1
|
Steitz AM, Schröder C, Knuth I, Keber CU, Sommerfeld L, Finkernagel F, Jansen JM, Wagner U, Müller-Brüsselbach S, Worzfeld T, Huber M, Beutgen VM, Graumann J, Pogge von Strandmann E, Müller R, Reinartz S. TRAIL-dependent apoptosis of peritoneal mesothelial cells by NK cells promotes ovarian cancer invasion. iScience 2023; 26:108401. [PMID: 38047087 PMCID: PMC10692662 DOI: 10.1016/j.isci.2023.108401] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
A crucial requirement for metastasis formation in ovarian high-grade serous carcinoma (HGSC) is the disruption of the protective peritoneal mesothelium. Using co-culture systems of primary human cells, we discovered that tumor-associated NK cells induce TRAIL-dependent apoptosis in mesothelial cells via death receptors DR4 and DR5 upon encounter with activated T cells. Upregulation of TRAIL expression in NK cells concomitant with enhanced cytotoxicity toward mesothelial cells was driven predominantly by T-cell-derived TNFα, as shown by affinity proteomics-based analysis of the T cell secretome in conjunction with functional studies. Consistent with these findings, we detected apoptotic mesothelial cells in the peritoneal fluid of HGSC patients. In contrast to mesothelial cells, HGSC cells express negligible levels of both DR4 and DR5 and are TRAIL resistant, indicating cell-type-selective killing by NK cells. Our data point to a cooperative action of T and NK in breaching the mesothelial barrier in HGSC patients.
Collapse
Affiliation(s)
- Anna Mary Steitz
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Clarissa Schröder
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Isabel Knuth
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Corinna U. Keber
- Institute for Pathology, Philipps University, 35043 Marburg, Germany
| | - Leah Sommerfeld
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Florian Finkernagel
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Julia M. Jansen
- Clinic for Gynecology, Gynecological Oncology, Gynecological Endocrinology, University Hospital (UKGM), 35043 Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology, Gynecological Endocrinology, University Hospital (UKGM), 35043 Marburg, Germany
| | - Sabine Müller-Brüsselbach
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University, 35043 Marburg, Germany
| | - Magdalena Huber
- Institute of Systems Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Vanessa M. Beutgen
- Institute of Translational Proteomics, Philipps University, 35043 Marburg, Germany
- Core Facility Translational Proteomics, Philipps University, 35043 Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Philipps University, 35043 Marburg, Germany
- Core Facility Translational Proteomics, Philipps University, 35043 Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Clinic for Hematology, Oncology and Immunology, Philipps University, 35043 Marburg, Germany
| | - Rolf Müller
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Silke Reinartz
- Translational Oncology Group, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| |
Collapse
|
2
|
Targeting TRAIL Death Receptors in Triple-Negative Breast Cancers: Challenges and Strategies for Cancer Therapy. Cells 2022; 11:cells11233717. [PMID: 36496977 PMCID: PMC9739296 DOI: 10.3390/cells11233717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor necrosis factor (TNF) superfamily member TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells via death receptor (DR) activation with little toxicity to normal cells or tissues. The selectivity for activating apoptosis in cancer cells confers an ideal therapeutic characteristic to TRAIL, which has led to the development and clinical testing of many DR agonists. However, TRAIL/DR targeting therapies have been widely ineffective in clinical trials of various malignancies for reasons that remain poorly understood. Triple negative breast cancer (TNBC) has the worst prognosis among breast cancers. Targeting the TRAIL DR pathway has shown notable efficacy in a subset of TNBC in preclinical models but again has not shown appreciable activity in clinical trials. In this review, we will discuss the signaling components and mechanisms governing TRAIL pathway activation and clinical trial findings discussed with a focus on TNBC. Challenges and potential solutions for using DR agonists in the clinic are also discussed, including consideration of the pharmacokinetic and pharmacodynamic properties of DR agonists, patient selection by predictive biomarkers, and potential combination therapies. Moreover, recent findings on the impact of TRAIL treatment on the immune response, as well as novel strategies to address those challenges, are discussed.
Collapse
|
3
|
Zinnah KMA, Park SY. Sensitizing TRAIL‑resistant A549 lung cancer cells and enhancing TRAIL‑induced apoptosis with the antidepressant amitriptyline. Oncol Rep 2021; 46:144. [PMID: 34080659 PMCID: PMC8185507 DOI: 10.3892/or.2021.8095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with the potential to induce cancer cell-specific apoptosis with minimal toxicity to normal cells. Therefore, the resistance of certain cancer cells to TRAIL is a major concern and agents that can either enhance TRAIL capabilities or overcome TRAIL resistance are necessary for the development of cancer treatments. The present study investigated whether the antidepressant drug amitriptyline could sensitize TRAIL-resistant A549 lung cancer cells and enhance TRAIL-induced apoptosis. Antidepressants are usually prescribed to cancer patients to relieve emotional distress, such as depression or dysthymia. The present study revealed for the first time, to the best of our knowledge, that amitriptyline increased death receptor (DR) 4 and 5 expression, a requirement for TRAIL-induced cell death. Genetic inhibitors of DR4 and DR5 significantly reduced amitriptyline-enhanced TRAIL-mediated apoptosis. Additionally, the present study explored whether blocking autophagy increased DR4 and DR5 expression. Blocking autophagy flux with the final stage autophagy inhibitor chloroquine (CQ) also upregulated DR4 and DR5 expression. TRAIL in combination with amitriptyline or CQ significantly increased the expression of apoptosis-indicator proteins cleaved caspase-8 and caspase-3. The expression levels of LC3-II and p62 were significantly higher in amitriptyline-treated cells, which confirmed that amitriptyline blocks autophagy by inhibiting the fusion of autophagosomes with lysosomes. Overall, the present results contributed to understanding the mechanism responsible for the synergistic anticancer effect of amitriptyline and TRAIL and also presented a novel mechanism involved in DR4 and DR5 upregulation.
Collapse
Affiliation(s)
- K M A Zinnah
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| |
Collapse
|
4
|
Cardoso Alves L, Corazza N, Micheau O, Krebs P. The multifaceted role of TRAIL signaling in cancer and immunity. FEBS J 2020; 288:5530-5554. [PMID: 33215853 DOI: 10.1111/febs.15637] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can lead to the induction of apoptosis in tumor or infected cells. However, activation of TRAIL signaling may also trigger nonapoptotic pathways in cancer and in nontransformed cells, that is, immune cells. Here, we review the current knowledge on noncanonical TRAIL signaling. The biological outcomes of TRAIL signaling in immune and malignant cells are presented and explained, with a focus on the role of TRAIL for natural killer (NK) cell function. Furthermore, we highlight the technical difficulties in dissecting the precise molecular mechanisms involved in the switch between apoptotic and nonapoptotic TRAIL signaling. Finally, we discuss the consequences thereof for a therapeutic manipulation of TRAIL in cancer and possible approaches to bypass these difficulties.
Collapse
Affiliation(s)
| | - Nadia Corazza
- Institute of Pathology, University of Bern, Switzerland
| | - Olivier Micheau
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | | |
Collapse
|
5
|
Ji J, Zhou BR, Zhang RH, Li HM, Guo Q, Zhu J, Luo D. MG-132 treatment promotes TRAIL-mediated apoptosis in SEB-1 sebocytes. Life Sci 2018; 210:150-157. [PMID: 30176247 DOI: 10.1016/j.lfs.2018.08.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 11/19/2022]
Abstract
AIMS This study aimed to identify the mechanism of how MG-132 stimulates cell death in SEB-1 sebocytes. MATERIALS AND METHODS TUNEL staining and annexin-FITC/PI flow cytometry were utilized to examine the apoptotic cell number of SEB-1 sebocytes and HaCaT keratinocytes upon MG-132 and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment. MTT assay and CCK-8 assay monitored the proliferative rate and viability of both cell lines with different treatment. Western blotting (WB) and qPCR were performed to detect the expression of TRAIL and members of Bcl-2 family at protein and gene level. Additionally, RNA interfering was used to knockdown the mRNA transcription of TRAIL and BIK gene. KEY FINDINGS MG-132 treatment enhanced cell death in SEB-1 sebocytes but not in HaCaT keratinocytes. Meanwhile, TRAIL concentrations in SEB-1 sebocytes treated with MG-132 were markedly elevated. Furthermore, treatment with TRAIL or the TRAIL receptor-specific monoclonal antibody AY4 at various doses stimulated cell death in SEB-1 sebocytes in a time- and dose-dependent manner. Silencing of TRAIL restored the cell viability of SEB-1 cells to a normal level after MG-132 treatment. Combined treatment of SEB-1 sebocytes with TRAIL and MG-132 synergistically triggered cell death, suppressed cell proliferation and survival, and promoted BIK expression. Furthermore, BCL2 Interacting Killer (BIK) knockdown via RNA interference participated in the recovery of cell survival reduced by treatment with TRAIL and MG-132. SIGNIFICANCE These findings suggest that treatment with the selective proteasome suppressor MG-132 and TRAIL induces cell death in sebocytes through upregulation of BIK, a member of the Bcl-2 family.
Collapse
Affiliation(s)
- Jin Ji
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University
| | - Bing-Rong Zhou
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University
| | - Ruo-Hua Zhang
- Department of Dermatology, The Affiliated Hospital of Nanjing University of Chinese Medicine
| | - Hong-Min Li
- Department of Dermatology, The Affiliated Hospital of Nanjing University of Chinese Medicine
| | - Qin Guo
- Department of Dermatology, The Affiliated Hospital of Nanjing University of Chinese Medicine
| | - Jie Zhu
- Department of Dermatology, The Affiliated Hospital of Nanjing University of Chinese Medicine
| | - Dan Luo
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University.
| |
Collapse
|
6
|
The apoptotic mechanisms of MT-6, a mitotic arrest inducer, in human ovarian cancer cells. Sci Rep 2017; 7:46149. [PMID: 28387244 PMCID: PMC5384015 DOI: 10.1038/srep46149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/10/2017] [Indexed: 11/08/2022] Open
Abstract
Patients with ovarian cancer are typically diagnosed at an advanced stage, resulting in poor prognosis since there are currently no effective early-detection screening tests for women at average-risk for ovarian cancer. Here, we investigated the effects of MT-6, a derivative of moscatilin, in ovarian cancer cells. Our investigation showed that MT-6 inhibited the proliferation and viability of ovarian cancer cells with submicromolar IC50 values. MT-6-treated SKOV3 cells showed significant cell cycle arrest at G2/M phase, followed by an increase in the proportion of cells in a sub-G1 phase. In addition, MT-6 induced a concentration-dependent increase in mitotic markers, mitotic kinases, cell cycle regulators of G2/M transition, and apoptosis-related markers in ovarian cancer cells. MT-6 treatment also induced mitochondrial membrane potential loss, JNK activation, and DR5 expression. Cotreatment of cells with the JNK inhibitor SP600125 considerably attenuated MT-6-induced apoptosis, mitochondria membrane potential loss, DR5 upregulation, and suppression of cell viability. MT-6 also inhibited tumor growth in an SKOV3 xenograft model without significant body weight loss. Together, our findings suggest that MT-6 is a potent anticancer agent with tumor-suppressive activity in vitro and in vivo that could be further investigated for ovarian cancer therapy in the future.
Collapse
|
7
|
Wu Y, He J, Geng J, An Y, Ye X, Yan S, Yu Q, Yin J, Zhang Z, Li D. Recombinant Newcastle disease virus expressing human TRAIL as a potential candidate for hepatoma therapy. Eur J Pharmacol 2017; 802:85-92. [PMID: 28246027 DOI: 10.1016/j.ejphar.2017.02.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 01/21/2023]
Abstract
Newcastle disease virus (NDV) have shown oncolytic therapeutic efficacy in preclinical studies and are currently proved for clinical trials. We have previously reported, for the first time, NDV Anhinga strain has an efficient cancer therapeutic efficacy in hepatoma. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) functions as a cytokine to selectively kill various cancer cells without toxicity to most normal cells. Numerous studies have demonstrated the potential use of recombinant soluble TRAIL as a cancer therapeutic agent. In this study, we have showed administration of a recombinant NDV Anhinga strain expressing soluble TRAIL (NDV/Anh-TRAIL) results in an efficient suppression of hepatocellular carcinoma without significant toxicity. The results show that recombinant NDV Anhinga strain expressing soluble TRAIL is a promising candidate for hepatoma therapy.
Collapse
Affiliation(s)
- Yunzhou Wu
- College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang District, Harbin, China
| | - Jinjiao He
- College of life science and technology, Xinxiang University, Jinsui Avenue, Hongqi District, Xinxiang, China
| | - Jingshu Geng
- The Pathology Department, Affiliated Tumor Hospital of Harbin Medical University, Yiyuan Street 37, Nangang District, Harbin, China
| | - Ying An
- College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang District, Harbin, China
| | - Xianlong Ye
- School of Life Science, Henan Normal University, 46 Jianshe Road E., Xinxiang, China
| | - Shijun Yan
- College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang District, Harbin, China
| | - Qingzhong Yu
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Jiechao Yin
- College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang District, Harbin, China
| | - Zhenyu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Deshan Li
- College of Life Science, Northeast Agriculture University, Mucai Street 59, Xiangfang District, Harbin, China
| |
Collapse
|
8
|
Voltan R, Secchiero P, Casciano F, Milani D, Zauli G, Tisato V. Redox signaling and oxidative stress: Cross talk with TNF-related apoptosis inducing ligand activity. Int J Biochem Cell Biol 2016; 81:364-374. [PMID: 27686849 DOI: 10.1016/j.biocel.2016.09.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 02/06/2023]
Abstract
Redox regulation plays a key role in several physiopathological contexts and free radicals, from nitric oxide and superoxide anion up to other forms of reactive oxygen species (ROS), have been demonstrated to be involved in different biological and regulatory processes. The data reported in the current literature describe a link between ROS, inflammation and programmed cell death that is attracting interest as new pathways to be explored and targeted for therapeutic purposes. In this light, there is also growing attention to the involvement of this link in the activity of the TNF-related apoptosis inducing ligand (TRAIL). TRAIL is a member of the TNF ligands super family able to mediate multiple intracellular signals, with the potential to lead to a range of biological effects in different cell types. In particular, the hallmark of TRAIL is the ability to induce selective apoptosis in transformed cells leaving normal cells almost unaffected and this feature has already opened the door to several clinical studies for cancer treatment. Moreover, TRAIL plays a role in several physiological and pathological processes of both innate and adaptive immune systems and of the cardiovascular context, with a strong clinical potential. Nonetheless, several issues still need to be clarified about the signaling mediated by TRAIL to gain deeper insight into its therapeutic potential. In this light, the aim of this review is to summarize the main preclinical evidences about the interplay between TRAIL and redox signaling, with particular emphasis to the implications in vascular physiopathology and cancer.
Collapse
Affiliation(s)
- Rebecca Voltan
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Fabio Casciano
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy.
| |
Collapse
|
9
|
Chaveroux C, Bruhat A, Carraro V, Jousse C, Averous J, Maurin AC, Parry L, Mesclon F, Muranishi Y, Cordelier P, Meulle A, Baril P, Do Thi A, Ravassard P, Mallet J, Fafournoux P. Regulating the expression of therapeutic transgenes by controlled intake of dietary essential amino acids. Nat Biotechnol 2016; 34:746-51. [DOI: 10.1038/nbt.3582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/20/2016] [Indexed: 12/14/2022]
|
10
|
Tyrosine kinase inhibitor tyrphostin AG490 retards chronic joint inflammation in mice. Inflammation 2015; 37:995-1005. [PMID: 24473905 DOI: 10.1007/s10753-014-9820-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tyrphostin AG490 is a Janus kinase (JAK) 2 inhibitor that is clinically used as an anticancer agent and is also effective in various models of inflammatory and autoimmune diseases. In this study, we examined the effects of tyrphostin AG490 on the development of collagenase-induced osteoarthritis (CIOA). Our results showed that tyrphostin-ameliorated cartilage and bone destructions. This effect was associated with decreased expression of signal transducers and activators of transcription 3 (STAT3), phosphorylated JAK2, Dickkopf homolog 1, and receptor activator of nuclear factor κB ligand (RANKL) in the joints of arthritic mice. Tyrphostin AG490 suppressed STAT3 phosphorylation and the expression of tumor necrosis factor-related apoptosis-inducing ligand and RANKL by synovial fluid cells. The drug inhibited RANKL-induced osteoclast differentiation in vitro. Molecules, such as tyrphostin AG490 that limit bone erosion and influence osteoclast generation, might have therapeutic utility in joint degenerative disorders.
Collapse
|
11
|
Chen H, Wang D, Xia R, Mao Q, Xia H. A novel adenoviral vector carrying an all-in-one Tet-On system with an autoregulatory loop for tight, inducible transgene expression. BMC Biotechnol 2015; 15:4. [PMID: 25888000 PMCID: PMC4331377 DOI: 10.1186/s12896-015-0121-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 01/30/2015] [Indexed: 01/24/2023] Open
Abstract
Background One of the most commonly used vectors for gene therapy is the adenoviral vector; its ability to tightly regulate transgene expression is critical for optimizing therapeutic outcomes. The tetracycline-regulated system (especially the Tet-On system) for gene expression is one of the most valuable tools for controlling gene expression. The major problem of an adenoviral vector carrying a Tet-On system is suboptimal regulation of transgene expression. Results We constructed a single adenoviral vector carrying in its E1 region a novel “all-in-one” Tet-On system with an autoregulatory loop. This system had improved Dox-inducible gene expression in terms of low basal expression, high induced expression and high responsiveness to Dox. To our knowledge, this is the first reported adenovirus-based, all-in-one Tet-On system with an autoregulatory loop inserted into a single region of adenoviral genome. This system was further tested by inducible expression of soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL). The adenovirus that expressed soluble TRAIL under the control of this novel Tet-On system showed tumor-derived cells inhibitory activity in SW480 cells only under induced conditions. Conclusions Our novel, single adenoviral vector carrying in its E1 region an all-in-one Tet-On system with an autoregulatory loop displayed tight regulation of transgene expression in vitro. This system has great potential for a variety of applications, including gene therapy and the study of gene function.
Collapse
Affiliation(s)
- Hao Chen
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shaanxi, PR China.
| | - Dongyang Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shaanxi, PR China.
| | - Ruiting Xia
- College of Liberal Arts and Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Qinwen Mao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shaanxi, PR China.
| |
Collapse
|
12
|
Shin EA, Sohn EJ, Won G, Choi JU, Jeong M, Kim B, Kim MJ, Kim SH. Upregulation of microRNA135a-3p and death receptor 5 plays a critical role in Tanshinone I sensitized prostate cancer cells to TRAIL induced apoptosis. Oncotarget 2014; 5:5624-36. [PMID: 25015549 PMCID: PMC4170628 DOI: 10.18632/oncotarget.2152] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 06/29/2014] [Indexed: 01/24/2023] Open
Abstract
Though tumor necrosis factor related apoptosis inducing ligand (TRAIL) has been used as a potent anticancer agent, TRAIL resistance is a hot-issue in cancer therapy. We investigated the antitumor mechanism of Tanshinone I to sensitize prostate cancer cells to TRAIL. Comibination of Tanshinone I and TRAIL exerted synergistic cytotoxicity, increased cleaved PARP, sub G1 population, the number of TUNELpositive cells, activated caspase 8, 9 and ROS production in PC-3 and DU145 cells. Of note, combination of Tanshinone I and TRAIL enhanced the protein expression of death receptor 5 (DR5) and attenuated anti-apoptotic proteins. RT-PCR and RT-qPCR analyses confirmed that co-treatment of Tanshinone I and TRAIL up-regulated DR5 and microRNA 135a-3p at mRNA level or activity of DR5 promoter and attenuated phosphorylation of extracellular signal regulated kinases in PC-3. Conversely, the silencing of DR5 blocked the increased cytotoxicity, sub G1 population and PARP cleavages induced by co-treatment of Tanshinone I and TRAIL. Interestingly, miR135a-3p mimic enhanced DR5 at mRNA, increased PARP cleavage, Bax and the number of TUNEL positive cells in Tanshinone I and TRAIL cotreated PC-3. Overall, our findings suggest that Tanshinone I enhances TRAIL mediated apoptosis via upregulation of miR135a-3p mediated DR5 in prostate cancer cells as a potent TRAIL sensitizer.
Collapse
Affiliation(s)
- Eun Ah Shin
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun Jung Sohn
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | - Gunho Won
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | - Jeong-Un Choi
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | - Myongsuk Jeong
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | - Bonglee Kim
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | - Min-Jeong Kim
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
13
|
Zheng L, Weilun Z, Minghong J, Yaxi Z, Shilian L, Yanxin L, Dexian Z. Adeno-associated virus-mediated doxycycline-regulatable TRAIL expression suppresses growth of human breast carcinoma in nude mice. BMC Cancer 2012; 12:153. [PMID: 22530952 PMCID: PMC3404920 DOI: 10.1186/1471-2407-12-153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 04/24/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) functions as a cytokine to selectively kill various cancer cells without toxicity to most normal cells. Numerous studies have demonstrated the potential use of recombinant soluble TRAIL as a cancer therapeutic agent. We have showed previous administration of a recombinant adeno-associated virus (rAAV) vector expressing soluble TRAIL results in an efficient suppression of human tumor growth in nude mice. In the present study, we introduced Tet-On gene expression system into the rAAV vector to control the soluble TRAIL expression and evaluate the efficiency of the system in cancer gene therapy. METHODS Controllability of the Tet-On system was determined by luciferase activity assay, and Western blotting and enzyme-linked immunoabsorbent assay. Cell viability was determined by MTT assay. The breast cancer xenograft animal model was established and recombinant virus was administrated through tail vein injection to evaluate the tumoricidal activity. RESULTS The expression of soluble TRAIL could be strictly controlled by the Tet-On system in both normal and cancer cells. Transduction of human cancer cell lines with rAAV-TRE-TRAIL&rAAV-Tet-On under the presence of inducer doxycycline resulted in a considerable cell death by apoptosis. Intravenous injection of the recombinant virus efficiently suppressed the growth of human breast carcinoma in nude mice when activated by doxycycline. CONCLUSION These data suggest that rAAV-mediated soluble TRAIL expression under the control of the Tet-On system is a promising strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Liu Zheng
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Zhang Weilun
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Jiang Minghong
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Zhang Yaxi
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Liu Shilian
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Liu Yanxin
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China
| | - Zheng Dexian
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing, 100005, China
| |
Collapse
|
14
|
Tumor cell-selective apoptosis induction through targeting of K(V)10.1 via bifunctional TRAIL antibody. Mol Cancer 2011; 10:109. [PMID: 21899742 PMCID: PMC3179451 DOI: 10.1186/1476-4598-10-109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 09/07/2011] [Indexed: 11/26/2022] Open
Abstract
Background The search for strategies to target ion channels for therapeutic applications has become of increasing interest. Especially, the potassium channel KV10.1 (Ether-á-go-go) is attractive as target since this surface protein is virtually not detected in normal tissue outside the central nervous system, but is expressed in approximately 70% of tumors from different origins. Methods We designed a single-chain antibody against an extracellular region of KV10.1 (scFv62) and fused it to the human soluble TRAIL. The KV10.1-specific scFv62 antibody -TRAIL fusion protein was expressed in CHO-K1 cells, purified by chromatography and tested for biological activity. Results Prostate cancer cells, either positive or negative for KV10.1 were treated with the purified construct. After sensitization with cytotoxic drugs, scFv62-TRAIL induced apoptosis only in KV10.1-positive cancer cells, but not in non-tumor cells, nor in tumor cells lacking KV10.1 expression. In co-cultures with KV10.1-positive cancer cells the fusion protein also induced apoptosis in bystander KV10.1-negative cancer cells, while normal prostate epithelial cells were not affected when present as bystander. Conclusions KV10.1 represents a novel therapeutic target for cancer. We could design a strategy that selectively kills tumor cells based on a KV10.1-specific antibody.
Collapse
|
15
|
Nelson AM, Cong Z, Gilliland KL, Thiboutot DM. TRAIL contributes to the apoptotic effect of 13-cis retinoic acid in human sebaceous gland cells. Br J Dermatol 2011; 165:526-33. [PMID: 21564055 DOI: 10.1111/j.1365-2133.2011.10392.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The full mechanism of action of isotretinoin [13-cis retinoic acid (13-cis RA)] in treating acne is unknown. 13-cis RA induces key genes in sebocytes that are involved in apoptosis, including Tumor necrosis factor Related Apoptosis Inducing Ligand (TRAIL). OBJECTIVES In this study, we investigated the role of 13-cis RA-induced TRAIL within SEB-1 sebocytes. METHODS Using 13-cis RA and recombinant human TRAIL (rhTRAIL) protein, we assessed induction of TRAIL and apoptosis in SEB-1 sebocytes, normal keratinocytes and patient skin biopsies. RESULTS Treatment with rhTRAIL protein increased TUNEL-positive staining in SEB-1 sebocytes. TRAIL siRNA significantly decreased the percentage of TUNEL-positive SEB-1 sebocytes in response to 13-cis RA treatment. Furthermore, TRAIL expression increased in the skin of patients with acne after 1 week of isotretinoin therapy compared with baseline. TRAIL expression localized within sebaceous glands. Unlike sebocytes, TRAIL protein expression was not increased in normal human epidermal keratinocytes in response to 13-cis RA, nor did rhTRAIL induce apoptosis in keratinocytes, suggesting that TRAIL is key in the sebocyte-specific apoptotic effects of 13-cis RA. CONCLUSIONS Taken together, our data suggest that TRAIL, like the neutrophil gelatinase-associated lipocalin, is involved in mediating 13-cis RA apoptosis of sebocytes.
Collapse
Affiliation(s)
- A M Nelson
- The Jake Gittlen Cancer Research Foundation and Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
16
|
Reactive oxygen species is essential for cycloheximide to sensitize lexatumumab-induced apoptosis in hepatocellular carcinoma cells. PLoS One 2011; 6:e16966. [PMID: 21347335 PMCID: PMC3037406 DOI: 10.1371/journal.pone.0016966] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/18/2011] [Indexed: 11/19/2022] Open
Abstract
This study aims to investigate apoptosis induced by lexatumumab (Lexa) in hepatocellular carcinoma (HCC) cells. We assessed the sensitivity of HCC cell lines and normal human hepatocytes to Lexa and explored the sensitization of HCC cells to Lexa-induced apoptosis by cycloheximide (CHX). Our data indicated that CHX sensitized HCC cell lines to Lexa-induced apoptosis, whereas treatment using solely CHX or Lexa was ineffective. The sequential treatment of CHX followed by Lexa dramatically induced caspase-dependent apoptosis in HCC cells and had synergistically increased intracellular rates of reactive oxygen species (ROS). Additionally, when ROS production was blocked by N-acetyl-L-cysteine (NAC), HCC cells were protected against Lexa and CHX combination treatment-induced apoptosis. ROS generation induced by combination treatment of Lexa and CHX triggered pro-apoptotic protein Bax oligomerization, conformation change, and translocation to mitochondria, which resulted in the release of cytochrome c and subsequent cell death. Furthermore, HSP90 was involved in mediating Lexa and CHX combination treatment-induced ROS increase and apoptotic death. More importantly, we observed that combination treatment of Lexa and CHX did not cause apoptotic toxicity in normal human primary hepatocytes. These results suggest that Lexa and CHX combination treatment merits investigation for the development of therapies for patients with HCC.
Collapse
|
17
|
Zhao X, Cao M, Liu JJ, Zhu H, Nelson DR, Liu C. Reactive Oxygen Species Is Essential for Cycloheximide to Sensitize Lexatumumab-Induced Apoptosis in Hepatocellular Carcinoma Cells. PLoS One 2011; 6:e16966. [DOI: doi10.1371/journal.pone.0016966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
18
|
Davis JS, Nastiuk KL, Krolewski JJ. TNF is necessary for castration-induced prostate regression, whereas TRAIL and FasL are dispensable. Mol Endocrinol 2011; 25:611-20. [PMID: 21292828 DOI: 10.1210/me.2010-0312] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
TNF, a proinflammatory and immune-regulatory cytokine, is a potent apoptotic stimulus in vitro. However, there have been few examples of a physiologic role for TNF-induced apoptosis in vivo. Here, we describe a novel role for TNF in prostate epithelial cell apoptosis after androgen withdrawal. Employing high-resolution serial magnetic resonance imaging to measure mouse prostate volume changes over time, we demonstrate that the extent of castration-induced prostate regression is significantly reduced in mice null for either the Tnf or Tnfr1 genes but not mice deficient for TNF-related apoptosis-inducing ligand or Fas signaling. Wild-type mice receiving soluble TNF (sTNF) receptor 2 (to bind TNF and block signaling) before castration exhibit an identical reduction of prostate regression. Together, these data indicate that uniquely among known extrinsic death signals, TNF is required for castration-induced prostate regression. Additionally, membrane-bound TNF protein and stromal cell specific TNF mRNA levels increase in rat prostate after castration. This is consistent with a paracrine role for TNF in prostate regression. When injected into the peritoneum of Tnf(-/-) mice at the time of castration, sTNF restores normal levels of prostate regression. However, wild-type mice receiving sTNF in the absence of castration do not exhibit prostate regression, indicating that TNF alone is not sufficient but acts in the context of additional castration-induced signals. These findings support a physiologic role for TNF in prostate regression after androgen withdrawal. Understanding this role may lead to novel therapies for prostate cancer.
Collapse
Affiliation(s)
- Jennifer S Davis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, California 92697-4800, USA
| | | | | |
Collapse
|
19
|
Pavet V, Portal MM, Moulin JC, Herbrecht R, Gronemeyer H. Towards novel paradigms for cancer therapy. Oncogene 2010; 30:1-20. [DOI: 10.1038/onc.2010.460] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Characterisation of the cutaneous pathology in non-small cell lung cancer (NSCLC) patients treated with the EGFR tyrosine kinase inhibitor erlotinib. Eur J Cancer 2010; 46:2010-9. [PMID: 20621734 DOI: 10.1016/j.ejca.2010.04.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 04/28/2010] [Indexed: 12/18/2022]
Abstract
INTRODUCTION EGFR inhibitors (EGFRIs) have been shown to be clinically effective in various cancers. Unique skin toxicity is commonly observed with EGFRIs and a correlation between the clinical benefit of EGFRIs and this characteristic rash has been reported. Erlotinib is a potent EGFRI approved for treatment of non-small cell lung cancer (NSCLC) and pancreatic cancer. METHODS This is the first time in which patients were given increasing doses of an EGFRI to induce a mechanistic rash and study its associated pathology in skin. Biopsies were collected during treatment from both rash-affected and unaffected skin of 23 NSCLC patients and compared with pre-treatment biopsies. RESULTS Altered differentiation of appendegeal epithelium (hair follicles and sebaceous glands) was remarkable in both affected and unaffected skin, although epidermal growth was not significantly reduced. A predominantly mononuclear leucocyte infiltrate was detected in the interfollicular dermis or around skin appendages. This infiltrate included TRAIL-positive cells with a dendritic cell (DC) morphology, although T-cells, antigen-presenting DCs and macrophages were also evident. This is the first report showing the involvement of a dendritic cell subtype with EGFRI skin toxicity. CONCLUSIONS Altered differentiation of pilosebaceous epithelium is evident in both rash-affected and unaffected skin and constitutes the primary process of EGFRI in human skin. We propose that this eventually triggers inflammation and the EGFRI rash. TRAIL-positive inflammatory cells could link rash development and immune-triggered apoptosis of epithelial cells, including those of underlying carcinomas.
Collapse
|
21
|
Abstract
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a potent inducer of tumor cell apoptosis, but concerns of considerable liver toxicity limit its uses in human cancer therapy. Here, we show that i.v. injected Escherichia coli DH5α (E. coli DH5α) specifically replicates in solid tumors and metastases in live animals. E. coli DH5α does not enter tumor cells and suits for being the vector for soluble TRAIL (sTRAIL), which induces apoptosis by activating cell-surface death receptors. With the high ‘tumor-targeting' nature, we demonstrate that intratumoral (i.t.) and intravenous injection of sTRAIL-expressing E. coli DH5α results in the tumor-targeted release of biologically active molecules, which leads to a dramatic reduction in the tumor growth rate and the prolonged survival of tumor-bearing mice. TRAIL delivery by E. coli DH5α did not cause any detectable toxicity to any organs, suggesting that E. coli DH5α-delivered sTRAIL protein therapy may provide a feasible and effective form of treatment for solid tumors.
Collapse
|
22
|
Moretto P, Hotte SJ. Targeting apoptosis: preclinical and early clinical experience with mapatumumab, an agonist monoclonal antibody targeting TRAIL-R1. Expert Opin Investig Drugs 2009; 18:311-25. [DOI: 10.1517/13543780902752463] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Jääskeläinen M, Kyrönlahti A, Anttonen M, Nishi Y, Yanase T, Secchiero P, Zauli G, Tapanainen JS, Heikinheimo M, Vaskivuo TE. TRAIL pathway components and their putative role in granulosa cell apoptosis in the human ovary. Differentiation 2009; 77:369-76. [PMID: 19281785 DOI: 10.1016/j.diff.2008.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 12/08/2008] [Accepted: 12/09/2008] [Indexed: 11/19/2022]
Abstract
Extensive apoptotic oocyte reduction occurs during fetal ovarian development. The regulatory pathways responsible for oocyte selection to programmed cell death are, however, poorly understood. The aim of this study was to investigate the potential involvement of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAIL-R1/DR4 and TRAIL-R2/DR5 and decoy receptors TRAIL-R3/DcR1 and TRAIL-R4/DcR2 in the apoptotic process characterizing human fetal and adult ovaries. For this purpose, in situ hybridization and immunohistochemistry were applied to human fetal and adult ovarian samples to study the mRNA and protein expression of TRAIL pathway components, and a human granulosa cell tumor-derived cell line (KGN) was used to elucidate functional effects of TRAIL on apoptosis. TRAIL was expressed in human fetal ovary from the 11th week until term. The pro-apoptotic TRAIL-R2/DR5 and the anti-apoptotic TRAIL-R4/DcR2 were also expressed in human ovaries throughout the fetal period. Among the different ovarian cell types, these TRAIL pathway components were mainly localized in the oocytes, and their expression increased towards term. Expression of TRAIL-R1/DR4 and TRAIL-R3/DcR1 was negligible in all of the fetal ovaries studied. Adult ovaries expressed TRAIL, TRAIL-R2/DR5, TRAIL-R3/DcR1 and TRAIL-R4/DcR2 in granulosa cells and oocytes of small primary/secondary follicles as well as in granulosa and theca cells of more developed antral follicles. In KGN cells, TRAIL efficiently induced apoptosis in a dose-dependent manner, and this was blocked by a caspase inhibitor. The results indicate a role of the TRAIL pathway components in the regulation of granulosa cell apoptosis in in vitro and suggest that these factors may have a role in regulating ovarian apoptosis also in vivo.
Collapse
Affiliation(s)
- M Jääskeläinen
- Department of Obstetrics and Gynecology, University of Oulu, P.O. Box 5000, FIN-90014, Oulu, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dharmapatni AASSK, Smith MD, Findlay DM, Holding CA, Evdokiou A, Ahern MJ, Weedon H, Chen P, Screaton G, Xu XN, Haynes DR. Elevated expression of caspase-3 inhibitors, survivin and xIAP correlates with low levels of apoptosis in active rheumatoid synovium. Arthritis Res Ther 2009; 11:R13. [PMID: 19171073 PMCID: PMC2688245 DOI: 10.1186/ar2603] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 12/02/2008] [Accepted: 01/27/2009] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a tumour necrosis factor (TNF) family member capable of inducing apoptosis in many cell types. METHODS Using immunohistochemistry, terminal deoxynucleotidyl transferase biotin-dUTP nick end labelling (TUNEL) and real-time PCR we investigated the expression of TRAIL, TRAIL receptors and several key molecules of the intracellular apoptotic pathway in human synovial tissues from various types of arthritis and normal controls. Synovial tissues from patients with active rheumatoid arthritis (RA), inactive RA, osteoarthritis (OA) or spondyloarthritis (SpA) and normal individuals were studied. RESULTS Significantly higher levels of TRAIL, TRAIL R1, TRAIL R2 and TRAIL R4 were observed in synovial tissues from patients with active RA compared with normal controls (p < 0.05). TRAIL, TRAIL R1 and TRAIL R4 were expressed by many of the cells expressing CD68 (macrophages). Lower levels of TUNEL but higher levels of cleaved caspase-3 staining were detected in tissue from active RA compared with inactive RA patients (p < 0.05). Higher levels of survivin and x-linked inhibitor of apoptosis protein (xIAP) were expressed in active RA synovial tissues compared with inactive RA observed at both the protein and mRNA levels. CONCLUSIONS This study indicates that the induction of apoptosis in active RA synovial tissues is inhibited despite stimulation of the intracellular pathway(s) that lead to apoptosis. This inhibition of apoptosis was observed downstream of caspase-3 and may involve the caspase-3 inhibitors, survivin and xIAP.
Collapse
Affiliation(s)
- Anak ASSK Dharmapatni
- Discipline of Pathology, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, North Terrace, Adelaide, 5005 South Australia, Australia
| | - Malcolm D Smith
- Rheumatology Research Unit, Repatriation General Hospital, Daws Road, Adelaide, 5041 South Australia, Australia
| | - David M Findlay
- Discipline of Orthopaedics and Trauma, School of Medicine, Faculty of Health Sciences, University of Adelaide and Hanson Institute, Frome Road, Adelaide, 5005 South Australia, Australia
| | - Christopher A Holding
- Discipline of Pathology, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, North Terrace, Adelaide, 5005 South Australia, Australia
| | - Andreas Evdokiou
- Discipline of Orthopaedics and Trauma, School of Medicine, Faculty of Health Sciences, University of Adelaide and Hanson Institute, Frome Road, Adelaide, 5005 South Australia, Australia
| | - Michael J Ahern
- Rheumatology Research Unit, Repatriation General Hospital, Daws Road, Adelaide, 5041 South Australia, Australia
| | - Helen Weedon
- Rheumatology Research Unit, Repatriation General Hospital, Daws Road, Adelaide, 5041 South Australia, Australia
| | - Paul Chen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3, UK
| | | | - Xiao N Xu
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3, UK
| | - David R Haynes
- Discipline of Pathology, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, North Terrace, Adelaide, 5005 South Australia, Australia
| |
Collapse
|
25
|
Abstract
Secondary infections after burn are common and are a major contributor to morbidity and mortality. We previously showed that burn disrupted proximal gut mucosal homeostasis through increased epithelial cell apoptosis. In the present study, we sought to determine whether proximal gut mucosal disruption is additively affected by secondary endotoxemia after a severe burn. C57BL/6 mice received 30% total body surface area full-thickness scald burns and were randomized to receive saline or LPS 1 mg/kg body weight given intraperitoneally 72 h after burn. Proximal small bowel was harvested 12 h after LPS injection. Mucosal height and epithelial cell number were assessed on hematoxylin-eosin sections, intestinal epithelial cell apoptosis was identified by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, and cell proliferation by immunohistochemical staining for proliferating cell nuclear antigen. Results showed that proximal gut mucosa impairment occurred 12 h after injury, including significantly decreased proximal gut wet weight, gut mucosal height, and epithelial cell number associated with increased proximal gut epithelial apoptosis (P < 0.05). This impairment diminished 72 h after burn. Second-hit endotoxemia caused additional proximal gut mucosa damage with decreased proximal gut weight, cell number, and mucosal height (P < 0.05) and significantly increased small intestinal epithelial apoptosis and mucosal atrophy, even after the first event, indicating a second detrimental effect of endotoxemia after the initial injury.
Collapse
|
26
|
White-Gilbertson S, Rubinchik S, Voelkel-Johnson C. Transformation, translation and TRAIL: an unexpected intersection. Cytokine Growth Factor Rev 2008; 19:167-72. [PMID: 18353705 DOI: 10.1016/j.cytogfr.2008.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with roles in tumor surveillance and tolerance. TRAIL selectively induces apoptosis in many malignant but not normal cells but the underlying cause for spontaneous TRAIL sensitivity remains elusive. We propose a novel hypothesis that links TRAIL sensitivity to translational arrest following stresses that inactivate eukaryotic elongation factor 2 (EF2). Affected cells experience a reduction in apoptotic threshold because, due to their short half-lives, levels of anti-apoptotic proteins quickly drop off once translation elongation is inhibited leaving pro-apoptotic proteins unchallenged. This change in protein profile renders affected cells sensitive to TRAIL-mediated apoptosis and places EF2 into the role of a sensor for cellular damage.
Collapse
Affiliation(s)
- Shai White-Gilbertson
- Medical University of South Carolina, Department of Microbiology and Immunology, PO Box 250504/BSB201, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
27
|
In vitro sensitivity testing of minimally passaged and uncultured gliomas with TRAIL and/or chemotherapy drugs. Br J Cancer 2008; 99:294-304. [PMID: 18594532 PMCID: PMC2480982 DOI: 10.1038/sj.bjc.6604459] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
TRAIL/Apo-2L has shown promise as an anti-glioma drug, based on investigations of TRAIL sensitivity in established glioma cell lines, but it is not known how accurately TRAIL signalling pathways of glioma cells in vivo are reproduced in these cell lines in vitro. To replicate as closely as possible the in vivo behaviour of malignant glioma cells, 17 early passage glioma cell lines and 5 freshly resected gliomas were exposed to TRAIL-based agents and/or chemotherapeutic drugs. Normal human hepatocytes and astrocytes and established glioma cell lines were also tested. Cross-linked TRAIL, but not soluble TRAIL, killed both normal cell types and cells from three tumours. Cells from only one glioma were killed by soluble TRAIL, although only inefficiently. High concentrations of cisplatin were lethal to glioma cells, hepatocytes and astrocytes. Isolated combinations of TRAIL and chemotherapy drugs were more toxic to particular gliomas than normal cells, but no combination was generally selective for glioma cells. This study highlights the widespread resistance of glioma cells to TRAIL-based agents, but suggests that a minority of high-grade glioma patients may benefit from particular combinations of TRAIL and chemotherapy drugs. In vitro sensitivity assays may help identify effective drug combinations for individual glioma patients.
Collapse
|
28
|
Zhang Y, Ma H, Zhang J, Liu S, Liu Y, Zheng D. AAV-mediated TRAIL gene expression driven by hTERT promoter suppressed human hepatocellular carcinoma growth in mice. Life Sci 2008; 82:1154-61. [PMID: 18485417 DOI: 10.1016/j.lfs.2008.03.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 03/10/2008] [Accepted: 03/19/2008] [Indexed: 12/14/2022]
Abstract
A major obstacle in the development of effective recombinant adeno-associated virus (rAAV) mediated gene therapy is infection specificity and gene targeting. In the present study, we investigated whether the human telomerase reverse transcriptase (hTERT) promoter could drive tumor-specific expression of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), an apoptosis apoptosis-inducing protein with potential toxic effects on normal cells. Our data demonstrated that hTERT promoter-driven tumor-specific expression of TRAIL decreased the cellular viability of tumor cells, but not normal cells. TRAIL expression driven by hTERT promoter inhibited tumor growth significantly in vivo and combination of viral infection with 5-fluorouracil (5-Fu) suppressed tumor growth more efficiently. Intra-venous injection of virus showed that the recombinant virus was predominantly distributed in the liver, but not in other major tissues tested, and no transgene expression was detected in the liver. Furthermore, serum enzyme and liver histology analysis confirmed that liver function is unaffected by TRAIL expression, significant as the liver is frequently metastasized and scattered with tumors from other organs, which are unpractical to treat by intra-tumor injection. Together our results demonstrate that rAAV-mediated TRAIL expression is a promising strategy in gene therapy for treatment of cancer.
Collapse
Affiliation(s)
- Ying Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Tsinghua University, Beijing 100005, China
| | | | | | | | | | | |
Collapse
|
29
|
FOXO3a mediates the androgen-dependent regulation of FLIP and contributes to TRAIL-induced apoptosis of LNCaP cells. Oncogene 2008; 27:4422-33. [DOI: 10.1038/onc.2008.80] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
30
|
Nastiuk KL, Yoo K, Lo K, Su K, Yeung P, Kutaka J, Danielpour D, Krolewski JJ. FLICE-Like Inhibitory Protein Blocks Transforming Growth Factor β1–Induced Caspase Activation and Apoptosis in Prostate Epithelial Cells. Mol Cancer Res 2008; 6:231-42. [DOI: 10.1158/1541-7786.mcr-07-0386] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Meslin F, Hamaï A, Gao P, Jalil A, Cahuzac N, Chouaib S, Mehrpour M. Silencing of prion protein sensitizes breast adriamycin-resistant carcinoma cells to TRAIL-mediated cell death. Cancer Res 2007; 67:10910-9. [PMID: 18006836 DOI: 10.1158/0008-5472.can-07-0512] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We investigated the relationship between the resistance to the proapoptotic action of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) and cellular prion protein (PrPc) function, using the TRAIL-sensitive MCF-7 human breast adenocarcinoma cell line and two TRAIL-resistant sublines: 2101 and MCF-7/ADR. All of the cell lines tested expressed TRAIL-R1 and TRAIL-R2. TRAIL decoy receptors were not detected, suggesting that the resistance of 2101 and MCF-7/ADR cells, strongly expressing PrPc, to TRAIL-mediated cell death was independent from the expression of TRAIL receptors and death-inducing signaling complex formation. Down-regulation of PrPc by small interfering RNA increased the sensitivity of Adriamycin- and TRAIL-resistant cells to TRAIL, but not to epirubicin/Adriamycin. TRAIL-mediated apoptosis in PrPc knocked-down cells was associated with caspase processing, Bid cleavage, and Mcl-1 degradation. In addition, an increased sensitivity of apoptosis-resistant cells to TRAIL after PrPc silencing was not associated with the increased recruitment of receptors and intracellular signaling molecule to the death-inducing signaling complex. Bcl-2 expression was substantially decreased after PrPc knock-down but the levels of Bcl-X(L) and Mcl-1 were not affected. The down-regulation of Bcl-2 was concomitant with Bax delocalization. Our findings support the notion that silencing of PrPc facilitates the activation of proapoptotic Bax by down-regulation of Bcl-2 expression, thereby abolishing the resistance of breast cancer cells to TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Franck Meslin
- INSERM U753, Laboratoire d'Immunologie des Tumeurs Humaines, Interaction Effecteurs Cytotoxiques-Système Tumoral, Institut Gustave Roussy PR1 and IFR 54, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
32
|
White SJ, Kasman LM, Kelly MM, Lu P, Spruill L, McDermott PJ, Voelkel-Johnson C. Doxorubicin generates a proapoptotic phenotype by phosphorylation of elongation factor 2. Free Radic Biol Med 2007; 43:1313-21. [PMID: 17893044 PMCID: PMC2084083 DOI: 10.1016/j.freeradbiomed.2007.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 06/21/2007] [Accepted: 06/23/2007] [Indexed: 11/24/2022]
Abstract
We have previously shown that doxorubicin sensitizes prostate cancer cells to tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL). Sensitization correlated with decreased expression of the antiapoptotic cellular FLICE-like inhibitor protein (cFLIP(S)). The decrease in cFLIP(S) could not be explained by transcriptional regulation or increased degradation, leading us to focus on translational mechanisms. In this study, we found that doxorubicin caused strong and sustained phosphorylation of elongation factor 2 (EF-2), which interferes with protein elongation. Phosphorylation of EF-2 appeared to occur in a kinase-independent manner. Treatment with hydrogen peroxide recapitulated the events observed after doxorubicin treatment. In addition, cells treated with hydrogen peroxide expressed less X-linked inhibitor of apoptosis protein (XIAP) and survivin which, like cFLIP(S), are short-half-life proteins with an antiapoptotic function while expression levels of DR5, caspases-8, -9, -3, and Bax are maintained. The doxorubicin-mediated decrease in cFLIP(S) and XIAP and the TRAIL-induced apoptosis were prevented by pretreatment with an iron chelator, indicating that expression of these proteins was affected by free radical generation upon interaction of iron with doxorubicin. In conclusion, our data suggest that free radicals can affect the phosphorylation of EF-2 resulting in a net loss of short-half-life proteins such as cFLIP(S) and XIAP, leaving a cell more vulnerable to apoptotic stimuli.
Collapse
Affiliation(s)
- Shai J. White
- Department of Microbiology & Immunology, Medical University of South Carolina, 173 Ashley Ave Charleston SC 29425, USA
| | - Laura M. Kasman
- Department of Microbiology & Immunology, Medical University of South Carolina, 173 Ashley Ave Charleston SC 29425, USA
| | - Margaret M. Kelly
- Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Ave Charleston SC 29425, USA
| | - Ping Lu
- Department of Microbiology & Immunology, Medical University of South Carolina, 173 Ashley Ave Charleston SC 29425, USA
| | - Laura Spruill
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, 173 Ashley Ave Charleston SC 29425, USA
| | - Paul J. McDermott
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, 173 Ashley Ave Charleston SC 29425, USA
| | - Christina Voelkel-Johnson
- Department of Microbiology & Immunology, Medical University of South Carolina, 173 Ashley Ave Charleston SC 29425, USA
| |
Collapse
|
33
|
Volkmann X, Fischer U, Bahr MJ, Ott M, Lehner F, Macfarlane M, Cohen GM, Manns MP, Schulze-Osthoff K, Bantel H. Increased hepatotoxicity of tumor necrosis factor-related apoptosis-inducing ligand in diseased human liver. Hepatology 2007; 46:1498-508. [PMID: 17705261 DOI: 10.1002/hep.21846] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in tumor cells but not in most normal cells and has therefore been proposed as a promising antitumor agent. Recent experiments suggested that isolated primary human hepatocytes but not monkey liver cells are susceptible to certain TRAIL agonists, raising concerns about the use of TRAIL in cancer treatment. Whether TRAIL indeed exerts hepatotoxicity in vivo and how this is influenced by chemotherapeutic drugs or liver disease are completely unknown. Employing different forms of recombinant TRAIL, we found that the cytokine can induce proapoptotic caspase activity in isolated human hepatocytes. However in marked contrast, these different TRAIL preparations induced little or no cytotoxicity when incubated with tissue explants of fresh healthy liver, an experimental model that may more faithfully mimic the in vivo situation. In healthy liver, TRAIL induced apoptosis only when combined with histone deacetylase inhibitors. Strikingly, however, TRAIL alone triggered massive apoptosis accompanied by caspase activation in tissue explants from patients with liver steatosis or hepatitis C viral infection. This enhanced sensitivity of diseased liver was associated with an increased expression of TRAIL receptors and up-regulation of proapoptotic Bcl-2 proteins. CONCLUSION These results suggest that clinical trials should be performed with great caution when TRAIL is combined with chemotherapy or administered to patients with inflammatory liver diseases.
Collapse
Affiliation(s)
- Xandra Volkmann
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chen PL, Easton A. Apoptotic phenotype alters the capacity of tumor necrosis factor-related apoptosis-inducing ligand to induce human vascular endothelial activation. J Vasc Res 2007; 45:111-22. [PMID: 17940338 DOI: 10.1159/000109880] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 07/31/2007] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND/AIMS The ability of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to activate vascular endothelium is unclear. This study investigates the link between endothelial apoptosis and activation in response to TRAIL. METHODS AND RESULTS Endothelial cell apoptosis was modeled with the immortalized human endothelial cell line EA.hy926, and with primary human umbilical vein endothelial cells (HUVEC) sensitized with the phosphatidylinositol 3-kinase inhibitor LY294002 in 1% serum. EA.hy926 expressed greatest levels of TRAIL receptors R1 and R2, and HUVEC of R2 and R3, determined by flow cytometry. Recombinant human (rh)TRAIL induced apoptosis in both models, reducing cell numbers preventable with caspase inhibitors, and confirmed by annexin V staining. In EA.hy926, rhTRAIL activated NF-kappaB (1 h) with increased ICAM-1 expression (24 h). rhTRAIL also increased adhesion of human neutrophils, blocked with an antibody to neutrophil CD18, a ligand for ICAM-1, and with antibodies to TRAIL and TRAIL-R1 and R2. rhTRAIL increased neutrophil adhesion to sensitized HUVEC, without effect on unmodified HUVEC. rhTRAIL did not increase surface labeling of ICAM-1 or E-selectin in sensitized HUVEC. CONCLUSIONS TRAIL increases neutrophil adhesion when it concurrently induces apoptosis both in EA.hy926 and in sensitized HUVEC. TRAIL may therefore induce endothelial activation in concert with endothelial apoptosis.
Collapse
Affiliation(s)
- Pei-Lin Chen
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
35
|
Wang MJ, Liu S, Liu Y, Zheng D. Actinomycin D enhances TRAIL-induced caspase-dependent and -independent apoptosis in SH-SY5Y neuroblastoma cells. Neurosci Res 2007; 59:40-6. [PMID: 17707539 DOI: 10.1016/j.neures.2007.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/10/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted great attention as a promising anti-cancer reagent. Recombinant soluble TRAIL (rsTRAIL) derivatives induce apoptosis in various cancer cells, but not in most normal cells. However, a number of cancerous cell types are resistant to TRAIL cytotoxicity, limiting its application in cancer therapy. In the present study, we report that actinomycin D (Act D) pretreatment increases apoptosis in human neuroblastoma SH-SY5Y cells treated with rsTRAIL. Both caspase-9 and caspase-7, but not caspase-3, were activated during the apoptosis process. z-VAD-fmk, a pan-caspase inhibitor, only partially suppressed apoptosis of the cells, suggesting that the Act D-enhanced apoptosis of SH-SY5Y occurred via caspase-dependent and -independent manners. In cells pretreated with Act D, we found decreased mitochondrial transmembrane potential, high levels of reactive oxygen species (ROS), and up-regulated apoptotic-inducing factor (AIF). Cell death was blocked in cells stably transfected with AIF-siRNA plasmid. Taken together, these data indicate that Act D sensitizes SH-SY5Y cells to rsTRAIL-induced apoptosis via caspase activation, impairment of the mitochondrial membrane, release of ROS, and up-regulation of AIF expression. This study provides a novel strategy for the therapy of malignant neuroblastoma resistant to rsTRAIL cytotoxicity.
Collapse
Affiliation(s)
- Ming-Jie Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | | | | | | |
Collapse
|
36
|
Koschny R, Walczak H, Ganten TM. The promise of TRAIL—potential and risks of a novel anticancer therapy. J Mol Med (Berl) 2007; 85:923-35. [PMID: 17437073 DOI: 10.1007/s00109-007-0194-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/07/2007] [Accepted: 03/14/2007] [Indexed: 12/30/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising new anticancer biotherapeutic. As shown by many preclinical studies, TRAIL efficiently induces apoptosis in numerous tumor cell lines but not in the majority of normal cells. However, an increasing number of publications report on a predominance of TRAIL resistance in primary human tumor cells, which require sensitization for TRAIL-induced apoptosis. Sensitization of cancer cells by treatment with chemotherapeutic drugs and irradiation has been shown to restore TRAIL sensitivity in many TRAIL-resistant tumor cells. Accordingly TRAIL treatment has been successfully used in different in vivo models for the treatment of tumors also in combination with chemotherapeutics without significant toxicity. However, some reports demonstrated toxicity of TRAIL alone or in combination with chemotherapeutic drugs in normal cells. This review summarizes data concerning the apoptosis-inducing pathways and efficacy of TRAIL, alone or in combination with chemotherapeutic drugs, in primary cancer cells compared to the unwanted effects of TRAIL treatment on normal tissue. We discuss the different in vitro tumor cell models and the potential of different recombinant forms of TRAIL or agonistic antibodies to TRAIL death receptors. Most preclinical studies show a high efficiency of a combinatorial TRAIL-based therapy in animal models and in primary human ex vivo tumor cells with a low toxicity in normal cells. Accordingly clinical phase I/II studies have begun and will be developed further with caution.
Collapse
Affiliation(s)
- Ronald Koschny
- Division of Apoptosis Regulation, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | |
Collapse
|
37
|
Keogh RJ, Harris LK, Freeman A, Baker PN, Aplin JD, Whitley GS, Cartwright JE. Fetal-Derived Trophoblast Use the Apoptotic Cytokine Tumor Necrosis Factor-α–Related Apoptosis-Inducing Ligand to Induce Smooth Muscle Cell Death. Circ Res 2007; 100:834-41. [PMID: 17322170 DOI: 10.1161/01.res.0000261352.81736.37] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Remodeling of the uterine spiral arteries during pregnancy transforms them from high to low resistance vessels that lack vasoconstrictive properties. This process is essential to meet the demand for increased blood flow imposed by the growing fetus. Loss of endothelial and smooth muscle cells (SMC) is evident in remodeled arteries but the mechanisms underlying this transformation remain unknown. This study investigated the hypothesis that fetal trophoblast invading from the placenta instigate remodeling by triggering cell death in vascular SMC. Specifically, a role for trophoblast-derived death inducing cytokine tumor necrosis factor-α–related apoptosis-inducing ligand (TRAIL) was investigated. Expression of the activating TRAIL receptors R1 and R2 was detected by flow cytometry on human aortic SMC and by immunohistochemistry on spiral artery SMC. Recombinant human TRAIL induced human aortic SMC apoptosis, which was inhibited by antibodies against TRAIL-R1 or -R2. Perfusion of denuded spiral artery segments with recombinant human TRAIL also induced SMC apoptosis. Trophoblasts isolated from first trimester placenta expressed membrane-associated TRAIL and induced apoptosis of human aortic SMC; apoptosis was significantly inhibited by a recombinant human TRAIL-R1:Fc construct. Trophoblast within the first trimester placental bed also expressed TRAIL. These data show that: 1) TRAIL causes SMC death; 2) trophoblast produce the apoptotic cytokine TRAIL; and 3) trophoblast induce SMC apoptosis via a TRAIL-dependent mechanism. We conclude that TRAIL produced by trophoblast causes apoptosis of SMC and thus may contribute to SMC loss during spiral artery remodeling in pregnancy.
Collapse
MESH Headings
- Apoptosis/drug effects
- Apoptosis/physiology
- Arteries/cytology
- Cells, Cultured
- Decidua/blood supply
- Decidua/cytology
- Female
- Fetus
- Humans
- Microscopy, Video
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myometrium/blood supply
- Myometrium/cytology
- Pregnancy
- Pregnancy Trimester, First
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Receptors, Tumor Necrosis Factor/metabolism
- TNF-Related Apoptosis-Inducing Ligand/biosynthesis
- TNF-Related Apoptosis-Inducing Ligand/pharmacology
- TNF-Related Apoptosis-Inducing Ligand/physiology
- Time Factors
- Trophoblasts/cytology
- Trophoblasts/metabolism
Collapse
Affiliation(s)
- Rosemary J Keogh
- Centre for Developmental and Endocrine Signalling, Division of Basic Medical Sciences, St George's, University of London, Cranmer Terrace, London, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Hamaï A, Richon C, Meslin F, Faure F, Kauffmann A, Lecluse Y, Jalil A, Larue L, Avril MF, Chouaib S, Mehrpour M. Imatinib enhances human melanoma cell susceptibility to TRAIL-induced cell death: Relationship to Bcl-2 family and caspase activation. Oncogene 2006; 25:7618-34. [PMID: 16983347 DOI: 10.1038/sj.onc.1209738] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In order to define genetic determinants of primary and metastatic melanoma cell susceptibility to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), we have applied oligonucleotide microarrays to TRAIL-sensitive primary T1 cells and TRAIL-resistant metastatic G1 cells treated or not with TRAIL. T1 and G1 cells are isogenic melanoma cell subclones. We examined 22 000 spots, 4.2% of which displayed differential expression in G1 and T1 cells. Cell susceptibility to TRAIL-mediated apoptosis was found to be correlated with gene expression signatures in this model. Some of the differentially expressed genes were identified as involved in ATP-binding and signaling pathways, based on previously published data. Further analysis provided evidences that c-kit was overexpressed in G1 cells while it was absent in T1 cells. The c-kit inhibitor, imatinib, did not restore TRAIL sensitivity, excluding a role for c-kit in TRAIL resistance in G1 cells. Surprisingly, imatinib inhibited cell proliferation and TRAIL-mediated apoptosis in melanoma cells. We investigated the possible involvement of several molecules, including c-ABL, platelet-derived growth factor receptor (PDGFR), cellular FADD-like interleukin-1 alpha-converting enzyme-like inhibitory protein (c-FLIP)(L/S), Fas-associated DD kinase, p53, p21(WAF1), proteins of B-cell leukemia/lymphoma 2 (Bcl-2) family and cytochrome c. Imatinib did not modulate the expression or activation of its own targets, such as c-ABL, PDGFRalpha and PDGFRbeta, but it did affect the expression of c-FLIP(L), BCL2-associated X protein (Bax) and Bcl-2. Moreover, c-FLIP(L) knockdown sensitized T1 cells to TRAIL-mediated apoptosis, with a sensitivity similar to that of cells previously treated with imatinib. More notably, we found that the resistance to TRAIL in G1 cells was correlated with constitutive c-FLIP(L) recruitment to the DISC and the inhibition of caspase 8, 3 and 9 processing. Moreover, c-FLIP(L) knockdown partly restored TRAIL sensitivity in G1 cells, indicating that the expression level of c-FLIP(L) and its interaction with TRAIL receptor2 play a crucial role in determining TRAIL resistance in metastatic melanoma cells. Our results also show that imatinib enhances TRAIL-induced cell death independently of BH3-interacting domain death agonist translocation, in a process involving the Bax:Bcl-X(L) ratio, Bax:Bcl-X(L)/Bcl-2 translocation, cytochrome c release and caspase activation. Our data indicate that imatinib sensitizes T1 cells by directly downregulating c-FLIP(L), with the use of an alternative pathway for antitumor activity, because PDGFRalpha is not activated in T1 cells and these cells do not express c-kit, c-ABL or PDGFRbeta. Caspase cascade activation and mitochondria also play a key role in the imatinib-mediated sensitization of melanoma cells to the proapoptotic action of TRAIL.
Collapse
Affiliation(s)
- A Hamaï
- INSERM, U753, Laboratoire d'Immunologie des Tumeurs Humaines: Interaction effecteurs cytotoxiques-système tumoral, Institut Gustave Roussy PR1 and IFR 54, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Frese S, Frese-Schaper M, Andres AC, Miescher D, Zumkehr B, Schmid RA. Cardiac glycosides initiate Apo2L/TRAIL-induced apoptosis in non-small cell lung cancer cells by up-regulation of death receptors 4 and 5. Cancer Res 2006; 66:5867-74. [PMID: 16740726 DOI: 10.1158/0008-5472.can-05-3544] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (Apo2L/TRAIL) belongs to the TNF family known to transduce their death signals via cell membrane receptors. Because it has been shown that Apo2L/TRAIL induces apoptosis in tumor cells without or little toxicity to normal cells, this cytokine became of special interest for cancer research. Unfortunately, cancer cells are often resistant to Apo2L/TRAIL-induced apoptosis; however, this can be at least partially negotiated by parallel treatment with other substances, such as chemotherapeutic agents. Here, we report that cardiac glycosides, which have been used for the treatment of cardiac failure for many years, sensitize lung cancer cells but not normal human peripheral blood mononuclear cells to Apo2L/TRAIL-induced apoptosis. Sensitization to Apo2L/TRAIL mediated by cardiac glycosides was accompanied by up-regulation of death receptors 4 (DR4) and 5 (DR5) on both RNA and protein levels. The use of small interfering RNA revealed that up-regulation of death receptors is essential for the demonstrated augmentation of apoptosis. Blocking of up-regulation of DR4 and DR5 alone significantly reduced cell death after combined treatment with cardiac glycosides and Apo2L/TRAIL. Combined silencing of DR4 and DR5 abrogated the ability of cardiac glycosides and Apo2L/TRAIL to induce apoptosis in an additive manner. To our knowledge, this is the first demonstration that glycosides up-regulate DR4 and DR5, thereby reverting the resistance of lung cancer cells to Apo2/TRAIL-induced apoptosis. Our data suggest that the combination of Apo2L/TRAIL and cardiac glycosides may be a new interesting anticancer treatment strategy.
Collapse
Affiliation(s)
- Steffen Frese
- Division of General Thoracic Surgery, University Hospital Berne and The Tiefenau Laboratory, Department of Clinical Research, University of Berne, Switzerland.
| | | | | | | | | | | |
Collapse
|
40
|
Mirandola P, Gobbi G, Ponti C, Sponzilli I, Cocco L, Vitale M. PKCϵ controls protection against TRAIL in erythroid progenitors. Blood 2006; 107:508-13. [PMID: 16166586 DOI: 10.1182/blood-2005-07-2676] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Apoptosis plays a central role in the regulation of the size of the hematopoietic stem cell pool as well as in the processes of cell differentiation along the various hematopoietic lineages. TRAIL is a member of the TNF family of cytokines with a known apoptogenic role against a variety of malignant cells and an emerging role in the modulation of normal hematopoiesis. Here we worked on the hypothesis that PKCϵ could act as a switch of the cellular response to TRAIL during erythropoiesis. We demonstrate that EPO-induced erythroid CD34 cells are insensitive to the apoptogenic effect of TRAIL at day 0 due to the lack of specific receptor expression. From day 3 onward, erythroid cells express surface death receptors and become sensitive to TRAIL up to day 7/8 when, notwithstanding death-receptor expression, the EPO-driven up-regulation of PKCϵ intracellular levels renders differentiating erythroid cells resistant to TRAIL likely via Bcl-2 up-regulation. Our conclusion is that in human CD34 cells, EPO promotes a series of events that, being finely regulated in their kinetics, restricts the sensitivity of these cells to TRAIL to a specific period of time, which therefore represents the “TRAIL window” for the negative regulation of erythroid-cell numbers.
Collapse
Affiliation(s)
- Prisco Mirandola
- Department of Anatomy, Pharmacology, & Forensic Medicine, Human Anatomy Section, University of Parma, Ospedale Maggiore, Via Gramsci, 14, I-43100 Parma, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Steele LP, Georgopoulos NT, Southgate J, Selby PJ, Trejdosiewicz LK. Differential susceptibility to TRAIL of normal versus malignant human urothelial cells. Cell Death Differ 2006; 13:1564-76. [PMID: 16410800 DOI: 10.1038/sj.cdd.4401846] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Comparing normal human urothelial (NHU) cells to a panel of six representative urothelial cell carcinoma (UCC)-derived cell lines, we showed that while TRAIL receptor expression patterns were similar, susceptibility to soluble recombinant crosslinked TRAIL fell into three categories. 4/6 carcinoma lines were sensitive, undergoing rapid and extensive death; NHU and 253J cells were partially resistant and HT1376 cells, like normal fibroblasts, were refractory. Both normal and malignant urothelial cells underwent apoptosis via the same caspase-8/9-mediated mechanism. Rapid receptor downregulation was a mechanism for evasion by some UCC cells. TRAIL resistance in malignant urothelial cells was partially dependent on FLIP(L) and was differentially mediated by p38(MAPK), whereas in normal cells, resistance was mediated by NF-kappaB. Importantly, extensive killing of UCC cells could be induced using noncrosslinked TRAIL after prolonged exposure, with no damage to their homologous, normal urothelial cell counterparts.
Collapse
Affiliation(s)
- L P Steele
- Institute of Molecular Medicine, Epidemiology & Cancer Research, St James's University Hospital, Leeds, UK
| | | | | | | | | |
Collapse
|
42
|
Butler LM, Liapis V, Bouralexis S, Welldon K, Hay S, Thai LM, Labrinidis A, Tilley WD, Findlay DM, Evdokiou A. The histone deacetylase inhibitor, suberoylanilide hydroxamic acid, overcomes resistance of human breast cancer cells to Apo2L/TRAIL. Int J Cancer 2006; 119:944-54. [PMID: 16550602 DOI: 10.1002/ijc.21939] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While the apoptosis-inducing ligand Apo2L/TRAIL is a promising new agent for the treatment of cancer, the sensitivity of cancer cells for induction of apoptosis by Apo2L/TRAIL varies considerably. Identification of agents that can be used in combination with Apo2L/TRAIL to enhance apoptosis in breast cancer cells would increase the potential utility of this agent as a breast cancer therapeutic. Here, we show that the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), can sensitize Apo2L/TRAIL-resistant breast cancer cells to Apo2L/TRAIL-induced apoptosis. Importantly, neither Apo2L/TRAIL alone, nor in combination with SAHA, affected the viability of normal human cells in culture. Apo2L/TRAIL-resistant MDA-MB-231 breast cancer cells, generated by long-term culture in the continuous presence of Apo2L/TRAIL, were resensitized to Apo2L/TRAIL-induced apoptosis by SAHA. The sensitization of these cells by SAHA was accompanied by activation of caspase 8, caspase 9 and caspase 3 and was concomitant with Bid and PARP cleavage. The expression of the proapoptotic protein, Bax, increased significantly with SAHA treatment and high levels of Bax were maintained in the combined treatment with Apo2L/TRAIL. Treatment with SAHA increased cell surface expression of DR5 but not DR4. Interestingly, SAHA treatment also resulted in a significant increase in cell surface expression of DcR1. Taken together, our findings indicate that the use of these 2 agents in combination may be effective for the treatment of breast cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Dame Roma Mitchell Cancer Research Laboratories, University of Adelaide and Hanson Institute, Adelaide, SA, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pfeffer U, Ferrari N, Dell'Eva R, Indraccolo S, Morini M, Noonan DM, Albini A. Molecular mechanisms of action of angiopreventive anti-oxidants on endothelial cells: microarray gene expression analyses. Mutat Res 2005; 591:198-211. [PMID: 16084531 DOI: 10.1016/j.mrfmmm.2005.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 04/09/2005] [Accepted: 04/09/2005] [Indexed: 05/03/2023]
Abstract
The anti-oxidants N-acetyl-l-cysteine (NAC) and (-)-epigallocatechin-3-gallate (EGCG) inhibit tumor vascularization by reducing endothelial cell migration and invasion in a similar, non additive and non synergistic manner but do not alter the growth of human umbilical vein endothelial cells. Here we address the effects of the two chemopreventive drugs on endothelial cell signaling by means of expression profiling and real-time PCR validation. We identify a series of angiogenesis related genes that are similarly regulated by the two drugs. Anti-oxidant treated endothelial cells show gene expression profiles compatible with a less activated, less apoptosis prone and less migratory phenotype. The anti-oxidants affect expression of several components of the TNFalpha response pathway including downstream genes that are regulated in the opposite direction in the absence of the inflammatory cytokine. The interference with the TNFalpha pathway is reflected by reduced NFkappaB activation in anti-oxidants treated cells but the compounds are not able to contrast TNFalpha mediated activation of NFkappaB. The chemopreventive action of these compounds thus relies on a reduction of basal levels of endothelial cell activation. Down-regulation of the TNFalpha responsive pro-metastatic, pro-inflammatory genes, urokinase plasminogen activator and selectin E, further implies anti-metastatic effects for these drugs.
Collapse
Affiliation(s)
- Ulrich Pfeffer
- Functional Genomics Unit, National Cancer Research Institute, Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Bouralexis S, Findlay DM, Evdokiou A. Death to the bad guys: targeting cancer via Apo2L/TRAIL. Apoptosis 2005; 10:35-51. [PMID: 15711921 DOI: 10.1007/s10495-005-6060-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
All higher organisms consist of an ordered society of individual cells that must communicate to maintain and regulate their functions. This is achieved through a complex but highly regulated network of hormones, chemical mediators, chemokines and other cytokines, acting as ligands for intra or extra-cellular receptors. Ligands and receptors of the tumor necrosis factor (TNF) superfamilies are examples of signal transducers, whose integrated actions influence the development, homeostasis and adaptive responses of many cells and tissue types. Apo2L/TRAIL is one of several members of the tumour necrosis factor superfamily that induce apoptosis through the engagement of death receptors. Apo2L/TRAIL interacts with an unusually complex receptor system, which in humans comprises two death receptors and three decoy receptors. This molecule has received considerable attention recently because of the finding that many cancer cell types are sensitive to Apo2L/TRAIL-induced apoptosis, while most normal cells appear to be resistant to this action of Apo2L/TRAIL. In this review, we specifically emphasise on the actions of Apo2L/TRAIL with respect to its apoptotic signaling pathways and summarise what is known about its physiological role. The potential therapeutic usefulness of Apo2L/TRAIL, especially in combination with chemotherapeutic agents, is also discussed in some detail.
Collapse
Affiliation(s)
- S Bouralexis
- St Vincent's Institute of Medical Research, Fitzroy, 3065, Victoria, Australia.
| | | | | |
Collapse
|
45
|
Bremer E, Samplonius DF, Peipp M, van Genne L, Kroesen BJ, Fey GH, Gramatzki M, de Leij LFMH, Helfrich W. Target Cell–Restricted Apoptosis Induction of Acute Leukemic T Cells by a Recombinant Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Fusion Protein with Specificity for Human CD7. Cancer Res 2005; 65:3380-8. [PMID: 15833872 DOI: 10.1158/0008-5472.can-04-2756] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Current treatment of human T-cell leukemia and lymphoma is predominantly limited to conventional cytotoxic therapy and is associated with limited therapeutic response and significant morbidity. Therefore, more potent and leukemia-specific therapies with favorable toxicity profiles are urgently needed. Here, we report on the construction of a novel therapeutic fusion protein, scFvCD7:sTRAIL, designed to induce target antigen-restricted apoptosis in human T-cell tumors. ScFvCD7:sTRAIL consists of the death-inducing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) genetically linked to an scFv antibody fragment specific for the T-cell surface antigen CD7. Treatment with scFvCD7:sTRAIL induced potent CD7-restricted apoptosis in a series of malignant T-cell lines, whereas normal resting leukocytes, activated T cells, and vascular endothelial cells (human umbilical vein endothelial cells) showed no detectable apoptosis. The apoptosis-inducing activity of scFvCD7:sTRAIL was stronger than that of the immunotoxin scFvCD7:ETA. In mixed culture experiments with CD7-positive and CD7-negative tumor cells, scFvCD7:sTRAIL induced very potent bystander apoptosis of CD7-negative tumor cells. In vitro treatment of blood cells freshly derived from T-acute lymphoblastic leukemia patients resulted in marked apoptosis of the malignant T cells that was strongly augmented by vincristin. In conclusion, scFvCD7:sTRAIL is a novel recombinant protein causing restricted apoptosis in human leukemic T cells with low toxicity for normal human blood and endothelial cells.
Collapse
Affiliation(s)
- Edwin Bremer
- Laboratory for Tumor Immunology, Department of Pathology and Laboratory Medicine, Section Medical Biology, University Hospital Groningen, Groningen University Institute for Drug Exploration, 9713 GZ Groningen, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Identification of tumour necrosis factor apoptosis inducing ligand (TRAIL), a TNF family ligand, sparked a torrent of research, following an initial observation that it could kill tumour cells, but spare normal cells. Almost a decade after its discovery, and with five known receptors, the true physiological role of TRAIL is still debated and its anti-tumorigenic properties limited by potential toxicity. This review takes a comprehensive look at the story of this enigmatic ligand, addressing its remaining potential as a therapeutic and providing an overview of the TRAIL receptors themselves.
Collapse
Affiliation(s)
- Fiona C Kimberley
- Department of Medicine, Hammersmith Hospital, Imperial College, Du Cane Road, London, UK
| | | |
Collapse
|
47
|
Bremer E, Samplonius DF, van Genne L, Dijkstra MH, Kroesen BJ, de Leij LFMH, Helfrich W. Simultaneous Inhibition of Epidermal Growth Factor Receptor (EGFR) Signaling and Enhanced Activation of Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Receptor-mediated Apoptosis Induction by an scFv:sTRAIL Fusion Protein with Specificity for Human EGFR. J Biol Chem 2005; 280:10025-33. [PMID: 15644326 DOI: 10.1074/jbc.m413673200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signaling inhibition by monoclonal antibodies and EGFR-specific tyrosine kinase inhibitors has shown clinical efficacy in cancer by restoring susceptibility of tumor cells to therapeutic apoptosis induction. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer agent with tumor-selective apoptotic activity. Here we present a novel approach that combines EGFR-signaling inhibition with target cell-restricted apoptosis induction using a TRAIL fusion protein with engineered specificity for EGFR. This fusion protein, scFv425:sTRAIL, comprises the EGFR-blocking antibody fragment scFv425 genetically fused to soluble TRAIL (sTRAIL). Treatment with scFv425:sTRAIL resulted in the specific accretion to the cell surface of EGFR-positive cells only. EGFR-specific binding rapidly induced a dephosphorylation of EGFR and down-stream mitogenic signaling, which was accompanied by cFLIP(L) down-regulation and Bad dephosphorylation. EGFR-specific binding converted soluble scFv425:sTRAIL into a membrane-bound form of TRAIL that cross-linked agonistic TRAIL receptors in a paracrine manner, resulting in potent apoptosis induction in a series of EGFR-positive tumor cell lines. Co-treatment of EGFR-positive tumor cells with the EGFR-tyrosine kinase inhibitor Iressa resulted in a potent synergistic pro-apoptotic effect, caused by the specific down-regulation of c-FLIP. Furthermore, in mixed culture experiments binding (L)of scFv425:sTRAIL to EGFR-positive target cells conveyed a potent apoptotic effect toward EGFR-negative bystander tumor cells. The favorable characteristics of scFv425:sTRAIL, alone and in combination with Iressa, as well as its potent anti-tumor bystander activity indicate its potential value for treatment of EGFR-expressing cancers.
Collapse
Affiliation(s)
- Edwin Bremer
- Groningen University Institute for Drug Exploration, University Medical Center Groningen Department of Pathology and Laboratory Medicine, Section Medial Biology, Laboratory for Tumor Immunology, 9713 GZ Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Chandrasekaran Y, Richburg JH. The p53 Protein Influences the Sensitivity of Testicular Germ Cells to Mono-(2-Ethylhexyl) Phthalate-Induced Apoptosis by Increasing the Membrane Levels of Fas and DR5 and Decreasing the Intracellular Amount of c-FLIP1. Biol Reprod 2005; 72:206-13. [PMID: 15371270 DOI: 10.1095/biolreprod.104.030858] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The consequence of mono-(2-ethylhexyl) phthalate (MEHP)-induced injury of testicular Sertoli cells is the Fas-dependent apoptotic elimination of germ cells. In addition to the well-known ability of p53 to regulate the transcription of various apoptosis-associated proteins, p53 also has been implicated in mediating the localization of Fas to the plasma membrane of various cell types in a transcription-independent manner. To resolve the role of p53 in MEHP-mediated testicular toxicity, we used wild-type (p53(+/+)) and p53 knockout (p53(-/-)) mice. A significantly lower incidence of TUNEL-positive germ cells was observed in p53(-/-) mice compared to p53(+/+) mice at 1, 1.5, and 24 h after MEHP exposure. In these same mice, an induction of Fas and death receptor-5 (DR5) in testicular membrane preparations was observed only in p53(+/+) mice. Analyses of mRNA levels in testes of p53(+/+) and p53(-/-) mice by reverse transcription-polymerase chain reaction revealed that increases in membrane levels of Fas occurred in the absence of their transcriptional up-regulation. Processing of procaspase-8 was observed only in MEHP-treated p53(+/+) mice, and this correlated with the observed incidence of germ cell apoptosis. Interestingly, the p53 status of mice also influenced the stability of c-FLIP (L), a caspase-8 inhibitory protein, that was measured at levels approximately two- to fivefold higher in p53(-/-) mice after MEHP-exposure compared to those in p53(+/+) mice. Taken together, these data suggest that MEHP-induced germ cell apoptosis is dependent, in part, on the p53 protein and on its abilities to increase the localization of Fas and DR5 on the germ cell membrane as well as to decrease the cellular levels of c-FLIP (L).
Collapse
Affiliation(s)
- Yamini Chandrasekaran
- Division of Pharmacology and Toxicology, University of Texas at Austin, College of Pharmacy, Austin, Texas 78712-0125, USA
| | | |
Collapse
|
49
|
Martin JH, Potthoff A, Ledig S, Cornberg M, Jandl O, Manns MP, Kubicka S, Flemming P, Athmann C, Beil W, Wagner S. Effect of H. pylori on the expression of TRAIL, FasL and their receptor subtypes in human gastric epithelial cells and their role in apoptosis. Helicobacter 2004; 9:371-86. [PMID: 15361075 DOI: 10.1111/j.1083-4389.2004.00269.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS In the human stomach expression of TNF-related apoptosis inducing ligand (TRAIL) and its receptors and the modulatory role of Helicobacter pylori are not well described. Therefore, we investigated the effect of H. pylori on the expression of TRAIL, FasL and their receptors (TRAIL-R1-R4, Fas) in gastric epithelial cells and examined their role in apoptosis. MATERIALS AND METHODS mRNA and protein expression of TRAIL, FasL and their receptors were analyzed in human gastric epithelial cells using RT-PCR, Western blot, and immunohistochemistry. Gastric epithelial cells were incubated with FasL, TRAIL and/or H. pylori, and effects on expression, cell viability and epithelial apoptosis were monitored. Apoptosis was analyzed by histone ELISA, DAPI staining and immunohistochemistry. RESULTS TRAIL, FasL and their receptor subtypes were expressed in human gastric mucosa, gastric epithelial cell primary cultures and gastric cancer cells. TRAIL, FasL and H. pylori caused a time- and concentration-dependent induction of DNA fragmentation in gastric cancer cells with synergistic effects. In addition, H. pylori caused a selective up-regulation of TRAIL, TRAIL-R1 and Fas mRNA and protein expression in gastric cancer cells. CONCLUSIONS Next to FasL and Fas, TRAIL and all of its receptor subtypes are expressed in the human stomach and differentially modulated by H. pylori. TRAIL, FasL and H. pylori show complex interaction mediating apoptosis in human gastric epithelial cells. These findings might be important for the understanding of gastric epithelial cell kinetics in patients with H. pylori infection.
Collapse
Affiliation(s)
- Jan Hendrik Martin
- Department of Gastroenterology, Hepatology, and Endocrinology, Medizinische Hochschule Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Riley JK, Heeley JM, Wyman AH, Schlichting EL, Moley KH. TRAIL and KILLER Are Expressed and Induce Apoptosis in the Murine Preimplantation Embryo1. Biol Reprod 2004; 71:871-7. [PMID: 15128592 DOI: 10.1095/biolreprod.103.026963] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
TRAIL (tumor necrosis factor [TNF]-related apoptosis-inducing ligand) and KILLER are a death-inducing ligand and receptor pair that belong to the TNF and TNF-receptor superfamilies, respectively. To date, only one apoptosis-inducing TRAIL receptor (murine KILLER [MK]) has been identified in mice, and it is a homologue of human Death Receptor 5. Whereas the expression of other death receptors, such as Fas and TNF receptor 1 have been documented in mammalian preimplantation embryos, no evidence currently demonstrates either the presence or the function of TRAIL and its corresponding death receptor, MK. Using reverse transcription-polymerase chain reaction and confocal immunofluorescent microscopy, we found that both TRAIL and MK are expressed from the 1-cell through the blastocyst stage of murine preimplantation embryo development. These proteins are localized mainly at the cell surface from the 1-cell through the morula stage. At the blastocyst stage, both TRAIL and MK exhibit an apical staining pattern in the trophectoderm cells. Finally, using the TUNEL assay, we demonstrated that MK induces apoptosis in blastocysts sensitized to TRAIL via actinomycin D. Taken together, these data are the first to demonstrate the presence and function of TRAIL and MK, a death-inducing ligand and its receptor, in mammalian preimplantation embryos.
Collapse
Affiliation(s)
- Joan K Riley
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|