1
|
Xiang HL, Yuan Q, Zeng JY, Xu ZY, Zhang HZ, Huang J, Song AN, Xiong J, Zhang C. MDM2 accelerated renal senescence via ubiquitination and degradation of HDAC1. Acta Pharmacol Sin 2024; 45:2328-2338. [PMID: 38760541 PMCID: PMC11489730 DOI: 10.1038/s41401-024-01294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
Senescence, an intricate and inevitable biological process, characterized by the gradual loss of homeostasis and declining organ functions. The pathological features of cellular senescence, including cell cycle arrest, metabolic disruptions, and the emergence of senescence-associated secretory phenotypes (SASP), collectively contribute to the intricate and multifaceted nature of senescence. Beyond its classical interaction with p53, murine double minute gene 2 (MDM2), traditionally known as an E3 ubiquitin ligase involved in protein degradation, plays a pivotal role in cellular processes governing senescence. Histone deacetylase (HDAC), a class of histone deacetylases mainly expressed in the nucleus, has emerged as a critical contributor to renal tissues senescence. In this study we investigated the interplay between MDM2 and HDAC1 in renal senescence. We established a natural aging model in mice over a 2-year period that was verified by SA-β-GAL staining and increased expression of senescence-associated markers such as p21, p16, and TNF-α in the kidneys. Furthermore, we showed that the expression of MDM2 was markedly increased, while HDAC1 expression underwent downregulation during renal senescence. This phenomenon was confirmed in H2O2-stimulated HK2 cells in vitro. Knockout of renal tubular MDM2 alleviated renal senescence in aged mice and in H2O2-stimulated HK2 cells. Moreover, we demonstrated that MDM2 promoted renal senescence by orchestrating the ubiquitination and subsequent degradation of HDAC1. These mechanisms synergistically accelerate the aging process in renal tissues, highlighting the intricate interplay between MDM2 and HDAC1, underpinning the age-related organ function decline.
Collapse
Affiliation(s)
- Hui-Ling Xiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jie-Yu Zeng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zi-Yu Xu
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Hui-Zi Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jing Huang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - An-Ni Song
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jing Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
2
|
Chen LY, Singha Roy SJ, Jadhav AM, Wang WW, Chen PH, Bishop T, Erb MA, Parker CG. Functional Investigations of p53 Acetylation Enabled by Heterobifunctional Molecules. ACS Chem Biol 2024; 19:1918-1929. [PMID: 39250704 PMCID: PMC11421428 DOI: 10.1021/acschembio.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Post-translational modifications (PTMs) dynamically regulate the critical stress response and tumor suppressive functions of p53. Among these, acetylation events mediated by multiple acetyltransferases lead to differential target gene activation and subsequent cell fate. However, our understanding of these events is incomplete due to, in part, the inability to selectively and dynamically control p53 acetylation. We recently developed a heterobifunctional small molecule system, AceTAG, to direct the acetyltransferase p300/CBP for targeted protein acetylation in cells. Here, we expand AceTAG to leverage the acetyltransferase PCAF/GCN5 and apply these tools to investigate the functional consequences of targeted p53 acetylation in human cancer cells. We demonstrate that the recruitment of p300/CBP or PCAF/GCN5 to p53 results in distinct acetylation events and differentiated transcriptional activities. Further, we show that chemically induced acetylation of multiple hotspot p53 mutants results in increased stabilization and enhancement of transcriptional activity. Collectively, these studies demonstrate the utility of AceTAG for functional investigations of protein acetylation.
Collapse
Affiliation(s)
- Li-Yun Chen
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Soumya Jyoti Singha Roy
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Appaso M. Jadhav
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Wesley W. Wang
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Timothy Bishop
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Michael A. Erb
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Christopher G. Parker
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Cordani M, Garufi A, Benedetti R, Tafani M, Aventaggiato M, D’Orazi G, Cirone M. Recent Advances on Mutant p53: Unveiling Novel Oncogenic Roles, Degradation Pathways, and Therapeutic Interventions. Biomolecules 2024; 14:649. [PMID: 38927053 PMCID: PMC11201733 DOI: 10.3390/biom14060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The p53 protein is the master regulator of cellular integrity, primarily due to its tumor-suppressing functions. Approximately half of all human cancers carry mutations in the TP53 gene, which not only abrogate the tumor-suppressive functions but also confer p53 mutant proteins with oncogenic potential. The latter is achieved through so-called gain-of-function (GOF) mutations that promote cancer progression, metastasis, and therapy resistance by deregulating transcriptional networks, signaling pathways, metabolism, immune surveillance, and cellular compositions of the microenvironment. Despite recent progress in understanding the complexity of mutp53 in neoplastic development, the exact mechanisms of how mutp53 contributes to cancer development and how they escape proteasomal and lysosomal degradation remain only partially understood. In this review, we address recent findings in the field of oncogenic functions of mutp53 specifically regarding, but not limited to, its implications in metabolic pathways, the secretome of cancer cells, the cancer microenvironment, and the regulating scenarios of the aberrant proteasomal degradation. By analyzing proteasomal and lysosomal protein degradation, as well as its connection with autophagy, we propose new therapeutical approaches that aim to destabilize mutp53 proteins and deactivate its oncogenic functions, thereby providing a fundamental basis for further investigation and rational treatment approaches for TP53-mutated cancers.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Alessia Garufi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Rossella Benedetti
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| | - Marco Tafani
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| | - Michele Aventaggiato
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| | - Gabriella D’Orazi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio, 00131 Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| |
Collapse
|
4
|
Thomas M, Nguyen TH, Drnevich J, D’Souza AM, de Alarcon PA, Gnanamony M. Hu14.18K.322A Causes Direct Cell Cytotoxicity and Synergizes with Induction Chemotherapy in High-Risk Neuroblastoma. Cancers (Basel) 2024; 16:2064. [PMID: 38893185 PMCID: PMC11171330 DOI: 10.3390/cancers16112064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
The disialoganglioside, GD2, is a promising therapeutic target due to its overexpression in certain tumors, particularly neuroblastoma (NB), with limited expression in normal tissues. Despite progress, the intricate mechanisms of action and the full spectrum of the direct cellular responses to anti-GD2 antibodies remain incompletely understood. In this study, we examined the direct cytotoxic effects of the humanized anti-GD2 antibody hu14.18K322A (hu14) on NB cell lines, by exploring the associated cell-death pathways. Additionally, we assessed the synergy between hu14 and conventional induction chemotherapy drugs. Our results revealed that hu14 treatment induced direct cytotoxic effects in CHLA15 and SK-N-BE1 cell lines, with a pronounced impact on proliferation and colony formation. Apoptosis emerged as the predominant cell-death pathway triggered by hu14. Furthermore, we saw a reduction in GD2 surface expression in response to hu14 treatment. Hu14 demonstrated synergy with induction chemotherapy drugs with alterations in GD2 expression. Our comprehensive investigation provides valuable insights into the multifaceted effects of hu14 on NB cells, shedding light on its direct cytotoxicity, cell-death pathways, and interactions with induction chemotherapy drugs. This study contributes to the evolving understanding of anti-GD2 antibody therapy and its potential synergies with conventional treatments in the context of NB.
Collapse
Affiliation(s)
- Maria Thomas
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA; (M.T.); (T.H.N.); (A.M.D.); (P.A.d.A.)
| | - Thu Hien Nguyen
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA; (M.T.); (T.H.N.); (A.M.D.); (P.A.d.A.)
| | - Jenny Drnevich
- Roy J. Carver Biotechnology Center, The University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801, USA;
| | - Amber M. D’Souza
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA; (M.T.); (T.H.N.); (A.M.D.); (P.A.d.A.)
| | - Pedro A. de Alarcon
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA; (M.T.); (T.H.N.); (A.M.D.); (P.A.d.A.)
| | - Manu Gnanamony
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA; (M.T.); (T.H.N.); (A.M.D.); (P.A.d.A.)
| |
Collapse
|
5
|
Hamdan D, Gardair C, Pamoukdjian F, Peraldi Gardin MN, Nakouri I, Leboeuf C, Janin A, Lebbé C, Battistella M, Bousquet G. A Sub-Group of Kidney-Transplant Recipients with Highly Aggressive Squamous Cell Carcinoma Expressing Phosphorylated Serine392p53. Int J Mol Sci 2024; 25:1147. [PMID: 38256221 PMCID: PMC10816400 DOI: 10.3390/ijms25021147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Cutaneous squamous cell carcinomas in kidney-transplant recipients are frequent, with an increasing incidence linked to long immunosuppression durations and exposure to ultraviolet radiation. p53 is at the cornerstone of ultraviolet-induced DNA damage, but the role of p53 post-translational modifications in this context is not yet deciphered. Here, we investigated the phosphorylation status of p53 at Serine 392 in 25 cutaneous squamous cell carcinomas in kidney-transplant recipients, compared with 22 non-transplanted patients. Cutaneous squamous cell carcinomas in transplanted patients occurred after a median period of 19 years of immunosuppression, with a median number of 15 cutaneous squamous cell carcinomas and more aggressive histological and clinical characteristics. There was no significant difference between Ki67, p53, and pSer392p53 expression in the two groups. Using principal component analysis, we identified a cluster of exclusively transplanted patients with a median of 23 years of immunosuppression duration, significantly more aggressive biological characteristics, and higher pSer392p53 expression. pSer392p53 was expressed in the whole tumor, suggesting an early carcinogenic event in the course of prolonged immunosuppression. This high, diffuse pSer392p53 expression, corresponding to a high level of DNA damage, might be useful to identify aggressive cutaneous squamous cell carcinomas in kidney-transplant recipients to treat them more aggressively.
Collapse
Affiliation(s)
- Diaddin Hamdan
- Faculté de Santé, Site Lariboisière, Institut National de la Santé et de la Recherche Médicale INSERM, Unité Mixte de Recherche UMR_S942 MASCOT, Université Paris-Cité, F-75006 Paris, France
- Medical Oncology Department, Hôpital La Porte Verte, F-78000 Versailles, France
| | - Charlotte Gardair
- Faculté de Santé, Site Lariboisière, Institut National de la Santé et de la Recherche Médicale INSERM, Unité Mixte de Recherche UMR_S942 MASCOT, Université Paris-Cité, F-75006 Paris, France
| | - Frédéric Pamoukdjian
- Faculté de Santé, Site Lariboisière, Institut National de la Santé et de la Recherche Médicale INSERM, Unité Mixte de Recherche UMR_S942 MASCOT, Université Paris-Cité, F-75006 Paris, France
- UFR Santé Médecine et Biologie Humaine, Campus Bobigny, Université Sorbonne Paris Nord, F-93439 Villetaneuse, France
- Geriatric Medicine Department, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, F-93000 Bobigny, France
| | - Marie-Noëlle Peraldi Gardin
- Nephrology-Renal Transplantation Department, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, F-75015 Paris, France
| | - Inès Nakouri
- Faculté de Santé, Assistance Publique-Hôpitaux de Paris Dermato-Oncology, Cancer Institute APHP. Nord Paris Cité, Institut National de la Santé et de la Recherche Médicale INSERM Unité U976, Saint Louis Hospital, Université Paris-Cite, F-75010 Paris, France
| | - Christophe Leboeuf
- Faculté de Santé, Site Lariboisière, Institut National de la Santé et de la Recherche Médicale INSERM, Unité Mixte de Recherche UMR_S942 MASCOT, Université Paris-Cité, F-75006 Paris, France
| | - Anne Janin
- Faculté de Santé, Site Lariboisière, Institut National de la Santé et de la Recherche Médicale INSERM, Unité Mixte de Recherche UMR_S942 MASCOT, Université Paris-Cité, F-75006 Paris, France
| | - Céleste Lebbé
- Faculté de Santé, Assistance Publique-Hôpitaux de Paris Dermato-Oncology, Cancer Institute APHP. Nord Paris Cité, Institut National de la Santé et de la Recherche Médicale INSERM Unité U976, Saint Louis Hospital, Université Paris-Cite, F-75010 Paris, France
| | - Maxime Battistella
- Department of Pathology, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Faculté de Santé, Cancer Institute APHP. Nord Paris Cité, Institut National de la Santé et de la Recherche Médicale INSERM Unité U976, Université Paris-Cite, F-75010 Paris, France
| | - Guilhem Bousquet
- Faculté de Santé, Site Lariboisière, Institut National de la Santé et de la Recherche Médicale INSERM, Unité Mixte de Recherche UMR_S942 MASCOT, Université Paris-Cité, F-75006 Paris, France
- UFR Santé Médecine et Biologie Humaine, Campus Bobigny, Université Sorbonne Paris Nord, F-93439 Villetaneuse, France
- Medical Oncology Department, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, F-93000 Bobigny, France
| |
Collapse
|
6
|
Lv C, Lan A, Fan X, Huang C, Yang G. Asperolide A induces apoptosis and cell cycle arrest of human hepatoma cells with p53-Y220C mutant through p38 mediating phosphorylation of p53 (S33). Heliyon 2023; 9:e13843. [PMID: 36923828 PMCID: PMC10009462 DOI: 10.1016/j.heliyon.2023.e13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
Asperolides A (AA), one of the new tetranorlabdane diterpenoids, is proved to inhibit the proliferation of lung cancer cells and bone metastasis of breast cancer cells. Herein, we report that AA induces apoptosis and cell cycle arrest of hepatoma cells. It intensely inhibits proliferation of Huh-7 cell, compared with HepG-2 and L02 cells. AA elevates the activity of mitogen-activated protein kinases (MAPKs), in which the activation of ERK and JNK improves cell survival. However, phosphorylation of p53 at S33 by p38 activation could be a principal factor in the AA-induced apoptosis and G2/M cell cycle arrest of Huh-7 cells. The S33 site of p53-Y220C mutant, as the specific activation site of p38, reactivates the wild-type function of mutant p53 protein, which leads to a higher sensitivity of Huh-7 cells to AA. These results provide new insights into the molecular mechanisms of AA as a developing mutant p53 rescue drug.
Collapse
Affiliation(s)
- Cuiting Lv
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Aihua Lan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiao Fan
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 201900, China
| | - Caiguo Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Naval Medical University, Shanghai, 200433, China
| | - Gong Yang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, China
| |
Collapse
|
7
|
Damasio MPS, Nascimento CS, Andrade LM, de Oliveira VL, Calzavara-Silva CE. The role of T-cells in head and neck squamous cell carcinoma: From immunity to immunotherapy. Front Oncol 2022; 12:1021609. [PMID: 36338731 PMCID: PMC9632296 DOI: 10.3389/fonc.2022.1021609] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) encompass a group of complex entities of tumours affecting the aerodigestive upper tract. The main risk factors are strongly related to tobacco and alcohol consumption, but also HPV infection is often associated. Surgery, radiotherapy and/or chemotherapy are the standard treatments, though the 5-year overall survival is less than 50%. The advances in genomics, molecular medicine, immunology, and nanotechnology have shed a light on tumour biology which helps clinical researchers to obtain more efficacious and less toxic therapies. Head and neck tumours possess different immune escape mechanisms including diminishing the immune response through modulating immune checkpoints, in addition to the recruitment and differentiation of suppressive immune cells. The insights into the HNSCC biology and its strong interaction with the tumour microenvironment highlights the role of immunomodulating agents. Recently, the knowledge of the immunological features of these tumours has paved the way for the discovery of effective biomarkers that allow a better selection of patients with odds of improving overall survival through immunotherapy. Specially biomarkers regarding immune checkpoint inhibitors antibodies, such as anti-PD-1/PD-L1 and anti-CTLA-4 in combination with standard therapy or as monotherapy. New immunotherapies to treat head and neck cancer carcinomas, such as CAR T cells and nanoparticles have been the center of attention and in this review, we discuss the necessity of finding targets for the T cell in the cancer cells to generate CAR T cells, but also the relevance of evaluating specificity and safety of those therapies.
Collapse
Affiliation(s)
- Marcos Paulo S. Damasio
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Camila Sales Nascimento
- Grupo de pesquisa em Imunologia Celular e Molecular, Fundação Oswaldo Cruz, Instituto Rene Rachou, Belo Horizonte, MG, Brazil
| | - Lidia M. Andrade
- Departamento de Genética, Ecologia e Evolução, Departamento de Física, Nanobiomedical Research Group, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian L. de Oliveira
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, São Paulo, Brazil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Carlos Eduardo Calzavara-Silva
- Grupo de pesquisa em Imunologia Celular e Molecular, Fundação Oswaldo Cruz, Instituto Rene Rachou, Belo Horizonte, MG, Brazil
| |
Collapse
|
8
|
Hernández Borrero LJ, El-Deiry WS. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim Biophys Acta Rev Cancer 2021; 1876:188556. [PMID: 33932560 PMCID: PMC8730328 DOI: 10.1016/j.bbcan.2021.188556] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
TP53 is the most commonly mutated gene in human cancer with over 100,000 literature citations in PubMed. This is a heavily studied pathway in cancer biology and oncology with a history that dates back to 1979 when p53 was discovered. The p53 pathway is a complex cellular stress response network with multiple diverse inputs and downstream outputs relevant to its role as a tumor suppressor pathway. While inroads have been made in understanding the biology and signaling in the p53 pathway, the p53 family, transcriptional readouts, and effects of an array of mutants, the pathway remains challenging in the realm of clinical translation. While the role of mutant p53 as a prognostic factor is recognized, the therapeutic modulation of its wild-type or mutant activities remain a work-in-progress. This review covers current knowledge about the biology, signaling mechanisms in the p53 pathway and summarizes advances in therapeutic development.
Collapse
Affiliation(s)
- Liz J Hernández Borrero
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America; The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI 02912, United States of America; Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America; The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI 02912, United States of America; Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America.
| |
Collapse
|
9
|
Timmerman DM, Remmers TL, Hillenius S, Looijenga LHJ. Mechanisms of TP53 Pathway Inactivation in Embryonic and Somatic Cells-Relevance for Understanding (Germ Cell) Tumorigenesis. Int J Mol Sci 2021; 22:ijms22105377. [PMID: 34065345 PMCID: PMC8161298 DOI: 10.3390/ijms22105377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 01/10/2023] Open
Abstract
The P53 pathway is the most important cellular pathway to maintain genomic and cellular integrity, both in embryonic and non-embryonic cells. Stress signals induce its activation, initiating autophagy or cell cycle arrest to enable DNA repair. The persistence of these signals causes either senescence or apoptosis. Over 50% of all solid tumors harbor mutations in TP53 that inactivate the pathway. The remaining cancers are suggested to harbor mutations in genes that regulate the P53 pathway such as its inhibitors Mouse Double Minute 2 and 4 (MDM2 and MDM4, respectively). Many reviews have already been dedicated to P53, MDM2, and MDM4, while this review additionally focuses on the other factors that can deregulate P53 signaling. We discuss that P14ARF (ARF) functions as a negative regulator of MDM2, explaining the frequent loss of ARF detected in cancers. The long non-coding RNA Antisense Non-coding RNA in the INK4 Locus (ANRIL) is encoded on the same locus as ARF, inhibiting ARF expression, thus contributing to the process of tumorigenesis. Mutations in tripartite motif (TRIM) proteins deregulate P53 signaling through their ubiquitin ligase activity. Several microRNAs (miRNAs) inactivate the P53 pathway through inhibition of translation. CCCTC-binding factor (CTCF) maintains an open chromatin structure at the TP53 locus, explaining its inactivation of CTCF during tumorigenesis. P21, a downstream effector of P53, has been found to be deregulated in different tumor types. This review provides a comprehensive overview of these factors that are known to deregulate the P53 pathway in both somatic and embryonic cells, as well as their malignant counterparts (i.e., somatic and germ cell tumors). It provides insights into which aspects still need to be unraveled to grasp their contribution to tumorigenesis, putatively leading to novel targets for effective cancer therapies.
Collapse
|
10
|
Ghatak D, Das Ghosh D, Roychoudhury S. Cancer Stemness: p53 at the Wheel. Front Oncol 2021; 10:604124. [PMID: 33505918 PMCID: PMC7830093 DOI: 10.3389/fonc.2020.604124] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor p53 maintains an equilibrium between self-renewal and differentiation to sustain a limited repertoire of stem cells for proper development and maintenance of tissue homeostasis. Inactivation of p53 disrupts this balance and promotes pluripotency and somatic cell reprogramming. A few reports in recent years have indicated that prevalent TP53 oncogenic gain-of-function (GOF) mutations further boosts the stemness properties of cancer cells. In this review, we discuss the role of wild type p53 in regulating pluripotency of normal stem cells and various mechanisms that control the balance between self-renewal and differentiation in embryonic and adult stem cells. We also highlight how inactivating and GOF mutations in p53 stimulate stemness in cancer cells. Further, we have explored the various mechanisms of mutant p53-driven cancer stemness, particularly emphasizing on the non-coding RNA mediated epigenetic regulation. We have also analyzed the association of cancer stemness with other crucial gain-of-function properties of mutant p53 such as epithelial to mesenchymal transition phenotypes and chemoresistance to understand how activation of one affects the other. Given the critical role of cancer stem-like cells in tumor maintenance, cancer progression, and therapy resistance of mutant p53 tumors, targeting them might improve therapeutic efficacy in human cancers with TP53 mutations.
Collapse
Affiliation(s)
- Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Damayanti Das Ghosh
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Susanta Roychoudhury
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
11
|
Comprehensive Biology and Genetics Compendium of Wilms Tumor Cell Lines with Different WT1 Mutations. Cancers (Basel) 2020; 13:cancers13010060. [PMID: 33379206 PMCID: PMC7801943 DOI: 10.3390/cancers13010060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Wilms tumor is a childhood kidney tumor arising from embryonal cells. Wilms tumors are heterogeneous with several distinct subgroups that differ in their response to treatment. The genetic basis for these diverse forms of Wilms tumor is not fully understood. One subgroup of Wilms tumors is associated with mutations in the WT1 gene, encoding a transcription factor with a role in early kidney differentiation. Patients with WT1 mutant Wilms tumor may harbor germline mutations in this gene. Cell lines from Wilms tumors are notoriously difficult to establish and only few exist. We developed a method to cultivate cells from the WT1 mutant subtype of Wilms tumors and have established 11 cell lines with different mutations in WT1 to date. These cells will be instrumental to study the biology and genetics ultimately to develop precision treatments Abstract Purpose: WT1 mutant Wilms tumors represent a distinct subgroup, frequently associated with CTNNB1 mutations. The genetic basis for the development of this subtype is currently not fully understood. Methods: Live WT1 mutant Wilms tumors were collected during surgery of patients and cell cultures established in mesenchymal stem cell medium. They were studied for mutations in WT1 and CTNNB1, their differentiation capacity and protein activation status. Four cell lines were immortalized with a triple mutant ts SV40 largeT antigen and Telomerase. Results: 11 cell lines were established from Wilms tumors of nine patients, including a left and right tumor from the same patient and a primary and second tumor from another patient. Six patients had germ line and three were tumor specific mutations. All cell lines harbored only mutant or deleted WT1 genes. CTNNB1 was wild type in three, all others carried mutations affecting amino acid S45. They had variable and limited capacities for mesenchymal differentiation, a high migratory capacity and a low invasive potential. All cells showed an activation of multiple receptor tyrosine kinases and downstream signaling pathways. Conclusions: These cell lines represent an important new tool to study WT1 mutant Wilms tumors, potentially leading to new treatment approaches.
Collapse
|
12
|
Roychowdhury T, Chattopadhyay S. Chemical Decorations of "MARs" Residents in Orchestrating Eukaryotic Gene Regulation. Front Cell Dev Biol 2020; 8:602994. [PMID: 33409278 PMCID: PMC7779526 DOI: 10.3389/fcell.2020.602994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/19/2020] [Indexed: 01/19/2023] Open
Abstract
Genome organization plays a crucial role in gene regulation, orchestrating multiple cellular functions. A meshwork of proteins constituting a three-dimensional (3D) matrix helps in maintaining the genomic architecture. Sequences of DNA that are involved in tethering the chromatin to the matrix are called scaffold/matrix attachment regions (S/MARs), and the proteins that bind to these sequences and mediate tethering are termed S/MAR-binding proteins (S/MARBPs). The regulation of S/MARBPs is important for cellular functions and is altered under different conditions. Limited information is available presently to understand the structure–function relationship conclusively. Although all S/MARBPs bind to DNA, their context- and tissue-specific regulatory roles cannot be justified solely based on the available information on their structures. Conformational changes in a protein lead to changes in protein–protein interactions (PPIs) that essentially would regulate functional outcomes. A well-studied form of protein regulation is post-translational modification (PTM). It involves disulfide bond formation, cleavage of precursor proteins, and addition or removal of low-molecular-weight groups, leading to modifications like phosphorylation, methylation, SUMOylation, acetylation, PARylation, and ubiquitination. These chemical modifications lead to varied functional outcomes by mechanisms like modifying DNA–protein interactions and PPIs, altering protein function, stability, and crosstalk with other PTMs regulating subcellular localizations. S/MARBPs are reported to be regulated by PTMs, thereby contributing to gene regulation. In this review, we discuss the current understanding, scope, disease implications, and future perspectives of the diverse PTMs regulating functions of S/MARBPs.
Collapse
Affiliation(s)
- Tanaya Roychowdhury
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, India.,Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Samit Chattopadhyay
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, India.,Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
13
|
Qiu PC, Lu YY, Zhang S, Li H, Bao H, Ji YQ, Fang F, Tang HF, Cheng G. Reduction of SCUBE3 by a new marine-derived asterosaponin leads to arrest of glioma cells in G1/S. Oncogenesis 2020; 9:71. [PMID: 32764572 PMCID: PMC7411020 DOI: 10.1038/s41389-020-00252-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
Many saponins are characterized as exhibiting a wide spectrum of antitumor activities at low concentrations. Most of the previous studies that aimed to understand the mechanisms underlying anticancer saponins have focused on numerous classical signaling pathways. However, at the oncogene level, little is known about the action of saponins, especially asterosaponin. In this study, CN-3, a new asterosaponin isolated from the starfish Culcita novaeguineae, decreased the proliferation of U87 and U251 cells at low doses in a dose- and time-dependent manner. Microarray analysis revealed CN-3 significantly induced the differential expression of 661 genes that are related to its antiglioma effect in U251. Nine downregulated genes (SCUBE3, PSD4, PGM2L1, ACSL3, PRICKLE1, ABI3BP, STON1, EDIL3, and KCTD12) were selected, for further verification of their low expression. Then, shRNA transfection and high-content screening were performed and significantly decreased U251 cell proliferation rate was only observed for the SCUBE3 knockdown. qPCR confirmed SCUBE3 was highly expressed in U251 and U87 cells, and had medium expression levels in U373 cells. Real-time cellular analysis using iCELLigence demonstrated that SCUBE3 is an oncogene in U251 and U87 cells, with knockdown of SCUBE3 inhibiting U251 and U87 cell proliferation while, conversely, SCUBE3 overexpression promoted their proliferation. Afterward, SCUBE3 protein was found to have high expression in primary glioma specimens from patients examined by immunohistochemistry but low expression in normal brain. PathScan ELISA analysis in conjunction with TEM observation demonstrated that the effect of SCUBE3 knockdown in U251 does not appear to be related to the induction of apoptosis. Employing CCK-8, iCELLigence, flow cytometry, western blotting, and shRNA transfection (knockdown and overexpression) experiments, we reveal that the reduction of SCUBE3 expression, induced by CN-3, mediated both inhibition and G1/S arrest of U251 via the Akt/p-Akt/p53/p21/p27/E2F1 pathway.
Collapse
Affiliation(s)
- Peng-Cheng Qiu
- Institute of Materia Medica, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, 710032, Xi'an, People's Republic of China
| | - Yun-Yang Lu
- Institute of Materia Medica, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, 710032, Xi'an, People's Republic of China
| | - Shan Zhang
- Institute of Materia Medica, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, 710032, Xi'an, People's Republic of China.,School of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, People's Republic of China
| | - Hua Li
- Institute of Materia Medica, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, 710032, Xi'an, People's Republic of China
| | - Han Bao
- Institute of Materia Medica, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, 710032, Xi'an, People's Republic of China
| | - Yu-Qiang Ji
- Central Laboratory of Xi'an No.1 Hospital, 710002, Xi'an, People's Republic of China
| | - Fei Fang
- Central Laboratory of Xi'an No.1 Hospital, 710002, Xi'an, People's Republic of China
| | - Hai-Feng Tang
- Institute of Materia Medica, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, 710032, Xi'an, People's Republic of China.
| | - Guang Cheng
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Air Force Medical University, 710032, Xi'an, People's Republic of China.
| |
Collapse
|
14
|
Romero-Medina MC, Venuti A, Melita G, Robitaille A, Ceraolo MG, Pacini L, Sirand C, Viarisio D, Taverniti V, Gupta P, Scalise M, Indiveri C, Accardi R, Tommasino M. Human papillomavirus type 38 alters wild-type p53 activity to promote cell proliferation via the downregulation of integrin alpha 1 expression. PLoS Pathog 2020; 16:e1008792. [PMID: 32813746 PMCID: PMC7458291 DOI: 10.1371/journal.ppat.1008792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/31/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022] Open
Abstract
Tumor suppressors can exert pro-proliferation functions in specific contexts. In the beta human papillomavirus type 38 (HPV38) experimental model, the viral proteins E6 and E7 promote accumulation of a wild-type (WT) p53 form in human keratinocytes (HKs), promoting cellular proliferation. Inactivation of p53 by different means strongly decreases the proliferation of HPV38 E6/E7 HKs. This p53 form is phosphorylated at S392 by the double-stranded RNA-dependent protein kinase PKR, which is highly activated by HPV38. PKR-mediated S392 p53 phosphorylation promotes the formation of a p53/DNMT1 complex, which inhibits expression of integrin alpha 1 (ITGA1), a repressor of epidermal growth factor receptor (EGFR) signaling. Ectopic expression of ITGA1 in HPV38 E6/E7 HKs promotes EGFR degradation, inhibition of cellular proliferation, and cellular death. Itga1 expression was also inhibited in the skin of HPV38 transgenic mice that have an elevated susceptibility to UV-induced skin carcinogenesis. In summary, these findings reveal the existence of a specific WT p53 form that displays pro-proliferation properties.
Collapse
Affiliation(s)
- Maria Carmen Romero-Medina
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Assunta Venuti
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Giusi Melita
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Alexis Robitaille
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Maria Grazia Ceraolo
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Laura Pacini
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Cecilia Sirand
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Daniele Viarisio
- Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Valerio Taverniti
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Purnima Gupta
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Rosita Accardi
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| | - Massimo Tommasino
- International Agency for Research on Cancer (IARC), World Health Organization, Cours Albert Thomas, France
| |
Collapse
|
15
|
García-Iglesias MJ, Cuevas-Higuera JL, Bastida-Sáenz A, de Garnica-García MG, Polledo L, Perero P, González-Fernández J, Fernández-Martínez B, Pérez-Martínez C. Immunohistochemical detection of p53 and pp53 Ser 392 in canine hemangiomas and hemangiosarcomas located in the skin. BMC Vet Res 2020; 16:239. [PMID: 32660487 PMCID: PMC7359283 DOI: 10.1186/s12917-020-02457-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background p53 protein is essential for the regulation of cell proliferation. Aberrant accumulation of it usually occurs in cutaneous malignancies. Mutant p53 is detected by immunohistochemistry because it is more stable than the wild-type p53. However, post-translational modifications of p53 in response to ultraviolet radiation are important mechanisms of wild-type p53 stabilization, leading to positive staining in the absence of mutation. The aims were: 1) to analyze the immunohistochemical expression of p53 and phospho-p53 Serine392 in canine skin endothelial tumours; and 2) to determine if any relationship exists between p53 and phospho-p53 Serine392 overexpression and cell proliferation. Results p53 and phospho-p53 Serine392 immunolabeling was examined in 40 canine cutaneous endothelial tumours (13 hemangiomas and 27 hemangiosarcomas). Their expression was associated with tumour size, hemangiosarcoma stage (dermal versus hypodermal), histological diagnosis and proliferative activity (mitotic count and Ki-67 index). Statistical analysis revealed a significant increase of p53 immunoreactivity in hemangiosarcomas (median, 74.61%; interquartile range [IQR], 66.97–82.98%) versus hemangiomas (median, 0%; IQR, 0–20.91%) (p < .001) and in well-differentiated hemangiosarcomas (median, 82.40%; IQR, 66.49–83.17%) versus hemangiomas (p = .002). Phospho-p53 Serine392 immunoreactivity was significantly higher in hemangiosarcomas (median, 53.80%; IQR, 0–69.50%) than in hemangiomas (median, 0%; IQR, 0.0%) (p < .001). Positive correlation of the overexpression of p53 and phospho-p53 Serine392 with mitotic count and Ki-67 index was found in the cutaneous vascular tumours (p < .001). The Ki-67 index of the hemangiomas (median, 0.50%; IQR, 0–2.80%) was significantly lower than that of the hemangiosarcomas (median, 34.85%; IQR, 23.88–42.33%) (p < .001), and that specifically of well-differentiated hemangiosarcomas (median, 24.60%; IQR, 15.45–39.35%) (p = .001). Immunolabeling of 18 visceral hemangiosarcomas showed that the p53 (median, 41.59%; IQR, 26.89–64.87%) and phospho-p53 Serine392 (median, 0%; IQR, 0–22.53%) indexes were significantly lower than those of skin (p = .001; p = .006, respectively). Conclusions The p53 and phospho-p53 Serine392overexpression together with high proliferative activity in hemangiosarcomas versus hemangiomas indicated that p53 might play a role in the acquisition of malignant phenotypes in cutaneous endothelial neoplasms in dogs. The Ki-67 index may be useful in distinguishing canine well-differentiated hemangiosarcomas from hemangiomas.
Collapse
Affiliation(s)
- María José García-Iglesias
- Histology and Pathological Anatomy Section, Department of Animal Health, Faculty of Veterinary Medicine, University of León, León, Spain.,Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Jose Luis Cuevas-Higuera
- Histology and Pathological Anatomy Section, Department of Animal Health, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Ana Bastida-Sáenz
- Histology and Pathological Anatomy Section, Department of Animal Health, Faculty of Veterinary Medicine, University of León, León, Spain
| | | | | | - Paula Perero
- Histology and Pathological Anatomy Section, Department of Animal Health, Faculty of Veterinary Medicine, University of León, León, Spain
| | | | | | - Claudia Pérez-Martínez
- Histology and Pathological Anatomy Section, Department of Animal Health, Faculty of Veterinary Medicine, University of León, León, Spain. .,Institute of Biomedicine (IBIOMED), University of León, León, Spain.
| |
Collapse
|
16
|
Aboulthana WM, Ibrahim NES, Osman NM, Seif MM, Hassan AK, Youssef AM, El-Feky AM, Madboli AA. Evaluation of the Biological Efficiency of Silver Nanoparticles Biosynthesized Using Croton tiglium L. Seeds Extract against Azoxymethane Induced Colon Cancer in Rats. Asian Pac J Cancer Prev 2020; 21:1369-1389. [PMID: 32458646 PMCID: PMC7541879 DOI: 10.31557/apjcp.2020.21.5.1369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is considered as the most common type of gastrointestinal cancers. Chemotherapy became limited due to the adverse side effects. Therefore, the most effective Croton tiglium extract was selected to be incorporated by silver nanoparticles (Ag-NPs) then evaluated against colon cancer induced by azoxymethane (AOM) in rats. METHODS Different hematological and biochemical measurements were quantified in addition to markers of oxidative stress. Specific tumor and inflammatory markers were assayed. Colonic tissues were examined histopathologically in addition to immunohistochemistry (IHC). Native proteins and isoenzymes patterns were electrophoretically assayed beside expression of Tumor Protein P53 (TP53) and Adenomatous Polyposis Coli (APC) genes in colonic tissues. RESULTS It was found that AOM caused significant (P≤0.05) elevation in the hematological and biochemical measurements. C. tiglium nano-extract restored these measurements to normalcy. Tumor and inflammatory markers elevated significantly (P≤0.05) in sera of AOM induced colon cancer group in addition to increasing peroxidation products with decline in antioxidant enzymes activities in colon tissues. Nano-extract restored these measurements to normalcy in post-treated group. Histopathological study revealed that nano-extract minimized severity of inflammatory reactions in all nano-extract treated groups and prevented anti-Keratin 20 antibody expression in post-treated group. The lowest similarity index (SI%) values were noticed with electrophoretic protein (SI=71.43%), lipid (SI=0.00%) and calcium (SI=75.00%) moieties of protein patterns, catalase (SI=85.71%), peroxidase (SI=85.71%), α-esterase (SI=50.00%) and β-esterase (SI=50.00%) isoenzymes in colon cancer group. Furthermore, AOM altered the relative quantities of total native bands. The nano-extract prevented the alterations that occurred qualitatively in nano-extract post-treated group and quantitatively in all nano-extract treated groups. Levels of TP53 and APC gene expression increased in AOM injected group and nano-extract restored their levels to normalcy in the post-treated group. CONCLUSION C. tiglium nano-extract exhibited ameliorative effect against the biochemical and molecular alterations induced by AOM in nano-extract post-treated group.
Collapse
Affiliation(s)
- Wael Mahmoud Aboulthana
- Biochemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt.
- For Correspondence:
| | - Noha El-Sayed Ibrahim
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt.
| | - Noha Mohamed Osman
- Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt.
| | - Mohamed Mahmoud Seif
- Toxicology and Food contaminants, Food Industry and Nutrition Division, National Research Center, Dokki, Giza, Egypt.
| | - Amgad Kamal Hassan
- Biochemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt.
| | | | - Amal Mostafa El-Feky
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza, Egypt.
| | - A A Madboli
- Animal Reproduction and Artificial Insemination Department, Veterinary Division, National Research Centre, Dokki, Giza, Egypt .
| |
Collapse
|
17
|
Yin X, Chen B, He M, Hu B. Simultaneous determination of two phosphorylated p53 proteins in SCC-7 cells by an ICP-MS immunoassay using apoferritin-templated europium(III) and lutetium(III) phosphate nanoparticles as labels. Mikrochim Acta 2019; 186:424. [PMID: 31187253 DOI: 10.1007/s00604-019-3540-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
Abstract
Phosphorylated p53 proteins are biomarkers with clinical utility for early diagnosis of cancer, but difficult to quantify. An inductively coupled plasma mass spectrometry (ICP-MS) based immunoassay is described here that uses uniform lanthanide nanoparticles (NPs) as elemental tags for the simultaneous determination of two phosphorylated p53 proteins. Apoferritin templated europium (Eu) phosphate (AFEP) NPs and apoferritin templated lutetium (Lu) phosphate (AFLP) NPs with 8 nm in diameter were used to label two phosphorylated p53 proteins at serine 15 and serine 392 sites (p-p5315 and p-p53392), respectively. The assay has a sandwich format, and p-p5315 and p-p53392 were first captured and then recognized by AFEP and AFLP NPs labelled antibodies, respectively. The Eu and Lu were then released from the immune complexes under acidic condition for ICP-MS measurement. The limits of detection for p-p5315 and p-p53392 are 200 and 20 pg·mL-1, with linear ranges of 0.5-20 and 0.05-20 ng·mL-1, respectively. The method was further applied to study the response of p-p5315 and p-p53392 in SCC-7 cells exposed to the natural carcinogen arsenite. A significant up-regulation of p-p5315 and p-p53392 can be observed when cells were exposed to arsenite at 5 μmol·L-1 level for 24 h. Graphical abstract Schematic presentation of the ICP-MS immunoassay using apoferritin templated europium (III) and lutetium (III) phosphate nanoparticles as labels for the simultaneous determination of two phosphorylated p53 proteins. Europium (Eu) phosphate nanoparticles (blue) and lutetium (Lu) phosphate nanoparticles (pink) were synthesized in the size-restricted cavity of apoferritin. They were further coupled with antibodies to prepare Eu and Lu labelled probes for p-p5315 (blue) and p-p53392 (pink), respectively. After formation of a a sandwich, the labelled Eu and Lu were dissociated in acid and then introduced to ICP-MS for the simultaneous determination of two phosphorylated p53 proteins p-p5315 (blue) and p-p53392 (pink).
Collapse
Affiliation(s)
- Xiao Yin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
18
|
Chen H, Huang H, Zhao J, Wang Z, Chang M, Xue L, Zhu W, Chai Y, Li G, Wang Z, Wu H. Age-dependent copy number variations of TP53 tumour suppressor gene associated with altered phosphorylation status of p53 protein in sporadic schwannomas. J Neurooncol 2019; 143:369-379. [PMID: 31049827 DOI: 10.1007/s11060-019-03176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Point mutations of TP53 tumour suppressor are very rare in schwannomas. We aim to characterize the frequency of exonic copy-number changes of the gene in the tumour and to examine the association between TP53 alterations, phosphorylation status of p53 protein and clinical phenotypes. METHODS The alterations of TP53 were screened by a combination of Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) in a total of 44 vestibular schwannomas. The mutation index (MI) in a tumour was defined as the number of exons mutated/ the number of exons tested. Phosphorylation status of p53 protein was investigated by immunoblotting and immunofluorescence. RESULTS MLPA analysis showed single and multi-exon deletion mutations of TP53 in 65.7% of the cases. Comparisons of clinical features between mutated and non-mutated patients established an association of TP53 mutations with progressive phenotypes, including an earlier formation and a larger tumour. In addition, there were significant correlations between MI and both patients' age and tumour size. The Ser 392 phosphorylation level of p53 varied among tumours, and correlation analysis revealed an age-dependent phosphorylation pattern. The majority of tumours with hyperphosphorylated p53 were from mutated and young patients, suggesting an association of Ser392 phosphorylation with the mutational status of TP53 involved in the acceleration of tumour growth in young individuals. Moreover, Ser 392 phosphorylation contributed to a nuclear accumulation of p53 in schwannona cultures with TP53 mutation. CONCLUSIONS An interplay between the mutation status of TP53, phosphorylation patterns and tumour behaviors might be established in the disease.
Collapse
Affiliation(s)
- Hongsai Chen
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 639, Zhi-Zao-Ju Road, Shanghai, 200011, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China.,Shanghai Institute of Precision Medicine, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - He Huang
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 639, Zhi-Zao-Ju Road, Shanghai, 200011, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
| | - Jingjing Zhao
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 639, Zhi-Zao-Ju Road, Shanghai, 200011, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
| | - Zhigang Wang
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 639, Zhi-Zao-Ju Road, Shanghai, 200011, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
| | - Mengling Chang
- Department of Burn and Plastic Surgery, Shanghai Jiao Tong University, School of Medicine, Rui Jin Hospital, Shanghai, China
| | - Lu Xue
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 639, Zhi-Zao-Ju Road, Shanghai, 200011, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
| | - Weidong Zhu
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 639, Zhi-Zao-Ju Road, Shanghai, 200011, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
| | - Yongchuan Chai
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 639, Zhi-Zao-Ju Road, Shanghai, 200011, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
| | - Gen Li
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 639, Zhi-Zao-Ju Road, Shanghai, 200011, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
| | - Zhaoyan Wang
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 639, Zhi-Zao-Ju Road, Shanghai, 200011, China. .,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China.
| | - Hao Wu
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 639, Zhi-Zao-Ju Road, Shanghai, 200011, China. .,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
19
|
Human colon cancer cells highly express myoferlin to maintain a fit mitochondrial network and escape p53-driven apoptosis. Oncogenesis 2019; 8:21. [PMID: 30850580 PMCID: PMC6408501 DOI: 10.1038/s41389-019-0130-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 12/24/2022] Open
Abstract
Colon adenocarcinoma is the third most commonly diagnosed cancer and the second deadliest one. Metabolic reprogramming, described as an emerging hallmark of malignant cells, includes the predominant use of glycolysis to produce energy. Recent studies demonstrated that mitochondrial electron transport chain inhibitor reduced colon cancer tumour growth. Accumulating evidence show that myoferlin, a member of the ferlin family, is highly expressed in several cancer types, where it acts as a tumour promoter and participates in the metabolic rewiring towards oxidative metabolism. In this study, we showed that myoferlin expression in colon cancer lesions is associated with low patient survival and is higher than in non-tumoural adjacent tissue. Human colon cancer cells silenced for myoferlin exhibit a reduced oxidative phosphorylation activity associated with mitochondrial fission leading, ROS accumulation, decreased cell growth, and increased apoptosis. We observed the triggering of a DNA damage response culminating to a cell cycle arrest in wild-type p53 cells. The use of a p53 null cell line or a compound able to restore p53 activity (Prima-1) reverted the effects induced by myoferlin silencing, confirming the involvement of p53. The recent identification of a compound interacting with a myoferlin C2 domain and bearing anticancer potency identifies, together with our demonstration, this protein as a suitable new therapeutic target in colon cancer.
Collapse
|
20
|
Regulators of Oncogenic Mutant TP53 Gain of Function. Cancers (Basel) 2018; 11:cancers11010004. [PMID: 30577483 PMCID: PMC6356290 DOI: 10.3390/cancers11010004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor p53 (TP53) is the most frequently mutated human gene. Mutations in TP53 not only disrupt its tumor suppressor function, but also endow oncogenic gain-of-function (GOF) activities in a manner independent of wild-type TP53 (wtp53). Mutant TP53 (mutp53) GOF is mainly mediated by its binding with other tumor suppressive or oncogenic proteins. Increasing evidence indicates that stabilization of mutp53 is crucial for its GOF activity. However, little is known about factors that alter mutp53 stability and its oncogenic GOF activities. In this review article, we primarily summarize key regulators of mutp53 stability/activities, including genotoxic stress, post-translational modifications, ubiquitin ligases, and molecular chaperones, as well as a single nucleotide polymorphism (SNP) and dimer-forming mutations in mutp53.
Collapse
|
21
|
Yogosawa S, Yoshida K. Tumor suppressive role for kinases phosphorylating p53 in DNA damage-induced apoptosis. Cancer Sci 2018; 109:3376-3382. [PMID: 30191640 PMCID: PMC6215896 DOI: 10.1111/cas.13792] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/23/2018] [Accepted: 09/02/2018] [Indexed: 12/20/2022] Open
Abstract
Tumor suppressor p53 plays an important role in cancer prevention. Under normal conditions, p53 is maintained at a low level. However, in response to various cellular stresses, p53 is stabilized and activated, which, in turn, initiates DNA repair, cell-cycle arrest, senescence and apoptosis. Post-translational modifications of p53 including phosphorylation, ubiquitination, and acetylation at multiple sites are important to regulate its activation and subsequent transcriptional gene expression. Particularly, phosphorylation of p53 plays a critical role in modulating its activation to induce apoptosis in cancer cells. In this context, previous studies show that several serine/threonine kinases regulate p53 phosphorylation and downstream gene expression. The molecular basis by which p53 and its kinases induce apoptosis for cancer prevention has been extensively studied. However, the relationship between p53 phosphorylation and its kinases and how the activity of kinases is controlled are still largely unclear; hence, they need to be investigated. In this review, we discuss various roles for p53 phosphorylation and its responsible kinases to induce apoptosis and a new therapeutic approach in a broad range of cancers.
Collapse
Affiliation(s)
- Satomi Yogosawa
- Department of Biochemistry, Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Ohara K, Ohkuri T, Kumai T, Nagato T, Nozaki Y, Ishibashi K, Kosaka A, Nagata M, Harabuchi S, Ohara M, Oikawa K, Aoki N, Harabuchi Y, Celis E, Kobayashi H. Targeting phosphorylated p53 to elicit tumor-reactive T helper responses against head and neck squamous cell carcinoma. Oncoimmunology 2018; 7:e1466771. [PMID: 30510853 DOI: 10.1080/2162402x.2018.1466771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/19/2022] Open
Abstract
The human T cell receptor is capable of distinguishing between normal and post-translationally modified peptides. Because aberrant phosphorylation of cellular proteins is a hallmark of malignant transformation, the expression of the phosphorylated epitope could be an ideal antigen to combat cancer without damaging normal tissues. p53 activates transcription factors to suppress tumors by upregulating growth arrest and apoptosis-related genes. In response to DNA damage, p53 is phosphorylated at multiple sites including Ser33 and Ser37. Here, we identified phosphorylated peptide epitopes from p53 that could elicit effective T helper responses. These epitope peptides, p5322-41/Phospho-S33 and p5322-41/Phospho-S37, induced T helper responses against tumor cells expressing the phosphorylated p53 protein. Moreover, chemotherapeutic agents augmented the responses of such CD4 T cells via upregulation of phosphorylated p53. The upregulation of phosphorylated p53 expression by chemotherapy was confirmed in in vitro and xenograft models. We evaluated phosphorylated p53 expression in the clinical samples of oropharyngeal squamous cell carcinoma and revealed that 13/24 cases (54%) were positive for phosphorylated p53. Importantly, the lymphocytes specific for the phosphorylated p53 peptide epitopes were observed in the head and neck squamous cell cancer (HNSCC) patients. These results reveal that a combination of phosphorylated p53 peptides and chemotherapy could be a novel immunologic approach to treat HNSCC patients.
Collapse
Affiliation(s)
- Kenzo Ohara
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takumi Kumai
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Head & Neck Cancer Research and Treatment (IHNCRT), Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yui Nozaki
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kei Ishibashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Marino Nagata
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Shohei Harabuchi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Mizuho Ohara
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Naoko Aoki
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University, Georgia Cancer Center, Augusta, GA
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
23
|
Klameth L, Rath B, Hamilton G. In vitro Cytotoxic Activities of the Oral Platinum(IV) Prodrug Oxoplatin and HSP90 Inhibitor Ganetespib against a Panel of Gastric Cancer Cell Lines. J Cancer 2017; 8:1733-1743. [PMID: 28819369 PMCID: PMC5556635 DOI: 10.7150/jca.17816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/01/2017] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer exhibits a poor prognosis and is the third most common cause of cancer death worldwide. Chemotherapy of metastatic gastric cancer is based on combinations of platinum drugs and fluoropyrimidines, with added agents. Oxoplatin is a stable oral platinum(IV) prodrug which is converted to a highly active tetrachlorido(IV) complex under acidic conditions. In the present work, we studied the cytotoxic effects of oxoplatin against a panel of four gastric cancer cell lines in vitro. Furthermore, the role of HSP90 in chemoresistance of these lines was investigated using the specific inhibitor ganetespib. The KATO-III, MKN-1, MKN-28, MKN-45 lines were used in MTT chemosensitivity, cell cycle and apoptosis assays. KATO-III is a signet ring diffuse cell type, MKN-1 an adenosquamous primary, MKN-28 a well-differentiated intestinal type and the MKN-45 a poorly differentiated, diffuse type gastric carcinoma line. Cytotoxicity was tested in MTT assays and intracellular signal transduction with proteome profiler Western blot arrays. Interactions of platinum drugs and ganetespib were calculated with help of the Chou-Talalay method. The prodrug oxoplatin revealed low activity against the four gastric cancer cell lines, whereas the platinum tetrachlorido(IV) complex and cisplatin gave IC50 values of 1-3 µg/ml with increasing chemoresistance observed in the order of MKN-1, KATO-III, MKN-28 to MKN-45. With exception of KATO-III and MKN-28/oxoplatin, all other cell lines featured marked synergistic toxicity with clinically achievable concentrations of ganetespib. Oral administration of a platinum agent such as oxoplatin would be of great value for patients and care providers alike. These results suggest that the oncogene-stabilizing HSP90 chaperone represents an important mediator of chemoresistance in gastric cancer. Ganetespib reduced the phosphorylation of p53, Akt1/2/3 and PRAS40, as well as of WNK1, a kinase which regulates intracellular chloride concentrations. Intracellular chloride was reported to control proliferation of gastric cancer cell lines. Expression of MUC1 was not downregulated in contrast to the expression of CAIX, a prognostic marker in gastric cancer. In conclusion, the HSP90 inhibitor ganetespib synergizes with platinum anticancer drugs and modulates intracellular signal transduction in direction of a less proliferative and aggressive phenotype.
Collapse
Affiliation(s)
- Lukas Klameth
- Department for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Yue X, Zhao Y, Xu Y, Zheng M, Feng Z, Hu W. Mutant p53 in Cancer: Accumulation, Gain-of-Function, and Therapy. J Mol Biol 2017; 429:1595-1606. [PMID: 28390900 PMCID: PMC5663274 DOI: 10.1016/j.jmb.2017.03.030] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022]
Abstract
Tumor suppressor p53 plays a central role in tumor suppression. p53 is the most frequently mutated gene in human cancer, and over half of human cancers contain p53 mutations. Majority of p53 mutations in cancer are missense mutations, leading to the expression of full-length mutant p53 (mutp53) protein. While the critical role of wild-type p53 in tumor suppression has been firmly established, mounting evidence has demonstrated that many tumor-associated mutp53 proteins not only lose the tumor-suppressive function of wild-type p53 but also gain new activities to promote tumorigenesis independently of wild-type p53, termed gain-of-function. Mutant p53 protein often accumulates to very high levels in tumors, contributing to malignant progression. Recently, mutp53 has become an attractive target for cancer therapy. Further understanding of the mechanisms underlying mutp53 protein accumulation and gain-of-function will accelerate the development of targeted therapies for human cancer harboring mutp53. In this review, we summarize the recent advances in the studies on mutp53 protein accumulation and gain-of-function and targeted therapies for mutp53 in human cancer.
Collapse
Affiliation(s)
- Xuetian Yue
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Yuhan Zhao
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Yang Xu
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Min Zheng
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903, USA; Department of Pharmacology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903, USA.
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903, USA; Department of Pharmacology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
25
|
Buzby JS, Williams SA, Schaffer L, Head SR, Nugent DJ. Allele-specific wild-type TP53 expression in the unaffected carrier parent of children with Li-Fraumeni syndrome. Cancer Genet 2017; 211:9-17. [PMID: 28279309 DOI: 10.1016/j.cancergen.2017.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/14/2016] [Accepted: 01/06/2017] [Indexed: 01/01/2023]
Abstract
Li-Fraumeni syndrome (LFS) is an autosomal dominant disorder where an oncogenic TP53 germline mutation is passed from parent to child. Tumor protein p53 is a key tumor suppressor regulating cell cycle arrest in response to DNA damage. Paradoxically, some mutant TP53 carriers remain unaffected, while their children develop cancer within the first few years of life. To address this paradox, response to UV stress was compared in dermal fibroblasts (dFb) from an affected LFS patient vs. their unaffected carrier parent. UV induction of CDKN1A/p21, a regulatory target of p53, in LFS patient dFb was significantly reduced compared to the unaffected parent. UV exposure also induced significantly greater p53[Ser15]-phosphorylation in LFS patient dFb, a reported property of some mutant p53 variants. Taken together, these results suggested that unaffected parental dFb may express an increased proportion of wild-type vs. mutant p53. Indeed, a significantly increased ratio of wild-type to mutant TP53 allele-specific expression in the unaffected parent dFb was confirmed by RT-PCR-RFLP and RNA-seq analysis. Hence, allele-specific expression of wild-type TP53 may allow an unaffected parent to mount a response to genotoxic stress more characteristic of homozygous wild-type TP53 individuals than their affected offspring, providing protection from the oncogenesis associated with LFS.
Collapse
Affiliation(s)
- Jeffrey S Buzby
- Hematology Research and Advanced Diagnostics Laboratories, CHOC Children's Hospital of Orange County, Orange, CA, USA.
| | - Shirley A Williams
- Hematology Research and Advanced Diagnostics Laboratories, CHOC Children's Hospital of Orange County, Orange, CA, USA
| | - Lana Schaffer
- Next Generation Sequencing and Microarray Core Facility, The Scripps Research Institute, La Jolla, CA, USA
| | - Steven R Head
- Next Generation Sequencing and Microarray Core Facility, The Scripps Research Institute, La Jolla, CA, USA
| | - Diane J Nugent
- Hematology Research and Advanced Diagnostics Laboratories, CHOC Children's Hospital of Orange County, Orange, CA, USA; Division of Hematology, CHOC Children's Hospital of Orange County, Orange, CA, USA; Division of Pediatric Hematology, School of Medicine, University of California at Irvine, Orange, CA, USA
| |
Collapse
|
26
|
p53 Proteoforms and Intrinsic Disorder: An Illustration of the Protein Structure-Function Continuum Concept. Int J Mol Sci 2016; 17:ijms17111874. [PMID: 27834926 PMCID: PMC5133874 DOI: 10.3390/ijms17111874] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 01/10/2023] Open
Abstract
Although it is one of the most studied proteins, p53 continues to be an enigma. This protein has numerous biological functions, possesses intrinsically disordered regions crucial for its functionality, can form both homo-tetramers and isoform-based hetero-tetramers, and is able to interact with many binding partners. It contains numerous posttranslational modifications, has several isoforms generated by alternative splicing, alternative promoter usage or alternative initiation of translation, and is commonly mutated in different cancers. Therefore, p53 serves as an important illustration of the protein structure–function continuum concept, where the generation of multiple proteoforms by various mechanisms defines the ability of this protein to have a multitude of structurally and functionally different states. Considering p53 in the light of a proteoform-based structure–function continuum represents a non-canonical and conceptually new contemplation of structure, regulation, and functionality of this important protein.
Collapse
|
27
|
Ge X, Zhang A, Lin Y, Du D. Simultaneous immunoassay of phosphorylated proteins based on apoferritin templated metallic phosphates as voltammetrically distinguishable signal reporters. Biosens Bioelectron 2016; 80:201-207. [DOI: 10.1016/j.bios.2016.01.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 02/01/2023]
|
28
|
Li N, Lorenzi F, Kalakouti E, Normatova M, Babaei-Jadidi R, Tomlinson I, Nateri AS. FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15. Oncotarget 2016; 6:9240-56. [PMID: 25860929 PMCID: PMC4496214 DOI: 10.18632/oncotarget.3284] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/05/2015] [Indexed: 12/22/2022] Open
Abstract
FBXW7 mutations occur in a variety of human cancers including colorectal cancer (CRC). Elucidating its mechanism of action has become crucial for cancer therapy; however, it is also complicated by the fact that FBXW7 can influence many pathways due to its role as an E3-ubiquitin ligase in proteasome degradation. FBXW7 and TP53 are tumour suppressors intensively implicated in colorectal carcinogenesis. Deletion mutations in these two genes in animal models mark the progression from adenoma to carcinoma. Although still largely unknown, the last defense mechanism against CRC at the molecular level could be through a synergistic effect of the two genes. The underlying mechanism requires further investigation. In our laboratory, we have used a phospho-kinase profiler array to illustrate a potential molecular link between FBXW7 and p53 in CRC cells. In vitro and in vivo assessments demonstrated aberrant induction of phosphorylated p53 at Serine 15 [phospho-p53(Ser15)] in human FBXW7-deficient CRC cells as compared to their FBXW7-wild-type counterparts. FBXW7 loss in HCT116 cells promoted resistance to oxaliplatin. Immunoblotting data further confirmed that reduction of phospho-p53(Ser15) may contribute to the decreased efficacy of therapy in FBXW7-mutated CRC cells. The findings may suggest the applicability of phospho-p53(Ser15) as an indicative marker of FBXW7-mutations. Phospho-p53(Ser15) regulation by FBXW7 E3-ligase activity could provide important clues for understanding FBXW7 behavior in tumour progression and grounds for its clinical applicability thereafter.
Collapse
Affiliation(s)
- Ningning Li
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.,Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Federica Lorenzi
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Eliana Kalakouti
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.,Hillingdon Hospital, Uxbridge UB8 3NN, UK
| | - Makhliyo Normatova
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Roya Babaei-Jadidi
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ian Tomlinson
- Molecular and Population Genetics Laboratory, the Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Abdolrahman S Nateri
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
29
|
Abstract
p53 has been studied intensively as a major tumour suppressor that detects oncogenic events in cancer cells and eliminates them through senescence (a permanent non-proliferative state) or apoptosis. Consistent with this role, p53 activity is compromised in a high proportion of all cancer types, either through mutation of the TP53 gene (encoding p53) or changes in the status of p53 modulators. p53 has additional roles, which may overlap with its tumour-suppressive capacity, in processes including the DNA damage response, metabolism, aging, stem cell differentiation and fertility. Moreover, many mutant p53 proteins, termed 'gain-of-function' (GOF), acquire new activities that help drive cancer aggression. p53 is regulated mainly through protein turnover and operates within a negative-feedback loop with its transcriptional target, MDM2 (murine double minute 2), an E3 ubiquitin ligase which mediates the ubiquitylation and proteasomal degradation of p53. Induction of p53 is achieved largely through uncoupling the p53-MDM2 interaction, leading to elevated p53 levels. Various stress stimuli acting on p53 (such as hyperproliferation and DNA damage) use different, but overlapping, mechanisms to achieve this. Additionally, p53 activity is regulated through critical context-specific or fine-tuning events, mediated primarily through post-translational mechanisms, particularly multi-site phosphorylation and acetylation. In the present review, I broadly examine these events, highlighting their regulatory contributions, their ability to integrate signals from cellular events towards providing most appropriate response to stress conditions and their importance for tumour suppression. These are fascinating aspects of molecular oncology that hold the key to understanding the molecular pathology of cancer and the routes by which it may be tackled therapeutically.
Collapse
|
30
|
Ji X, Huang Q, Yu L, Nussinov R, Ma B. Bioinformatics study of cancer-related mutations within p53 phosphorylation site motifs. Int J Mol Sci 2014; 15:13275-98. [PMID: 25075982 PMCID: PMC4159794 DOI: 10.3390/ijms150813275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 02/06/2023] Open
Abstract
p53 protein has about thirty phosphorylation sites located at the N- and C-termini and in the core domain. The phosphorylation sites are relatively less mutated than other residues in p53. To understand why and how p53 phosphorylation sites are rarely mutated in human cancer, using a bioinformatics approaches, we examined the phosphorylation site and its nearby flanking residues, focusing on the consensus phosphorylation motif pattern, amino-acid correlations within the phosphorylation motifs, the propensity of structural disorder of the phosphorylation motifs, and cancer mutations observed within the phosphorylation motifs. Many p53 phosphorylation sites are targets for several kinases. The phosphorylation sites match 17 consensus sequence motifs out of the 29 classified. In addition to proline, which is common in kinase specificity-determining sites, we found high propensity of acidic residues to be adjacent to phosphorylation sites. Analysis of human cancer mutations in the phosphorylation motifs revealed that motifs with adjacent acidic residues generally have fewer mutations, in contrast to phosphorylation sites near proline residues. p53 phosphorylation motifs are mostly disordered. However, human cancer mutations within phosphorylation motifs tend to decrease the disorder propensity. Our results suggest that combination of acidic residues Asp and Glu with phosphorylation sites provide charge redundancy which may safe guard against loss-of-function mutations, and that the natively disordered nature of p53 phosphorylation motifs may help reduce mutational damage. Our results further suggest that engineering acidic amino acids adjacent to potential phosphorylation sites could be a p53 gene therapy strategy.
Collapse
Affiliation(s)
- Xiaona Ji
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Long Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
31
|
Kumai T, Ishibashi K, Oikawa K, Matsuda Y, Aoki N, Kimura S, Hayashi S, Kitada M, Harabuchi Y, Celis E, Kobayashi H. Induction of tumor-reactive T helper responses by a posttranslational modified epitope from tumor protein p53. Cancer Immunol Immunother 2014; 63:469-78. [PMID: 24633296 PMCID: PMC11028558 DOI: 10.1007/s00262-014-1533-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/03/2014] [Indexed: 12/22/2022]
Abstract
Posttranslational modifications regulate the function and stability of proteins, and the immune system is able to recognize some of these modifications. Therefore, the presence of posttranslational modifications increases the diversity of potential immune responses to a determinant antigen. The stimulation of tumor-specific CD4(+) helper T lymphocytes (HTLs) is considered important for the production of anti-tumor antibodies by B cells and for the generation and persistence of CD8(+) cytotoxic T lymphocytes, and in some instances, HTLs can directly reduce tumor cell growth. Identification of MHC class II-restricted peptide epitopes from tumor-associated antigens including those generated from posttranslational protein modifications should enable the improvement of peptide-based cancer immunotherapy. We describe here an MHC class II binding peptide from the tumor protein p53, which possesses an acetylated lysine at position 120 (p53110-124/AcK120) that is effective in eliciting CD4(+) T cell responses specific for the acetylated peptide. Most importantly, the acetylated peptide-reactive CD4 HTLs recognized the corresponding naturally processed posttranslational modified epitope presented by either dendritic cells loaded with tumor cell lysates or directly on tumors expressing p53 and the restricting MHC class II molecules. Treatment of tumor cells with a histone deacetylase inhibitor augmented their recognition by the p53110-124/AcK120-reactive CD4(+) T cells. These findings prove that the epitope p53110-124/AcK120 is immunogenic for anti-tumor responses and is likely to be useful for cancer immunotherapy.
Collapse
Affiliation(s)
- Takumi Kumai
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510 Japan
| | - Kei Ishibashi
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
- Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, 078-8510 Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
| | - Yoshinari Matsuda
- Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, 078-8510 Japan
| | - Naoko Aoki
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
| | - Shoji Kimura
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
| | - Satoshi Hayashi
- Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, 078-8510 Japan
| | - Masahiro Kitada
- Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, 078-8510 Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510 Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Department of Medicine, Georgia Regents University Cancer Center, 1410 Laney Walker Boulevard, CN-4121, Augusta, GA 30912 USA
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
| |
Collapse
|
32
|
Nguyen TA, Menendez D, Resnick MA, Anderson CW. Mutant TP53 posttranslational modifications: challenges and opportunities. Hum Mutat 2014; 35:738-55. [PMID: 24395704 DOI: 10.1002/humu.22506] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022]
Abstract
The wild-type (WT) human p53 (TP53) tumor suppressor can be posttranslationally modified at over 60 of its 393 residues. These modifications contribute to changes in TP53 stability and in its activity as a transcription factor in response to a wide variety of intrinsic and extrinsic stresses in part through regulation of protein-protein and protein-DNA interactions. The TP53 gene frequently is mutated in cancers, and in contrast to most other tumor suppressors, the mutations are mostly missense often resulting in the accumulation of mutant (MUT) protein, which may have novel or altered functions. Most MUT TP53s can be posttranslationally modified at the same residues as in WT TP53. Strikingly, however, codons for modified residues are rarely mutated in human tumors, suggesting that TP53 modifications are not essential for tumor suppression activity. Nevertheless, these modifications might alter MUT TP53 activity and contribute to a gain-of-function leading to increased metastasis and tumor progression. Furthermore, many of the signal transduction pathways that result in TP53 modifications are altered or disrupted in cancers. Understanding the signaling pathways that result in TP53 modification and the functions of these modifications in both WT TP53 and its many MUT forms may contribute to more effective cancer therapies.
Collapse
Affiliation(s)
- Thuy-Ai Nguyen
- Chromosome Stability Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | | | | |
Collapse
|
33
|
Girardini JE, Walerych D, Del Sal G. Cooperation of p53 mutations with other oncogenic alterations in cancer. Subcell Biochem 2014; 85:41-70. [PMID: 25201188 DOI: 10.1007/978-94-017-9211-0_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Following the initial findings suggesting a pro-oncogenic role for p53 point mutants, more than 30 years of research have unveiled the critical role exerted by these mutants in human cancer. A growing body of evidence, including mouse models and clinical data, has clearly demonstrated a connection between mutant p53 and the development of aggressive and metastatic tumors. Even if the molecular mechanisms underlying mutant p53 activities are still the object of intense scrutiny, it seems evident that full activation of its oncogenic role requires the functional interaction with other oncogenic alterations. p53 point mutants, with their pleiotropic effects, simultaneously activating several mechanisms of aggressiveness, are engaged in multiple cross-talk with a variety of other cancer-related processes, thus depicting a complex molecular landscape for the mutant p53 network. In this chapter revealing evidence illustrating different ways through which this cooperation may be achieved will be discussed. Considering the proposed role for mutant p53 as a driver of cancer aggressiveness, disarming mutant p53 function by uncoupling the cooperation with other oncogenic alterations, stands out as an exciting possibility for the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Javier E Girardini
- Molecular Oncology Group, Institute of Molecular and Cell Biology of Rosario, IBR-CONICET, Rosario, Argentina
| | | | | |
Collapse
|
34
|
Girardini JE, Marotta C, Del Sal G. Disarming mutant p53 oncogenic function. Pharmacol Res 2013; 79:75-87. [PMID: 24246451 DOI: 10.1016/j.phrs.2013.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 01/01/2023]
Abstract
In the last decade intensive research has confirmed the long standing hypothesis that some p53 point mutants acquire novel activities able to cooperate with oncogenic mechanisms. Particular attention has attracted the ability of several such mutants to actively promote the development of aggressive and metastatic tumors in vivo. This knowledge opens a new dimension on rational therapy design, suggesting novel strategies based on pharmacological manipulation of those neomorphic activities. P53 point mutants have several characteristics that make them attractive targets for anti-cancer therapies. Remarkably, mutant p53 has been found predominantly in tumor cells and may act pleiotropically by interfering with a variety of cellular processes. Therefore, drugs targeting mutant p53 may selectively affect tumor cells, inactivating simultaneously several mechanisms of tumor promotion. Moreover, the high frequency of missense mutations on the p53 gene suggests that interfering with mutant p53 function may provide a valuable approach for the development of efficient therapies able to target a wide range of tumor types.
Collapse
Affiliation(s)
- Javier E Girardini
- Institute of Molecular and Cell Biology of Rosario, IBR-CONICET, Argentina
| | - Carolina Marotta
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127 Trieste, Italy.
| |
Collapse
|
35
|
Walerych D, Napoli M, Collavin L, Del Sal G. The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis 2012; 33:2007-17. [PMID: 22822097 PMCID: PMC3483014 DOI: 10.1093/carcin/bgs232] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the most frequent invasive tumor diagnosed in women, causing over 400 000 deaths yearly worldwide. Like other tumors, it is a disease with a complex, heterogeneous genetic and biochemical background. No single genomic or metabolic condition can be regarded as decisive for its formation and progression. However, a few key players can be pointed out and among them is the TP53 tumor suppressor gene, commonly mutated in breast cancer. In particular, TP53 mutations are exceptionally frequent and apparently among the key driving factors in triple negative breast cancer -the most aggressive breast cancer subgroup-whose management still represents a clinical challenge. The majority of TP53 mutations result in the substitution of single aminoacids in the central region of the p53 protein, generating a spectrum of variants ('mutant p53s', for short). These mutants lose the normal p53 oncosuppressive functions to various extents but can also acquire oncogenic properties by gain-of-function mechanisms. This review discusses the molecular processes translating gene mutations to the pathologic consequences of mutant p53 tumorigenic activity, reconciling cell and animal models with clinical outcomes in breast cancer. Existing and speculative therapeutic methods targeting mutant p53 are also discussed, taking into account the overlap of mutant and wild-type p53 regulatory mechanisms and the crosstalk between mutant p53 and other oncogenic pathways in breast cancer. The studies described here concern breast cancer models and patients-unless it is indicated otherwise and justified by the importance of data obtained in other models.
Collapse
Affiliation(s)
- Dawid Walerych
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, 34149 Trieste, Italy
| | | | | | | |
Collapse
|
36
|
Analysis of the functional integrity of the p53 tumor-suppressor gene in malignant melanoma. Melanoma Res 2012; 21:380-8. [PMID: 21691232 DOI: 10.1097/cmr.0b013e328347ee04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Derogation of the p53 pathway is a hallmark in human malignancies but its implication in melanomas remains unclear. p53 is frequently accumulated in melanomas despite protein stabilizing mutations being rare. For a panel of six melanoma cell lines we performed transcript sequence analysis of the entire coding region and determined p53 protein stability and messenger RNA stability by western blot experiments and quantitative reverse-transcription-PCR, respectively. Transcript levels of p53 modifying genes as well as p53 target genes were investigated after ultraviolet irradiation, interferon-α-2b, and chemotherapy (cisplatin or dacarbazine) by quantitative reverse-transcription-PCR. Transcript sequence analysis identified three aberrations in three of six melanomas. Four of six melanomas showed high-constitutive p53 protein levels. p53 transcripts remained stable in four of six melanomas. All p53-expressing melanomas displayed high p53 protein stability. Constitutively, and after ultraviolet irradiation, mouse double min-2 expression was reduced in melanomas. We detected high homeodomain-interacting protein kinase-2 level in melanomas-expressing mutant p53. Most experimental conditions resulted in lower expression of p21, GADD45A, and PUMA, and a higher expression of CDC2 in melanomas. Altogether, accumulation of p53 protein is due to posttranslational modification or aberrant expression of p53 modifiers. p53 is functionally disrupted although the p53 upstream signaling pathway remains inducible.
Collapse
|
37
|
Aboudehen K, Hilliard S, Saifudeen Z, El-Dahr SS. Mechanisms of p53 activation and physiological relevance in the developing kidney. Am J Physiol Renal Physiol 2012; 302:F928-40. [PMID: 22237799 DOI: 10.1152/ajprenal.00642.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The tumor suppressor protein p53 is a short-lived transcription factor due to Mdm2-mediated proteosomal degradation. In response to genotoxic stress, p53 is stabilized via posttranslational modifications which prevent Mdm2 binding. p53 activation results in cell cycle arrest and apoptosis. We previously reported that tight regulation of p53 activity is an absolute requirement for normal nephron differentiation (Hilliard S, Aboudehen K, Yao X, El-Dahr SS Dev Biol 353: 354-366, 2011). However, the mechanisms of p53 activation in the developing kidney are unknown. We show here that metanephric p53 is phosphorylated and acetylated on key serine and lysine residues, respectively, in a temporal profile which correlates with the maturational changes in total p53 levels and DNA-binding activity. Site-directed mutagenesis revealed a differential role for these posttranslational modifications in mediating p53 stability and transcriptional regulation of renal function genes (RFGs). Section immunofluorescence also revealed that p53 modifications confer the protein with specific spatiotemporal expression patterns. For example, phos-p53(S392) is enriched in maturing proximal tubular epithelial cells, whereas acetyl-p53(K373/K382/K386) are expressed in nephron progenitors. Functionally, p53 occupancy of RFG promoters is enhanced at the onset of tubular differentiation, and p53 loss or gain of function indicates that p53 is necessary but not sufficient for RFG expression. We conclude that posttranslational modifications are important determinants of p53 stability and physiological functions in the developing kidney. We speculate that the stress/hypoxia of the embryonic microenvironment may provide the stimulus for p53 activation in the developing kidney.
Collapse
Affiliation(s)
- Karam Aboudehen
- Department of Pediatrics,, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
38
|
Chen A, Bao Y, Ge X, Shin Y, Du D, Lin Y. Magnetic particle-based immunoassay of phosphorylated p53 using protein cage templated lead phosphate and carbon nanospheres for signal amplification. RSC Adv 2012. [DOI: 10.1039/c2ra20994b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
39
|
Du D, Wang J, Lu D, Dohnalkova A, Lin Y. Multiplexed Electrochemical Immunoassay of Phosphorylated Proteins Based on Enzyme-Functionalized Gold Nanorod Labels and Electric Field-Driven Acceleration. Anal Chem 2011; 83:6580-5. [DOI: 10.1021/ac2009977] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dan Du
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jun Wang
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Donglai Lu
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Alice Dohnalkova
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yuehe Lin
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
40
|
Jefferys SR, Giddings MC. Baking a mass-spectrometry data PIE with McMC and simulated annealing: predicting protein post-translational modifications from integrated top-down and bottom-up data. ACTA ACUST UNITED AC 2011; 27:844-52. [PMID: 21389073 DOI: 10.1093/bioinformatics/btr027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
MOTIVATION Post-translational modifications are vital to the function of proteins, but are hard to study, especially since several modified isoforms of a protein may be present simultaneously. Mass spectrometers are a great tool for investigating modified proteins, but the data they provide is often incomplete, ambiguous and difficult to interpret. Combining data from multiple experimental techniques-especially bottom-up and top-down mass spectrometry-provides complementary information. When integrated with background knowledge this allows a human expert to interpret what modifications are present and where on a protein they are located. However, the process is arduous and for high-throughput applications needs to be automated. RESULTS This article explores a data integration methodology based on Markov chain Monte Carlo and simulated annealing. Our software, the Protein Inference Engine (the PIE) applies these algorithms using a modular approach, allowing multiple types of data to be considered simultaneously and for new data types to be added as needed. Even for complicated data representing multiple modifications and several isoforms, the PIE generates accurate modification predictions, including location. When applied to experimental data collected on the L7/L12 ribosomal protein the PIE was able to make predictions consistent with manual interpretation for several different L7/L12 isoforms using a combination of bottom-up data with experimentally identified intact masses. AVAILABILITY Software, demo projects and source can be downloaded from http://pie.giddingslab.org/
Collapse
|
41
|
Avery-Kiejda KA, Bowden NA, Croft AJ, Scurr LL, Kairupan CF, Ashton KA, Talseth-Palmer BA, Rizos H, Zhang XD, Scott RJ, Hersey P. P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation. BMC Cancer 2011; 11:203. [PMID: 21615965 PMCID: PMC3120805 DOI: 10.1186/1471-2407-11-203] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 05/27/2011] [Indexed: 12/29/2022] Open
Abstract
Background Metastatic melanoma represents a major clinical problem. Its incidence continues to rise in western countries and there are currently no curative treatments. While mutation of the P53 tumour suppressor gene is a common feature of many types of cancer, mutational inactivation of P53 in melanoma is uncommon; however, its function often appears abnormal. Methods In this study whole genome bead arrays were used to examine the transcript expression of P53 target genes in extracts from 82 melanoma metastases and 6 melanoma cell lines, to provide a global assessment of aberrant P53 function. The expression of these genes was also examined in extracts derived from diploid human melanocytes and fibroblasts. Results The results indicated that P53 target transcripts involved in apoptosis were under-expressed in melanoma metastases and melanoma cell lines, while those involved in the cell cycle were over-expressed in melanoma cell lines. There was little difference in the transcript expression of P53 target genes between cell lines with null/mutant P53 compared to those with wild-type P53, suggesting that altered expression in melanoma was not related to P53 status. Similarly, down-regulation of P53 by short-hairpin RNA (shRNA) had limited effect on P53 target gene expression in melanoma cells, whereas there were a large number of P53 target genes whose mRNA expression was significantly altered by P53 inhibition in melanocytes. Analysis of whole genome gene expression profiles indicated that the ability of P53 to regulate genes involved in the cell cycle was significantly reduced in melanoma cells. Moreover, inhibition of P53 in melanocytes induced changes in gene expression profiles that were characteristic of melanoma cells and resulted in increased proliferation. Conversely, knockdown of P53 in melanoma cells resulted in decreased proliferation. Conclusions These results indicate that P53 target genes involved in apoptosis and cell cycle regulation are aberrantly expressed in melanoma and that this aberrant functional activity of P53 may contribute to the proliferation of melanoma.
Collapse
Affiliation(s)
- Kelly A Avery-Kiejda
- Oncology and Immunology, Calvary Mater Newcastle Hospital, University of Newcastle, Newcastle, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Luo KJ, Hu Y, Wen J, Fu JH. CyclinD1, p53, E-cadherin, and VEGF discordant expression in paired regional metastatic lymph nodes of esophageal squamous cell carcinoma: a tissue array analysis. J Surg Oncol 2011; 104:236-43. [PMID: 21480261 DOI: 10.1002/jso.21921] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 03/07/2011] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVES The correlation of biomarker expression between primary tumors and corresponding metastases has not yet been well reported in esophageal squamous cell carcinoma (ESCC). This study was to confirm whether primary ESCC tumors differ from their regional metastatic lymph nodes (RMLN) in CyclinD1, p53, E-cadherin, and vascular endothelial growth factor (VEGF) expression and determine prognostic value of their alteration. METHODS There were 134 patients with stage T3N1-3M0 ESCC recruited for the research. Expression of CyclinD1, p53, E-cadherin, and VEGF was evaluated in primary ESCC tumors and their paired RMLN assembled on tissue microarrays by immunohistochemistry (IHC). The comparison of expression in different lesion and their correlation with prognosis was analyzed. RESULTS E-cadherin was discordant expression in 55.2% cases and appeared to be more frequently positive in metastatic lymph nodes (P < 0.001). The VEGF expression level was significantly higher in primary tumors (P < 0.001). Combined analysis of VEGF expressions in paired lesions (P = 0.003) and its decreased expression (P = 0.006) were both predictive. CONCLUSIONS Biomarker expression was discordant between the primary tumor and its paired lymphatic metastasis in over 25% of patient with ESCC. VEGF discordant expression was a new prognostic factor and combined analysis of expression in paired lesions was useful to predict. Analysis of protein expression only in primary tumors would be inadequate to judge prognosis.
Collapse
Affiliation(s)
- Kong-Jia Luo
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | | | | | | |
Collapse
|
43
|
De Robertis M, Massi E, Poeta ML, Carotti S, Morini S, Cecchetelli L, Signori E, Fazio VM. The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies. J Carcinog 2011; 10:9. [PMID: 21483655 PMCID: PMC3072657 DOI: 10.4103/1477-3163.78279] [Citation(s) in RCA: 412] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 02/05/2011] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a major health problem in industrialized countries. Although inflammation-linked carcinogenesis is a well accepted concept and is often observed within the gastrointestinal tract, the underlying mechanisms remain to be elucidated. Inflammation can indeed provide initiating and promoting stimuli and mediators, generating a tumour-prone microenvironment. Many murine models of sporadic and inflammation-related colon carcinogenesis have been developed in the last decade, including chemically induced CRC models, genetically engineered mouse models, and xenoplants. Among the chemically induced CRC models, the combination of a single hit of azoxymethane (AOM) with 1 week exposure to the inflammatory agent dextran sodium sulphate (DSS) in rodents has proven to dramatically shorten the latency time for induction of CRC and to rapidly recapitulate the aberrant crypt foci–adenoma–carcinoma sequence that occurs in human CRC. Because of its high reproducibility and potency, as well as the simple and affordable mode of application, the AOM/DSS has become an outstanding model for studying colon carcinogenesis and a powerful platform for chemopreventive intervention studies. In this article we highlight the histopathological and molecular features and describe the principal genetic and epigenetic alterations and inflammatory pathways involved in carcinogenesis in AOM/DSS–treated mice; we also present a general overview of recent experimental applications and preclinical testing of novel therapeutics in the AOM/DSS model.
Collapse
Affiliation(s)
- Mariangela De Robertis
- Laboratory of Molecular Medicine and Biotechnology, CIR, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21 - 00128 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Du D, Wang L, Shao Y, Wang J, Engelhard MH, Lin Y. Functionalized Graphene Oxide as a Nanocarrier in a Multienzyme Labeling Amplification Strategy for Ultrasensitive Electrochemical Immunoassay of Phosphorylated p53 (S392). Anal Chem 2011; 83:746-52. [PMID: 21210663 DOI: 10.1021/ac101715s] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dan Du
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Limin Wang
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yuyan Shao
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jun Wang
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Mark H. Engelhard
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yuehe Lin
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
45
|
Jefferys SR, Giddings MC. Automated data integration and determination of posttranslational modifications with the protein inference engine. Methods Mol Biol 2011; 694:255-90. [PMID: 21082440 DOI: 10.1007/978-1-60761-977-2_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This chapter describes using the Protein Inference Engine (PIE) to integrate various types of data--especially top down and bottom up mass spectrometer (MS) data--to describe a protein's posttranslational modifications (PTMs). PTMs include cleavage events such as the n-terminal loss of methionine and residue modifications like phosphorylation. Modifications are key elements in many biological processes, but are difficult to study as no single, general method adequately characterizes a protein's PTMs; manually integrating data from several MS experiments is usually required. The PIE is designed to automate this process using a guess and refine process similar to how an expert manually integrates data. The PIE repeatedly "imagines" a possible modification set, evaluates it using available data, and then tries to improve on it. After many rounds of refinement, the resulting modification set is proposed as a candidate answer. Multiple candidate answers are generated to obtain both best and near-best answers. Near-best answers are crucial in allowing for proteins with more than one supported modification pattern (isoforms) and obtaining robust results given incomplete and inconsistent data.The goal of this chapter is to walk the reader through installing and using the downloadable version of PIE, both in general and by means of a specific, detailed example. The example integrates several types of experimental and background (prior) data. It is not a "perfect-world" scenario, but has been designed to illustrate several real-world difficulties that may be encountered when trying to analyze imperfect data.
Collapse
Affiliation(s)
- Stuart R Jefferys
- Department of Bioinformatics & Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
46
|
Bar JK, Słomska I, Rabczyńki J, Noga L, Gryboś M. Expression of p53 protein phosphorylated at serine 20 and serine 392 in malignant and benign ovarian neoplasms: correlation with clinicopathological parameters of tumors. Int J Gynecol Cancer 2010; 19:1322-8. [PMID: 20009884 DOI: 10.1111/igc.0b013e3181b70465] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION The modification of p53 protein by phosphorylation plays an important role in its stabilization and the regulation of its biological properties. The study investigated the expression of p53 protein phosphorylated at serine 20 (Ser20) and Ser392 and the association between clinicopathological parameters of ovarian neoplasms with respect to p53 protein overexpression. METHODS p53 protein expression was evaluated on tissues from malignant and benign ovarian tumors. Protein expression was measured in a subset of the specimens using immunohistochemistry. RESULTS The correlation between p53 protein overexpression and p53-Ser392 phosphorylation was found in ovarian carcinomas (P = 0.001, r = +0.27). In the total group of ovarian carcinomas, significant differences were observed in p53 protein overexpression between well (G1) and poor (G3) tumor grades (P = 0.005) and between serous and endometrioid types of tumor (P = 0.04), whereas p53-Ser20 phosphorylation was associated with advanced International Federation of Gynecology and Obstetrics stage (P = 0.004) and high tumor grade (P = 0.02). In p53-positive ovarian carcinomas, p53-Ser392 phosphorylation was associated with advanced tumor stage (P = 0.02) and high tumor grade (P = 0.049). p53-Ser20 phosphorylation was associated with low tumor grade of p53-positive ovarian carcinomas (P = 0.02) and with high tumor grade of p53-negative ovarian carcinomas (P = 0.02). CONCLUSIONS These results revealed that p53 phosphorylation at Ser20 and Ser392 is an early event in ovarian tumor development. The authors suggest that the expression of p53 protein phosphorylated at Ser20 and Ser392 in ovarian carcinomas determines their individual clinical features depending on p53 protein status and may be useful biological biomarkers characterizing their behavior.
Collapse
Affiliation(s)
- Julia K Bar
- Department of Clinical Immunology, Medical University, Wrocław, Poland.
| | | | | | | | | |
Collapse
|
47
|
Takeba Y, Sekine S, Kumai T, Matsumoto N, Nakaya S, Tsuzuki Y, Yanagida Y, Nakano H, Asakura T, Ohtsubo T, Kobayashi S. Irinotecan-induced apoptosis is inhibited by increased P-glycoprotein expression and decreased p53 in human hepatocellular carcinoma cells. Biol Pharm Bull 2007; 30:1400-1406. [PMID: 17666793 DOI: 10.1248/bpb.30.1400] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Irinotecan, a DNA topoisomerase I inhibitor, is widely used in cancer chemotherapy. However, little is known of the mechanisms of its antitumor effects and the development of drug resistance in human hepatocellular carcinoma (HCC). In this study, we investigated the effects of short-term culture with SN-38, the active metabolite of irinotecan, on apoptosis in Huh7 cells. The cells were cultured with SN-38 for 24, 72, and 120 h, and apoptosis was determined using the terminal dUTP nick-end labeling (TUNEL) assay. The expressions of p53, apoptosis-related proteins, and P-glycoprotein (P-gp), a protein conferring the multidrug-resistant phenotype, were analyzed using Western blotting. Induced expression of P-gp was detected using fluorescence microscopy. SN-38 significantly induced apoptosis in Huh7 cells at 24 h. SN-38 also increased the expression of p53, Bax, and caspase-9 and decreased Bcl-xL expression in Huh7 cells. SN-38 decreased p53 expression and increased P-gp expression after 120 h, resulting in inhibition of apoptosis. This inhibition was reversed by the addition of verapamil to the culture medium during 120 h incubation. SN-38-induced P-gp expression was additionally enhanced by p53 decoy oligodeoxynucleotide. The changes in P-gp expression were directly moderated by p53 gene downregulation, suggesting that it plays a role in the mechanism of drug resistance. These results suggest that the accumulation of irinotecan in HCC leads to the development of drug resistance.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Camptothecin/analogs & derivatives
- Camptothecin/pharmacology
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Humans
- In Situ Nick-End Labeling
- Irinotecan
- Liver Neoplasms/metabolism
- Microscopy, Fluorescence
- Oligonucleotides/pharmacology
- RNA, Neoplasm/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Suppressor Protein p53/biosynthesis
- Tumor Suppressor Protein p53/physiology
Collapse
Affiliation(s)
- Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hinnis AR, Luckett JCA, Walker RA. Survivin is an independent predictor of short-term survival in poor prognostic breast cancer patients. Br J Cancer 2007; 96:639-45. [PMID: 17285125 PMCID: PMC2360044 DOI: 10.1038/sj.bjc.6603616] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Established clinico–pathological factors can place patients with breast cancer into good and poor prognostic categories, but even within these groups behaviour and response to treatment can differ. This study examined the value of cell cycle and apoptotic regulatory proteins in predicting behaviour in a poor prognostic group. A total of 165 patients, all of whom had died of breast cancer with duration of survival 12–127 months, median 38 months, were examined using immunohistochemistry for proliferation, apoptosis, p53, phosphorylated p53, p21, checkpoint kinase 2 (Chk2), bcl-2, bax, survivin and XIAP. All had received chemotherapy and/or hormonal therapy and were predominantly T2, node positive, grade III with only half oestrogen-receptor (ER) positive. High proliferation, phosphorylated p53, Chk2 and survivin expression correlated with grade III and lack of ER, whereas low proliferation, p21 and bcl-2 related to better grade and presence of ER. On univariate analysis grade, proliferation, phosphorylated p53, bcl-2, ER and survivin related to duration of survival. In multivariate analysis, grade (P=0.001) and survivin (P=0.005) were independent prognostic factors, grade III and presence of survivin relating to shorter survival. The latter was particularly for those patients receiving neoadjuvant therapy and adjuvant chemo- and hormonal therapy. The presence of the inhibitor of apoptosis protein survivin is a highly significant independent predictor of shorter duration of survival of patients with poor prognostic features, and merits investigation as a marker in other prognostic groups.
Collapse
Affiliation(s)
- A R Hinnis
- Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, LE2 7LX, UK
| | - J C A Luckett
- Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, LE2 7LX, UK
| | - R A Walker
- Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, LE2 7LX, UK
- Department of Cancer Studies & Molecular Medicine, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK. E-mail:
| |
Collapse
|
49
|
Matsumoto M, Furihata M, Ohtsuki Y. Posttranslational phosphorylation of mutant p53 protein in tumor development. Med Mol Morphol 2006; 39:79-87. [PMID: 16821145 DOI: 10.1007/s00795-006-0320-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 04/20/2006] [Indexed: 01/10/2023]
Abstract
p53 has been called the "cellular gatekeeper" and the "genome guard," because in response to exposure to DNA-damaging agents, it induces cell-cycle arrest in G1 or apoptosis and also directly affects DNA replication. Multiple mechanisms regulate p53 activity and posttranslational modification, including multisite phosphorylation of wild-type p53, in particular. Normal functions of wild-type p53 are abrogated by mutation of this gene, and oncogenic studies have revealed that p53 mutation is among the most common genetic alteration in human cancers. It is generally accepted that mutant p53 protein may not only lose the tumor suppressor functions of wild-type p53 but also acquire additional tumorigenetic roles, including dominant-negative effects and gain of function. Although many studies have revealed such aberrant functions of mutant p53, less is known about the posttranslational phosphorylation status of mutant p53 and novel biological functions of phosphorylation in carcinogenesis.
Collapse
Affiliation(s)
- Manabu Matsumoto
- Department of Clinical Laboratory, Kochi Medical School Hospital, Nankoku, Kochi, 783-8305, Japan.
| | | | | |
Collapse
|
50
|
Wilder PT, Lin J, Bair CL, Charpentier TH, Yang D, Liriano M, Varney KM, Lee A, Oppenheim AB, Adhya S, Carrier F, Weber DJ. Recognition of the tumor suppressor protein p53 and other protein targets by the calcium-binding protein S100B. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1284-97. [PMID: 17010455 DOI: 10.1016/j.bbamcr.2006.08.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Revised: 08/16/2006] [Accepted: 08/17/2006] [Indexed: 01/10/2023]
Abstract
S100B is an EF-hand containing calcium-binding protein of the S100 protein family that exerts its biological effect by binding and affecting various target proteins. A consensus sequence for S100B target proteins was published as (K/R)(L/I)xWxxIL and matches a region in the actin capping protein CapZ (V.V. Ivanenkov, G.A. Jamieson, Jr., E. Gruenstein, R.V. Dimlich, Characterization of S-100b binding epitopes. Identification of a novel target, the actin capping protein, CapZ, J. Biol. Chem. 270 (1995) 14651-14658). Several additional S100B targets are known including p53, a nuclear Dbf2 related (NDR) kinase, the RAGE receptor, neuromodulin, protein kinase C, and others. Examining the binding sites of such targets and new protein sequence searches provided additional potential target proteins for S100B including Hdm2 and Hdm4, which were both found to bind S100B in a calcium-dependent manner. The interaction between S100B and the Hdm2 and/or the Hdm4 proteins may be important physiologically in light of evidence that like Hdm2, S100B also contributes to lowering protein levels of the tumor suppressor protein, p53. For the S100B-p53 interaction, it was found that phosphorylation of specific serine and/or threonine residues reduces the affinity of the S100B-p53 interaction by as much as an order of magnitude, and is important for protecting p53 from S100B-dependent down-regulation, a scenario that is similar to what is found for the Hdm2-p53 complex.
Collapse
Affiliation(s)
- Paul T Wilder
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|