1
|
Mensah GA, Williams A, Khatkar P, Kim Y, Erickson J, Duverger A, Branscome H, Patil K, Chaudhry H, Wu Y, Kutsch O, Kashanchi F. Effect of Kinases in Extracellular Vesicles from HIV-1-Infected Cells on Bystander Cells. Cells 2025; 14:119. [PMID: 39851547 PMCID: PMC11763833 DOI: 10.3390/cells14020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
As of 2023, there were 39.9 million people living with Human Immunodeficiency Virus type 1 (HIV-1). Although great strides have been made in treatment options for HIV-1, and our understanding of the HIV-1 life cycle has vastly improved since the start of this global health crisis, a functional cure remains elusive. One of the main barriers to a cure is latency, which allows the virus to persist despite combined antiretroviral therapy (cART). Recently, we have found that exosomes, which are small, membrane-enclosed particles released by virtually all cell types and known to mediate intercellular communication, caused an increase in RNA Polymerase II loading onto the HIV-1 promoter. This resulted in the production of both short- and long-length viral transcripts in infected cells under cART. This current study examines the effects of exosome-associated kinases on bystander cells. The phospho-kinase profiling of exosomes revealed differences in the kinase payload of exosomes derived from uninfected and HIV-1-infected cells, with CDK10, GSK3β, and MAPK8 having the largest concentration differences. These kinases were shown to be biologically active and capable of phosphorylating substrates, and they modulated changes in the cell cycle dynamics of exposed cells. Given the relevance of such effects for the immune response, our results implicate exosome-associated kinases as new possible key contributors to HIV-1 pathogenesis that affect bystander cells. These findings may guide new therapeutic avenues to improve the current antiretroviral treatment regimens.
Collapse
Affiliation(s)
- Gifty A. Mensah
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA; (G.A.M.); (A.W.); (P.K.); (Y.K.); (J.E.); (H.B.); (K.P.); (H.C.)
| | - Anastasia Williams
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA; (G.A.M.); (A.W.); (P.K.); (Y.K.); (J.E.); (H.B.); (K.P.); (H.C.)
| | - Pooja Khatkar
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA; (G.A.M.); (A.W.); (P.K.); (Y.K.); (J.E.); (H.B.); (K.P.); (H.C.)
| | - Yuriy Kim
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA; (G.A.M.); (A.W.); (P.K.); (Y.K.); (J.E.); (H.B.); (K.P.); (H.C.)
| | - James Erickson
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA; (G.A.M.); (A.W.); (P.K.); (Y.K.); (J.E.); (H.B.); (K.P.); (H.C.)
| | - Alexandra Duverger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.D.); (O.K.)
| | - Heather Branscome
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA; (G.A.M.); (A.W.); (P.K.); (Y.K.); (J.E.); (H.B.); (K.P.); (H.C.)
| | - Kajal Patil
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA; (G.A.M.); (A.W.); (P.K.); (Y.K.); (J.E.); (H.B.); (K.P.); (H.C.)
| | - Hafsa Chaudhry
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA; (G.A.M.); (A.W.); (P.K.); (Y.K.); (J.E.); (H.B.); (K.P.); (H.C.)
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA;
| | - Olaf Kutsch
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.D.); (O.K.)
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA; (G.A.M.); (A.W.); (P.K.); (Y.K.); (J.E.); (H.B.); (K.P.); (H.C.)
| |
Collapse
|
2
|
Pellarin I, Dall'Acqua A, Favero A, Segatto I, Rossi V, Crestan N, Karimbayli J, Belletti B, Baldassarre G. Cyclin-dependent protein kinases and cell cycle regulation in biology and disease. Signal Transduct Target Ther 2025; 10:11. [PMID: 39800748 PMCID: PMC11734941 DOI: 10.1038/s41392-024-02080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Cyclin Dependent Kinases (CDKs) are closely connected to the regulation of cell cycle progression, having been first identified as the kinases able to drive cell division. In reality, the human genome contains 20 different CDKs, which can be divided in at least three different sub-family with different functions, mechanisms of regulation, expression patterns and subcellular localization. Most of these kinases play fundamental roles the normal physiology of eucaryotic cells; therefore, their deregulation is associated with the onset and/or progression of multiple human disease including but not limited to neoplastic and neurodegenerative conditions. Here, we describe the functions of CDKs, categorized into the three main functional groups in which they are classified, highlighting the most relevant pathways that drive their expression and functions. We then discuss the potential roles and deregulation of CDKs in human pathologies, with a particular focus on cancer, the human disease in which CDKs have been most extensively studied and explored as therapeutic targets. Finally, we discuss how CDKs inhibitors have become standard therapies in selected human cancers and propose novel ways of investigation to export their targeting from cancer to other relevant chronic diseases. We hope that the effort we made in collecting all available information on both the prominent and lesser-known CDK family members will help in identify and develop novel areas of research to improve the lives of patients affected by debilitating chronic diseases.
Collapse
Affiliation(s)
- Ilenia Pellarin
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Alessandra Dall'Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Andrea Favero
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Valentina Rossi
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Nicole Crestan
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Javad Karimbayli
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
3
|
Hédou J, Marić I, Bellan G, Einhaus J, Gaudillière DK, Ladant FX, Verdonk F, Stelzer IA, Feyaerts D, Tsai AS, Ganio EA, Sabayev M, Gillard J, Amar J, Cambriel A, Oskotsky TT, Roldan A, Golob JL, Sirota M, Bonham TA, Sato M, Diop M, Durand X, Angst MS, Stevenson DK, Aghaeepour N, Montanari A, Gaudillière B. Discovery of sparse, reliable omic biomarkers with Stabl. Nat Biotechnol 2024; 42:1581-1593. [PMID: 38168992 PMCID: PMC11217152 DOI: 10.1038/s41587-023-02033-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024]
Abstract
Adoption of high-content omic technologies in clinical studies, coupled with computational methods, has yielded an abundance of candidate biomarkers. However, translating such findings into bona fide clinical biomarkers remains challenging. To facilitate this process, we introduce Stabl, a general machine learning method that identifies a sparse, reliable set of biomarkers by integrating noise injection and a data-driven signal-to-noise threshold into multivariable predictive modeling. Evaluation of Stabl on synthetic datasets and five independent clinical studies demonstrates improved biomarker sparsity and reliability compared to commonly used sparsity-promoting regularization methods while maintaining predictive performance; it distills datasets containing 1,400-35,000 features down to 4-34 candidate biomarkers. Stabl extends to multi-omic integration tasks, enabling biological interpretation of complex predictive models, as it hones in on a shortlist of proteomic, metabolomic and cytometric events predicting labor onset, microbial biomarkers of pre-term birth and a pre-operative immune signature of post-surgical infections. Stabl is available at https://github.com/gregbellan/Stabl .
Collapse
Affiliation(s)
- Julien Hédou
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA, USA
| | - Ivana Marić
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Grégoire Bellan
- Télécom Paris, Institut Polytechnique de Paris, Paris, France
| | - Jakob Einhaus
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Dyani K Gaudillière
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | | | - Franck Verdonk
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA, USA
- Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anesthesiology and Intensive Care, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ina A Stelzer
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA, USA
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA, USA
| | - Edward A Ganio
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA, USA
| | - Maximilian Sabayev
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA, USA
| | - Joshua Gillard
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jonas Amar
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA, USA
| | - Amelie Cambriel
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA, USA
| | - Tomiko T Oskotsky
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Alennie Roldan
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan L Golob
- Department of Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas A Bonham
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA, USA
| | - Masaki Sato
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA, USA
| | - Maïgane Diop
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA, USA
| | - Xavier Durand
- École Polytechnique, Institut Polytechnique de Paris, Paris, France
| | - Martin S Angst
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA, USA
| | | | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Andrea Montanari
- Department of Statistics, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Olasz B, Smithers L, Evans GL, Anandan A, Murcha MW, Vrielink A. Structural analysis of the SAM domain of the Arabidopsis mitochondrial tRNA import receptor. J Biol Chem 2024; 300:107258. [PMID: 38582448 PMCID: PMC11063897 DOI: 10.1016/j.jbc.2024.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024] Open
Abstract
Mitochondria are membrane-bound organelles of endosymbiotic origin with limited protein-coding capacity. The import of nuclear-encoded proteins and nucleic acids is required and essential for maintaining organelle mass, number, and activity. As plant mitochondria do not encode all the necessary tRNA types required, the import of cytosolic tRNA is vital for organelle maintenance. Recently, two mitochondrial outer membrane proteins, named Tric1 and Tric2, for tRNA import component, were shown to be involved in the import of cytosolic tRNA. Tric1/2 binds tRNAalavia conserved residues in the C-terminal Sterile Alpha Motif (SAM) domain. Here we report the X-ray crystal structure of the Tric1 SAM domain. We identified the ability of the SAM domain to form a helical superstructure with six monomers per helical turn and key amino acid residues responsible for its formation. We determined that the oligomerization of the Tric1 SAM domain may play a role in protein function whereby mutation of Gly241 introducing a larger side chain at this position disrupted the oligomer and resulted in the loss of RNA binding capability. Furthermore, complementation of Arabidopsis thaliana Tric1/2 knockout lines with a mutated Tric1 failed to restore the defective plant phenotype. AlphaFold2 structure prediction of both the SAM domain and Tric1 support a cyclic pentameric or hexameric structure. In the case of a hexameric structure, a pore of sufficient dimensions to transfer tRNA across the mitochondrial membrane is observed. Our results highlight the importance of oligomerization of Tric1 for protein function.
Collapse
Affiliation(s)
- Bence Olasz
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Luke Smithers
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Genevieve L Evans
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Anandhi Anandan
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| | - Alice Vrielink
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
5
|
Zhang X, Zhao Y, Yiminniyaze R, Zhu N, Zhang Y, Wumaier G, Xia J, Dong L, Zhou D, Wang J, Li C, Zhang Y, Li S. CDK10 suppresses metastasis of lung adenocarcinoma through inhibition of the ETS2/c-Raf/p-MEK/p-ERK signaling loop. Mol Carcinog 2024; 63:61-74. [PMID: 37737453 DOI: 10.1002/mc.23636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/23/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
The repertoire of aberrant signaling underlying the pathogenesis of lung adenocarcinoma remains largely uncharacterized, which precludes an efficient therapy for these patients, especially when distant metastasis occurs. Cyclin-dependent kinase 10 (CDK10) has been reported to modulate the progression of malignant tumors; however, contradictory effects have been found among different types of malignant tumors. In the present study, we found that CDK10 was downregulated in lung adenocarcinoma compared with the paired adjacent normal lung tissue, and lower expression level of CDK10 was associated with more frequent N2 staged lymph node and distant metastasis, higher TNM stage, and shorter overall survival. Further study indicated that CDK10 inhibited the migration and invasion abilities with no impact on the proliferation of lung adenocarcinoma cells. Mechanistically, CDK10 could bind to and promote the degradation of ETS2, a transcription factor for C-RAF and MMP2/9, thereby inactivating the downstream c-Raf/p-MEK/p-ERK pathway that drives epithelial-mesenchymal transition and impairing the expression of matrix metalloproteinases involved in cell invasion. In addition, the p-MEK/p-ERK pathway conducts a positive feedback regulation on the expression of ETS2. Knockdown of CDK10 in human lung adenocarcinoma cells significantly promoted the formation of metastatic foci in lungs in a xenograft mouse model. In conclusion, CDK10 suppresses metastasis of lung adenocarcinoma by disrupting the ETS2/c-Raf/p-MEK/p-ERK/ETS2 signaling and MMP2/9, providing a new therapeutic target for the treatment of lung adenocarcinoma with metastasis.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Zhao
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruzetuoheti Yiminniyaze
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ning Zhu
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Gulinuer Wumaier
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwen Xia
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Dong
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Daibing Zhou
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chengwei Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Youzhi Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
7
|
Transcription associated cyclin-dependent kinases as therapeutic targets for prostate cancer. Oncogene 2022; 41:3303-3315. [PMID: 35568739 PMCID: PMC9187515 DOI: 10.1038/s41388-022-02347-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 11/08/2022]
Abstract
Transcriptional deregulation has emerged as a hallmark of several cancer types. In metastatic castration-resistant prostate cancer, a stage in which systemic androgen deprivation therapies fail to show clinical benefit, transcriptional addiction to the androgen receptor is maintained in most patients. This has led to increased efforts to find novel therapies that prevent oncogenic transactivation of the androgen receptor. In this context, a group of druggable protein kinases, known as transcription associated cyclin-dependent kinases (tCDKs), show great potential as therapeutic targets. Despite initial reservations about targeting tCDKs due to their ubiquitous and prerequisite nature, preclinical studies showed that selectively inhibiting such kinases could provide sufficient therapeutic window to exert antitumour effects in the absence of systemic toxicity. As a result, several highly specific inhibitors are currently being trialled in solid tumours, including prostate cancer. This article summarises the roles of tCDKs in regulating gene transcription and highlights rationales for their targeting in prostate cancer. It provides an overview of the most recent developments in this therapeutic area, including the most recent clinical advances, and discusses the utility of tCDK inhibitors in combination with established cancer agents.
Collapse
|
8
|
Shi Z, Tian L, Qiang T, Li J, Xing Y, Ren X, Liu C, Liang C. From Structure Modification to Drug Launch: A Systematic Review of the Ongoing Development of Cyclin-Dependent Kinase Inhibitors for Multiple Cancer Therapy. J Med Chem 2022; 65:6390-6418. [PMID: 35485642 DOI: 10.1021/acs.jmedchem.1c02064] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we discuss more than 50 cyclin-dependent kinase (CDK) inhibitors that have been approved or have undergone clinical trials and their therapeutic application in multiple cancers. This review discusses the design strategies, structure-activity relationships, and efficacy performances of these selective or nonselective CDK inhibitors. The theoretical basis of early broad-spectrum CDK inhibitors is similar to the scope of chemotherapy, but because their toxicity is greater than the benefit, there is no clinical therapeutic window. The notion that selective CDK inhibitors have a safer therapeutic potential than pan-CDK inhibitors has been widely recognized during the research process. Four CDK4/6 inhibitors have been approved for the treatment of breast cancer or for prophylactic administration during chemotherapy to protect bone marrow and immune system function. Furthermore, the emerging strategies in the field of CDK inhibitors are summarized briefly, and CDKs continue to be widely pursued as emerging anticancer drug targets for drug discovery.
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi 830002, P. R. China
| | - Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yue Xing
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, P. R. China
| | - Chang Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Zhuhai 519030, P. R. China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| |
Collapse
|
9
|
Düster R, Ji Y, Pan KT, Urlaub H, Geyer M. Functional characterization of the human Cdk10/Cyclin Q complex. Open Biol 2022; 12:210381. [PMID: 35291876 PMCID: PMC8924752 DOI: 10.1098/rsob.210381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are key players in cell cycle regulation and transcription. The CDK-family member Cdk10 is important for neural development and can act as a tumour suppressor, but the underlying molecular mechanisms are largely unknown. Here, we provide an in-depth analysis of Cdk10 substrate specificity and function. Using recombinant Cdk10/CycQ protein complexes, we characterize RNA pol II CTD, c-MYC and RB1 as in vitro protein substrates. Using an analogue-sensitive mutant kinase, we identify 89 different Cdk10 phosphosites in HEK cells originating from 66 different proteins. Among these, proteins involved in cell cycle, translation, stress response, growth signalling, as well as rRNA, and mRNA transcriptional regulation, are found. Of a set of pan-selective CDK- and Cdk9-specific inhibitors tested, all inhibited Cdk10/CycQ at least five times weaker than their proposed target kinases. We also identify Cdk10 as an in vitro substrate of Cdk1 and Cdk5 at multiple sites, allowing for a potential cross-talk between these CDKs. With this functional characterization, Cdk10 adopts a hybrid position in both cell cycle and transcriptional regulation.
Collapse
Affiliation(s)
- Robert Düster
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Yanlong Ji
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, 37077 Göttingen, Germany,Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany,Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Kuan-Ting Pan
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany,Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, 37077 Göttingen, Germany,Institute of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
10
|
Syahirah R, Hsu AY, Deng Q. A curious case of cyclin‐dependent kinases in neutrophils. J Leukoc Biol 2022; 111:1057-1068. [PMID: 35188696 PMCID: PMC9035055 DOI: 10.1002/jlb.2ru1021-573r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are terminally differentiated, short-lived white blood cells critical for innate immunity. Although cyclin-dependent kinases (CDKs) are typically related to cell cycle progression, increasing evidence has shown that they regulate essential functions of neutrophils. This review highlights the roles of CDKs and their partners, cyclins, in neutrophils, outside of cell cycle regulation. CDK1-10 and several cyclins are expressed in neutrophils, albeit at different levels. Observed phenotypes associated with specific inhibition or genetic loss of CDK2 indicate its role in modulating neutrophil migration. CDK4 and 6 regulate neutrophil extracellular traps (NETs) formation, while CDK5 regulates neutrophil degranulation. CDK7 and 9 are critical in neutrophil apoptosis, contributing to inflammation resolution. In addition to the CDKs that regulate mature neutrophil functions, cyclins are essential in hematopoiesis and granulopoiesis. The pivotal roles of CDKs in neutrophils present an untapped potential in targeting CDKs for treating neutrophil-dominant inflammatory diseases and understanding the regulation of the neutrophil life cycle.
Collapse
Affiliation(s)
- Ramizah Syahirah
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
| | - Alan Y. Hsu
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
- Department of Pathology Harvard Medical School Boston Massachusetts USA
- Department of Laboratory Medicine The Stem Cell Program, Boston Children's Hospital Boston Massachusetts USA
| | - Qing Deng
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
- Purdue Institute of Inflammation Immunology and Infectious Disease, Purdue University West Lafayette Indiana USA
- Purdue University Center for Cancer Research, Purdue University West Lafayette Indiana USA
| |
Collapse
|
11
|
Abraham SP, Nita A, Krejci P, Bosakova M. Cilia kinases in skeletal development and homeostasis. Dev Dyn 2021; 251:577-608. [PMID: 34582081 DOI: 10.1002/dvdy.426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Primary cilia are dynamic compartments that regulate multiple aspects of cellular signaling. The production, maintenance, and function of cilia involve more than 1000 genes in mammals, and their mutations disrupt the ciliary signaling which manifests in a plethora of pathological conditions-the ciliopathies. Skeletal ciliopathies are genetic disorders affecting the development and homeostasis of the skeleton, and encompass a broad spectrum of pathologies ranging from isolated polydactyly to lethal syndromic dysplasias. The recent advances in forward genetics allowed for the identification of novel regulators of skeletogenesis, and revealed a growing list of ciliary proteins that are critical for signaling pathways implicated in bone physiology. Among these, a group of protein kinases involved in cilia assembly, maintenance, signaling, and disassembly has emerged. In this review, we summarize the functions of cilia kinases in skeletal development and disease, and discuss the available and upcoming treatment options.
Collapse
Affiliation(s)
- Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
12
|
Robert T, Dock-Bregeon AC, Colas P. Functional characterization of CDK10 and cyclin M truncated variants causing severe developmental disorders. Mol Genet Genomic Med 2021; 9:e1782. [PMID: 34369103 PMCID: PMC8580092 DOI: 10.1002/mgg3.1782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/02/2021] [Accepted: 07/21/2021] [Indexed: 12/04/2022] Open
Abstract
Background CDK10 is a poorly known cyclin M (CycM)‐dependent kinase. Loss‐of‐function mutations in the genes encoding CycM or CDK10 cause, respectively, STAR or Al Kaissi syndromes, which present a constellation of malformations and dysfunctions. Most reported mutations abolish gene expression, but two mutations found in 3’ exons could allow the expression of CDK10 and CycM truncated variants. Methods We built a structural model that predicted a preserved ability of both variants to form a CDK10/CycM heterodimer. Hence, we functionally characterized these two truncated variants by determining their capacity to heterodimerize and form an active protein kinase when expressed in insect cells, by examining their two‐hybrid interaction profiles when expressed in yeast, and by observing their expression level and stability when expressed in human cells. Results Both truncated variants retain their ability to form a CDK10/CycM heterodimer. While the CycM variant partially activates CDK10 activity in vitro, the CDK10 variant remains surprisingly inactive. Expression in human cells revealed that the CDK10 and CycM variants are strongly and partially degraded by the proteasome, respectively. Conclusion Our results point to a total loss of CDK10/CycM activity in the Al Kaissi patient and a partial loss in the STAR patients.
Collapse
Affiliation(s)
- Thomas Robert
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France
| | - Anne-Catherine Dock-Bregeon
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France
| | - Pierre Colas
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université/CNRS, Roscoff, France
| |
Collapse
|
13
|
Bazzi ZA, Tai IT. CDK10 in Gastrointestinal Cancers: Dual Roles as a Tumor Suppressor and Oncogene. Front Oncol 2021; 11:655479. [PMID: 34277407 PMCID: PMC8278820 DOI: 10.3389/fonc.2021.655479] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
Cyclin-dependent kinase 10 (CDK10) is a CDC2-related serine/threonine kinase involved in cellular processes including cell proliferation, transcription regulation and cell cycle regulation. CDK10 has been identified as both a candidate tumor suppressor in hepatocellular carcinoma, biliary tract cancers and gastric cancer, and a candidate oncogene in colorectal cancer (CRC). CDK10 has been shown to be specifically involved in modulating cancer cell proliferation, motility and chemosensitivity. Specifically, in CRC, it may represent a viable biomarker and target for chemoresistance. The development of therapeutics targeting CDK10 has been hindered by lack a specific small molecule inhibitor for CDK10 kinase activity, due to a lack of a high throughput screening assay. Recently, a novel CDK10 kinase activity assay has been developed, which will aid in the development of small molecule inhibitors targeting CDK10 activity. Discovery of a small molecular inhibitor for CDK10 would facilitate further exploration of its biological functions and affirm its candidacy as a therapeutic target, specifically for CRC.
Collapse
Affiliation(s)
- Zainab A Bazzi
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Canada's Michael Smith Genome Sciences Centre, British Columbia (BC) Cancer, Vancouver, BC, Canada
| | - Isabella T Tai
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Canada's Michael Smith Genome Sciences Centre, British Columbia (BC) Cancer, Vancouver, BC, Canada
| |
Collapse
|
14
|
Etman AM, Abdel Mageed SS, Ali MA, El Hassab MAEM. Cyclin-Dependent Kinase as a Novel Therapeutic Target: An Endless Story. CURRENT CHEMICAL BIOLOGY 2021; 15:139-162. [DOI: 10.2174/2212796814999201123194016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 09/02/2023]
Abstract
Cyclin-Dependent Kinases (CDKs) are a family of enzymes that, along with their Cyclin
partners, play a crucial role in cell cycle regulation at many biological functions such as proliferation,
differentiation, DNA repair, and apoptosis. Thus, they are tightly regulated by a number of inhibitory
and activating enzymes. Deregulation of these kinases’ activity either by amplification,
overexpression or mutation of CDKs or Cyclins leads to uncontrolled proliferation of cancer cells.
Hyperactivity of these kinases has been reported in a wide variety of human cancers. Hence, CDKs
have been established as one of the most attractive pharmacological targets in the development of
promising anticancer drugs. The elucidated structural features and the well-characterized molecular
mechanisms of CDKs have been the guide in designing inhibitors to these kinases. Yet, they remain
a challenging therapeutic class as they share conserved structure similarity in their active site.
Several inhibitors have been discovered from natural sources or identified through high throughput
screening and rational drug design approaches. Most of these inhibitors target the ATP binding
pocket, therefore, they suffer from a number of limitations. Here, a growing number of ATP noncompetitive
peptides and small molecules has been reported.
Collapse
Affiliation(s)
- Ahmed Mohamed Etman
- Department of Pharmacology, Faculty of Pharmacy, Tanta University, Tanta, 31111,Egypt
| | - Sherif Sabry Abdel Mageed
- Department of Pharmacology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| | - Mohamed Ahmed Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| | - Mahmoud Abd El Monem El Hassab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| |
Collapse
|
15
|
Sun M, Gao J, Meng T, Liu S, Chen H, Liu Q, Xing X, Zhao C, Luo Y. Cyclin G2 upregulation impairs migration, invasion, and network formation through RNF123/Dvl2/JNK signaling in the trophoblast cell line HTR8/SVneo, a possible role in preeclampsia. FASEB J 2020; 35:e21169. [PMID: 33205477 DOI: 10.1096/fj.202001559rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022]
Abstract
Disruption of extravillous trophoblast (EVT) migration and invasion is considered to be responsible for pathological placentation in preeclampsia (PE). Cyclin G2 (CCNG2) is an atypical cyclin that inhibits cell cycle progression. However, its biological function and underlying molecular mechanism in PE are poorly understood. In this study, clinical data demonstrated that CCNG2 was significantly upregulated in PE placenta and associated with invasive EVT dysfunction. Additionally, Ccng2 knockout led to an attenuation of PE-like symptoms in the PE mouse model produced via treatment with NG-nitro-L-arginine methyl ester (L-NAME). In vitro, CCNG2 inhibited the migration, invasion, and endothelial-like network formation of human trophoblast cell line HTR8/SVneo. Mechanically, CCNG2 suppressed JNK-dependent Wnt/PCP signaling and its downstream indicators including epithelial-to-mesenchymal transition (EMT) markers and matrix metalloproteinases (MMPs) via promoting the polyubiquitination degradation of dishevelled 2 (Dvl2) protein in HTR8/SVneo cells. We also discovered that the E3 ligase Ring finger protein 123 (RNF123), as a novel CCNG2 target among HTR8/SVneo cells, interacted with Dvl2 and participated in CCNG2-induced polyubiquitination degradation of Dvl2. Moreover, we verified that the treatment of HTR8/SVneo cells with RNF123-specific siRNA improved polyubiquitination-induced degradation of Dvl2 and the activity of Wnt/PCP-JNK signaling mediated by CCNG2. Taken together, our results reveal that the CCNG2/RNF123/Dvl2/JNK axis may be involved in the pathogenesis and progression of PE through trophoblastic cell function modulation, thus probably providing us with new therapeutic strategies for PE treatment.
Collapse
Affiliation(s)
- Manni Sun
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Tao Meng
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, PR China
| | - Shenghuan Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Haiying Chen
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, PR China
| | - Qi Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Chenyang Zhao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, PR China
| |
Collapse
|
16
|
Davoulou P, Aggeletopoulou I, Panagoulias I, Georgakopoulos T, Mouzaki A. Transcription factor Ets-2 regulates the expression of key lymphotropic factors. Mol Biol Rep 2020; 47:7871-7881. [PMID: 33006713 DOI: 10.1007/s11033-020-05865-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/25/2020] [Indexed: 01/20/2023]
Abstract
Transcription factor Ets-2 downregulates the expression of cytokine genes and HIV-1 in resting T-cells. Herein, we studied whether Ets-2 regulates the expression of lymphotropic factors (LFs) NFAT2, NF-κΒ/p65, c-Jun, c-Fos, which regulate the activation/differentiation of T-cells, and kinase CDK10, which controls Ets-2 degradation and repression activity. In silico analysis revealed Ets-2 binding sites on the promoters of NFAT2, c-Jun, c-Fos. The T-cell lines Jurkat (models T-cell signaling/activation) and H938 (contains the HIV-1-LTR) were transfected with an Ets-2 overexpressing vector, in the presence/absence of mitogens. mRNA and protein levels were assessed by qPCR and Western immunoblotting, respectively. Ets-2 overexpression in unstimulated Jurkat increased NFAT2 and c-Jun mRNA/protein, c-Fos mRNA and NF-κΒ/p65 protein, and decreased CDK10 protein. In unstimulated H938, Ets-2 upregulated NFAT2, c-Jun and CDK10 mRNA/protein and NF-κΒ/p65 protein. In stimulated Jurkat, Ets-2 increased NFAT2, c-Jun and c-Fos mRNA/protein and decreased CDK10 mRNA/protein. In stimulated H938 Ets-2 increased NFAT2, c-Jun and c-Fos protein and reduced CDK10 protein levels. Furthermore, Ets-2 overexpression modulated the expression of pro- and anti-apoptotic genes in both cell lines. Ets-2 upregulates the expression of key LFs involved in the activation of cytokine genes or HIV-1 in T-cells, either through its physical interaction with gene promoters or through its involvement in signaling pathways that directly impact their expression. The effect of Ets-2 on CDK10 expression in H938 vs Jurkat cells dictates that, additionally to Ets-2 degradation, CDK10 may facilitate Ets-2 repression activity in cells carrying the HIV-1-LTR, contributing thus to the regulation of HIV latency in virus-infected T-cells.
Collapse
Affiliation(s)
- Panagiota Davoulou
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece
| | - Ioanna Aggeletopoulou
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece
| | - Ioannis Panagoulias
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece
| | - Tassos Georgakopoulos
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26500, Patras, Greece.
| |
Collapse
|
17
|
Juric V, Murphy B. Cyclin-dependent kinase inhibitors in brain cancer: current state and future directions. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:48-62. [PMID: 35582046 PMCID: PMC9094053 DOI: 10.20517/cdr.2019.105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/11/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
Cyclin-dependent kinases (CDKs) are important regulatory enzymes in the normal physiological processes that drive cell-cycle transitions and regulate transcription. Virtually all cancers harbour genomic alterations that lead to the constitutive activation of CDKs, resulting in the proliferation of cancer cells. CDK inhibitors (CKIs) are currently in clinical use for the treatment of breast cancer, combined with endocrine therapy. In this review, we describe the potential of CKIs for the treatment of cancer with specific focus on glioblastoma (GBM), the most common and aggressive primary brain tumour in adults. Despite intense effort to combat GBM with surgery, radiation and temozolomide chemotherapy, the median survival for patients is 15 months and the majority of patients experience disease recurrence within 6-8 months of treatment onset. Novel therapeutic approaches are urgently needed for both newly diagnosed and recurrent GBM patients. In this review, we summarise the current preclinical and clinical findings emphasising that CKIs could represent an exciting novel approach for GBM treatment.
Collapse
Affiliation(s)
- Viktorija Juric
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02, Ireland
| | - Brona Murphy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02, Ireland
| |
Collapse
|
18
|
Tibes R, Bogenberger JM. Transcriptional Silencing of MCL-1 Through Cyclin-Dependent Kinase Inhibition in Acute Myeloid Leukemia. Front Oncol 2019; 9:1205. [PMID: 31921615 PMCID: PMC6920180 DOI: 10.3389/fonc.2019.01205] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most common adult acute leukemia. Survival remains poor, despite decades of scientific advances. Cytotoxic induction chemotherapy regimens are standard-of-care for most patients. Many investigations have highlighted the genomic heterogeneity of AML, and several new targeted therapeutic options have recently been approved. Additional novel therapies are showing promising clinical results and may rapidly transform the therapeutic landscape of AML. Despite the emerging clinical success of B-cell lymphoma (BCL)-2 targeting in AML and a large body of preclinical data supporting myeloid leukemia cell (MCL)-1 as an attractive therapeutic target for AML, MCL-1 targeting remains relatively unexplored, although novel MCL-1 inhibitors are under clinical investigation. Inhibitors of cyclin-dependent kinases (CDKs) involved in the regulation of transcription, CDK9 in particular, are being investigated in AML as a strategy to target MCL-1 indirectly. In this article, we review the basis for CDK inhibition in oncology with a focus on relevant preclinical mechanism-of-action studies of CDK9 inhibitors in the context of their therapeutic potential specifically in AML.
Collapse
Affiliation(s)
- Raoul Tibes
- NYU School of Medicine & Perlmutter Cancer Center, NYU Langone Health, New York, NY, United States
| | | |
Collapse
|
19
|
Li B, Li Z, Lu C, Chang L, Zhao D, Shen G, Kusakabe T, Xia Q, Zhao P. Heat Shock Cognate 70 Functions as A Chaperone for the Stability of Kinetochore Protein CENP-N in Holocentric Insect Silkworms. Int J Mol Sci 2019; 20:ijms20235823. [PMID: 31756960 PMCID: PMC6929194 DOI: 10.3390/ijms20235823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
The centromere, in which kinetochore proteins are assembled, plays an important role in the accurate congression and segregation of chromosomes during cell mitosis. Although the function of the centromere and kinetochore is conserved from monocentric to holocentric, the DNA sequences of the centromere and components of the kinetochore are varied among different species. Given the lack of core centromere protein A (CENP-A) and CENP-C in the lepidopteran silkworm Bombyx mori, which possesses holocentric chromosomes, here we investigated the role of CENP-N, another important member of the centromere protein family essential for kinetochore assembly. For the first time, cellular localization and RNA interference against CENP-N have confirmed its kinetochore function in silkworms. To gain further insights into the regulation of CENP-N in the centromere, we analyzed the affinity-purified complex of CENP-N by mass spectrometry and identified 142 interacting proteins. Among these factors, we found that the chaperone protein heat shock cognate 70 (HSC70) is able to regulate the stability of CENP-N by prohibiting ubiquitin-proteasome pathway, indicating that HSC70 could control cell cycle-regulated degradation of CENP-N at centromeres. Altogether, the present work will provide a novel clue to understand the regulatory mechanism for the kinetochore activity of CENP-N during the cell cycle.
Collapse
Affiliation(s)
- Bingqian Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Zhiqing Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
- Correspondence:
| | - Chenchen Lu
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Li Chang
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka 819-0395, Japan;
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (B.L.); (C.L.); (L.C.); (D.Z.); (G.S.); (Q.X.); (P.Z.)
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
20
|
Association of Cyclin Dependent Kinase 10 and Transcription Factor 2 during Human Corneal Epithelial Wound Healing in vitro model. Sci Rep 2019; 9:11802. [PMID: 31413335 PMCID: PMC6694192 DOI: 10.1038/s41598-019-48092-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/25/2019] [Indexed: 11/28/2022] Open
Abstract
Proper wound healing is dynamic in order to maintain the corneal integrity and transparency. Impaired or delayed corneal epithelial wound healing is one of the most frequently observed ocular defect and difficult to treat. Cyclin dependen kinase (cdk), a known cell cycle regulator, required for proper proliferating and migration of cell. We therefore investigated the role of cell cycle regulator cdk10, member of cdk family and its functional association with transcriptional factor (ETS2) at active phase of corneal epithelial cell migration. Our data showed that cdk10 was associated with ETS2, while its expression was upregulated at the active phase (18 hours) of cell migration and gradually decrease as the wound was completely closed. Topical treatment with anti-cdk10 and ETS2 antibodies delayed the wound closure time at higest concentration (10 µg/ml) compared to control. Further, our results also showed increased mRNA expression of cdk10 and ETS2 at active phase of migration at approximately 2 fold. Collectively, our data reveals that cdk10 and ETS2 efficiently involved during corneal wound healing. Further studies are warranted to better understand the mechanism and safety of topical cdk10 and ETS2 proteins in corneal epithelial wound-healing and its potential role for human disease treatment.
Collapse
|
21
|
Dai Y, Jin F, Wu W, Kumar SK. Cell cycle regulation and hematologic malignancies. BLOOD SCIENCE 2019; 1:34-43. [PMID: 35402801 PMCID: PMC8975093 DOI: 10.1097/bs9.0000000000000009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/01/2019] [Indexed: 02/05/2023] Open
Abstract
A complex network precisely regulates the cell cycle through the G1, S, G2, and M phases and is the basis for cell division under physiological and pathological conditions. On the one hand, the transition from one phase to another as well as the progression within each phase is driven by the specific cyclin-dependent kinases (CDKs; e.g., CDK1, CDK2, CDK4, CDK6, and CDK7), together with their exclusive partner cyclins (e.g., cyclin A1, B1, D1-3, and E1). On the other hand, these phases are negatively regulated by endogenous CDK inhibitors such as p16ink4a, p18ink4c, p19ink4d, p21cip1, and p27kip1. In addition, several checkpoints control the commitment of cells to replicate DNA and undergo mitosis, thereby avoiding the passage of genomic errors to daughter cells. CDKs are often constitutively activated in cancer, which is characterized by the uncontrolled proliferation of transformed cells, due to genetic and epigenetic abnormalities in the genes involved in the cell cycle. Moreover, several oncogenes and defective tumor suppressors promote malignant changes by stimulating cell cycle entry and progression or disrupting DNA damage responses, including the cell cycle checkpoints, DNA repair mechanisms, and apoptosis. Thus, genes or proteins related to cell cycle regulation remain the main targets of interest in the treatment of various cancer types, including hematologic malignancies. In this context, advances in the understanding of the cell cycle regulatory machinery provide a basis for the development of novel therapeutic approaches. The present article summarizes the pathways as well as their genetic and epigenetic alterations that regulate the cell cycle; moreover, it discusses the various approved or potential therapeutic targets associated with the cell cycle, focusing on hematologic malignancies.
Collapse
Affiliation(s)
- Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fengyan Jin
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Wu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | | |
Collapse
|
22
|
Guen VJ, Gamble C, Lees JA, Colas P. The awakening of the CDK10/Cyclin M protein kinase. Oncotarget 2018; 8:50174-50186. [PMID: 28178678 PMCID: PMC5564841 DOI: 10.18632/oncotarget.15024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) play important roles in the control of fundamental cellular processes. Some of the most characterized CDKs are considered to be pertinent therapeutic targets for cancers and other diseases, and first clinical successes have recently been obtained with CDK inhibitors. Although discovered in the pre-genomic era, CDK10 attracted little attention until it was identified as a major determinant of resistance to endocrine therapy for breast cancer. In some studies, CDK10 has been shown to promote cell proliferation whereas other studies have revealed a tumor suppressor function. The recent discovery of Cyclin M as a CDK10 activating partner has allowed the unveiling of a protein kinase activity against the ETS2 oncoprotein, whose degradation is activated by CDK10/Cyclin M-mediated phosphorylation. CDK10/Cyclin M has also been shown to repress ciliogenesis and to maintain actin network architecture, through the phoshorylation of the PKN2 protein kinase and the control of RhoA stability. These findings shed light on the molecular mechanisms underlying STAR syndrome, a severe human developmental genetic disorder caused by mutations in the Cyclin M coding gene. They also pave the way to a better understanding of the role of CDK10/Cyclin M in cancer.
Collapse
Affiliation(s)
- Vincent J Guen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States of America
| | - Carly Gamble
- P2I2 Group, Protein Phosphorylation and Human Disease Laboratory, Station Biologique de Roscoff, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Roscoff, France
| | - Jacqueline A Lees
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States of America
| | - Pierre Colas
- P2I2 Group, Protein Phosphorylation and Human Disease Laboratory, Station Biologique de Roscoff, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Roscoff, France
| |
Collapse
|
23
|
Tvedte ES, Forbes AA, Logsdon JM. Retention of Core Meiotic Genes Across Diverse Hymenoptera. J Hered 2018; 108:791-806. [PMID: 28992199 DOI: 10.1093/jhered/esx062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/13/2017] [Indexed: 12/20/2022] Open
Abstract
The cellular mechanisms of meiosis are critical for proper gamete formation in sexual organisms. Functional studies in model organisms have identified genes essential for meiosis, yet the extent to which this core meiotic machinery is conserved across non-model systems is not fully understood. Moreover, it is unclear whether deviation from canonical modes of sexual reproduction is accompanied by modifications in the genetic components involved in meiosis. We used a robust approach to identify and catalogue meiosis genes in Hymenoptera, an insect order typically characterized by haplodiploid reproduction. Using newly available genome data, we searched for 43 genes involved in meiosis in 18 diverse hymenopterans. Seven of eight genes with roles specific to meiosis were found across a majority of surveyed species, suggesting the preservation of core meiotic machinery in haplodiploid hymenopterans. Phylogenomic analyses of the inventory of meiosis genes and the identification of shared gene duplications and losses provided support for the grouping of species within Proctotrupomorpha, Ichneumonomorpha, and Aculeata clades, along with a paraphyletic Symphyta. The conservation of meiosis genes across Hymenoptera provides a framework for studying transitions between reproductive modes in this insect group.
Collapse
Affiliation(s)
- Eric S Tvedte
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Andrew A Forbes
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - John M Logsdon
- Department of Biology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
24
|
Yu J, Zhang W, Lu B, Qian H, Tang H, Zhu Z, Yuan X, Ren P. miR-433 accelerates acquired chemoresistance of gallbladder cancer cells by targeting cyclin M. Oncol Lett 2017; 15:3305-3312. [PMID: 29435072 DOI: 10.3892/ol.2017.7708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
Resistance to chemotherapy is associated with dismal prognosis in patients with gallbladder cancer. Cyclin-dependent kinase 10 (CDK10) influences the chemosensitivity of gallbladder cancer cells, and cyclin M is the activating factor and binding partner of CDK10. To determine the effect of CDK10 or cyclin M overexpression on chemosensitivity, gemcitabine-resistant (GR) subclones were established from CDK10 or cyclin M stable transfectants. Stable overexpression of CDK10 increased the sensitivity to gemcitabine in non-resistant cells and did not further increase the sensitivity to gemcitabine in the GR subclones. GR subclones exhibited a significantly decreased expression of cyclin M while maintaining the expression levels of CDK10, compared with the non-resistant cells. MicroRNA (miR)-433 was identified as a candidate factor involved in the mechanism of the downregulation of M cyclin in GR subclones. Luciferase assays confirmed the interaction between miR-433 and the 3' untranslated region (3'UTR) of cyclin M. Additionally, ectopic expression of miR-433 significantly decreased the expression of cyclin M. Finally, increased expression of circulating miR-433 was associated with poor outcome of chemotherapy. The results of the present study suggest that miR-433 is a potential biomarker for evaluating chemosensitivity in gallbladder cancer.
Collapse
Affiliation(s)
- Jianhua Yu
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Weiguang Zhang
- Department of Molecular Medicine and Clinical Laboratory, Shaoxing Second Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Baochun Lu
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Hongwei Qian
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Haijun Tang
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Zhiyang Zhu
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Xinggui Yuan
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Peitu Ren
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
25
|
Carrero ZI, Kollareddy M, Chauhan KM, Ramakrishnan G, Martinez LA. Mutant p53 protects ETS2 from non-canonical COP1/DET1 dependent degradation. Oncotarget 2017; 7:12554-67. [PMID: 26871468 PMCID: PMC4914304 DOI: 10.18632/oncotarget.7275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/20/2016] [Indexed: 01/27/2023] Open
Abstract
Mutations in the tumor suppressor gene TP53 contribute to the development of approximately half of all human cancers. One mechanism by which mutant p53 (mtp53) acts is through interaction with other transcription factors, which can either enhance or repress the transcription of their target genes. Mtp53 preferentially interacts with the erythroblastosis virus E26 oncogene homologue 2 (ETS2), an ETS transcription factor, and increases its protein stability. To study the mechanism underlying ETS2 degradation, we knocked down ubiquitin ligases known to interact with ETS2. We observed that knockdown of the constitutive photomorphogenesis protein 1 (COP1) and its binding partner De-etiolated 1 (DET1) significantly increased ETS2 stability, and conversely, their ectopic expression led to increased ETS2 ubiquitination and degradation. Surprisingly, we observed that DET1 binds to ETS2 independently of COP1, and we demonstrated that mutation of multiple sites required for ETS2 degradation abrogated the interaction between DET1 and ETS2. Furthermore, we demonstrate that mtp53 prevents the COP1/DET1 complex from ubiquitinating ETS2 and thereby marking it for destruction. Mechanistically, we show that mtp53 destabilizes DET1 and also disrupts the DET1/ETS2 complex thereby preventing ETS2 degradation. Our study reveals a hitherto unknown function in which DET1 mediates the interaction with the substrates of its cognate ubiquitin ligase complex and provides an explanation for the ability of mtp53 to protect ETS2.
Collapse
Affiliation(s)
- Zunamys I Carrero
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Madhusudhan Kollareddy
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216, USA.,Cancer Institute, University of Mississippi, Jackson, MS 39216, USA
| | - Krishna M Chauhan
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216, USA.,Cancer Institute, University of Mississippi, Jackson, MS 39216, USA
| | - Gopalakrishnan Ramakrishnan
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216, USA.,Cancer Institute, University of Mississippi, Jackson, MS 39216, USA
| | - Luis A Martinez
- Department of Pathology and Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
26
|
Windpassinger C, Piard J, Bonnard C, Alfadhel M, Lim S, Bisteau X, Blouin S, Ali NB, Ng AYJ, Lu H, Tohari S, Talib SZA, van Hul N, Caldez MJ, Van Maldergem L, Yigit G, Kayserili H, Youssef SA, Coppola V, de Bruin A, Tessarollo L, Choi H, Rupp V, Roetzer K, Roschger P, Klaushofer K, Altmüller J, Roy S, Venkatesh B, Ganger R, Grill F, Ben Chehida F, Wollnik B, Altunoglu U, Al Kaissi A, Reversade B, Kaldis P. CDK10 Mutations in Humans and Mice Cause Severe Growth Retardation, Spine Malformations, and Developmental Delays. Am J Hum Genet 2017; 101:391-403. [PMID: 28886341 DOI: 10.1016/j.ajhg.2017.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/01/2017] [Indexed: 10/18/2022] Open
Abstract
In five separate families, we identified nine individuals affected by a previously unidentified syndrome characterized by growth retardation, spine malformation, facial dysmorphisms, and developmental delays. Using homozygosity mapping, array CGH, and exome sequencing, we uncovered bi-allelic loss-of-function CDK10 mutations segregating with this disease. CDK10 is a protein kinase that partners with cyclin M to phosphorylate substrates such as ETS2 and PKN2 in order to modulate cellular growth. To validate and model the pathogenicity of these CDK10 germline mutations, we generated conditional-knockout mice. Homozygous Cdk10-knockout mice died postnatally with severe growth retardation, skeletal defects, and kidney and lung abnormalities, symptoms that partly resemble the disease's effect in humans. Fibroblasts derived from affected individuals and Cdk10-knockout mouse embryonic fibroblasts (MEFs) proliferated normally; however, Cdk10-knockout MEFs developed longer cilia. Comparative transcriptomic analysis of mutant and wild-type mouse organs revealed lipid metabolic changes consistent with growth impairment and altered ciliogenesis in the absence of CDK10. Our results document the CDK10 loss-of-function phenotype and point to a function for CDK10 in transducing signals received at the primary cilia to sustain embryonic and postnatal development.
Collapse
|
27
|
Lin YJ, Liao WL, Wang CH, Tsai LP, Tang CH, Chen CH, Wu JY, Liang WM, Hsieh AR, Cheng CF, Chen JH, Chien WK, Lin TH, Wu CM, Liao CC, Huang SM, Tsai FJ. Association of human height-related genetic variants with familial short stature in Han Chinese in Taiwan. Sci Rep 2017; 7:6372. [PMID: 28744006 PMCID: PMC5527114 DOI: 10.1038/s41598-017-06766-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
Human height can be described as a classical and inherited trait model. Genome-wide association studies (GWAS) have revealed susceptible loci and provided insights into the polygenic nature of human height. Familial short stature (FSS) represents a suitable trait for investigating short stature genetics because disease associations with short stature have been ruled out in this case. In addition, FSS is caused only by genetically inherited factors. In this study, we explored the correlations of FSS risk with the genetic loci associated with human height in previous GWAS, alone and cumulatively. We systematically evaluated 34 known human height single nucleotide polymorphisms (SNPs) in relation to FSS in the additive model (p < 0.00005). A cumulative effect was observed: the odds ratios gradually increased with increasing genetic risk score quartiles (p < 0.001; Cochran-Armitage trend test). Six affected genes-ZBTB38, ZNF638, LCORL, CABLES1, CDK10, and TSEN15-are located in the nucleus and have been implicated in embryonic, organismal, and tissue development. In conclusion, our study suggests that 13 human height GWAS-identified SNPs are associated with FSS risk both alone and cumulatively.
Collapse
Affiliation(s)
- Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Center for Personalized Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chung-Hsing Wang
- Children's Hospital of China Medical University, Taichung, Taiwan
| | - Li-Ping Tsai
- Department of Pediatrics, Buddhist Tzu Chi General Hospital, Taipei Branch, Taipei, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chien-Hsiun Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jer-Yuarn Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Miin Liang
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Ai-Ru Hsieh
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Chi-Fung Cheng
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Jin-Hua Chen
- Biostatistics Center and School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Wen-Kuei Chien
- National Applied Research Laboratories, National Center for High-performance Computing, Hsinchu, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Ming Wu
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan. .,School of Chinese Medicine, China Medical University, Taichung, Taiwan. .,Children's Hospital of China Medical University, Taichung, Taiwan. .,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan.
| |
Collapse
|
28
|
Weiswald LB, Hasan MR, Wong JCT, Pasiliao CC, Rahman M, Ren J, Yin Y, Gusscott S, Vacher S, Weng AP, Kennecke HF, Bièche I, Schaeffer DF, Yapp DT, Tai IT. Inactivation of the Kinase Domain of CDK10 Prevents Tumor Growth in a Preclinical Model of Colorectal Cancer, and Is Accompanied by Downregulation of Bcl-2. Mol Cancer Ther 2017; 16:2292-2303. [PMID: 28663269 DOI: 10.1158/1535-7163.mct-16-0666] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/15/2017] [Accepted: 06/23/2017] [Indexed: 11/16/2022]
Abstract
Cyclin-dependent kinase 10 (CDK10), a CDC2-related kinase, is highly expressed in colorectal cancer. Its role in the pathogenesis of colorectal cancer is unknown. This study examines the function of CDK10 in colorectal cancer, and demonstrates its role in suppressing apoptosis and in promoting tumor growth in vitro and in vivo Modulation of CDK10 expression in colorectal cancer cell lines demonstrates that CDK10 promotes cell growth, reduces chemosensitivity and inhibits apoptosis by upregulating the expression of Bcl-2. This effect appears to depend on its kinase activity, as kinase-defective mutant colorectal cancer cell lines have an exaggerated apoptotic response and reduced proliferative capacity. In vivo, inhibiting CDK10 in colorectal cancer following intratumoral injections of lentivirus-mediated CDK10 siRNA in a patient-derived xenograft mouse model demonstrated its efficacy in suppressing tumor growth. Furthermore, using a tissue microarray of human colorectal cancer tissues, the potential for CDK10 to be a prognostic biomarker in colorectal cancer was explored. In tumors of individuals with colorectal cancer, high expression of CDK10 correlates with earlier relapse and shorter overall survival. The findings of this study indicate that CDK10 plays a role in the pathogenesis in colorectal cancer and may be a potential therapeutic target for treatment. Mol Cancer Ther; 16(10); 2292-303. ©2017 AACR.
Collapse
Affiliation(s)
- Louis-Bastien Weiswald
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Mohammad R Hasan
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - John C T Wong
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Clarissa C Pasiliao
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Mahbuba Rahman
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Jianhua Ren
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Yaling Yin
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Cancer Surveillance & Outcomes, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Samuel Gusscott
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Sophie Vacher
- Department of Genetics, Institute Curie, Paris, France
| | - Andrew P Weng
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Hagen F Kennecke
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Ivan Bièche
- Department of Genetics, Institute Curie, Paris, France
| | - David F Schaeffer
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald T Yapp
- Experimental Therapeutics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Isabella T Tai
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada. .,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Abstract
Over the past two decades there has been a great deal of interest in the development of inhibitors of the cyclin-dependent kinases (CDKs). This attention initially stemmed from observations that different CDK isoforms have key roles in cancer cell proliferation through loss of regulation of the cell cycle, a hallmark feature of cancer. CDKs have now been shown to regulate other processes, particularly various aspects of transcription. The early non-selective CDK inhibitors exhibited considerable toxicity and proved to be insufficiently active in most cancers. The lack of patient selection biomarkers and an absence of understanding of the inhibitory profile required for efficacy hampered the development of these inhibitors. However, the advent of potent isoform-selective inhibitors with accompanying biomarkers has re-ignited interest. Palbociclib, a selective CDK4/6 inhibitor, is now approved for the treatment of ER+/HER2- advanced breast cancer. Current developments in the field include the identification of potent and selective inhibitors of the transcriptional CDKs; these include tool compounds that have allowed exploration of individual CDKs as cancer targets and the determination of their potential therapeutic windows. Biomarkers that allow the selection of patients likely to respond are now being discovered. Drug resistance has emerged as a major hurdle in the clinic for most protein kinase inhibitors and resistance mechanism are beginning to be identified for CDK inhibitors. This suggests that the selective inhibitors may be best used combined with standard of care or other molecularly targeted agents now in development rather than in isolation as monotherapies.
Collapse
Affiliation(s)
- Steven R Whittaker
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Aurélie Mallinger
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom; Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul Workman
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom; Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul A Clarke
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, United Kingdom; Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, United Kingdom.
| |
Collapse
|
30
|
Cai Z, Liu Q. Cell Cycle Regulation in Treatment of Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:251-270. [PMID: 29282688 DOI: 10.1007/978-981-10-6020-5_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell cycle progression and cell proliferation are under precise and orchestrated control in normal cells. However, uncontrolled cell proliferation caused by aberrant cell cycle progression is a crucial characteristic of cancer. Understanding cell cycle progression and its regulation sheds light on cancer treatment. Agents targeting cell cycle regulators (such as CDKs) have been considered as promising candidates in cancer treatment. Although the first-generation pan-CDK inhibitors failed in clinical trials because of their adverse events and low efficacy, new selective CDK 4/6 inhibitors showed potent efficacy with tolerable safety in preclinical and clinical studies. Here we will review the mechanisms of cell cycle regulation and targeting key cell cycle regulators (such as CDKs) in breast cancer treatment. Particularly, we will discuss the mechanism of CDK inhibitors in disrupting cell cycle progression, the use of selective CDK4/6 inhibitors in treatment of advanced, hormone receptor (HR)-positive postmenopausal breast cancer patients, and other clinical trials that aim to extend the utilization of these agents.
Collapse
Affiliation(s)
- Zijie Cai
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, China
| | - Qiang Liu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
31
|
Oh S, Kawasaki I, Park JH, Shim YH. cdc-25.4, a Caenorhabditis elegans Ortholog of cdc25, Is Required for Male Mating Behavior. G3 (BETHESDA, MD.) 2016; 6:4127-4138. [PMID: 27770028 PMCID: PMC5144981 DOI: 10.1534/g3.116.036129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/14/2011] [Indexed: 11/18/2022]
Abstract
Cell division cycle 25 (cdc25) is an evolutionarily conserved phosphatase that promotes cell cycle progression. Among the four cdc25 orthologs in Caenorhabditis elegans, we found that cdc-25.4 mutant males failed to produce outcrossed progeny. This was not caused by defects in sperm development, but by defects in male mating behavior. The cdc-25.4 mutant males showed various defects during male mating, including contact response, backing, turning, and vulva location. Aberrant turning behavior was the most prominent defect in the cdc-25.4 mutant males. We also found that cdc-25.4 is expressed in many neuronal cells throughout development. The turning defect in cdc-25.4 mutant males was recovered by cdc-25.4 transgenic expression in neuronal cells, suggesting that cdc-25.4 functions in neurons for male mating. However, the neuronal morphology of cdc-25.4 mutant males appeared to be normal, as examined with several neuronal markers. Also, RNAi depletion of wee-1.3, a C. elegans ortholog of Wee1/Myt1 kinase, failed to suppress the mating defects of cdc-25.4 mutant males. These findings suggest that, for successful male mating, cdc-25.4 does not target cell cycles that are required for neuronal differentiation and development. Rather, cdc-25.4 likely regulates noncanonical substrates in neuronal cells.
Collapse
Affiliation(s)
- Sangmi Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ichiro Kawasaki
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae-Hyung Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yhong-Hee Shim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
32
|
Zimmermann M, Arachchige-Don APS, Donaldson MS, Patriarchi T, Horne MC. Cyclin G2 promotes cell cycle arrest in breast cancer cells responding to fulvestrant and metformin and correlates with patient survival. Cell Cycle 2016; 15:3278-3295. [PMID: 27753529 DOI: 10.1080/15384101.2016.1243189] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Definition of cell cycle control proteins that modify tumor cell resistance to estrogen (E2) signaling antagonists could inform clinical choice for estrogen receptor positive (ER+) breast cancer (BC) therapy. Cyclin G2 (CycG2) is upregulated during cell cycle arrest responses to cellular stresses and growth inhibitory signals and its gene, CCNG2, is directly repressed by E2-bound ER complexes. Our previous studies showed that blockade of HER2, PI3K and mTOR signaling upregulates CycG2 expression in HER2+ BC cells, and that CycG2 overexpression induces cell cycle arrest. Moreover, insulin and insulin-like growth factor-1 (IGF-1) receptor signaling strongly represses CycG2. Here we show that blockade of ER-signaling in MCF7 and T47D BC cell lines enhances the expression and nuclear localization of CycG2. Knockdown of CycG2 attenuated the cell cycle arrest response of E2-depleted and fulvestrant treated MCF7 cells. These muted responses were accompanied by sustained inhibitory phosphorylation of retinoblastoma (RB) protein, expression of cyclin D1, phospho-activation of ERK1/2 and MEK1/2 and expression of cRaf. Our work indicates that CycG2 can form complexes with CDK10, a CDK linked to modulation of RAF/MEK/MAPK signaling and tamoxifen resistance. We determined that metformin upregulates CycG2 and potentiates fulvestrant-induced CycG2 expression and cell cycle arrest. CycG2 knockdown blunts the enhanced anti-proliferative effect of metformin on fulvestrant treated cells. Meta-analysis of BC tumor microarrays indicates that CCNG2 expression is low in aggressive, poor-prognosis BC and that high CCNG2 expression correlates with longer periods of patient survival. Together these findings indicate that CycG2 contributes to signaling networks that limit BC.
Collapse
Affiliation(s)
- Maike Zimmermann
- a Department of Pharmacology , University of California , Davis , CA , USA.,b Department of Pharmacology , University of Iowa , Iowa City , IA , USA.,c Department of Internal Medicine , Division of Hematology and Oncology, University of California Davis , Sacramento , CA , USA
| | | | | | - Tommaso Patriarchi
- a Department of Pharmacology , University of California , Davis , CA , USA
| | - Mary C Horne
- a Department of Pharmacology , University of California , Davis , CA , USA.,b Department of Pharmacology , University of Iowa , Iowa City , IA , USA
| |
Collapse
|
33
|
Li Q, Yang L, Han K, Zhu L, Zhang Y, Ma S, Zhang K, Yang B, Guan F. Ets2 knockdown inhibits tumorigenesis in esophageal squamous cell carcinoma in vivo and in vitro. Oncotarget 2016; 7:61458-61468. [PMID: 27556183 PMCID: PMC5308664 DOI: 10.18632/oncotarget.11369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/08/2016] [Indexed: 01/13/2023] Open
Abstract
Increased expression of Ets2 is reported upregulated in esophageal squamous cell carcinoma tissue. However, the function of Ets2 in carcinogenesis of ESCC is poorly understood. Here, the rise of Ets2 was confirmed in ESCC cells and Ets2 depletion by RNA interference promotes cell apoptosis, inhibits cell proliferation, attenuates cell invasion and induces cell cycle G0/G1 arrest in vitro. Moreover, in vivo, Xenograft mouse model studies showed Ets2 knockdown inhibits tumor formation and metastasis significantly. Furthermore, Ets2 depletion inactivates the mTOR/p70S6K signaling pathway both in vitro and in vivo. Taken together, these findings strongly suggest that a critical role of Ets2 in human ESCC pathogenesis via the inactivation of the mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Qinghua Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.,School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Lu Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Kang Han
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Liqiang Zhu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, Henan Province, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Kun Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Bo Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Fangxia Guan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.,School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
34
|
Cicenas J, Kalyan K, Sorokinas A, Jatulyte A, Valiunas D, Kaupinis A, Valius M. Highlights of the Latest Advances in Research on CDK Inhibitors. Cancers (Basel) 2014; 6:2224-42. [PMID: 25349887 PMCID: PMC4276963 DOI: 10.3390/cancers6042224] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/30/2014] [Accepted: 10/14/2014] [Indexed: 11/16/2022] Open
Abstract
Uncontrolled proliferation is the hallmark of cancer and other proliferative disorders and abnormal cell cycle regulation is, therefore, common in these diseases. Cyclin-dependent kinases (CDKs) play a crucial role in the control of the cell cycle and proliferation. These kinases are frequently deregulated in various cancers, viral infections, neurodegenerative diseases, ischemia and some proliferative disorders. This led to a rigorous pursuit for small-molecule CDK inhibitors for therapeutic uses. Early efforts to block CDKs with nonselective CDK inhibitors led to little specificity and efficacy but apparent toxicity, but the recent advance of selective CDK inhibitors allowed the first successful efforts to target these kinases for the therapies of several diseases. Major ongoing efforts are to develop CDK inhibitors as monotherapies and rational combinations with chemotherapy and other targeted drugs.
Collapse
Affiliation(s)
- Jonas Cicenas
- CALIPHO Group, Swiss Institute of Bioinformatics, CMU-1, rue Michel Servet' Geneva 4 CH-1211, Switzerland.
| | | | | | | | | | - Algirdas Kaupinis
- Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius LT-08662, Lithuania.
| | - Mindaugas Valius
- Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius LT-08662, Lithuania.
| |
Collapse
|
35
|
Gupta S, Bhattacharjya S. Characterization of the near native conformational states of the SAM domain of Ste11 protein by NMR spectroscopy. Proteins 2014; 82:2957-69. [PMID: 25066357 DOI: 10.1002/prot.24652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/01/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
The sterile alpha motif or SAM domain is one of the most frequently present protein interaction modules with diverse functional attributions. SAM domain of the Ste11 protein of budding yeast plays important roles in mitogen-activated protein kinase cascades. In the current study, urea-induced, at subdenaturing concentrations, structural, and dynamical changes in the Ste11 SAM domain have been investigated by nuclear magnetic resonance spectroscopy. Our study revealed that a number of residues from Helix 1 and Helix 5 of the Ste11 SAM domain display plausible alternate conformational states and largest chemical shift perturbations at low urea concentrations. Amide proton (H/D) exchange experiments indicated that Helix 1, loop, and Helix 5 become more susceptible to solvent exchange with increased concentrations of urea. Notably, Helix 1 and Helix 5 are directly involved in binding interactions of the Ste11 SAM domain. Our data further demonstrate that the existence of alternate conformational states around the regions involved in dimeric interactions in native or near native conditions.
Collapse
Affiliation(s)
- Sebanti Gupta
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | | |
Collapse
|
36
|
Modulated expression of genes encoding estrogen metabolizing enzymes by G1-phase cyclin-dependent kinases 6 and 4 in human breast cancer cells. PLoS One 2014; 9:e97448. [PMID: 24848372 PMCID: PMC4029737 DOI: 10.1371/journal.pone.0097448] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 04/19/2014] [Indexed: 02/06/2023] Open
Abstract
G1-phase cell cycle defects, such as alterations in cyclin D1 or cyclin-dependent kinase (cdk) levels, are seen in most tumors. For example, increased cyclin D1 and decreased cdk6 levels are seen in many human breast tumors. Overexpression of cdk6 in breast tumor cells in culture has been shown to suppress proliferation, unlike the growth stimulating effects of its close homolog, cdk4. In addition to directly affecting proliferation, alterations in cdk6 or cdk4 levels in breast tumor cells also differentially influence levels of numerous steroid metabolic enzymes (SMEs), including those involved in estrogen metabolism. Overexpression of cdk6 in tumor cell lines having low cdk6 resulted in decreased levels of mRNAs encoding aldo-keto reductase (AKR)1C1, AKR1C2 and AKR1C3, which are hydroxysteroid dehydrogenases (HSDs) involved in steroid hormone metabolism. In contrast, increasing cdk4 dramatically increased these transcript levels, especially those encoding AKR1C3, an enzyme that converts estrone to 17β-estradiol, a change that could result in a pro-estrogenic state favoring tumor growth. Effects on other estrogen metabolizing enzymes, including cytochrome P450 (CYP) 19 aromatase, 17β-HSD2, and CYP1B1 transcripts, were also observed. Interactions of cdk6 and cdk4, but not cyclin D1, with the promoter region of a cdk-regulated gene, 17β-HSD2, were detected. The results uncover a previously unsuspected link between the cell cycle and hormone metabolism and differential roles for cdk6 and cdk4 in a novel mechanism for pre-receptor control of steroid hormone action, with important implications for the origin and treatment of steroid hormone-dependent cancers.
Collapse
|
37
|
Liu W, Cai MJ, Wang JX, Zhao XF. In a nongenomic action, steroid hormone 20-hydroxyecdysone induces phosphorylation of cyclin-dependent kinase 10 to promote gene transcription. Endocrinology 2014; 155:1738-50. [PMID: 24517229 DOI: 10.1210/en.2013-2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The insect steroid hormone 20-hydroxyecdysone (20E) regulates gene transcription via a genomic pathway by forming a transcription complex that binds to DNA with the help of the chaperone proteins, heat shock proteins (Hsps) Hsc70 and Hsp90. However, the nongenomic mechanisms by which 20E regulates gene expression remain unclear. In this study, we found that 20E regulated the phosphorylation of serine/threonine protein kinase cyclin-dependent kinase 10 (CDK10) through a nongenomic pathway to mediate gene transcription in the lepidopteran Helicoverpa armigera. The down-regulation of CDK10 by RNA interference in larvae and the epidermal cell line delayed development and suppressed 20E-induced gene transcription. CDK10 was localized to the nucleus via its KKRR motif, and this nuclear localization and the ATPase motif were necessary for the efficient expression of the 20E-inducible gene. The rapid phosphorylation of CDK10 was induced by 20E, whereas it was repressed by the inhibitors of G-protein-coupled receptors, phospholipase C, and Ca²⁺ channels. Phosphorylated CDK10 exhibited increased interactions with Hsps Hsc70 and Hsp90 and then promoted the interactions between Hsps and ecdysone receptor EcRB1 and the binding of the Hsps-EcRB1 complex to the 20E response element for the regulation of gene transcription. CDK10 depletion suppressed the formation of the Hsps-EcRB1 complex at the hormone receptor 3 promoter. These results suggest that 20E induces CDK10 phosphorylation via a nongenomic pathway to regulate gene transcription in the nucleus.
Collapse
Affiliation(s)
- Wen Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | |
Collapse
|
38
|
Cao L, Chen F, Yang X, Xu W, Xie J, Yu L. Phylogenetic analysis of CDK and cyclin proteins in premetazoan lineages. BMC Evol Biol 2014; 14:10. [PMID: 24433236 PMCID: PMC3923393 DOI: 10.1186/1471-2148-14-10] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 01/02/2014] [Indexed: 12/21/2022] Open
Abstract
Background The molecular history of animal evolution from single-celled ancestors remains a major question in biology, and little is known regarding the evolution of cell cycle regulation during animal emergence. In this study, we conducted a comprehensive evolutionary analysis of CDK and cyclin proteins in metazoans and their unicellular relatives. Results Our analysis divided the CDK family into eight subfamilies. Seven subfamilies (CDK1/2/3, CDK5, CDK7, CDK 20, CDK8/19, CDK9, and CDK10/11) are conserved in metazoans and fungi, with the remaining subfamily, CDK4/6, found only in eumetazoans. With respect to cyclins, cyclin C, H, L, Y subfamilies, and cyclin K and T as a whole subfamily, are generally conserved in animal, fungi, and amoeba Dictyostelium discoideum. In contrast, cyclin subfamilies B, A, E, and D, which are cell cycle-related, have distinct evolutionary histories. The cyclin B subfamily is generally conserved in D. discoideum, fungi, and animals, whereas cyclin A and E subfamilies are both present in animals and their unicellular relatives such as choanoflagellate Monosiga brevicollis and filasterean Capsaspora owczarzaki, but are absent in fungi and D. discoideum. Although absent in fungi and D. discoideum, cyclin D subfamily orthologs can be found in the early-emerging, non-opisthokont apusozoan Thecamonas trahens. Within opisthokonta, the cyclin D subfamily is conserved only in eumetazoans, and is absent in fungi, choanoflagellates, and the basal metazoan Amphimedon queenslandica. Conclusions Our data indicate that the CDK4/6 subfamily and eumetazoans emerged simultaneously, with the evolutionary conservation of the cyclin D subfamily also tightly linked with eumetazoan appearance. Establishment of the CDK4/6-cyclin D complex may have been the key step in the evolution of cell cycle control during eumetazoan emergence.
Collapse
Affiliation(s)
- Lihuan Cao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China.
| | | | | | | | | | | |
Collapse
|
39
|
CDK10/cyclin M is a protein kinase that controls ETS2 degradation and is deficient in STAR syndrome. Proc Natl Acad Sci U S A 2013; 110:19525-30. [PMID: 24218572 DOI: 10.1073/pnas.1306814110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) regulate a variety of fundamental cellular processes. CDK10 stands out as one of the last orphan CDKs for which no activating cyclin has been identified and no kinase activity revealed. Previous work has shown that CDK10 silencing increases ETS2 (v-ets erythroblastosis virus E26 oncogene homolog 2)-driven activation of the MAPK pathway, which confers tamoxifen resistance to breast cancer cells. The precise mechanisms by which CDK10 modulates ETS2 activity, and more generally the functions of CDK10, remain elusive. Here we demonstrate that CDK10 is a cyclin-dependent kinase by identifying cyclin M as an activating cyclin. Cyclin M, an orphan cyclin, is the product of FAM58A, whose mutations cause STAR syndrome, a human developmental anomaly whose features include toe syndactyly, telecanthus, and anogenital and renal malformations. We show that STAR syndrome-associated cyclin M mutants are unable to interact with CDK10. Cyclin M silencing phenocopies CDK10 silencing in increasing c-Raf and in conferring tamoxifen resistance to breast cancer cells. CDK10/cyclin M phosphorylates ETS2 in vitro, and in cells it positively controls ETS2 degradation by the proteasome. ETS2 protein levels are increased in cells derived from a STAR patient, and this increase is attributable to decreased cyclin M levels. Altogether, our results reveal an additional regulatory mechanism for ETS2, which plays key roles in cancer and development. They also shed light on the molecular mechanisms underlying STAR syndrome.
Collapse
|
40
|
Abstract
Cyclin-dependent kinases (Cdks) are serine/threonine kinases and their catalytic activities are modulated by interactions with cyclins and Cdk inhibitors (CKIs). Close cooperation between this trio is necessary for ensuring orderly progression through the cell cycle. In addition to their well-established function in cell cycle control, it is becoming increasingly apparent that mammalian Cdks, cyclins and CKIs play indispensable roles in processes such as transcription, epigenetic regulation, metabolism, stem cell self-renewal, neuronal functions and spermatogenesis. Even more remarkably, they can accomplish some of these tasks individually, without the need for Cdk/cyclin complex formation or kinase activity. In this Review, we discuss the latest revelations about Cdks, cyclins and CKIs with the goal of showcasing their functional diversity beyond cell cycle regulation and their impact on development and disease in mammals.
Collapse
Affiliation(s)
- Shuhui Lim
- Institute of Molecular and Cell Biology IMCB, A*STAR Agency for Science, Technology and Research, Singapore 138673, Republic of Singapore
| | | |
Collapse
|
41
|
Yeh CW, Kao SH, Cheng YC, Hsu LS. Knockdown of cyclin-dependent kinase 10 (cdk10) gene impairs neural progenitor survival via modulation of raf1a gene expression. J Biol Chem 2013; 288:27927-39. [PMID: 23902762 DOI: 10.1074/jbc.m112.420265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we used zebrafish as an animal model to elucidate the developmental function of cdk10 in vertebrates. In situ hybridization analyses demonstrated that cdk10 is expressed throughout development with a relative enrichment in the brain in the late stages. Similar to its mammalian ortholog, cdk10 can interact with the transcription factor ETS2 and exhibit kinase activity by phosphorylating histone H1. Morpholino-based loss of cdk10 expression caused apoptosis in sox2-positive cells and decreased the expression of subsequent neuronal markers. Acetylated tubulin staining revealed a significant reduction in the number of Rohon-Beard sensory neurons in cdk10 morphants. This result is similar to that demonstrated by decreased islet2 expression in the dorsal regions. Moreover, cdk10 morphants exhibited a marked loss of huC-positive neurons in the telencephalon and throughout the spinal cord axis. The population of retinal ganglion cells was also diminished in cdk10 morphants. These phenotypes were rescued by co-injection of cdk10 mRNA. Interestingly, the knockdown of cdk10 significantly elevated raf1a mRNA expression. Meanwhile, an MEK inhibitor (U0126) recovered sox2 and ngn1 transcript levels in cdk10 morphants. Our findings provide the first functional characterization of cdk10 in vertebrate development and reveal its critical function in neurogenesis by modulation of raf1a expression.
Collapse
Affiliation(s)
- Chi-Wei Yeh
- From the Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan
| | | | | | | |
Collapse
|
42
|
Deregulations in the cyclin-dependent kinase-9-related pathway in cancer: implications for drug discovery and development. ISRN ONCOLOGY 2013; 2013:305371. [PMID: 23840966 PMCID: PMC3690251 DOI: 10.1155/2013/305371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/19/2013] [Indexed: 12/21/2022]
Abstract
The CDK9-related pathway is an important regulator of mammalian cell biology and is also involved in the replication cycle of several viruses, including the human immunodeficiency virus type 1. CDK9 is present in two isoforms termed CDK9-42 and CDK9-55 that bind noncovalently type T cyclins and cyclin K. This association forms a heterodimer, where CDK9 carries the enzymatic site and the cyclin partner functions as a regulatory subunit. This heterodimer is the main component of the positive transcription elongation factor b, which stabilizes RNA elongation via phosphorylation of the RNA pol II carboxyl terminal domain. Abnormal activities in the CDK9-related pathway were observed in human malignancies and cardiac hypertrophies. Thus, the elucidation of the CDK9 pathway deregulations may provide useful insights into the pathogenesis and progression of human malignancies, cardiac hypertrophy, AIDS and other viral-related maladies. These studies may lead to the improvement of kinase inhibitors for the treatment of the previously mentioned pathological conditions. This review describes the CDK9-related pathway deregulations in malignancies and the development of kinase inhibitors in cancer therapy, which can be classified into three categories: antagonists that block the ATP binding site of the catalytic domain, allosteric inhibitors, and small molecules that disrupt protein-protein interactions.
Collapse
|
43
|
Review of Ets1 structure, function, and roles in immunity. Cell Mol Life Sci 2013; 70:3375-90. [PMID: 23288305 DOI: 10.1007/s00018-012-1243-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/20/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
Abstract
The Ets1 transcription factor is a member of the Ets gene family and is highly conserved throughout evolution. Ets1 is known to regulate a number of important biological processes in normal cells and in tumors. In particular, Ets1 has been associated with regulation of immune cell function and with an aggressive behavior in tumors that express it at high levels. Here we review and summarize the general features of Ets1 and describe its roles in immunity and autoimmunity, with a focus on its roles in B lymphocytes. We also review evidence that suggests that Ets1 may play a role in malignant transformation of hematopoietic malignancies including B cell malignancies.
Collapse
|
44
|
Wang J, Zeng X, Luo T, Jin W, Chen S. Involvement of V-Ets erythroblastosis virus E26 oncogene homolog 2 in regulation of transcription activity of MDR1 gene. Acta Biochim Biophys Sin (Shanghai) 2012; 44:752-8. [PMID: 22819965 DOI: 10.1093/abbs/gms058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over-expression of MDR1 confers multidrug resistance (MDR) in cancers and remains a major cause for the failure of chemotherapy. In the present study, we found that V-Ets erythroblastosis virus E26 oncogene homolog 2 (ETS2) could activate MDR1 transcription and P-glycoprotein (P-gp) expression in SGC7901 cells. Knockdown of ETS2 attenuated MDR1 transcription and P-gp expression, and increased the sensitivity of MDR cancer cells to cytotoxic drugs that were transported by P-gp in SGC7901/VCR cells. ETS2 could bind to the ETS2 sites on the MDR1 promoter and activate its transcription. The regulation of MDR1 expression by ETS2 may provide potential ways to overcome MDR in cancer treatment.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antineoplastic Agents/pharmacology
- Base Sequence
- Binding Sites/genetics
- Blotting, Western
- Cell Line, Tumor
- Cell Survival/drug effects
- Cisplatin/pharmacology
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Luciferases/genetics
- Luciferases/metabolism
- Microscopy, Fluorescence
- Mutation
- Paclitaxel/pharmacology
- Promoter Regions, Genetic/genetics
- Protein Binding
- Proto-Oncogene Protein c-ets-2/genetics
- Proto-Oncogene Protein c-ets-2/metabolism
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic/genetics
- Vincristine/pharmacology
Collapse
Affiliation(s)
- Jian Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | | | | | | | | |
Collapse
|
45
|
Caracciolo V, Laurenti G, Romano G, Carnevale V, Cimini AM, Crozier-Fitzgerald C, Gentile Warschauer E, Russo G, Giordano A. Flavopiridol induces phosphorylation of AKT in a human glioblastoma cell line, in contrast to siRNA-mediated silencing of Cdk9: Implications for drug design and development. Cell Cycle 2012; 11:1202-16. [PMID: 22391209 DOI: 10.4161/cc.11.6.19663] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cdk9 and Cdk7 are cdc2-like serine/threonine kinases that stabilize RNA transcript elongation through RNA polII carboxyl terminal domain (CTD) phosphorylation and are considered suitable targets for cancer therapy. The effects of flavopiridol and of siRNA-mediated inhibition of Cdk9 and/or Cdk7 were analyzed in human glioblastoma and human prostate cancer cell lines. One finding revealed that Cdk9 and Cdk7 could substitute each other in RNA polII CTD phosphorylation in contrast to the in vitro system. Thus, a simultaneous inhibition of Cdk9 and Cdk7 might be required both for targeting malignant cells and developing a platform for microarray analysis. However, these two pathways are not redundant, as indicated by differential effects observed in cell cycle regulation following siRNA-mediated inhibition of Cdk9 and/or Cdk7 in human PC3 prostate cancer cell line. Specifically, siRNA-mediated inhibition of Cdk9 caused a shift from G 0/G 1 to G 2/M phase in human PC3 prostate cancer cell line. Another finding showed that flavopiridol treatment induced a substantial AKT-Ser473 phosphorylation in human glioblastoma T98G cell line in contrast to siRNA-mediated inhibition of Cdk9 and Cdk9 combined with Cdk7, whereas siRNA-mediated silencing of Cdk7 caused a minor increase in AKT-Ser473 phosphorylation. AKT-Ser473 is a hallmark of AKT pathway activation and may protect cells from apoptosis. This finding also shows that Cdk9 and Cdk7 pathways are not redundant and may have important implications in drug development and for studying the mechanism of chemoresistance in malignant cells.
Collapse
Affiliation(s)
- Valentina Caracciolo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu Y, Xiao Z, Yang D, Ren L, Liu G, Yang L. Effects of the cyclin-dependent kinase 10 (CDK10) on the tamoxifen sensitivity of keloid samples. Molecules 2012; 17:1307-18. [PMID: 22298115 PMCID: PMC6268744 DOI: 10.3390/molecules17021307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/14/2012] [Accepted: 01/17/2012] [Indexed: 01/21/2023] Open
Abstract
Cyclin-dependent kinase 10 (CDK10) is a cell cycle regulating protein kinase, which has just been discriminated in recent years. In this paper, mRNA and protein expression of CDK10 were first investigated by a comparative study between 23 human keloid tissue samples and their adjacent normal skin. To further address its potential as a therapeutic target in the treatment of keloid, a plasmid expressing the CDK10 gene was transfected into keloid fibroblast. The effects on tamoxifen-induced apoptosis were then investigated using Western blot assay and flow cytometry. Results showed that there is a generally down-regulated expression of CDK10 in keloid compared to normal skin samples. Transfection with the recombinant CDK10 plasmid significantly decreased the viability of cells and increased the apoptosis rates. Tamoxifen sensitivity in keloid fibroblasts was observed after treatment with the recombinant CDK10 plasmid. The results suggested that CDK10 may play an important role in enhancement of tamoxifen efficiency, and its expression may have a synergistic effect on keloid treatments.
Collapse
Affiliation(s)
- Ying Liu
- Department of Plastic and Aesthetic, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | | | | | | | | | | |
Collapse
|
47
|
Yu JH, Zhong XY, Zhang WG, Wang ZD, Dong Q, Tai S, Li H, Cui YF. CDK10 functions as a tumor suppressor gene and regulates survivability of biliary tract cancer cells. Oncol Rep 2011; 27:1266-76. [PMID: 22209942 PMCID: PMC3583593 DOI: 10.3892/or.2011.1617] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 12/14/2011] [Indexed: 11/05/2022] Open
Abstract
Cyclin-dependent kinase 10 (CDK10) is a member of the Cdc2 family of kinases, and has been demonstrated to be an important determinant of resistance to endocrine therapy for breast cancer. To investigate the expression and possible function of CDK10 in biliary tract cancer (BTC), we systematically examined CDK10 in tissues and cell lines. We found that expression of CDK10 was downregulated in both biliary tract tumors and cell lines. Remarkably, the expression of CDK10 correlated with clinical characteristics. Overexpression or knockdown of CDK10, respectively, inhibited or promoted cell proliferation, colony formation and migration. This suggests that CDK10 functions as a tumor suppressor gene in BTC. Overexpression of CDK10 caused malignant cells to become sensitive to chemotherapy and other hostile environments, suggesting that CDK10 functions to regulate survivability of BTC cells. We investigated the expression of six genes to resolve the mechanism. c-RAF was negatively regulated by CDK10 in both cells and specimens. Our results indicate that CDK10 plays a crucial role in the growth and survivability of biliary tract cancer, and offers a potential therapeutic target for this fatal disease.
Collapse
Affiliation(s)
- Jian-Hua Yu
- Department of Hepato-pancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, PR China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Cicenas J, Valius M. The CDK inhibitors in cancer research and therapy. J Cancer Res Clin Oncol 2011; 137:1409-18. [PMID: 21877198 DOI: 10.1007/s00432-011-1039-4] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/12/2011] [Indexed: 12/21/2022]
Abstract
Chemical compounds that interfere with an enzymatic function of kinases are useful for gaining insight into the complicated biochemical processes in mammalian cells. Cyclin-dependent kinases (CDK) play an essential role in the control of the cell cycle and/or proliferation. These kinases as well as their regulators are frequently deregulated in different human tumors. Aberrations in CDK activity have also been observed in viral infections, Alzheimer's, Parkinson's diseases, ischemia and some proliferative disorders. This led to an intensive search for small-molecule CDK inhibitors not only for research purposes, but also for therapeutic applications. Here, we discuss seventeen CDK inhibitors and their use in cancer research or therapy. This review should help researchers to decide which inhibitor is best suited for the specific purpose of their research. For this purpose, the targets, commercial availability and IC(50) values are provided for each inhibitor. The review will also provide an overview of the clinical studies performed with some of these inhibitors.
Collapse
Affiliation(s)
- Jonas Cicenas
- Department of Medicine, Institute of Anatomy, University of Fribourg, Rte. Albert- Gockel 1, 1700, Fribourg, Switzerland.
| | | |
Collapse
|
49
|
Gopinathan L, Ratnacaram CK, Kaldis P. Established and novel Cdk/cyclin complexes regulating the cell cycle and development. Results Probl Cell Differ 2011; 53:365-89. [PMID: 21630153 DOI: 10.1007/978-3-642-19065-0_16] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The identification of new members in the Cdk and cyclin families, functions for many of which are still emerging, has added new facets to the cell cycle regulatory network. With roles extending beyond the classical regulation of cell cycle progression, these new players are involved in diverse processes such as transcription, neuronal function, and ion transport. Members closely related to Cdks and cyclins such as the Speedy/RINGO proteins offer fresh insights and hope for filling in the missing gaps in our understanding of cell division. This chapter will present a broad outlook on the cell cycle and its key regulators with special emphasis on the less-studied members and their emerging roles.
Collapse
Affiliation(s)
- Lakshmi Gopinathan
- Cell Division and Cancer Laboratory (PRK), Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos #03-09, Singapore
| | | | | |
Collapse
|
50
|
Węsierska-Gądek J, Maurer M, Zulehner N, Komina O. Whether to target single or multiple CDKs for therapy? That is the question. J Cell Physiol 2010; 226:341-9. [DOI: 10.1002/jcp.22426] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|