Liu L, Liu Y, Chen X, Wang M, Zhou Y, Zhou P, Li W, Zhu F. Variant 2 of KIAA0101, antagonizing its oncogenic variant 1, might be a potential therapeutic strategy in hepatocellular carcinoma. Oncotarget 2017; 8:43990-44003. [PMID: 28410205 PMCID: PMC5546456 DOI: 10.18632/oncotarget.16702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/06/2017] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumors worldwide and effective therapies, including molecular therapy, remain elusive. Our previous work demonstrates that oncogenic KIAA0101 transcript variant (tv) 1 promotes HCC development and might be a HCC therapeutic target. However, the function of another KIAA0101 variant, KIAA0101 tv2, remains unknown. In this study, we reported that KIAA0101 tv2 was highly expressed in adjacent non-tumorous liver tissues (NTs) compared to HCC tissues. In vivo and in vitro results showed that KIAA0101 tv2 decreased cell survival, colony formation, tumor xenografts, migration, and invasion, as well as induced cell cycle arrest and apoptosis. Interestingly, it could inhibit the function of KIAA0101 tv1 by partially down-regulating KIAA0101 tv1, acting similar to KIAA0101 tv1 short hairpin RNA (shRNA). Further studies illustrated that KIAA0101 tv2 could increase the activity of p53 by competing with KIAA0101 tv1 for P53 binding. In conclusion, KIAA0101 tv2 exerts anti-tumor activity in HCC and acts as an endogenous competitor of tumor-associated KIAA0101 tv1. KIAA0101 tv2 has a potential to work as a therapeutic drug targeting the KIAA0101 tv1 in HCC.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China
- College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Youyi Liu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Xiaobei Chen
- Department of Infectious Diseases, Ren-Min Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Miao Wang
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Yan Zhou
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Ping Zhou
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Wenxin Li
- College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Fan Zhu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430071, P.R. China
| |
Collapse
|
37
|
Potential Antitumor Activity and Apoptosis Induction of Glossostemon bruguieri Root Extract against Hepatocellular Carcinoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7218562. [PMID: 28421122 PMCID: PMC5380856 DOI: 10.1155/2017/7218562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/12/2016] [Accepted: 01/12/2017] [Indexed: 01/10/2023]
Abstract
Glossostemon bruguieri (moghat) is used as a nutritive and demulcent drink. This study was performed to investigate the antiproliferative effects of moghat root extract (MRE) and its apoptotic mechanism in hepatocellular carcinoma (HCC) cells, HepG2 and Hep3B. MTT assay, morphological changes, apoptosis enzyme linked immunosorbent assay, caspase and apoptotic activation, flow cytometry, and immunoblot analysis were employed. The IC50 of MRE for HepG2 (910 ± 6 μg/ml) and for Hep3B (1510 ± 5 μg/ml) induced significant growth-inhibitory effects against HCC cells, with no cytotoxic effect on normal hepatocytes. MRE treatment induced apoptotic effects to HepG2 cells in a caspase-dependent manner and via upregulating p53/p21 and PCNA. The upregulation of p21 was controlled by p53 expression in HepG2 but not in Hep3B despite upregulation of Bax protein in both cell lines. Interestingly, p21 may be a remarkable switch to G1 arrest in HepG2 cells, but not in Hep3B cells. In addition, Fas- and mitochondria-mediated pathways were found to be involved in MRE-induced apoptosis in Hep3B cells. The GC-MS analysis of MRE revealed two major constituents of pharmaceutical importance: the flavonoid apigenin (17.04%) and the terpenoid squalene (11.32%). The data presented in this paper introduces G. bruguieri as a promising nontoxic herb with therapeutic potential for HCC. To the authors' knowledge, the present study provides the first report on the anticancer activity of MRE on HCC cells.
Collapse
|
38
|
Wang X, Wang SS, Zhou L, Yu L, Zhang LM. A network-pathway based module identification for predicting the prognosis of ovarian cancer patients. J Ovarian Res 2016; 9:73. [PMID: 27806724 PMCID: PMC5093979 DOI: 10.1186/s13048-016-0285-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 10/25/2016] [Indexed: 12/19/2022] Open
Abstract
Background This study aimed to screen multiple genes biomarkers based on gene expression data for predicting the survival of ovarian cancer patients. Methods Two microarray data of ovarian cancer samples were collected from The Cancer Genome Atlas (TCGA) database. The data in the training set were used to construct Reactome functional interactions network, which then underwent Markov clustering, supervised principal components, Cox proportional hazard model to screen significantly prognosis related modules. The distinguishing ability of each module for survival was further evaluated by the testing set. Gene Ontology (GO) functional and pathway annotations were performed to identify the roles of genes in each module for ovarian cancer. Results The network based approach identified two 7-gene functional interaction modules (31: DCLRE1A, EXO1, KIAA0101, KIN, PCNA, POLD3, POLD2; 35: DKK3, FABP3, IRF1, AIM2, GBP1, GBP2, IRF2) that are associated with prognosis of ovarian cancer patients. These network modules are related to DNA repair, replication, immune and cytokine mediated signaling pathways. Conclusions The two 7-gene expression signatures may be accurate predictors of clinical outcome in patients with ovarian cancer and has the potential to develop new therapeutic strategies for ovarian cancer patients.
Collapse
Affiliation(s)
- Xin Wang
- Department of Gynaecology and Obstetrics, The 306 Hospital of PLA, Beijing, 100037, China
| | - Shan-Shan Wang
- Outpatient Pharmacy, Outpatient Department, NO.16 Chengzhuang Fengtai Distinct, Beijing, 100071, China
| | - Lin Zhou
- Department of Gynaecology and Obstetrics, The 306 Hospital of PLA, Beijing, 100037, China
| | - Li Yu
- Department of Gynaecology and Obstetrics, The 306 Hospital of PLA, Beijing, 100037, China
| | - Lan-Mei Zhang
- Department of Gynaecology and Obstetrics, The 306 Hospital of PLA, Beijing, 100037, China.
| |
Collapse
|
39
|
Chen H, Xia B, Liu T, Lin M, Lou G. KIAA0101, a target gene of miR-429, enhances migration and chemoresistance of epithelial ovarian cancer cells. Cancer Cell Int 2016; 16:74. [PMID: 27708548 PMCID: PMC5037619 DOI: 10.1186/s12935-016-0353-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022] Open
Abstract
Background Ovarian cancer is a common type of gynecological malignancies, and is the fifth leading cause of cancer-related death in women in the United States. MiR-429 and KIAA0101 have been found to be involved in several human malignancies, respectively. However, the role of miR-429 and KIAA0101, and the correlation between them during development of epithelial ovarian cancer (EOC) remain to be investigated. Methods The expression of KIAA0101 in EOC tissues and cells was measured by Quantitative real-time PCR, western blot, and immunochemistry. Cell proliferation assay, colony formation assay, and transwell assay was performed to assess the role of miR-429 and KIAA0101 in regulation of proliferation, migration, and chemoresistance of EOC cells. Luciferase assay was used to test the Wnt/β-catenin signaling activity in response to depletion of KIAA0101 and overexpression of miR-429. Results We found that KIAA0101 was upregulated in metastatic EOC tissues, compared to primary EOC tissues, and KIAA0101 was required for the migration activity and chemoresistance of EOC cells by enhancing Wnt/β-catenin signaling. Furthermore, we revealed KIAA0101 is direct target of miR-429. Similar to knockdown of KIAA0101, overexpression of miR-429 reduced invasion and chemoresistance of EOC cells. Co-transfection of KIAA0101 partially abrogates the inhibitory effects on invasion and chemoresistance in EOC cells. Conclusions KIAA0101, a target gene of miR-429, was upregulated in the metastatic EOC tissues, and enhanced the migration activity and chemoresistance of EOC cells. Both miR-429 and KIAA0101 may represent the potential therapeutic targets of EOC.
Collapse
Affiliation(s)
- Hong Chen
- Department of Gynecology, the Affiliated Tumor Hospital, Harbin Medical University, 150 Haping Rd, Harbin, 150020 Heilongjiang China
| | - Bairong Xia
- Department of Gynecology, the Affiliated Tumor Hospital, Harbin Medical University, 150 Haping Rd, Harbin, 150020 Heilongjiang China
| | - Tianbo Liu
- Department of Gynecology, the Affiliated Tumor Hospital, Harbin Medical University, 150 Haping Rd, Harbin, 150020 Heilongjiang China
| | - Mei Lin
- Department of Gynecology, the Affiliated Tumor Hospital, Harbin Medical University, 150 Haping Rd, Harbin, 150020 Heilongjiang China
| | - Ge Lou
- Department of Gynecology, the Affiliated Tumor Hospital, Harbin Medical University, 150 Haping Rd, Harbin, 150020 Heilongjiang China
| |
Collapse
|
40
|
Paiva P, Lockhart MG, Girling JE, Olshansky M, Woodrow N, Marino JL, Hickey M, Rogers PAW. Identification of genes differentially expressed in menstrual breakdown and repair. Mol Hum Reprod 2016; 22:898-912. [PMID: 27609758 DOI: 10.1093/molehr/gaw060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/30/2016] [Accepted: 09/02/2016] [Indexed: 12/26/2022] Open
Abstract
STUDY QUESTION Does the changing molecular profile of the endometrium during menstruation correlate with the histological profile of menstruation. SUMMARY ANSWER We identified several genes not previously associated with menstruation; on Day 2 of menstruation (early-menstruation), processes related to inflammation are predominantly up-regulated and on Day 4 (late-menstruation), the endometrium is predominantly repairing and regenerating. WHAT IS KNOWN ALREADY Menstruation is induced by progesterone withdrawal at the end of the menstrual cycle and involves endometrial tissue breakdown, regeneration and repair. Perturbations in the regulation of menstruation may result in menstrual disorders including abnormal uterine bleeding. STUDY DESIGN, SIZE DURATION Endometrial samples were collected by Pipelle biopsy on Days 2 (n = 9), 3 (n = 9) or 4 (n = 6) of menstruation. PARTICIPANTS/MATERIALS, SETTING, METHODS RNA was extracted from endometrial biopsies and analysed by genome wide expression Illumina Sentrix Human HT12 arrays. Data were analysed using 'Remove Unwanted Variation-inverse (RUV-inv)'. Ingenuity pathway analysis (IPA) and the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7 were used to identify canonical pathways, upstream regulators and functional gene clusters enriched between Days 2, 3 and 4 of menstruation. Selected individual genes were validated by quantitative PCR. MAIN RESULTS AND THE ROLE OF CHANCE Overall, 1753 genes were differentially expressed in one or more comparisons. Significant canonical pathways, gene clusters and upstream regulators enriched during menstrual bleeding included those associated with immune cell trafficking, inflammation, cell cycle regulation, extracellular remodelling and the complement and coagulation cascade. We provide the first evidence for a role for glutathione-mediated detoxification (glutathione-S-transferase mu 1 and 2; GSTM1 and GSTM2) during menstruation. The largest number of differentially expressed genes was between Days 2 and 4 of menstruation (n = 1176). We identified several genes not previously associated with menstruation including lipopolysaccharide binding protein, serpin peptidase inhibitor, clade B (ovalbumin), member 3 (SERPINB3) and -4 (SERPINB4), interleukin-17C (IL17C), V-set domain containing T-cell activation inhibitor 1 (VTCN1), proliferating cell nuclear antigen factor (KIAA0101/PAF), trefoil factor 3 (TFF3), laminin alpha 2 (LAMA2) and serine peptidase inhibitor, Kazal type 1 (SPINK1). Genes related to inflammatory processes were up-regulated on Day 2 (early-menstruation), and those associated with endometrial repair and regeneration were up-regulated on Day 4 (late-menstruation). LIMITATIONS, REASONS FOR CAUTION Participants presented with a variety of endometrial pathologies related to bleeding status and other menstrual characteristics. These variations may also have influenced the menstrual process. WIDER IMPLICATIONS OF THE FINDINGS The temporal molecular profile of menstruation presented in this study identifies a number of genes not previously associated with the menstrual process. Our findings provide valuable insight into the menstrual process and may present novel targets for therapeutic intervention in cases of endometrial dysfunction. LARGE SCALE DATA All microarray data have been deposited in the public data repository Gene Expression Omnibus (GSE86003). STUDY FUNDING AND COMPETING INTERESTS Funding for this work was provided by a National Health and Medical Research Council of Australia (NHMRC) Project Grant APP1008553 to M.H., P.R. and J.G. M.H. is supported by an NHMRC Practitioner Fellowship. P.P. is supported by a NHMRC Early Career Fellowship. The authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- Premila Paiva
- Department of Obstetrics and Gynaecology, The University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC 3052, Australia
| | - Michelle G Lockhart
- Department of Obstetrics and Gynaecology, The University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC 3052, Australia
| | - Jane E Girling
- Department of Obstetrics and Gynaecology, The University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC 3052, Australia
| | - Moshe Olshansky
- Bioinformatics Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Microbiology, Monash University, Wellington Road and Blackburn Road, Clayton, VIC 3800, Australia
| | - Nicole Woodrow
- Pauline Gandel Imaging Centre, Royal Women's Hospital, 20 Flemington Road, Parkville, VIC 3052, Australia
| | - Jennifer L Marino
- Department of Obstetrics and Gynaecology, The University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC 3052, Australia
| | - Martha Hickey
- Department of Obstetrics and Gynaecology, The University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC 3052, Australia
| | - Peter A W Rogers
- Department of Obstetrics and Gynaecology, The University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC 3052, Australia
| |
Collapse
|
41
|
Zhang HF, Alshareef A, Wu C, Jiao JW, Sorensen PH, Lai R, Xu LY, Li EM. miR-200b induces cell cycle arrest and represses cell growth in esophageal squamous cell carcinoma. Carcinogenesis 2016; 37:858-869. [PMID: 27496804 PMCID: PMC5008252 DOI: 10.1093/carcin/bgw079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 07/12/2016] [Accepted: 07/30/2016] [Indexed: 02/05/2023] Open
Abstract
miR-200b is a pleiotropically acting microRNA in cancer progression, representing an attractive therapeutic target. We previously identified miR-200b as an invasiveness repressor in esophageal squamous cell carcinoma (ESCC), whereas further understanding is warranted to establish it as a therapeutic target. Here, we show that miR-200b mitigates ESCC cell growth by inducing G2-phase cell cycle arrest and apoptosis. The expression/activation of multiple key cell cycle regulators such as CDK1, CDK2, CDK4 and Cyclin B, and the Wnt/β-Catenin signaling are modulated by miR-200b. We identified CDK2 and PAF (PCNA-associated factor), two important tumor-promoting factors, as direct miR-200b targets in ESCC. Correlating with the frequent loss of miR-200b in ESCC, both CDK2 and PAF levels are significantly increased in ESCC tumors compared to case-matched normal tissues (n = 119, both P < 0.0001), and correlate with markedly reduced survival (P = 0.007 and P = 0.041, respectively). Furthermore, CDK2 and PAF are also associated with poor prognosis in certain subtypes of breast cancer (n = 1802) and gastric cancer (n = 233). Although CDK2 could not significantly mediate the biological function of miR-200b, PAF siRNA knockdown phenocopied while restored expression of PAF abrogated the biological effects of miR-200b on ESCC cells. Moreover, PAF was revealed to mediate the inhibitory effects of miR-200b on Wnt/β-Catenin signaling. Collectively, the pleiotropic effects of miR-200b in ESCC highlight its potential for therapeutic intervention in this aggressive disease.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre and Department of Pathology, University of British Columbia, Vancouver, British Columbia V5Z 1L3, Canada and
| | - Abdulraheem Alshareef
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Chengsheng Wu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Ji-Wei Jiao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre and Department of Pathology, University of British Columbia, Vancouver, British Columbia V5Z 1L3, Canada and
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong 515041, China
- *To whom correspondence should be addressed. Tel: +86 754 88900464; Fax: +86 754 88900847;
| |
Collapse
|
42
|
Quan M, Liu S, Wang Q, Li G, Zhang Y, Feng S, Liang J, Cheng J. NS5ATP9 Promotes Beclin 1-Dependent Starvation-Induced Autophagy of Hepatoblastoma Cells. J Cell Biochem 2016; 116:1574-82. [PMID: 25649430 DOI: 10.1002/jcb.25111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 01/23/2015] [Indexed: 12/16/2022]
Abstract
NS5ATP9, a gene up-regulated by NS5A, plays a crucial oncogenic role in several types of human tumours. However, the underlying mechanisms remain unclear. Autophagy, an evolutionarily conserved catabolic process, maintains cellular homeostasis under stress conditions, such as starvation, and plays a crucial role in tumour initiation and progression. Here, we report that NS5ATP9 mRNA and protein expression was up-regulated in starved HepG2 cells and that the up-regulated NS5ATP9 played a functional role in starvation-induced autophagy. Overexpression or silencing of this gene showed contrasting effects on Beclin 1 and on starvation-induced autophagy. Furthermore, NS5ATP9-mediated autophagy is required for promotion of tumour cell growth, and this effect could be inhibited with 3-methyladenine, chloroquine or by Beclin 1-silencing. Thus, the mechanism for NS5ATP9-promoted autophagy is Beclin 1-dependent in the condition of starvation, and for hepatoblastoma cell growth is also Beclin 1-dependent.
Collapse
Affiliation(s)
- Min Quan
- Department of General Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Shunai Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Qi Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Guoli Li
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Yu Zhang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shenghu Feng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Jinqiu Liang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Jun Cheng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| |
Collapse
|
43
|
Abdelgawad IA, Radwan NH, Hassanein HR. KIAA0101 mRNA expression in the peripheral blood of hepatocellular carcinoma patients: Association with some clinicopathological features. Clin Biochem 2016; 49:787-91. [PMID: 26968109 DOI: 10.1016/j.clinbiochem.2015.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The development of hepatocellular carcinoma (HCC) is multi-factorial, multi-step and involving many genes. Recent studies have revealed the involvement of KIAA0101 in HCC development and progression. KIAA0101 is involved in the regulation of DNA repair, cell cycle progression, and cell proliferation. This study aims to elucidate the clinicopathological significance of KIAA0101 mRNA expression in the whole blood of HCC patients. DESIGN AND METHODS This study was conducted on 77 patients with proven HCC who presented to the outpatient clinic at the National Cancer Institute - Cairo University over a period of 8 consecutive months. Thirty patients with cirrhosis and forty apparently healthy volunteers were included as control groups. Detection of KIAA0101 mRNA was done on whole blood collected on EDTA for all patients and control subjects using real-time PCR. RESULTS KIAA0101 mRNA was over-expressed in the HCC group compared to the control groups. Overexpression of KIAA0101 mRNA was significantly associated with distant metastasis, advanced stage, high serum alkaline phosphatase and low serum albumin levels. Both sensitivity and specificity of KIAA0101 mRNA were higher than those of AFP and CEA. CONCLUSION Being associated with some of the prognostic factors of HCC which reflect tumor progression; as advanced stage, distant metastasis, hypoalbuminemia and elevated serum alkaline phosphatase, together with its relatively high diagnostic performance; KIAA0101 mRNA might be nominated to play a probable role in the diagnosis and prognosis prediction of HCC. Further studies on a wider scale are recommended to confirm these results.
Collapse
Affiliation(s)
- Iman A Abdelgawad
- Department of Clinical Pathology, NCI, Cairo University, National Cancer Institute, Fom Elkhalig, Kasr Elaini Street, Post Code No. 11796 Cairo, Egypt.
| | - Noha H Radwan
- Department of Clinical Pathology, NCI, Cairo University, National Cancer Institute, Fom Elkhalig, Kasr Elaini Street, Post Code No. 11796 Cairo, Egypt.
| | - Hala R Hassanein
- Department of Clinical Pathology, NCI, Cairo University, National Cancer Institute, Fom Elkhalig, Kasr Elaini Street, Post Code No. 11796 Cairo, Egypt.
| |
Collapse
|
44
|
PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun 2016; 7:10633. [PMID: 26843124 PMCID: PMC4743006 DOI: 10.1038/ncomms10633] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) contribute to tumour heterogeneity, therapy resistance and metastasis. However, the regulatory mechanisms of cancer cell stemness remain elusive. Here we identify PCNA-associated factor (PAF) as a key molecule that controls cancer cell stemness. PAF is highly expressed in breast cancer cells but not in mammary epithelial cells (MECs). In MECs, ectopic expression of PAF induces anchorage-independent cell growth and breast CSC marker expression. In mouse models, conditional PAF expression induces mammary ductal hyperplasia. Moreover, PAF expression endows MECs with a self-renewing capacity and cell heterogeneity generation via Wnt signalling. Conversely, ablation of endogenous PAF induces the loss of breast cancer cell stemness. Further cancer drug repurposing approaches reveal that NVP-AUY922 downregulates PAF and decreases breast cancer cell stemness. Our results unveil an unsuspected role of the PAF-Wnt signalling axis in modulating cell plasticity, which is required for the maintenance of breast cancer cell stemness. Stem cells are found in many tumour types and are thought to be partially responsible for cell survival following therapy. Here, the authors show that PCNA-associated factor, PAF, contributes to stemness in breast cancer cells and pharmacological targeting of PAF reduces mammosphere formation.
Collapse
|
45
|
NS5ATP9 suppresses activation of human hepatic stellate cells, possibly via inhibition of Smad3/phosphorylated-Smad3 expression. Inflammation 2015; 38:278-89. [PMID: 25300817 DOI: 10.1007/s10753-014-0031-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activation of hepatic stellate cell (HSC) is the central event in liver fibrosis. NS5ATP9 is related to many malignant tumors, but little is known about its function in HSC activation. The aim of this study is to investigate the role of NS5ATP9 in HSC activation in vitro. Genes related to liver fibrosis were detected after NS5ATP9 overexpression or silencing with or without transforming growth factor (TGF)-β1 stimulation in the human HSCs by real-time polymerase chain reaction and western blotting. Cell proliferation, migration, and apoptosis were tested, and the mechanisms underlying the effect of NS5ATP9 on HSC activation were studied. We showed that NS5ATP9 suppressed HSC activation and collagen production, with or without TGF-β1 induction. Also, NS5ATP9 inhibited cell proliferation and migration and promoted apoptosis. Furthermore, NS5ATP9 reduced basal and TGF-β1-mediated Smad3/phosphorylated-Smad3 expression. The existence of a physical complex between NS5ATP9 and Smad3 was illustrated. NS5ATP9 suppresses HSC activation, extracellular matrix production, and promotes apoptosis, in part through reducing Smad3/phosphorylated-Smad3 expression.
Collapse
|
46
|
Liu Y, Hu H, Wang K, Zhang C, Wang Y, Yao K, Yang P, Han L, Kang C, Zhang W, Jiang T. Multidimensional analysis of gene expression reveals TGFB1I1-induced EMT contributes to malignant progression of astrocytomas. Oncotarget 2015; 5:12593-606. [PMID: 25333259 PMCID: PMC4350345 DOI: 10.18632/oncotarget.2518] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/24/2014] [Indexed: 11/25/2022] Open
Abstract
Malignant progression of astrocytoma is a multistep process with the integration of genetic abnormalities including grade progression and subtypes transition. Established biomarkers of astrocytomas, like IDH1 and TP53 mutation, were not associated with malignant progression. To identify new biomarker(s) contributing to malignant progression, we collected 252 samples with whole genome mRNA expression profile [34 normal brain tissue (NBT), 136 grade II astrocytoma (AII) and 82 grade III astrocytoma (AIII)]. Bioinformatics analysis revealed that EMT-associated pathways were most significantly altered along with tumor grades progress with up-regulation of 17 genes. Up-regulation of these genes was further confirmed by RNA-sequencing in 128 samples. Survival analysis revealed that high expression of these genes indicates a poor survival outcome. We focused on TGFB1I1 (TGF-β1 induced transcript 1) whose expression correlation with WHO grades was further validated by qPCR in 6 cell lines of different grades and 49 independent samples (36 AIIs and 13 AIIIs). High expression of TGFB1I1 was found associated with subtype transition and EMT pathways activation. The conclusion was confirmed using immunohistochemistry in tissue microarrays. Studies in vitro and in vivo using TGF-β1 and TGFB1I1 shRNA demonstrated that TGFB1I1 is required for TGF-β stimulated EMT that contributes to malignant progression of astrocytomas.
Collapse
Affiliation(s)
- Yanwei Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China. Chinese Glioma Cooperative Group (CGCG), China
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China. Chinese Glioma Cooperative Group (CGCG), China
| | - Kuanyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. Chinese Glioma Cooperative Group (CGCG), China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. Chinese Glioma Cooperative Group (CGCG), China
| | - Kun Yao
- Department of Molecular Neuropathology, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China. Chinese Glioma Cooperative Group (CGCG), China
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. Chinese Glioma Cooperative Group (CGCG), China
| | - Lei Han
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin Medical University, Tianjin, China. Chinese Glioma Cooperative Group (CGCG), China
| | - Chunsheng Kang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin Medical University, Tianjin, China. Chinese Glioma Cooperative Group (CGCG), China
| | - Wei Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China. Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. Chinese Glioma Cooperative Group (CGCG), China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China. Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. Chinese Glioma Cooperative Group (CGCG), China. China National Clinical Research Center for Neurological Diseases, China. Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
47
|
Lea RW, Dawson T, Martinez-Moreno CG, El-Abry N, Harvey S. Growth hormone and cancer: GH production and action in glioma? Gen Comp Endocrinol 2015; 220:119-23. [PMID: 26163024 DOI: 10.1016/j.ygcen.2015.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 11/16/2022]
Abstract
The hypersecretion of pituitary growth hormone (GH) is associated with an increased risk of cancer, while reducing pituitary GH signaling reduces this risk. Roles for pituitary GH in cancer are therefore well established. The expression of the GH gene is, however, not confined to the pituitary gland and it is now known to occur in many extrapituitary tissues, in which it has local autocrine or paracrine actions, rather than endocrine function. It is, for instance, expressed in cancers of the prostate, lung, skin, endometrium and colon. The oncogenicity of autocrine GH may also be greater than that induced by endocrine or exogenous GH, as higher concentrations of GHR antagonists are required to inhibit its actions. This may reflect the fact that autocrine GH is thought to act at intracellular receptors directly after synthesis, in compartments not readily accessible to endocrine (or exogenous) GH. The roles and actions of extrapituitary GH in cancer may therefore differ from those of pituitary GH. The possibility that GH may be expressed and act in glioma tumors was therefore examined by immunohistochemistry. These results demonstrate, for the first time, the presence of abundant GH- and GH receptor (GHR-) immunoreactivity in glioma, in which they were co-localized in cytoplasmic but not nuclear compartments. These results demonstrate that glioma differs from most cancers in lacking nuclear GHRs, but GH is nevertheless likely to have autocrine or paracrine actions in the induction and progression of glioma.
Collapse
Affiliation(s)
- Robert W Lea
- Brain Tumour North West, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | | | | | - Nasra El-Abry
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
48
|
Roche M, Wierinckx A, Croze S, Rey C, Legras-Lachuer C, Morel AP, Fusco A, Raverot G, Trouillas J, Lachuer J. Deregulation of miR-183 and KIAA0101 in Aggressive and Malignant Pituitary Tumors. Front Med (Lausanne) 2015; 2:54. [PMID: 26322309 PMCID: PMC4530307 DOI: 10.3389/fmed.2015.00054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/22/2015] [Indexed: 01/15/2023] Open
Abstract
Changes in microRNAs (miRNAs) expression in many types of cancer suggest that they may be involved in crucial steps during tumor progression. Indeed, miRNAs deregulation has been described in pituitary tumorigenesis, but few studies have described their role in pituitary tumor progression toward aggressiveness and malignancy. To assess the role of miRNAs within the hierarchical cascade of events in prolactin (PRL) tumors during progression, we used an integrative genomic approach to associate clinical-pathological features, global miRNA expression, and transcriptomic profiles of the same human tumors. We describe the specific down-regulation of one principal miRNA, miR-183, in the 8 aggressive (A, grade 2b) compared to the 18 non-aggressive (NA, grades 1a, 2a) PRL tumors. We demonstrate that it acts as an anti-proliferative gene by directly targeting KIAA0101, which is involved in cell cycle activation and inhibition of p53-p21-mediated cell cycle arrest. Moreover, we show that miR-183 and KIAA0101 expression significantly correlate with the main markers of pituitary tumors aggressiveness, Ki-67 and p53. These results confirm the activation of proliferation in aggressive and malignant PRL tumors compared to non-aggressive ones. Importantly, these data also demonstrate the ability of such an integrative genomic strategy, applied in the same human tumors, to identify the molecular mechanisms responsible for tumoral progression even from a small cohort of patients.
Collapse
Affiliation(s)
- Magali Roche
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052/CNRS UMR 5286 Centre Léon Bérard , Lyon , France ; Université Lyon 1, Université de Lyon , Lyon , France ; ViroScan3D , Trévoux , France
| | - Anne Wierinckx
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052/CNRS UMR 5286 Centre Léon Bérard , Lyon , France ; Université Lyon 1, Université de Lyon , Lyon , France ; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7 , Lyon , France
| | - Séverine Croze
- Université Lyon 1, Université de Lyon , Lyon , France ; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7 , Lyon , France
| | - Catherine Rey
- ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7 , Lyon , France
| | - Catherine Legras-Lachuer
- Université Lyon 1, Université de Lyon , Lyon , France ; ViroScan3D , Trévoux , France ; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7 , Lyon , France ; UMR CNRS 5557 UCBL USC INRA 1193 ENVL, Dynamique Microbienne et Transmission Virale , Lyon , France
| | - Anne-Pierre Morel
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052/CNRS UMR 5286 Centre Léon Bérard , Lyon , France
| | - Alfredo Fusco
- Instituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli "Federico II" , Naples , Italy ; Instituto Nacional de Câncer (INCA) , Rio de Janeiro , Brazil
| | - Gérald Raverot
- Université Lyon 1, Université de Lyon , Lyon , France ; UMR 5292, Centre de Neurosciences de Lyon, CNRS, INSERM S1028 , Lyon , France ; Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon , Lyon , France
| | - Jacqueline Trouillas
- Université Lyon 1, Université de Lyon , Lyon , France ; UMR 5292, Centre de Neurosciences de Lyon, CNRS, INSERM S1028 , Lyon , France ; Centre de Pathologie Est, Groupement Hospitalier Est, Hospice Civils de Lyon , Bron , France
| | - Joel Lachuer
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052/CNRS UMR 5286 Centre Léon Bérard , Lyon , France ; Université Lyon 1, Université de Lyon , Lyon , France ; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7 , Lyon , France
| |
Collapse
|
49
|
Structure of p15PAF–PCNA complex and implications for clamp sliding during DNA replication and repair. Nat Commun 2015; 6:6439. [DOI: 10.1038/ncomms7439] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 01/29/2015] [Indexed: 01/27/2023] Open
|
50
|
Nicolae CM, Aho ER, Choe KN, Constantin D, Hu HJ, Lee D, Myung K, Moldovan GL. A novel role for the mono-ADP-ribosyltransferase PARP14/ARTD8 in promoting homologous recombination and protecting against replication stress. Nucleic Acids Res 2015; 43:3143-53. [PMID: 25753673 PMCID: PMC4381061 DOI: 10.1093/nar/gkv147] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/15/2015] [Indexed: 12/29/2022] Open
Abstract
Genomic instability, a major hallmark of cancer cells, is caused by incorrect or ineffective DNA repair. Many DNA repair mechanisms cooperate in cells to fight DNA damage, and are generally regulated by post-translational modification of key factors. Poly-ADP-ribosylation, catalyzed by PARP1, is a post-translational modification playing a prominent role in DNA repair, but much less is known about mono-ADP-ribosylation. Here we report that mono-ADP-ribosylation plays an important role in homologous recombination DNA repair, a mechanism essential for replication fork stability and double strand break repair. We show that the mono-ADP-ribosyltransferase PARP14 interacts with the DNA replication machinery component PCNA and promotes replication of DNA lesions and common fragile sites. PARP14 depletion results in reduced homologous recombination, persistent RAD51 foci, hypersensitivity to DNA damaging agents and accumulation of DNA strand breaks. Our work uncovered PARP14 as a novel factor required for mitigating replication stress and promoting genomic stability.
Collapse
Affiliation(s)
- Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Erin R Aho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Katherine N Choe
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Daniel Constantin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - He-Juan Hu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA Suzhou Health College, Suzhou, Jiangsu 215009, P.R. China
| | - Deokjae Lee
- Genome Instability Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Kyungjae Myung
- Genome Instability Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|