1
|
Hu H, Wang X, Huang Y, He B, Zhu J, Sun K, Deng C, Guo Y, Hao D, Jian B. Obacunone inhibits RANKL/M-CSF-mediated osteoclastogenesis by suppressing integrin- FAK-Src signaling. Cytokine 2023; 164:156134. [PMID: 36804257 DOI: 10.1016/j.cyto.2023.156134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/17/2023]
Abstract
Disrupted osteoblastogenesis or aberrant activation of osteoclastogenesis usually results in the break of bone homeostasis thus causing bone-associated diseases like osteoporosis. Obacunone, as a natural compound present in citrus fruits, has been demonstrated for various biological activities including anti-cancer and anti-inflammatory properties. However, the role of obacunone in regulating osteoclastogenesis has not been elucidated so far. Here, using in vitro cell models of RANKL (Receptor activator of nuclear factor-kB ligand) and M-CSF (Macrophage-colony-stimulating factor)-induced osteoclastogenesis, we showed that obacunone inhibited osteoclast differentiation in RAW264.7 cells and bone marrow macrophages (BMMs), as evidenced by obacunone dose-dependent reduction in numbers of osteoclasts and downregulated expressions of osteoclastogenesis-associated key genes. The anti-osteoclastic properties of obacunone were associated with downregulated expressions of Integrin α1 and attenuated activation of Focal adhesion kinase (FAK) and Steroid receptor coactivator (Src) signaling. Functional Integrin α1 blockade or FAK-Src inhibition suppressed RANKL/M-CSF-induced osteoclastogenesis, while Integrin α1 overexpression or FAK/Src activation partially attenuated obacunone's effects on suppressing RANKL/M-CSF-induced osteoclast differentiation. Furthermore, in vivo administration of obacunone displayed super therapeutic effects in attenuating ovariectomy-induced bone loss in mice, as indicated by decreases in serum biomarkers of bone turnover, restoring of femur fracture maximum force, and reversing of the worsened bone-related parameters in ovariectomized animals. Taken together, these findings demonstrate that obacunone has pharmacological activities to suppress osteoclast differentiation through modulating the Integrin-FAK-Src pathway, and suggest that obacunone is a therapeutic candidate for the treatment and prevention of bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Huimin Hu
- Department of Spine Surgery, Honghui Hospital, No.555 Youyi East Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Xiaodong Wang
- Department of Spine Surgery, Honghui Hospital, No.555 Youyi East Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Yansheng Huang
- Department of Spine Surgery, Honghui Hospital, No.555 Youyi East Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, No.555 Youyi East Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Jinwen Zhu
- Department of Spine Surgery, Honghui Hospital, No.555 Youyi East Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Kai Sun
- Department of Spine Surgery, Honghui Hospital, No.555 Youyi East Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Chaoyang Deng
- Department of Spine Surgery, Honghui Hospital, No.555 Youyi East Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Yunshan Guo
- Department of Spine Surgery, Honghui Hospital, No.555 Youyi East Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, No.555 Youyi East Road, Beilin District, Xi'an City, Shaanxi Province 710054, China.
| | - Bin Jian
- Department of Traditional Chinese Medicine and West Medicine, Honghui Hospital, No.555 Youyi East Road, Beilin District, Xi'an City, Shaanxi Province 710054, China.
| |
Collapse
|
2
|
Detroja TS, Gil-Henn H, Samson AO. Text-Mining Approach to Identify Hub Genes of Cancer Metastasis and Potential Drug Repurposing to Target Them. J Clin Med 2022; 11:jcm11082130. [PMID: 35456223 PMCID: PMC9029557 DOI: 10.3390/jcm11082130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 12/11/2022] Open
Abstract
Metastasis accounts for the majority of cancer-related deaths. Despite decades of research, the prevention and suppression of metastasis remain an elusive goal, and to date, only a few metastasis-related genes have been targeted therapeutically. Thus, there is a strong need to find potential genes involved in key driver traits of metastasis and their available drugs. In this study, we identified genes associated with metastasis and repurposable drugs that potentially target them. First, we use text mining of PubMed citations to identify candidate genes associated with metastatic processes, such as invadopodia, motility, movement, metastasis, invasion, wound healing, EMT (epithelial to mesenchymal transition), and podosome. Next, we annotated the top genes involved in each process as a driver, tumor suppressor, or oncogene. Then, a total of 185 unique cancer genes involved in metastasis-related processes were used for hub gene analysis using bioinformatics tools. Notably, a total of 77 hub genes were identified. Further, we used virtual screening data of druggable candidate hub genes involved in metastasis and identified potential drugs that can be repurposed as anti-metastatic drugs. Remarkably, we found a total of 50 approved drugs that have the potential to be repurposed against 19 hub genes involved in metastasis-related processes. These 50 drugs were also found to be validated in different cancer cell lines, such as dasatinib, captopril, leflunomide, and dextromethorphan targeting SRC, MMP2, PTK2B, and RAC1 hub genes, respectively. These repurposed drugs potentially target metastasis, provide pharmacodynamic insight, and offer a window of opportunity for the development of much-needed antimetastatic drugs.
Collapse
Affiliation(s)
- Trishna Saha Detroja
- Cell Migration and Invasion Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
- Drug Discovery Lab, Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel;
- Correspondence: (T.S.D.); (H.G.-H.)
| | - Hava Gil-Henn
- Cell Migration and Invasion Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
- Correspondence: (T.S.D.); (H.G.-H.)
| | - Abraham O. Samson
- Drug Discovery Lab, Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel;
| |
Collapse
|
3
|
Ding Y, Wang G, Zhan M, Sun X, Deng Y, Zhao Y, Liu B, Liu Q, Wu S, Zhou Z. Hippo signaling suppresses tumor cell metastasis via a Yki-Src42A positive feedback loop. Cell Death Dis 2021; 12:1126. [PMID: 34862372 PMCID: PMC8642408 DOI: 10.1038/s41419-021-04423-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
Metastasis is an important cause of death from malignant tumors. It is of great significance to explore the molecular mechanism of metastasis for the development of anti-cancer drugs. Here, we find that the Hippo pathway hampers tumor cell metastasis in vivo. Silence of hpo or its downstream wts promotes tumor cell migration in a Yki-dependent manner. Furthermore, we identify that inhibition of the Hippo pathway promotes tumor cell migration through transcriptional activating src42A, a Drosophila homolog of the SRC oncogene. Yki activates src42A transcription through direct binding its intron region. Intriguingly, Src42A further increases Yki transcriptional activity to form a positive feedback loop. Finally, we show that SRC is also a target of YAP and important for YAP to promote the migration of human hepatocellular carcinoma cells. Together, our findings uncover a conserved Yki/YAP-Src42A/SRC positive feedback loop promoting tumor cell migration and provide SRC as a potential therapeutic target for YAP-driven metastatic tumors.
Collapse
Affiliation(s)
- Yan Ding
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018 Tai’an, China
| | - Guiping Wang
- grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Protein Sciences, State Key Laboratory of Medical Chemical Biology, College of Life Sciences, Nankai University, 300071 Tianjin, China
| | - Meixiao Zhan
- grid.452930.90000 0004 1757 8087Center of Intervention radiology, Zhuhai Precision Medicine Center, Zhuhai People’s Hospital, 519000 Zhuhai, China
| | - Xiaohan Sun
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018 Tai’an, China
| | - Yanran Deng
- grid.254147.10000 0000 9776 7793Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 210009 Nanjing, China
| | - Yunhe Zhao
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018 Tai’an, China
| | - Bin Liu
- grid.440622.60000 0000 9482 4676State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018 Tai’an, China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China.
| | - Shian Wu
- Tianjin Key Laboratory of Protein Sciences, State Key Laboratory of Medical Chemical Biology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| | - Zizhang Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China.
| |
Collapse
|
4
|
Proteomics in thyroid cancer and other thyroid-related diseases: A review of the literature. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140510. [DOI: 10.1016/j.bbapap.2020.140510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 12/21/2022]
|
5
|
Győri DS, Mócsai A. Osteoclast Signal Transduction During Bone Metastasis Formation. Front Cell Dev Biol 2020; 8:507. [PMID: 32637413 PMCID: PMC7317091 DOI: 10.3389/fcell.2020.00507] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoclasts are myeloid lineage-derived bone-resorbing cells of hematopoietic origin. They differentiate from myeloid precursors through a complex regulation process where the differentiation of preosteoclasts is followed by intercellular fusion to generate large multinucleated cells. Under physiological conditions, osteoclastogenesis is primarily directed by interactions between CSF-1R and macrophage colony-stimulating factor (M-CSF, CSF-1), receptor activator of nuclear factor NF-κB (RANK) and RANK ligand (RANKL), as well as adhesion receptors (e.g., integrins) and their ligands. Osteoclasts play a central role in physiological and pathological bone resorption and are also required for excessive bone loss during osteoporosis, inflammatory bone and joint diseases (such as rheumatoid arthritis) and cancer cell-induced osteolysis. Due to the major role of osteoclasts in these diseases the better understanding of their intracellular signaling pathways can lead to the identification of potential novel therapeutic targets. Non-receptor tyrosine kinases and lipid kinases play major roles in osteoclasts and small-molecule kinase inhibitors are emerging new therapeutics in diseases with pathological bone loss. During the last few years, we and others have shown that certain lipid (such as phosphoinositide 3-kinases PI3Kβ and PI3Kδ) and tyrosine (Src-family and Syk) kinases play a critical role in osteoclast differentiation and function in humans and mice. Some of these signaling pathways shows similarity to immunoreceptor-like receptor signaling and involves important other enzymes (e.g., PLCγ2) and adapter proteins (such as the ITAM-bearing adapters DAP12 and the Fc-receptor γ-chain). Here, we review recently identified osteoclast signaling pathways and their role in osteoclast differentiation and function as well as pathological bone loss associated with osteolytic tumors of the bone. A better understanding of osteoclast signaling may facilitate the design of novel and more efficient therapies for pathological bone resorption and osteolytic skeletal metastasis formation.
Collapse
Affiliation(s)
- Dávid S. Győri
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
6
|
Nakayama J, Makinoshima H. Zebrafish-Based Screening Models for the Identification of Anti-Metastatic Drugs. Molecules 2020; 25:E2407. [PMID: 32455810 PMCID: PMC7287578 DOI: 10.3390/molecules25102407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis, a leading contributor to the morbidity of cancer patients, occurs through a multi-step process: invasion, intravasation, extravasation, colonization, and metastatic tumor formation. Each process is not only promoted by cancer cells themselves but is also affected by their microenvironment. Given this complexity, drug discovery for anti-metastatic drugs must consider the interaction between cancer cells and their microenvironments. The zebrafish is a suitable vertebrate animal model for in vivo high-throughput screening studies with physiological relevance to humans. This review covers the zebrafish model used to identify anti-metastatic drugs.
Collapse
Affiliation(s)
- Joji Nakayama
- Shonai Regional Industry Promotion Center, Tsuruoka, Yamagata 997-0052, Japan
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Mizukami 246-2, Kakuganji, Tsuruoka, Yamagata 975-0052, Japan;
| | - Hideki Makinoshima
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Mizukami 246-2, Kakuganji, Tsuruoka, Yamagata 975-0052, Japan;
- Division of Translational Research, Exploratory Oncology Research, and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| |
Collapse
|
7
|
Tan Q, Liang XJ, Lin SM, Cheng Y, Ding YQ, Liu TF, Zhou WJ. Engagement of Robo1 by Slit2 induces formation of a trimeric complex consisting of Src-Robo1-E-cadherin for E-cadherin phosphorylation and epithelial-mesenchymal transition. Biochem Biophys Res Commun 2020; 522:757-762. [PMID: 31791578 DOI: 10.1016/j.bbrc.2019.11.150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 11/25/2022]
Abstract
Loss of E-cadherin elicits epithelial-mesenchymal transition (EMT). While both the Src family of membrane-associated non-receptor tyrosine kinases (SFKs) and Slit2 binding to Roundabout 1 (Robo1) have been shown to induce E-cadherin repression and EMT, whether these two signaling pathways are mechanistically coupled remains unknown in epithelial cells. Here we found that Slit2 and Robo1 overexpression activated Src kinases for tyrosine phosphorylation, degradation of E-cadherin and induction of EMT. Specific blockade of Slit2 binding to Robo1 inactivated Src, prevented E-cadherin phosphorylation and EMT induction. Biochemically, the cytoplasmic CC3 motif of Robo1 (CC3) bound directly to the SH2 and 3 domains of c-Src and the cytoplasmic domains of E-cadherin. Slit2 induced Robo1 association with endogenous c-Src and E-cadherin, whereas ectopic expression of CC3 dissociated this protein complex in colorectal epithelial cells. These results indicate that Slit2 not only induces Robo1 binding to Src, but also recruits Src to E-cadherin for tyrosine phosphorylation of E-cadherin, leading to E-cadherin degradation and EMT induction in colorectal epithelial cells.
Collapse
Affiliation(s)
- Qi Tan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, 510515, China; Department of Pathology, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangzhou, 518172, China
| | - Xiang-Jing Liang
- Ultrasound Medical Center, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, China
| | - Si-Min Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuanxiong Cheng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, 510515, China.
| | - Teng-Fei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, 510515, China.
| | - Wei-Jie Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, 510515, China; Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510630, China; Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, 510005, China.
| |
Collapse
|
8
|
Veloso ES, Gonçalves INN, Silveira TL, Oliveira FS, Vieira DS, Cassali GD, Del Puerto HL, Ferreira E. Diverse roles of epidermal growth factors receptors in oral and cutaneous canine melanomas. BMC Vet Res 2020; 16:24. [PMID: 31996230 PMCID: PMC6988198 DOI: 10.1186/s12917-020-2249-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The epidermal growth factor receptors participate in the physiological processes such as regulation of morphogenesis, proliferation and cell migration, but when overexpressed or overactivated they may play an important role in neoplastic progression. Melanoma is the most aggressive skin neoplasm and is characterized by elevated invasion and low survival rates in both humans and dogs. In human melanomas the overexpression of EGFR, HER3 or HER4 is associated with poor prognosis. In canine melanomas the epidermal growth factor receptors expression has not been evaluated. Therefore, this study evaluated the expression of epidermal growth factor receptors by immunohistochemistry and investigated their relationship with morphological characteristics and proliferative indices in cutaneous and oral canine melanoma. RESULTS In cutaneous melanoma an increased proliferative index was associated with increased cytoplasmic HER4 and reduced EGFR and HER3 protein expression. In oral melanomas, membranous HER2 protein expression correlated with occurrence of emboli, but ERBB2 gene amplification wasn't observed. CONCLUSION Thus, our work evidenced the relationship between HER4 and the stimulus to cell proliferation in cutaneous melanomas, in addition to the relationship between HER2 and the occurrence of emboli in oral melanomas.
Collapse
Affiliation(s)
- Emerson Soares Veloso
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Ivy Nayra Nascimento Gonçalves
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Tatiany Luiza Silveira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Fernando Soares Oliveira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Déborah Soares Vieira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Helen Lima Del Puerto
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Enio Ferreira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| |
Collapse
|
9
|
Zhu L, Cho E, Zhao G, Roh MR, Zheng Z. The Pathogenic Effect of Cortactin Tyrosine Phosphorylation in Cutaneous Squamous Cell Carcinoma. In Vivo 2019; 33:393-400. [PMID: 30804117 DOI: 10.21873/invivo.11486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM Cortactin (CTTN) has been considered a promising molecular prognostic factor in various types of cancers. In this study, we aimed to investigate the role of CTTN in the pathogenesis of cutaneous squamous cell carcinoma (CSCC). MATERIALS AND METHODS CTTN and phospho-CTTN (p-CTTN) expression was determined in 10 healthy controls and 38 CSCC tissue samples by immunohistochemistry. The influence of CTTN on the biological behavior of CSCC cells was also investigated. RESULTS p-CTTN expression was significantly increased in CSCC than control samples. In contrast, no significant difference in CTTN expression was found between control and CSCC tissues. Moreover, a significant association was found between recurrence-free survival with p-CTTN expression, but not with CTTN expression. Furthermore, the proliferative, migratory, and invasive abilities of CSCC cells were significantly decreased by CTTN-siRNA transfection. CONCLUSION CTTN phosphorylation is strongly associated with CSCC pathogenesis and may serve as a molecular biomarker of CSCC.
Collapse
Affiliation(s)
- Lianhua Zhu
- Department of Dermatology, Yanbian University Hospital, Yanji, P.R. China
| | - Eunae Cho
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Guohua Zhao
- Department of Dermatology, Yanbian University Hospital, Yanji, P.R. China
| | - Mi Ryung Roh
- Department of Dermatology, Severance Hospital, Seoul, Republic of Korea
| | - Zhenlong Zheng
- Department of Dermatology, Yanbian University Hospital, Yanji, P.R. China .,Department of Dermatology, International St. Mary's Hospital, Catholic Kwandong University, College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
10
|
Han ZH, Wang F, Wang FL, Liu Q, Zhou J. Regulation of transforming growth factor β-mediated epithelial-mesenchymal transition of lens epithelial cells by c-Src kinase under high glucose conditions. Exp Ther Med 2018; 16:1520-1528. [PMID: 30116401 DOI: 10.3892/etm.2018.6348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/22/2018] [Indexed: 02/06/2023] Open
Abstract
Recent studies have reported that high glucose (HG) conditions may contribute to the acceleration of renal cell apoptosis and renal fibrosis by inducing epithelial-mesenchymal transition (EMT) of tubular epithelial cells, in which c-Src kinase and transforming growth factor (TGF)-β are key modulators. In the present study, the roles of c-Src kinase and TGF-β in EMT of lens epithelial cells (LECs) under HG conditions were investigated. Results indicated human lens epithelial B3 (HLE-B3) cells under HG conditions exhibited significantly increased protein expression levels of phosphorylated c-Src (p-Src418) (P<0.05) and secreted a significantly increased amount of TGF-β compared with HLE-B3 cells under normal glucose conditions (P<0.05). Notably the c-Src inhibitor PP1 and the activin receptor-like kinase 5 (ALK5) inhibitor SB431542 suppressed EMT of HLE-B3 cells. Results indicated that PP1 significantly inhibited the activities of c-Src and ALK5 and the secretion of TGF-β, whereas SB431542 only significantly downregulated the protein expression levels and secretion of TGF-β (P<0.05). Following c-Src knockdown, the protein expression levels of p-Src418, ALK5 and TGF-β were significantly decreased, the secretion of TGF-β was significantly suppressed (both P<0.05) and EMT was decreased in HLE-B3 cells. These results suggest that c-Src and TGF-β may promote EMT of LECs under HG conditions, with c-Src as the upstream regulatory molecule. Thus, the signal axis of c-Src/TGF-β in EMT of LECs may be a potential novel therapeutic target for the prevention of diabetic subcapsular cataract.
Collapse
Affiliation(s)
- Zhi-Hua Han
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fang Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fu-Lei Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qi Liu
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Zhou
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
11
|
Poon CLC, Brumby AM, Richardson HE. Src Cooperates with Oncogenic Ras in Tumourigenesis via the JNK and PI3K Pathways in Drosophila epithelial Tissue. Int J Mol Sci 2018; 19:ijms19061585. [PMID: 29861494 PMCID: PMC6032059 DOI: 10.3390/ijms19061585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022] Open
Abstract
The Ras oncogene (Rat Sarcoma oncogene, a small GTPase) is a key driver of human cancer, however alone it is insufficient to produce malignancy, due to the induction of cell cycle arrest or senescence. In a Drosophila melanogaster genetic screen for genes that cooperate with oncogenic Ras (bearing the RasV12 mutation, or RasACT), we identified the Drosophila Src (Sarcoma virus oncogene) family non-receptor tyrosine protein kinase genes, Src42A and Src64B, as promoting increased hyperplasia in a whole epithelial tissue context in the Drosophila eye. Moreover, overexpression of Src cooperated with RasACT in epithelial cell clones to drive neoplastic tumourigenesis. We found that Src overexpression alone activated the Jun N-terminal Kinase (JNK) signalling pathway to promote actin cytoskeletal and cell polarity defects and drive apoptosis, whereas, in cooperation with RasACT, JNK led to a loss of differentiation and an invasive phenotype. Src + RasACT cooperative tumourigenesis was dependent on JNK as well as Phosphoinositide 3-Kinase (PI3K) signalling, suggesting that targeting these pathways might provide novel therapeutic opportunities in cancers dependent on Src and Ras signalling.
Collapse
Affiliation(s)
- Carole L C Poon
- Cell Cycle and Development lab, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Anthony M Brumby
- Cell Cycle and Development lab, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia.
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Helena E Richardson
- Cell Cycle and Development lab, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
12
|
Wu ZH, Lin C, Liu MM, Zhang J, Tao ZH, Hu XC. Src Inhibition Can Synergize with Gemcitabine and Reverse Resistance in Triple Negative Breast Cancer Cells via the AKT/c-Jun Pathway. PLoS One 2016; 11:e0169230. [PMID: 28036386 PMCID: PMC5201240 DOI: 10.1371/journal.pone.0169230] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022] Open
Abstract
Purpose Gemcitabine-based chemotherapy remains one of the standards in management of metastatic breast cancer. However, intrinsic and acquired resistance to gemcitabine inevitably occurs. The aims of this study were to assess the efficacy of the combination of src inhibition and gemcitabine in gemcitabine-resistant breast cancer cells. Methods and Results By using colony formation, sphere forming, flow cytometry, cell counting kit-8 and transwell assays, 231/GEM-res (gemcitabine-resistant) cell line, which was 10 times more resistant, was shown to have elevated drug tolerance, enhanced proliferative and self-renewal abilities, compared with its parental cells. Inhibition of src by both saracatinib (AZD0530) and siRNA could partially reverse gemcitabine resistance and attenuate resistance-associated anti-apoptosis, migration and stem cell capacities. In addition, the combination of src inhibition and gemcitabine had synergistic antitumor effects. Western blot analysis revealed up-regulation of pro-apoptotic protein BAX, along with the down-regulation of anti-apoptotic proteins (BCL-XL, Survivin), migration associated proteins (p-FAK, MMP-3) and cancer stem cell (CSC) markers (CD44, Oct-4), which was probably mediated by AKT/c-Jun pathway. Conclusion In highly gemcitabine-resistant 231 cells, src inhibition can synergize with gemcitabine, reverse drug resistance, inhibit tumor growth/metastasis/stemness of cancer stem cells, possibly via the AKT/c-Jun pathway.
Collapse
Affiliation(s)
- Zhen-Hua Wu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming-Ming Liu
- Department of Medical Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong-Hua Tao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi-Chun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
13
|
Kwon OS, An S, Kim E, Yu J, Hong KY, Lee JS, Jang SK. An mRNA-specific tRNAi carrier eIF2A plays a pivotal role in cell proliferation under stress conditions: stress-resistant translation of c-Src mRNA is mediated by eIF2A. Nucleic Acids Res 2016; 45:296-310. [PMID: 27899592 PMCID: PMC5224483 DOI: 10.1093/nar/gkw1117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022] Open
Abstract
c-Src, a non-receptor protein tyrosine kinase, activates NF-κB and STAT3, which in turn triggers the transcription of anti-apoptosis- and cell cycle-related genes. c-Src protein regulates cell proliferation, cell motility and programmed cell death. And the elevated level of activated c-Src protein is related with solid tumor generation. Translation of c-Src mRNA is directed by an IRES element which mediates persistent translation under stress conditions when translation of most mRNAs is inhibited by a phosphorylation of the alpha subunit of eIF2 carrying the initiator tRNA (tRNAi) to 40S ribosomal subunit under normal conditions. The molecular basis of the stress-resistant translation of c-Src mRNA remained to be elucidated. Here, we report that eIF2A, an alternative tRNAi carrier, is responsible for the stress-resistant translation of c-Src mRNA. eIF2A facilitates tRNAi loading onto the 40S ribosomal subunit in a c-Src mRNA-dependent manner. And a direct interaction between eIF2A and a stem-loop structure (SL I) in the c-Src IRES is required for the c-Src IRES-dependent translation under stress conditions but not under normal conditions. Finally, we showed that the eIF2A-dependent translation of c-Src mRNA plays a pivotal role in cell proliferation under stress conditions.
Collapse
Affiliation(s)
- Oh Sung Kwon
- Molecular Virology Laboratory, POSTECH Biotech Center, Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Sihyeon An
- Molecular Virology Laboratory, POSTECH Biotech Center, Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Eunah Kim
- Molecular Virology Laboratory, POSTECH Biotech Center, Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Jinbae Yu
- Molecular Virology Laboratory, POSTECH Biotech Center, Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Ka Young Hong
- Molecular Virology Laboratory, POSTECH Biotech Center, Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Jae Seung Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Sung Key Jang
- Molecular Virology Laboratory, POSTECH Biotech Center, Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea .,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| |
Collapse
|
14
|
Vallo S, Michaelis M, Gust KM, Black PC, Rothweiler F, Kvasnicka HM, Blaheta RA, Brandt MP, Wezel F, Haferkamp A, Cinatl J. Dasatinib enhances tumor growth in gemcitabine-resistant orthotopic bladder cancer xenografts. BMC Res Notes 2016; 9:454. [PMID: 27677700 PMCID: PMC5039786 DOI: 10.1186/s13104-016-2256-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/20/2016] [Indexed: 01/04/2023] Open
Abstract
Background Systemic chemotherapy with gemcitabine and cisplatin is standard of care for patients with metastatic urothelial bladder cancer. However, resistance formation is common after initial response. The protein Src is known as a proto-oncogene, which is overexpressed in various human cancers. Since there are controversial reports about the role of Src in bladder cancer, we evaluated the efficacy of the Src kinase inhibitor dasatinib in the urothelial bladder cancer cell line RT112 and its gemcitabine-resistant sub-line RT112rGEMCI20 in vitro and in vivo. Methods RT112 urothelial cancer cells were adapted to growth in the presence of 20 ng/ml gemcitabine (RT112rGEMCI20) by continuous cultivation at increasing drug concentrations. Cell viability was determined by MTT assay, cell growth kinetics were determined by cell count, protein levels were measured by western blot, and cell migration was evaluated by scratch assays. In vivo tumor growth was tested in a murine orthotopic xenograft model using bioluminescent imaging. Results Dasatinib exerted similar effects on Src signaling in RT112 and RT112rGEMCI20 cells but RT112rGEMCI20 cells were less sensitive to dasatinib-induced anti-cancer effects (half maximal inhibitory concentration (IC50) of dasatinib in RT112 cells: 349.2 ± 67.2 nM; IC50 of dasatinib in RT112rGEMCI20 cells: 1081.1 ± 239.2 nM). Dasatinib inhibited migration of chemo-naive and gemcitabine-resistant cells. Most strikingly, dasatinib treatment reduced RT112 tumor growth and muscle invasion in orthotopic xenografts, while it was associated with increased size and muscle-invasive growth in RT112rGEMCI20 tumors. Conclusion Dasatinib should be considered with care for the treatment of urothelial cancer, in particular for therapy-refractory cases.
Collapse
Affiliation(s)
- Stefan Vallo
- Institute of Medical Virology, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596, Frankfurt am Main, Germany.,Department of Urology, Goethe University Frankfurt, Frankfurt, Germany
| | - Martin Michaelis
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, UK
| | - Kilian M Gust
- Department of Urology, Goethe University Frankfurt, Frankfurt, Germany.,Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Peter C Black
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Florian Rothweiler
- Institute of Medical Virology, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596, Frankfurt am Main, Germany
| | - Hans-Michael Kvasnicka
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Roman A Blaheta
- Department of Urology, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Felix Wezel
- Department of Urology, University Hospital Ulm, Ulm, Germany
| | - Axel Haferkamp
- Department of Urology, Goethe University Frankfurt, Frankfurt, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Hahn NM, Knudsen BS, Daneshmand S, Koch MO, Bihrle R, Foster RS, Gardner TA, Cheng L, Liu Z, Breen T, Fleming MT, Lance R, Corless CL, Alva AS, Shen SS, Huang F, Gertych A, Gallick GE, Mallick J, Ryan C, Galsky MD, Lerner SP, Posadas EM, Sonpavde G. Neoadjuvant dasatinib for muscle-invasive bladder cancer with tissue analysis of biologic activity. Urol Oncol 2016; 34:4.e11-7. [DOI: 10.1016/j.urolonc.2015.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 11/24/2022]
|
16
|
Iskender B, Izgi K, Hizar E, Jauch J, Arslanhan A, Yuksek EH, Canatan H. Inhibition of epithelial-mesenchymal transition in bladder cancer cells via modulation of mTOR signalling. Tumour Biol 2015; 37:8281-91. [PMID: 26718217 DOI: 10.1007/s13277-015-4695-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022] Open
Abstract
Mounting evidence suggests that signalling cross-talk plays a significant role in the regulation of epithelial-mesenchymal transition (EMT) in cancer cells. However, the complex network regulating the EMT in different cancer types has not been fully described yet which affects the development of novel therapeutic strategies. In the present study, we investigated the signalling pathways involved in EMT of bladder cancer cells and demonstrated the effects of two novel agents in the regulation of EMT. Myrtucommulone-A (MC-A) and thymoquinone (TQ) have been shown to possess anti-cancer properties. However, their targets in the regulation of cancer cell behavior are not well defined. Here, we defined the effects of two putative anti-cancer agents on bladder cancer cell migration and their possible intracellular targets in the regulation of EMT. Our results suggest that MC-A or TQ treatment affected N-cadherin, Snail, Slug, and β-catenin expressions and effectively attenuated mTOR activity. The downstream components in mTOR signalling were also affected. MC-A treatment resulted in the concomitant inhibition of extracellular matrix-regulated protein kinases 1 and 2 (ERK 1/2), p38 mitogen-activated protein kinase (MAPK) and Src activity. On the other hand, TQ treatment increased Src activity while exerting no effect on ERK 1/2 or p38 MAPK activity. Given the stronger inhibition of EMT-related markers in MC-A-treated samples, we concluded that this effect might be due to collective inhibition of multiple signalling pathways which result in a decrease in their cross-talk in bladder cancer cells. Overall, the data in this study proposes novel action mechanisms for MC-A or TQ in bladder cancer cells and highlights the potential use of these active compounds in the regulation of EMT.
Collapse
Affiliation(s)
- Banu Iskender
- Department of Medical Biology, Faculty of Medicine, Erciyes University, 38039, Melikgazi, Kayseri, Turkey. .,Betul-Ziya Eren Genome and Stem Cell Centre, Erciyes University, 38039, Melikgazi, Kayseri, Turkey.
| | - Kenan Izgi
- Department of Medical Biochemistry, Faculty of Medicine, Erciyes University, 38039, Melikgazi, Kayseri, Turkey.,Betul-Ziya Eren Genome and Stem Cell Centre, Erciyes University, 38039, Melikgazi, Kayseri, Turkey
| | - Esra Hizar
- Department of Medical Biology, Faculty of Medicine, Erciyes University, 38039, Melikgazi, Kayseri, Turkey.,Betul-Ziya Eren Genome and Stem Cell Centre, Erciyes University, 38039, Melikgazi, Kayseri, Turkey
| | - Johann Jauch
- Universität des Saarlandes, Organische Chemie II, Geb. C4.2, 66123, Saarbrücken, Germany
| | - Aslihan Arslanhan
- Department of Medical Biochemistry, Faculty of Medicine, Erciyes University, 38039, Melikgazi, Kayseri, Turkey.,Betul-Ziya Eren Genome and Stem Cell Centre, Erciyes University, 38039, Melikgazi, Kayseri, Turkey
| | - Esra Hilal Yuksek
- Department of Medical Biochemistry, Faculty of Medicine, Erciyes University, 38039, Melikgazi, Kayseri, Turkey.,Betul-Ziya Eren Genome and Stem Cell Centre, Erciyes University, 38039, Melikgazi, Kayseri, Turkey
| | - Halit Canatan
- Department of Medical Biology, Faculty of Medicine, Erciyes University, 38039, Melikgazi, Kayseri, Turkey.,Betul-Ziya Eren Genome and Stem Cell Centre, Erciyes University, 38039, Melikgazi, Kayseri, Turkey
| |
Collapse
|
17
|
Chen Q, Zhou Z, Shan L, Zeng H, Hua Y, Cai Z. The importance of Src signaling in sarcoma. Oncol Lett 2015; 10:17-22. [PMID: 26170970 DOI: 10.3892/ol.2015.3184] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/22/2015] [Indexed: 12/23/2022] Open
Abstract
Src is a tyrosine kinase that is of significance in tumor biology. The present review focuses on Src, its molecular structure, and role in cancer, in addition to its expression and function in sarcoma. In addition, the feasibility of Src as a potential drug target for the treatment of sarcoma is also discussed. Previous studies have suggested that Src has essential functions in cell proliferation, apoptosis, invasion, metastasis and the tumor microenvironment. Thus, it may be a potential target for cancer therapy. Src has been found to enhance proliferation, reduce apoptosis and promote metastasis in certain subtypes of sarcoma, including osteosarcoma, chondrosarcoma and Ewing's sarcoma. Furthermore, a number of novel effective therapeutic agents, such as SI-83, which target Src have been investigated in vitro and in vivo. Bosutinib and dasatinib, which inhibit Src, have been approved by the U.S. Food and Drug Administration for the treatment of chronic myelogenous leukemia. In addition, vandetanib is approved for the treatment of medullary thyroid cancer. Furthermore, the Src inhibitor, saracatinib, is currently in clinical trials for the treatment of a variety of solid tumors, including breast and lung cancers. Thus, Src is considered to be an important factor in sarcoma progression and may present a novel clinical therapeutic target. This review demonstrates the importance and clinical relevance of Src in sarcoma, and discusses a number of small molecular inhibitors of src kinase, such as dasatinib and sarcatinib, which are currently in clinical trials for the treatment of sarcoma patients.
Collapse
Affiliation(s)
- Quanchi Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Zifei Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Liancheng Shan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hui Zeng
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
18
|
Guarino M, Ballabio G, Pellegrinelli A, Rubino B, Giordano F. Unexpected Differentiation Potential of Carcinoma Cells. J Dermatol 2014; 31:350-2. [PMID: 15187334 DOI: 10.1111/j.1346-8138.2004.tb00685.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Abstract
OBJECTIVES Src is considered a rising therapeutic target for the treatment of solid tumors, and Src family kinases (SFKs) participate in cancer cell proliferation and survival. The role of SFK suppression was investigated in the proliferation, migration, and invasion of pancreatic cancer cells. METHODS Knockdown of the SFKs in pancreatic cancer cells was achieved by transfecting small interfering RNAs, and its effects were investigated using proliferation, wound, and invasion assays. RESULTS The SFK inhibitors suppressed proliferation and induced cell cycle arrest in pancreatic cancer cells. The SFK messenger RNA profiles showed that Yes1, Lyn, Fyn, Frk, Hck, and Src were expressed. Specific small interfering RNA transfection suppressed the messenger RNA expressions of Yes1, Lyn, Fyn, Frk, and Src, and the knockdown suppressed cell proliferation by 16.7% to 47.3% in PANC-1 cells. Knockdown of any of these 5 SFKs suppressed proliferation in other pancreatic cancer cell lines by 3.0% to 40.5%. The knockdowns significantly reduced pancreatic cancer cell migration by 24.9% to 66.7% and completely inhibited invasion. CONCLUSIONS These results suggest that the knockdown of Yes1, Lyn, Fyn, Frk, or Src reduce human pancreatic cancer cell proliferation, migration, and invasion, and that SFKs should be viewed as critical therapeutic targets of pancreatic cancer.
Collapse
|
20
|
Unlocking Doors without Keys: Activation of Src by Truncated C-terminal Intracellular Receptor Tyrosine Kinases Lacking Tyrosine Kinase Activity. Cells 2014; 3:92-111. [PMID: 24709904 PMCID: PMC3980740 DOI: 10.3390/cells3010092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 01/07/2023] Open
Abstract
One of the best examples of the renaissance of Src as an open door to cancer has been the demonstration that just five min of Src activation is sufficient for transformation and also for induction and maintenance of cancer stem cells [1]. Many tyrosine kinase receptors, through the binding of their ligands, become the keys that unlock the structure of Src and activate its oncogenic transduction pathways. Furthermore, intracellular isoforms of these receptors, devoid of any tyrosine kinase activity, still retain the ability to unlock Src. This has been shown with a truncated isoform of KIT (tr-KIT) and a truncated isoform of VEGFR-1 (i21-VEGFR-1), which are intracellular and require no ligand binding, but are nonetheless able to activate Src and induce cell migration and invasion of cancer cells. Expression of the i21-VEGFR-1 is upregulated by the Notch signaling pathway and repressed by miR-200c and retinoic acid in breast cancer cells. Both Notch inhibitors and retinoic acid have been proposed as potential therapies for invasive breast cancer.
Collapse
|
21
|
Joannes A, Grelet S, Duca L, Gilles C, Kileztky C, Dalstein V, Birembaut P, Polette M, Nawrocki-Raby B. Fhit Regulates EMT Targets through an EGFR/Src/ERK/Slug Signaling Axis in Human Bronchial Cells. Mol Cancer Res 2014; 12:775-83. [DOI: 10.1158/1541-7786.mcr-13-0386-t] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Wang N, Li Q, Feng NH, Cheng G, Guan ZL, Wang Y, Qin C, Yin CJ, Hua LX. miR-205 is frequently downregulated in prostate cancer and acts as a tumor suppressor by inhibiting tumor growth. Asian J Androl 2013; 15:735-41. [PMID: 23974361 DOI: 10.1038/aja.2013.80] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/11/2013] [Accepted: 05/18/2013] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study was to elucidate the molecular mechanisms of microRNA-205 (miR-205) as a tumor suppressor in prostate cancer (PCa). In the present study, microRNA microarray analysis suggested that the expression of miR-205 was significantly decreased in advanced PCa compared with early PCa. Real-time PCR analysis also indicated that miR-205 expression was significantly decreased in PCa tissues compared with non-cancerous tissues. Moreover, the expression of miR-205 has been demonstrated to be associated with the clinicopathological stage and total/free prostate-specific antigen (PSA) level of PCa. Functional analyses showed that both the overexpression of miR-205 and the knockdown of c-SRC in PCa cell lines could inhibit cell growth, colony formation, migration, invasion and the cell cycle as well as induce cell apoptosis in vitro. Furthermore, over-expressing miR-205 reduced tumorigenicity in vivo. Through a luciferase activity assay and Western blotting, c-SRC was identified as a target of miR-205 in cells. The overexpression of miR-205 suppressed c-SRC and its downstream signaling molecules, including FAK, p-FAK, ERK1/2 and p-ERK1/2, and attenuated cell proliferation, invasion and tumor growth.
Collapse
|
23
|
Azijli K, Yuvaraj S, Peppelenbosch MP, Würdinger T, Dekker H, Joore J, van Dijk E, Quax WJ, Peters GJ, de Jong S, Kruyt FAE. Kinome profiling of non-canonical TRAIL signaling reveals RIP1-Src-STAT3-dependent invasion in resistant non-small cell lung cancer cells. J Cell Sci 2012; 125:4651-4661. [PMID: 22797920 DOI: 10.1242/jcs.109587] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) triggers apoptosis selectively in tumor cells through interaction with TRAIL-R1/DR4 or TRAIL-R2/DR5 and this process is considered a promising avenue for cancer treatment. TRAIL resistance, however, is frequently encountered and hampers anti-cancer activity. Here we show that whereas H460 non-small cell lung cancer (NSCLC) cells display canonical TRAIL-dependent apoptosis, A549 and SW1573 NSCLC cells are TRAIL resistant and display pro-tumorigenic activity, in particular invasion, following TRAIL treatment. We exploit this situation to contrast TRAIL effects on the kinome of apoptosis-sensitive cells to that of NSCLC cells in which non-canonical effects predominate, employing peptide arrays displaying 1024 different kinase pseudosubstrates more or less comprehensively covering the human kinome. We observed that failure of a therapeutic response to TRAIL coincides with the activation of a non-canonical TRAIL-induced signaling pathway involving, amongst others, Src, STAT3, FAK, ERK and Akt. The use of selective TRAIL variants against TRAIL-R1 or TRAIL-R2 subsequently showed that this non-canonical migration and invasion is mediated through TRAIL-R2. Short-hairpin-mediated silencing of RIP1 kinase prevented TRAIL-induced Src and STAT3 phosphorylation and reduced TRAIL-induced migration and invasion of A549 cells. Inhibition of Src or STAT3 by shRNA or chemical inhibitors including dasatinib and 5,15-diphenylporphyrin blocked TRAIL-induced invasion. FAK, AKT and ERK were activated in a RIP1-independent way and inhibition of AKT sensitized A549 cells to TRAIL-induced apoptosis. We thus identified RIP1-dependent and -independent non-canonical TRAIL kinase cascades in which Src and AKT are instrumental and could be exploited as co-targets in TRAIL therapy for NSCLC.
Collapse
Affiliation(s)
- Kaamar Azijli
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schilder RJ, Brady WE, Lankes HA, Fiorica JV, Shahin MS, Zhou XC, Mannel RS, Pathak HB, Hu W, Alpaugh RK, Sood AK, Godwin AK. Phase II evaluation of dasatinib in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2012; 127:70-4. [PMID: 22710075 PMCID: PMC3748717 DOI: 10.1016/j.ygyno.2012.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Preclinical data suggest an important role for the sarcoma proto-oncogene tyrosine kinase (SRC) in the oncogenesis of epithelial ovarian cancer (EOC) or primary peritoneal carcinoma (PPC). The Gynecologic Oncology Group (GOG) conducted a Phase II trial to evaluate the efficacy and safety of dasatinib, an oral SRC-family inhibitor in EOC/PPC, and explored biomarkers for possible association with clinical outcome. METHODS Eligible women had measurable, recurrent or persistent EOC/PPC and had received one or two prior regimens which must have contained a platinum and a taxane. Patients were treated with 100mg orally daily of dasatinib continuously until progression of disease or adverse effects prevented further treatment. Primary endpoints were progression-free survival (PFS)≥6months and response rate. Serial plasma samples were assayed for multiple biomarkers. Circulating free DNA was quantified as were circulating tumor and endothelial cells. RESULTS Thirty-five (35) patients were enrolled in a two-stage sequential design. Of the 34 eligible and evaluable patients, 20.6% (90% confidence interval: 10.1%, 35.2%) had a PFS≥6months; there were no objective responses. Grade 3-4 toxicities were gastrointestinal (mostly nausea and emesis; n=4), pulmonary (dyspnea and/or pleural effusion; n=4) and pain (n=5), and infrequent instances of anemia, malaise, insomnia, rash, and central nervous system hemorrhage. Lack of clinical activity limited any correlation of biomarkers with outcome. CONCLUSION Dasatinib has minimal activity as a single-agent in patients with recurrent EOC/PPC.
Collapse
Affiliation(s)
- Russell J Schilder
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Siemann DW, Dong M, Pampo C, Shi W. Src-signaling interference impairs the dissemination of blood-borne tumor cells. Cell Tissue Res 2012; 349:541-50. [PMID: 22526632 DOI: 10.1007/s00441-012-1415-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/19/2012] [Indexed: 12/21/2022]
Abstract
Although solid tumors continuously shed cells, only a small fraction of the neoplastic cells that enter the blood stream are capable of establishing metastases. In order to be successful, these cells must attach, extravasate, proliferate and induce angiogenesis. Preclinical studies have shown that small-molecule ATP-competitive Src kinase inhibitors can effectively impair metastasis-associated tumor cell functions in vitro. However, the impact of these agents on the metastatic cascade in vivo is less well understood. In the present studies, we have examined the ability of saracatinib, a dual-specific, orally available inhibitor of Src and Abl protein tyrosine kinases, to interfere with the establishment of lung metastases in mice by tumor cells introduced into the blood stream. The results demonstrate that Src inhibition most effectively interferes with the establishment of secondary tumor deposits when treatments are administered while tumor cells are in the initial phases of dissemination.
Collapse
Affiliation(s)
- Dietmar W Siemann
- Department of Radiation Oncology and Shands Cancer Center, University of Florida, 2000 SW Archer Road, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
26
|
Tyrosine phosphorylation of cortactin by the FAK-Src complex at focal adhesions regulates cell motility. BMC Cell Biol 2011; 12:49. [PMID: 22078467 PMCID: PMC3245448 DOI: 10.1186/1471-2121-12-49] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/13/2011] [Indexed: 12/13/2022] Open
Abstract
Background Cell migration plays an important role in many physiological and pathological processes, including immune cell chemotaxis and cancer metastasis. It is a coordinated process that involves dynamic changes in the actin cytoskeleton and its interplay with focal adhesions. At the leading edge of a migrating cell, it is the re-arrangement of actin and its attachment to focal adhesions that generates the driving force necessary for movement. However, the mechanisms involved in the attachment of actin filaments to focal adhesions are still not fully understood. Results Signaling by the FAK-Src complex plays a crucial role in regulating the formation of protein complexes at focal adhesions to which the actin filaments are attached. Cortactin, an F-actin associated protein and a substrate of Src kinase, was found to interact with FAK through its SH3 domain and the C-terminal proline-rich regions of FAK. We found that the autophosphorylation of Tyr397 in FAK, which is necessary for FAK activation, was not required for the interaction with cortactin, but was essential for the tyrosine phosphorylation of the associated cortactin. At focal adhesions, cortactin was phosphorylated at tyrosine residues known to be phosphorylated by Src. The tyrosine phosphorylation of cortactin and its ability to associate with the actin cytoskeleton were required in tandem for the regulation of cell motility. Cell motility could be inhibited by truncating the N-terminal F-actin binding domains of cortactin or by blocking tyrosine phosphorylation (Y421/466/475/482F mutation). In addition, the mutant cortactin phosphorylation mimic (Y421/466/475/482E) had a reduced ability to interact with FAK and promoted cell motility. The promotion of cell motility by the cortactin phosphorylation mimic could also be inhibited by truncating its N-terminal F-actin binding domains. Conclusions Our results suggest that cortactin acts as a bridging molecule between actin filaments and focal adhesions. The cortactin N-terminus associates with F-actin, while its C-terminus interacts with focal adhesions. The tyrosine phosphorylation of cortactin by the FAK-Src complex modulates its interaction with FAK and increases its turnover at focal adhesions to promote cell motility.
Collapse
|
27
|
Wortmann A, He Y, Christensen ME, Linn M, Lumley JW, Pollock PM, Waterhouse NJ, Hooper JD. Cellular settings mediating Src Substrate switching between focal adhesion kinase tyrosine 861 and CUB-domain-containing protein 1 (CDCP1) tyrosine 734. J Biol Chem 2011; 286:42303-42315. [PMID: 21994943 DOI: 10.1074/jbc.m111.227462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Reciprocal interactions between Src family kinases (SFKs) and focal adhesion kinase (FAK) are critical during changes in cell attachment. Recently it has been recognized that another SFK substrate, CUB-domain-containing protein 1 (CDCP1), is differentially phosphorylated during these events. However, the molecular processes underlying SFK-mediated phosphorylation of CDCP1 are poorly understood. Here we identify a novel mechanism in which FAK tyrosine 861 and CDCP1-Tyr-734 compete as SFK substrates and demonstrate cellular settings in which SFKs switch between these sites. Our results show that stable CDCP1 expression induces robust SFK-mediated phosphorylation of CDCP1-Tyr-734 with concomitant loss of p-FAK-Tyr-861 in adherent HeLa cells. SFK substrate switching in these cells is dependent on the level of expression of CDCP1 and is also dependent on CDCP1-Tyr-734 but is independent of CDCP1-Tyr-743 and -Tyr-762. In HeLa CDCP1 cells, engagement of SFKs with CDCP1 is accompanied by an increase in phosphorylation of Src-Tyr-416 and a change in cell morphology to a fibroblastic appearance dependent on CDCP1-Tyr-734. SFK switching between FAK-Tyr-861 and CDCP1-Tyr-734 also occurs during changes in adhesion of colorectal cancer cell lines endogenously expressing these two proteins. Consistently, increased p-FAK-Tyr-861 levels and a more epithelial morphology are seen in colon cancer SW480 cells silenced for CDCP1. Unlike protein kinase Cδ, FAK does not appear to form a trimeric complex with Src and CDCP1. These data demonstrate novel aspects of the dynamics of SFK-mediated cell signaling that may be relevant during cancer progression.
Collapse
Affiliation(s)
- Andreas Wortmann
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101; Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059
| | - Yaowu He
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101
| | - Melinda E Christensen
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101
| | - MayLa Linn
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059
| | - John W Lumley
- Wesley Medical Centre, Auchenflower, Queensland 4066, Australia
| | - Pamela M Pollock
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059
| | - Nigel J Waterhouse
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101
| | - John D Hooper
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101.
| |
Collapse
|
28
|
Saylor PJ, Lee RJ, Smith MR. Emerging therapies to prevent skeletal morbidity in men with prostate cancer. J Clin Oncol 2011; 29:3705-14. [PMID: 21860001 PMCID: PMC3675709 DOI: 10.1200/jco.2010.34.4994] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 06/23/2011] [Indexed: 11/20/2022] Open
Abstract
Skeletal morbidity is a prominent burden to men with advanced prostate cancer throughout the natural history of the disease. Bone metastases can cause pain and greatly elevate the risk for fractures and other structural complications. Distinct from the problem of metastases, treatment-related osteoporosis and associated fragility fractures are potential complications of androgen-deprivation therapy. Bone-targeted therapies for prostate cancer have therefore been the focus of considerable research and drug development efforts. The osteoclast is a validated therapeutic target in the management of prostate cancer. Osteoclast inhibition with zoledronic acid (a bisphosphonate) or with denosumab (a monoclonal antibody to RANK ligand) reduces risk for skeletal events in men with castration-resistant prostate cancer metastatic to bone. Osteoclast inhibition with any of several bisphosphonates improves bone mineral density, a surrogate for osteoporotic fracture risk. Denosumab and toremifene (a selective estrogen receptor modulator) have each been shown to reduce osteoporotic fracture risk among men receiving androgen-deprivation therapy. Beta-emitting radiopharmaceuticals reduce pain due to metastatic disease. Investigations involving alpha-emitting radium-223, endothelin-A receptor antagonists atrasentan and zibotentan, proto-oncogene tyrosine-protein kinase (SRC) inhibitor dasatinib, and tyrosine kinase inhibitor cabozantinib (XL184) are ongoing in clinical trials and are also discussed.
Collapse
Affiliation(s)
- Philip J Saylor
- Division of Hematology-Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, 55 Fruit Street, Yawkey 7E, Boston, MA 02114, USA.
| | | | | |
Collapse
|
29
|
Role of Src in breast cancer cell migration and invasion in a breast cell/bone-derived cell microenvironment. Breast Cancer Res Treat 2011; 133:201-14. [PMID: 21894461 DOI: 10.1007/s10549-011-1753-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022]
Abstract
The preferential metastasis of breast cancer cells to bone comprises a complex set of events including homing and preferential growth, which may require unique factors produced by bone or other cells in the immediate microenvironment. In this study, an in vitro co-culture system composed of bone mesenchymal stem cells and breast cancer cell lines is used to examine the role of Src kinase on breast cancer cell migration and invasion in the presence of bone-derived cells. This research shows that Src kinase activity in breast cancer cell lines with either high or low levels of endogenous Src activity is increased by bone-derived cell-conditioned medium but not HS68 fibroblast-conditioned medium. Breast cancer cells exhibit enhanced migration in co-culture with bone-derived cells but not HS68 fibroblasts or no co-cultured cells. Inhibition of Src kinase activity using the inhibitors PP2 or saracatinib or using siRNA abrogates the preferential migration of the breast cancer cell lines in response to bone-derived cells. Inhibition of Src activity with saracatinib does not have any significant effect on breast cancer cell invasion in the presence of bone-derived cells. Factors are identified that are produced preferentially by bone-derived cells over HS68 cells that may impact breast cancer cell behavior. This research implicates Src kinase as an important effector of bone-derived cell signals on breast cancer cell migration.
Collapse
|
30
|
Saini S, Arora S, Majid S, Shahryari V, Chen Y, Deng G, Yamamura S, Ueno K, Dahiya R. Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev Res (Phila) 2011; 4:1698-709. [PMID: 21836020 DOI: 10.1158/1940-6207.capr-11-0267] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bladder cancer is often associated with recurrence and progression to invasive metastatic disease that have palliative therapeutic options. The use of traditional chemotherapeutic agents for bladder cancer management often suffers from toxicity and resistance concerns. This emphasizes the need for development of safer, natural, nontoxic compounds as chemotherapeutic/chemopreventive agents. Curcumin (diferuloylmethane) is a natural compound that has been known to possess anticancer properties in various cancers, including bladder cancer. However, the biological targets of curcumin are not well defined. Recently, it has been proposed that curcumin may mediate epigenetic modulation of expression of microRNAs (miRNA). In this article, we define for the first time, that curcumin directly induces a tumor-suppressive miRNA, miR-203, in bladder cancer. miR-203 is frequently downregulated in bladder cancer due to DNA hypermethylation of its promoter. We studied the functional significance of miR-203 in bladder cancer cell lines and found that miR-203 has tumor suppressive properties. Also, we define Akt2 and Src as novel miR-203 targets in bladder cancer. Curcumin induces hypomethylation of the miR-203 promoter and subsequent upregulation of miR-203 expression. This leads to downregulation of miR-203 target genes Akt2 and Src that culminates in decreased proliferation and increased apoptosis of bladder cancer cells. This is the first report that shows a direct effect of curcumin on inducing epigenetic changes at a miRNA promoter with direct biological consequences. Our study suggests that curcumin may offer a therapeutic advantage in the clinical management of refractory bladder cancer over other standard treatment modalities.
Collapse
Affiliation(s)
- Sharanjot Saini
- Department of Urology, Veterans Affairs Medical Center, University of California, San Francisco, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gold nanoparticles inhibit vascular endothelial growth factor-induced angiogenesis and vascular permeability via Src dependent pathway in retinal endothelial cells. Angiogenesis 2011; 14:29-45. [PMID: 21061058 DOI: 10.1007/s10456-010-9193-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/25/2010] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to investigate the effect of gold nanoparticles on the signaling cascade related to angiogenesis and vascular permeability induced by Vascular Endothelial Growth Factor (VEGF) in Bovine retinal endothelial cells (BRECs). The effect of VEGF and gold nanoparticles on cell viability, migration and tubule formation was assessed. PP2 (Src Tyrosine Kinase inhibitor) was used as the positive control and the inhibitor assay was performed to compare the effect of AuNPs on VEGF induced angiogenesis. The transient transfection assay was performed to study the VEGFR2/Src activity during experimental conditions and was confirmed using western blot analysis. Treatment of BRECs with VEGF significantly increased the cell proliferation, migration and tube formation. Furthermore, gold nanoparticles (500 nM) significantly inhibited the proliferation, migration and tube formation, in the presence of VEGF in BRECs. The gold nanoparticles also inhibited VEGF induced Src phosphorylation through which their mode of action in inhibiting angiogenic pathways is revealed. The fate of the gold nanoparticles within the cells is being analyzed using the TEM images obtained. The potential of AuNPs to inhibit the VEGF165-induced VEGFR-2 phosphorylation is also being confirmed through the receptor assay which elucidates one of the possible mechanism by which AuNPs inhibit VEGF induced angiogenesis. These results indicate that gold nanoparticles can block VEGF activation of important signaling pathways, specifically Src in BRECs and hence modulation of these pathways may contribute to gold nanoparticles ability to block VEGF-induced retinal neovascularization.
Collapse
|
32
|
Alt-Holland A, Sowalsky AG, Szwec-Levin Y, Shamis Y, Hatch H, Feig LA, Garlick JA. Suppression of E-cadherin function drives the early stages of Ras-induced squamous cell carcinoma through upregulation of FAK and Src. J Invest Dermatol 2011; 131:2306-15. [PMID: 21716326 PMCID: PMC3188385 DOI: 10.1038/jid.2011.188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Advanced stages of epithelial carcinogenesis involve the loss of intercellular adhesion, but it remains unclear how proteins that regulate alterations in cell-cell and cell-matrix adhesion are deregulated to promote the early stages of cancer development. To address this, a three-dimensional human tissue model that mimics the incipient stages of Squamous Cell Carcinoma (SCC) was used to study how E-cadherin suppression promotes tumor progression in Ras-expressing human keratinocytes. We found that E-cadherin suppression triggered elevated mRNA and protein expression levels of Focal Adhesion Kinase (FAK), and increased FAK and Src activities above the level seen in Ras-expressing E-cadherin-competent keratinocytes. sh-RNA-mediated depletion of FAK and Src restored E-cadherin expression levels by increasing its stability in the membrane, and blocked tumor cell invasion in tissues. Surface transplantation of these tissues to mice resulted in reversion of the tumor phenotype to low-grade tumor islands in contrast to control tissues that manifested an aggressive, high-grade SCC. These findings suggest that the tumor-promoting effect of E-cadherin suppression, a common event in SCC development, is exacerbated by enhanced E-cadherin degradation induced by elevated FAK and Src activities. Furthermore, they imply that targeting FAK or Src in human epithelial cells with neoplastic potential may inhibit the early stages of SCC.
Collapse
Affiliation(s)
- Addy Alt-Holland
- Division of Cancer Biology and Tissue Engineering, School of Dental Medicine, Tufts University, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Hiscox S, Nicholson RI. Src kinase: a therapeutic opportunity in endocrine-responsive and resistant breast cancer. Expert Rev Endocrinol Metab 2011; 6:423-435. [PMID: 30754115 DOI: 10.1586/eem.11.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The intracellular kinase, Src, interacts with a diverse array of signaling elements, including the estrogen receptor to regulate breast cancer progression. Recent evidence has also implicated Src in mediating the response of breast cancer to endocrine agents and in the acquisition of antihormone resistance, a significant limiting factor to the clinical effectiveness of systemic endocrine therapy. A number of pharmacological inhibitors of Src kinase have been developed that are effective at suppressing breast cancer growth and invasion in vitro and inhibiting disease spread in vivo. Significantly, there appears to be added benefit when these agents are given in combination with anti-estrogens in endocrine-sensitive and -resistant models. These new findings suggest that Src inhibitors might have therapeutic value in breast cancer patients to improve endocrine response and circumvent resistance.
Collapse
Affiliation(s)
- Stephen Hiscox
- a Breast Cancer (Molecular Pharmacology) Group, Welsh School of Pharmacy, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
- b
| | - Robert I Nicholson
- a Breast Cancer (Molecular Pharmacology) Group, Welsh School of Pharmacy, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| |
Collapse
|
34
|
Synthesis and pharmacological evaluation of thieno[2,3-b]pyridine derivatives as novel c-Src inhibitors. Bioorg Med Chem 2011; 19:2517-28. [PMID: 21459579 DOI: 10.1016/j.bmc.2011.03.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/03/2011] [Accepted: 03/09/2011] [Indexed: 11/23/2022]
Abstract
Among the recently investigated targets for cancer therapy is the c-Src non-receptor tyrosine kinase. Indeed research around deregulated activity of this enzyme has proven its role in tumor progression, while the beneficial effects of c-Src inhibitors in several pathological models has also been demonstrated. We report here the preparation and pharmacological profile of a novel series of c-Src inhibitors that was elaborated around a 3-amino-thieno[2,3-b]pyridine discovered during an HTS campaign. c-Src enzyme inhibition and c-Src inhibition were investigated in a series of related compounds derived from the initial hit. Molecular modeling as well as X-ray studies on one active compound allowed us to hypothesize on ligand orientation and interactions within the ATP hydrophobic pocket. Design and synthesis of structural analogs then led to new ligands possessing quite efficient enzymatic and c-Src inhibition. The structure-activity elements disclosed in this study shed light on the role played by substituents on the thienopyridine ring as well as the impact of other aromatic moieties in the molecule when interacting with the enzyme.
Collapse
|
35
|
Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat Med 2011; 17:461-9. [PMID: 21399647 DOI: 10.1038/nm.2309] [Citation(s) in RCA: 421] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 01/21/2011] [Indexed: 12/12/2022]
Abstract
Trastuzumab is a successful rationally designed ERBB2-targeted therapy. However, about half of individuals with ERBB2-overexpressing breast cancer do not respond to trastuzumab-based therapies, owing to various resistance mechanisms. Clinically applicable regimens for overcoming trastuzumab resistance of different mechanisms are not yet available. We show that the nonreceptor tyrosine kinase c-SRC (SRC) is a key modulator of trastuzumab response and a common node downstream of multiple trastuzumab resistance pathways. We find that SRC is activated in both acquired and de novo trastuzumab-resistant cells and uncover a novel mechanism of SRC regulation involving dephosphorylation by PTEN. Increased SRC activation conferred considerable trastuzumab resistance in breast cancer cells and correlated with trastuzumab resistance in patients. Targeting SRC in combination with trastuzumab sensitized multiple lines of trastuzumab-resistant cells to trastuzumab and eliminated trastuzumab-resistant tumors in vivo, suggesting the potential clinical application of this strategy to overcome trastuzumab resistance.
Collapse
|
36
|
Phipps LE, Hino S, Muschel RJ. Targeting cell spreading: a method of sensitizing metastatic tumor cells to TRAIL-induced apoptosis. Mol Cancer Res 2011; 9:249-58. [PMID: 21296861 DOI: 10.1158/1541-7786.mcr-11-0021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a current focus for the development of new cancer therapies, because of its selective induction of apoptosis in cancer cells. TRAIL has previously been shown to be important for tumor cell clearance from the liver; however, many cancer cell lines show some resistance toward TRAIL, posing a problem for the future use of TRAIL therapies. In this study, we show that interfering with a cell's ability to attach and spread onto a matrix can sensitize tumor cells to TRAIL-induced apoptosis in vitro. We targeted different members of the integrin signaling pathway using siRNA or inhibitors, including β-integrins, talin, Src, and downstream survival pathways PI3K and MAPK. Targeting any of these molecules could sensitize both MDA-MB-231 human breast cancer cells and TRAIL-resistant 1205Lu melanoma cells to TRAIL-induced apoptosis in vitro. Transcriptionally targeting the cytoskeleton, using myocardin-related transcription factor depletion to disrupt the transcription of cytoskeletal proteins, also caused TRAIL sensitization in MDA-MB-231 cells. We showed that this sensitivity to TRAIL correlated with increased activation of the intrinsic pathway of apoptosis. Manipulation of cell spreading therefore presents a potential method by which disseminated tumor cells could be sensitized to TRAIL therapies in vivo.
Collapse
Affiliation(s)
- Laura E Phipps
- Gray Institute for Radiation Oncology and Biology, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | | | | |
Collapse
|
37
|
Renouf DJ, Moore MJ, Hedley D, Gill S, Jonker D, Chen E, Walde D, Goel R, Southwood B, Gauthier I, Walsh W, McIntosh L, Seymour L. A phase I/II study of the Src inhibitor saracatinib (AZD0530) in combination with gemcitabine in advanced pancreatic cancer. Invest New Drugs 2010; 30:779-86. [PMID: 21170669 DOI: 10.1007/s10637-010-9611-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/01/2010] [Indexed: 12/16/2022]
Abstract
AIM This phase I/II study of saracatinib in combination with gemcitabine in patients with advanced pancreatic cancer was conducted by the NCIC Clinical Trials Group. The aims were to define the recommended phase II dose (RP2D) of saracatinib when combined with gemcitabine, and assess the efficacy of this combination in advanced pancreatic cancer. PATIENTS AND METHODS Eligibility criteria included locally advanced or metastatic pancreatic adenocarcinoma and no prior chemotherapy. In phase I saracatinib was escalated in combination with gemcitabine (1000 mg/m(2)) to determine the recommended phase II dose (RP2D). The study was then expanded to a single arm phase II trial using a Simon 2-stage design. The primary endpoint was objective tumor response (OR) plus stable disease ≥ 4 months (SD4) rate; if ≥ 8 patients had OR+SD4, the study would proceed to stage 2. RESULTS Thirteen patients were enrolled into the phase I portion of this study. Saracatinib 175 mg PO daily was chosen as the RP2D in combination with gemcitabine. Twenty-one additional patients were then enrolled at the RP2D (phase II). Of the 22 response evaluable patients treated at the RP2D, 9 patients (40.9%) had progressive disease, 6 patients (27.3%) had stable disease for less than 4 months, 5 patients (22.7%) had SD4, and 2 patients (9.1%) had a partial response to treatment. Objective criteria for continuing to stage 2 were thus not met and the trial was closed following the accrual of 34 patients. CONCLUSION Saracatinib 175 mg daily in combination with gemcitabine is well tolerated but the combination did not improve efficacy over what would be expected from gemcitabine alone.
Collapse
Affiliation(s)
- Daniel J Renouf
- Division of Medical Oncology and Hematology, Rm 5-708, Princess Margaret Hospital, 610 University Avenue, Toronto M5G2M9, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhou Q, Snider NT, Liao J, Li DH, Hong A, Ku NO, Cartwright CA, Omary MB. Characterization of in vivo keratin 19 phosphorylation on tyrosine-391. PLoS One 2010; 5:e13538. [PMID: 21049038 PMCID: PMC2963603 DOI: 10.1371/journal.pone.0013538] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/29/2010] [Indexed: 02/07/2023] Open
Abstract
Background Keratin polypeptide 19 (K19) is a type I intermediate filament protein that is expressed in stratified and simple-type epithelia. Although K19 is known to be phosphorylated on tyrosine residue(s), conclusive site-specific characterization of these residue(s) and identification potential kinases that may be involved has not been reported. Methodology/Principal Findings In this study, biochemical, molecular and immunological approaches were undertaken in order to identify and characterize K19 tyrosine phosphorylation. Upon treatment with pervanadate, a tyrosine phosphatase inhibitor, human K19 (hK19) was phosphorylated on tyrosine 391, located in the ‘tail’ domain of the protein. K19 Y391 phosphorylation was confirmed using site-directed mutagenesis and cell transfection coupled with the generation of a K19 phospho (p)-Y391-specific rabbit antibody. The antibody also recognized mouse phospho-K19 (K19 pY394). This tyrosine residue is not phosphorylated under basal conditions, but becomes phosphorylated in the presence of Src kinase in vitro and in cells expressing constitutively-active Src. Pervanadate treatment in vivo resulted in phosphorylation of K19 Y394 and Y391 in colonic epithelial cells of non-transgenic mice and hK19-overexpressing mice, respectively. Conclusions/Significance Human K19 tyrosine 391 is phosphorylated, potentially by Src kinase, and is the first well-defined tyrosine phosphorylation site of any keratin protein. The lack of detection of K19 pY391 in the absence of tyrosine phosphatase inhibition suggests that its phosphorylation is highly dynamic.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Medicine, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Natasha T. Snider
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jian Liao
- Applied Biomics, Inc., Hayward, California, United States of America
| | - Daniel H. Li
- Anaspec, Inc., Fremont, California, United States of America
| | - Anita Hong
- Anaspec, Inc., Fremont, California, United States of America
| | - Nam-On Ku
- Department of Biomedical Sciences, Yonsei University, Seoul, South Korea
| | - Christine A. Cartwright
- Department of Medicine, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
39
|
Lieu C, Kopetz S. The SRC family of protein tyrosine kinases: a new and promising target for colorectal cancer therapy. Clin Colorectal Cancer 2010; 9:89-94. [PMID: 20378502 DOI: 10.3816/ccc.2010.n.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aberrant activation of the Src family of tyrosine kinases has been implicated in the development and progression of colorectal cancer (CRC). As a result, Src inhibitors are now being studied as possible therapeutic agents to treat metastatic disease. In this review, we discuss the effects of aberrant Src activation in CRC, Src as a target of single-agent drug therapy, and Src as a target of combination therapy with epidermal growth factor receptor inhibition and cytotoxic chemotherapy. The greatest potential for clinically relevant benefit most likely lies in combination regimens. Further evaluation with biomarkers will continue to define the molecular phenotype of patients with CRC who will benefit the most from Src-based therapy.
Collapse
Affiliation(s)
- Christopher Lieu
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
40
|
Abstract
Despite the recent advances in the diagnosis of bladder cancer, recurrence after surgical intervention for muscle invasive disease is still problematic as nearly half of the patients harbor occult distant metastases and this, in turn, is associated with poor 5-year survival rate. We have recently identified Rho family GDP dissociation inhibitor 2 (RhoGDI2) protein as functional metastasis suppressor and a prognostic marker in patients after cystectomy. In identifying the mechanisms underlying metastasis suppression by RhoGDI2, we found this protein to be associated with the c-Src kinase in human tumors, where the expression of both is diminished as a function of stage. Interestingly, c-Src bound to and phosphorylated RhoGDI2 resulting in enhanced metastasis suppressive potency. In this review, we will discuss the established roles of c-Src and RhoGDI2 in bladder cancer and speculate on their therapeutic relevance.
Collapse
Affiliation(s)
- Neveen Said
- Department of Urology, University of Virginia, Box 800422, Charlottesville, VA 22908, USA
| | | |
Collapse
|
41
|
Abstract
Src is a non-receptor cytoplasmic tyrosine kinase which becomes activated following the stimulation of plasma membrane receptors including receptor tyrosine kinases and integrins, and is an indispensable player of multiple physiological homeostatic pathways. Once activated, Src is the starting point for several biochemical cascades that thereby propagate signals generated extracellularly along intracellular interconnected transduction pathways. Src transmits signals promoting cell survival and mitogenesis and, in addition, exerts a profound effect on the reorganization of the cytoskeleton and the adhesion systems that underpin cell migration and invasion. Because increased activity of Src is a frequent occurrence in many types of human cancer, and because there is evidence of a prominent role of Src in invasion and in other tumor progression-related events such as epithelial-mesenchymal transition (EMT) and development of metastasis, inhibitors targeting Src are being viewed as promising drugs for cancer therapy.
Collapse
Affiliation(s)
- Marcello Guarino
- Department of Pathology, Hospital of Vimercate, Vimercate, MB, Italy.
| |
Collapse
|
42
|
Saad F, Lipton A. SRC kinase inhibition: targeting bone metastases and tumor growth in prostate and breast cancer. Cancer Treat Rev 2009; 36:177-84. [PMID: 20015594 DOI: 10.1016/j.ctrv.2009.11.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 11/25/2022]
Abstract
Prostate and breast cancer cells preferentially metastasize to bone, whereupon a complex interaction between metastatic tumor cells, osteoclasts, and osteoblasts results in the development of bone lesions that cause significant pain and patient morbidity. For patients with bone lesions, the goals of treatment are to decrease tumor growth, prevent further metastases, and inhibit tumor-associated bone pathology. Preclinical data suggest that SRC, a nonreceptor tyrosine kinase, is an important signaling molecule during the processes of osteoclast-mediated bone resorption, tumor growth, and metastasis, and that SRC has a role in hormone receptor signaling and resistance. As such, SRC represents a logical target for the treatment of advanced metastatic prostate or breast cancer. SRC-targeting agents, including dasatinib, saracatinib, and bosutinib, are currently in clinical development for patients with solid tumors. Preliminary data from phase 1/2 trials, including tumor responses and bone-specific activity in patients with prostate or breast cancer, demonstrate that SRC inhibitors have potential in the clinical setting. Data arising from ongoing and future clinical trials will confirm whether SRC inhibitors provide clinical benefits for patients with advanced disease.
Collapse
Affiliation(s)
- Fred Saad
- University of Montreal, CHU Montreal, 1560 Sherbrooke East, Montreal, Quebec, Canada.
| | | |
Collapse
|
43
|
Byers LA, Sen B, Saigal B, Diao L, Wang J, Nanjundan M, Cascone T, Mills GB, Heymach JV, Johnson FM. Reciprocal regulation of c-Src and STAT3 in non-small cell lung cancer. Clin Cancer Res 2009; 15:6852-61. [PMID: 19861436 DOI: 10.1158/1078-0432.ccr-09-0767] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Signal transducer and activator of transcription-3 (STAT3) is downstream of growth factor and cytokine receptors, and regulates key oncogenic pathways in non-small cell lung cancer (NSCLC). Activation of STAT3 by cellular Src (c-Src) promotes tumor progression. We hypothesized that c-Src inhibition could activate STAT3 by inducing a homeostatic feedback loop, contributing to c-Src inhibitor resistance. EXPERIMENTAL DESIGN The effects of c-Src inhibition on total and phosphorylated STAT3 were measured in NSCLC cell lines and in murine xenograft models by Western blotting. c-Src and STAT3 activity as indicated by phosphorylation was determined in 46 human tumors and paired normal lung by reverse phase protein array. Modulation of dasatinib (c-Src inhibitor) cytotoxicity by STAT3 knockdown was measured by MTT, cell cycle, and apoptosis assays. RESULTS Depletion of c-Src by small interfering RNA or sustained inhibition by dasatinib increased pSTAT3, which could be blocked by inhibition of JAK. Similarly, in vivo pSTAT3 levels initially decreased but were strongly induced after sustained dasatinib treatment. In human tumors, phosphorylation of the autoinhibitory site of c-Src (Y527) correlated with STAT3 phosphorylation (r = 0.64; P = 2.5 x 10(-6)). STAT3 knockdown enhanced the cytotoxicity of dasatinib. CONCLUSIONS c-Src inhibition leads to JAK-dependent STAT3 activation in vitro and in vivo. STAT3 knockdown enhances the cytotoxicity of dasatinib, suggesting a compensatory pathway that allows NSCLC survival. Data from human tumors showed a reciprocal regulation of c-Src and STAT3 activation, suggesting that this compensatory pathway functions in human NSCLC. These results provide a rationale for combining c-Src and STAT3 inhibition to improve clinical responses.
Collapse
Affiliation(s)
- Lauren Averett Byers
- Division of Cancer Medicine and Department of Thoracic/Head and Neck Medical Oncology, Unit 432, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cao R, Mi N, Zhang H. 3D-QSAR study of c-Src kinase inhibitors based on docking. J Mol Model 2009; 16:361-75. [PMID: 19609579 DOI: 10.1007/s00894-009-0530-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Accepted: 04/15/2009] [Indexed: 11/26/2022]
Abstract
Cancer is a significant world health problem for which efficient therapies are in urgent demand. c-Src has emerged as an attractive target for drug discovery efforts toward antitumor therapies. Toward this target several series of c-Src inhibitors that showed activity in the assay have been reported. In this article, 3D-QSAR models have been built with 156 anilinoquinazoline and quinolinecarbonitrile derivative inhibitors by using CoMFA and CoMSIA methods. These studies indicated that the QSAR models were statistically significant with high predictabilities (CoMFA model, q(2) = 0.590, r(2) = 0.855; CoMSIA model, q(2) = 0.538, r(2) = 0.748). The details of c-Src kinase/inhibitor binding interactions in the crystal structure of complex provided new information for the design of new inhibitors. As a result, docking simulations were also conducted on the series of potent inhibitors. The flexible docking method, which was performed by the DOCK program, positioned all of the inhibitors into the active site to determine the probable binding conformation. The CoMFA and CoMSIA models based on the flexible docking conformations also yielded statistically significant and highly predictive QSAR models (CoMFA model, q(2) = 0.507, r(2) = 0.695; CoMSIA model, q(2) = 0.463, r(2) = 0.734). Our models would offer help to better comprehend the structure-activity relationships that exist for this class of compounds and also facilitate the design of novel inhibitors with good chemical diversity.
Collapse
Affiliation(s)
- Ran Cao
- Key Laboratory of radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | | | | |
Collapse
|
45
|
Rajeshkumar NV, Tan AC, De Oliveira E, Womack C, Wombwell H, Morgan S, Warren MV, Walker J, Green TP, Jimeno A, Messersmith WA, Hidalgo M. Antitumor effects and biomarkers of activity of AZD0530, a Src inhibitor, in pancreatic cancer. Clin Cancer Res 2009; 15:4138-46. [PMID: 19509160 DOI: 10.1158/1078-0432.ccr-08-3021] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the efficacy of AZD0530, an orally active small molecule Src inhibitor, in human pancreatic cancer xenografts and to seek biomarkers predictive of activity. EXPERIMENTAL DESIGN Sixteen patient-derived pancreatic cancer xenografts from the PancXenoBank collection at Johns Hopkins were treated with AZD0530 (50 mg/kg/day, p.o.) for 28 days. Baseline gene expression profiles of differently expressed genes in 16 tumors by Affymetrix U133 Plus 2.0 gene array were used to predict AZD0530 sensitivity in an independent group of eight tumors using the K-Top Scoring Pairs (K-TSP) method. RESULTS Three patient tumors of 16 were found to be sensitive to AZD0530, defined as tumor growth <50% compared with control tumors (100%). Western blot and/or immunohistochemistry results showed that AZD0530 administration resulted in the down-regulation of Src, FAK, p-FAK, p-paxillin, p-STAT-3, and XIAP in sensitive tumor xenografts compared with control tumors. The K-TSP classifier identified one gene pair (LRRC19 and IGFBP2) from the 16 training cases based on a decision rule. The classifier achieved 100% and 83.3% of sensitivity and specificity in an independent test set that consists of eight xenograft cases. CONCLUSIONS AZD0530 treatment significantly inhibits the tumor growth in a subset of human pancreatic tumor xenografts. One gene pair (LRRC19 and IGFBP2) identified by the K-TSP classifier has high predictive power for AZD0530 sensitivity, suggesting the potential for this gene pair as biomarker for pancreatic tumor sensitivity to AZD0530.
Collapse
Affiliation(s)
- N V Rajeshkumar
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wong CH, Baehner FL, Spassov DS, Ahuja D, Wang D, Hann B, Blair J, Shokat K, Welm AL, Moasser MM. Phosphorylation of the SRC epithelial substrate Trask is tightly regulated in normal epithelia but widespread in many human epithelial cancers. Clin Cancer Res 2009; 15:2311-22. [PMID: 19318475 DOI: 10.1158/1078-0432.ccr-08-2533] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The frequently elevated activities of the c-src and c-yes products in human epithelial tumors suggest that these activated tyrosine kinases have tumorigenic functions analogous to the v-src and v-yes oncogene products. Studies of v-src-transformed fibroblasts have identified many of the effectors of this potent oncogene; however, because c-src and c-yes lack the mutational and promiscuous activities of their retroviral oncogene homologues, their presumptive tumorigenic functions in human epithelial tumors are more subtle, less well-defined, and await identification of possible effectors more directly relevant to epithelial cells. EXPERIMENTAL DESIGN We recently identified a transmembrane glycoprotein named Trask that is expressed in epithelial tissues but not fibroblasts and is phosphorylated by SRC kinases in mitotic epithelial cells. In this study, we have surveyed the expression and phosphorylation of Trask in many human epithelial cancer cell lines and surgical tissues and tumors. RESULTS Trask is widely expressed in human epithelial tissues, but its phosphorylation is tightly regulated and restricted to detached mitotic cells or cells undergoing physiologic shedding. However, abberant Trask phosphorylation is seen in many epithelial tumors from all stages including preinvasive, invasive, and metastatic tumors. Trask phosphorylation requires SRC kinases, and is also aberrantly hyperphosphorylated in the SRC-activated PyMT mouse epithelial tumors and dephosphorylated by the SRC inhibitor treatment of these tumors. CONCLUSIONS The widespread phosphorylation of Trask in many human epithlelial cancers identifies a new potential effector of SRC kinases in human epithelial tumorigenesis.
Collapse
Affiliation(s)
- Ching Hang Wong
- Department of Medicine, University of California, San Francisco, San Francisco, California 94143-0875, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Teutschbein J, Schartl M, Meierjohann S. Interaction of Xiphophorus and murine Fyn with focal adhesion kinase. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:168-74. [PMID: 18930841 DOI: 10.1016/j.cbpc.2008.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 11/17/2022]
Abstract
The Src family kinase/Focal Adhesion Kinase (FAK) complex is a signaling platform playing a crucial role in transformation downstream of oncogenic growth factor receptors. In the case of melanoma in Xiphophorus fish, the oncogenic EGF receptor orthologue Xiphophorus melanoma receptor kinase (Xmrk) effects continuous activation of the Src family kinase Fyn, but not of the other family members Src or Yes. Here, Fyn is strongly involved in promoting many tumorigenic events. Although Fyn is expressed in most mammalian tissues, there are only few reports of its involvement in the development of solid tumors. To find out whether the prominent role of Xiphophorus Fyn is based on an altered binding to its important binding partner FAK when compared to its mammalian Fyn counterparts, we performed yeast-two-hybrid analyses. We compared Xiphophorus and murine Fyn with respect to their binding to full-length and truncated FAK constructs. We found that interaction with FAK occurs similarly for Xiphophorus and mouse Fyn. Both phosphorylated FAK residue Y397 and FAK proline-rich domain are involved in Fyn binding. We also found interaction of FAK and Fyn in human melanoma cell lines. These data suggest a possible, yet unrecognized role of Fyn in the tumorigenesis of human melanoma, too.
Collapse
Affiliation(s)
- Janka Teutschbein
- Physiological Chemistry I, University of Würzburg, Biocenter, Am Hubland, D-97074 Würzburg, Germany
| | | | | |
Collapse
|
48
|
Green TP, Fennell M, Whittaker R, Curwen J, Jacobs V, Allen J, Logie A, Hargreaves J, Hickinson DM, Wilkinson RW, Elvin P, Boyer B, Carragher N, Plé PA, Bermingham A, Holdgate GA, Ward WHJ, Hennequin LF, Davies BR, Costello GF. Preclinical anticancer activity of the potent, oral Src inhibitor AZD0530. Mol Oncol 2009; 3:248-61. [PMID: 19393585 DOI: 10.1016/j.molonc.2009.01.002] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/19/2009] [Accepted: 01/20/2009] [Indexed: 12/21/2022] Open
Abstract
AZD0530, an orally available Src inhibitor, demonstrated potent antimigratory and anti-invasive effects in vitro, and inhibited metastasis in a murine model of bladder cancer. Antiproliferative activity of AZD0530 in vitro varied between cell lines (IC(50) 0.2 ->10μM). AZD0530 inhibited tumor growth in 4/10 xenograft models tested and dynamically inhibited in vivo phosphorylation of Src substrates paxillin and FAK in both growth-inhibition-resistant and -sensitive xenografts. The activity of AZD0530 in NBT-II bladder cancer cells in vitro was consistent with inhibition of cell migration and stabilization of cell-cell adhesion. These data suggest a dominant anti-invasive pharmacology for AZD0530 that may limit tumor progression in a range of cancers. AZD0530 is currently in Phase II clinical trials.
Collapse
Affiliation(s)
- Tim P Green
- Cancer and Infection Research Area, AstraZeneca, Alderley Park, Macclesfield Cheshire, SK10 4TG, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Src is a tyrosine kinase involved in the regulation of a range of cellular processes including proliferation, adhesion, motility and survival. In addition, it is a key regulator of bone metabolism. Src has been implicated in the pathogenesis of a number of cancers, and has been found to be overexpressed in breast, prostate, colorectal, pancreatic and nonsmall-cell lung tumors. There is also evidence that aberrant Src signaling may contribute to the increased osteoclastic activity associated with bone metastases. Bone metastases frequently occur in cancer patients with advanced disease. The metastasized cells disrupt normal bone remodeling pathways resulting in the release of growth factors that further promote tumor growth. Thus, a cycle of metastatic bone destruction is initiated, leading to compromised skeletal integrity and substantially reduced quality of life. Because of the role of Src in both cancer development and in bone metabolism, it may provide a therapeutic target for patients with bone metastases.
Collapse
Affiliation(s)
- John Araujo
- MD Anderson Cancer Center, Houston, TX 77030-3721, USA.
| | | |
Collapse
|
50
|
Ammer AG, Kelley LC, Hayes KE, Evans JV, Lopez-Skinner LA, Martin KH, Frederick B, Rothschild BL, Raben D, Elvin P, Green TP, Weed SA. Saracatinib Impairs Head and Neck Squamous Cell Carcinoma Invasion by Disrupting Invadopodia Function. ACTA ACUST UNITED AC 2009; 1:52-61. [PMID: 20505783 DOI: 10.4172/1948-5956.1000009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Elevated Src kinase activity is linked to the progression of solid tumors, including head and neck squamous cell carcinoma (HNSCC). Src regulates HNSCC proliferation and tumor invasion, with the Src-targeted small molecule inhibitor saracatinib displaying potent anti-invasive effects in preclinical studies. However, the pro-invasive cellular mechanism(s) perturbed by saracatinib are unclear. The anti-proliferative and anti-invasive effects of saracatinib on HNSCC cell lines were therefore investigated in pre-clinical cell and mouse model systems. Saracatinib treatment inhibited growth, cell cycle progression and transwell Matrigel invasion in HNSCC cell lines. Dose-dependent decreases in Src activation and phosphorylation of the invasion-associated substrates focal adhesion kinase, p130 CAS and cortactin were also observed. While saracatinib did not significantly impact HNSCC tumor growth in a mouse orthotopic model of tongue squamous cell carcinoma, impaired perineural invasion and cervical lymph node metastasis was observed. Accordingly, saracatinib treatment displayed a dose-dependent inhibitory effect on invadopodia formation, extracellular matrix degradation and matrix metalloprotease 9 activation. These results suggest that inhibition of Src kinase by saracatinib impairs the pro-invasive activity of HNSCC by inhibiting Src substrate phosphorylation important for invadopodia formation and associated matrix metalloprotease activity.
Collapse
Affiliation(s)
- Amanda Gatesman Ammer
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, 26506-9300
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|