1
|
Dong X, Zhang Q, Hao J, Xie Q, Xu B, Zhang P, Lu H, Huang Q, Yang T, Wei GH, Na R, Gao P. Large Multicohort Study Reveals a Prostate Cancer Susceptibility Allele at 5p15 Regulating TERT via Androgen Signaling-Orchestrated Chromatin Binding of E2F1 and MYC. Front Oncol 2021; 11:754206. [PMID: 34858826 PMCID: PMC8631195 DOI: 10.3389/fonc.2021.754206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022] Open
Abstract
Aberrant telomerase reverse transcriptase (TERT) expression is crucial for tumor survival and cancer cells escaping apoptosis. Multiple TERT-locus variants at 5p15 have been discovered in association with cancer risk, yet the underlying mechanisms and clinical impacts remain unclear. Here, our association studies showed that the TERT promoter variant rs2853669 confers a risk of prostate cancer (PCa) in different ethnic groups. Further functional investigation revealed that the allele-specific binding of MYC and E2F1 at TERT promoter variant rs2853669 associates with elevated level of TERT in PCa. Mechanistically, androgen stimulations promoted the binding of MYC to allele T of rs2853669, thereby activating TERT, whereas hormone deprivations enhanced E2F1 binding at allele C of rs2853669, thus upregulating TERT expression. Notably, E2F1 could cooperate with AR signaling to regulate MYC expression. Clinical data demonstrated synergistic effects of MYC/E2F1/TERT expression or with the TT and CC genotype of rs2853669 on PCa prognosis and severity. Strikingly, single-nucleotide editing assays showed that the CC genotype of rs2853669 obviously promotes epithelial-mesenchymal transition (EMT) and the development of castration-resistant PCa (CRPC), confirmed by unbiased global transcriptome profiling. Our findings thus provided compelling evidence for understanding the roles of noncoding variations coordinated with androgen signaling and oncogenic transcription factors in mis-regulating TERT expression and driving PCa.
Collapse
Affiliation(s)
- Xiaoming Dong
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qin Zhang
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jinglan Hao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qianwen Xie
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Binbing Xu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Peng Zhang
- Fudan University Shanghai Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Haicheng Lu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qilai Huang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, Department of Animal Science, School of Life Sciences, Shandong University, Qingdao, China
| | - Tielin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Gong-Hong Wei
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Fudan University Shanghai Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Rong Na
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Gao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
2
|
Chen H, Chen J, Zhao L, Song W, Xuan Z, Chen J, Li Z, Song G, Hong L, Song P, Zheng S. CDCA5, Transcribed by E2F1, Promotes Oncogenesis by Enhancing Cell Proliferation and Inhibiting Apoptosis via the AKT Pathway in Hepatocellular Carcinoma. J Cancer 2019; 10:1846-1854. [PMID: 31205541 PMCID: PMC6547986 DOI: 10.7150/jca.28809] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/28/2019] [Indexed: 01/03/2023] Open
Abstract
Cell division cycle associated 5 (CDCA5) is an important element for the interaction between cohesin and chromatin in interphase. It is abnormally expressed in many types of cancer and works as an indicator of poor prognosis, but little is known about its activity in hepatocellular carcinoma (HCC). In the present study, we found that the expression of CDCA5 was upregulated in HCC tissues compared to paracancerous tissues and had a negative correlation with patient survival. Cell proliferation and tumorigenesis were inhibited and cell apoptosis was induced with the knockdown of CDCA5, suggesting an oncogenic role of CDCA5 in liver cancer. Luciferase reporter assay and chromatin immunoprecipitation showed that CDCA5 was transcribed by E2F1. Furthermore, we confirmed that CDCA5 interrupted cell behavior via the AKT pathway. These findings demonstrated that CDCA5 plays an important role in HCC progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University; NHCPRC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China; Collaborative innovation center for Diagnosis treatment of infectious diseases
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University; NHCPRC Key Laboratory of Combined Multi-organ Transplantation; Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China; Collaborative innovation center for Diagnosis treatment of infectious diseases
| |
Collapse
|
3
|
c-MYC-Making Liver Sick: Role of c-MYC in Hepatic Cell Function, Homeostasis and Disease. Genes (Basel) 2017; 8:genes8040123. [PMID: 28422055 PMCID: PMC5406870 DOI: 10.3390/genes8040123] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/30/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Over 35 years ago, c-MYC, a highly pleiotropic transcription factor that regulates hepatic cell function, was identified. In recent years, a considerable increment in the number of publications has significantly shifted the way that the c-MYC function is perceived. Overexpression of c-MYC alters a wide range of roles including cell proliferation, growth, metabolism, DNA replication, cell cycle progression, cell adhesion and differentiation. The purpose of this review is to broaden the understanding of the general functions of c-MYC, to focus on c-MYC-driven pathogenesis in the liver, explain its mode of action under basal conditions and during disease, and discuss efforts to target c-MYC as a plausible therapy for liver disease.
Collapse
|
4
|
Trougakos IP, Chondrogianni N, Amarantos I, Blake J, Schwager C, Wirkner U, Ansorge W, Gonos ES. Genome-wide transcriptome profile of the human osteosarcoma Sa OS and U-2 OS cell lines. ACTA ACUST UNITED AC 2010; 196:109-18. [PMID: 20082845 DOI: 10.1016/j.cancergencyto.2009.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/09/2009] [Accepted: 09/20/2009] [Indexed: 12/27/2022]
Abstract
With the use of genome-wide cDNA microarrays, we investigated the transcriptome profile of the human osteosarcoma Sa OS and U-2 OS cell lines. In all, 1,098 chip entries were differentially regulated in the two cell lines; of these, 796 entries corresponded to characterized mRNAs. The identified genes are mostly expressed in epithelial tissues and localize on chromosomes 1, 10, and 20. Furthermore, signaling cascades for cell cycle, glycolysis, and gluconeogenesis, the p53 pathway, cell communication, and focal adhesion were found to be differently regulated in the two cell lines. The transcriptome profiles reported here provide novel information about the considerable molecular differences between these two widely used human osteosarcoma cell lines.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Department of Cell Biology & Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis Zografou, Athens 15784, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Spender LC, Inman GJ. TGF-beta induces growth arrest in Burkitt lymphoma cells via transcriptional repression of E2F-1. J Biol Chem 2008; 284:1435-42. [PMID: 19022773 DOI: 10.1074/jbc.m808080200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) is a potent regulator of tissue homeostasis and can act as both a tumor suppressor and a tumor promoter. The ability to induce cell cycle arrest is a major component of the tumor suppressor function of TGF-beta. Lung, mammary, and skin epithelial cells exhibit a common minimal cytostatic program in response to TGF-beta signaling involving the repression of the growth-promoting factors c-MYC, Id1, Id2, and Id3. Loss of c-MYC expression is a pivotal event in this process, resulting in derepression of the cyclin-dependent kinase inhibitors CDKN1A (p21) and CDKN2B (p15) and ultimately leading to growth arrest. It is not clear, however, which responses are necessary for TGF-beta-mediated growth arrest in other cell types. Here, in human Burkitt lymphoma cells transformed by deregulated c-MYC expression, we demonstrate that efficient TGF-beta-induced cytostasis can occur despite both maintenance of c-MYC levels and a lack of p21 and p15 induction. TGF-beta treatment also results in induction, rather than repression, of Id1 and Id2 expression. In this context, growth arrest correlates with transcriptional repression of E2F-1, and overexpression of E2F-1 in Burkitt lymphoma cells largely overcomes the TGF-beta-mediated G(1) arrest phenotype. These data indicate that deregulation of c-MYC in lymphoma cells does not overcome the tumor suppressor function of TGF-beta and that repression of E2F-1 transcription is sufficient for the efficient induction of cytostasis.
Collapse
Affiliation(s)
- Lindsay C Spender
- Growth Factor Signalling Laboratory, The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, United Kingdom
| | | |
Collapse
|
6
|
Ladu S, Calvisi DF, Conner EA, Farina M, Factor VM, Thorgeirsson SS. E2F1 inhibits c-Myc-driven apoptosis via PIK3CA/Akt/mTOR and COX-2 in a mouse model of human liver cancer. Gastroenterology 2008; 135:1322-32. [PMID: 18722373 PMCID: PMC2614075 DOI: 10.1053/j.gastro.2008.07.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 06/09/2008] [Accepted: 07/10/2008] [Indexed: 01/23/2023]
Abstract
BACKGROUND & AIMS Resistance to apoptosis is essential for cancer growth. We previously reported that hepatic coexpression of c-Myc and E2F1, 2 key regulators of proliferation and apoptosis, enhanced hepatocellular carcinoma (HCC) development in transgenic mice. Here, we investigated the molecular mechanisms underlying oncogenic cooperation between c-Myc and E2F1 in relationship to human liver cancer. METHODS Activation of pro- and antiapoptotic cascades was assessed by immunoblotting in experimental HCC models and in human HCC. Effect of antisense oligodeoxy nucleotides against c-Myc and E2F1 was studied in human HCC cell lines. Suppression of catalytic subunit p110alpha of phosphatidylinositol 3-kinase (PIK3CA)/Akt, mammalian target of rapamycin (mTOR), and cyclooxygenase (COX)-2 pathways was achieved by pharmacologic inhibitors and small interfering RNA in human and mouse HCC cell lines. RESULTS Coexpression with E2F1 did not increase proliferation triggered by c-Myc overexpression but conferred a strong resistance to c-Myc-initiated apoptosis via concomitant induction of PIK3CA/Akt/mTOR and c-Myb/COX-2 survival pathways. COX-2 was not induced in c-Myc and rarely in E2F1 tumors. In human HCC, PIK3CA/Akt/mTOR and c-Myb/COX-2 pathways were similarly activated, with levels of PIK3CA/Akt, mTOR, and c-Myb being inversely associated with patients' survival length. Silencing c-Myc and E2F1 reduced PIK3CA/Akt and mTOR and completely abolished c-Myb and COX-2 expression in human HCC cell lines. Finally, simultaneous inhibition of PIK3CA/Akt/mTOR and COX-2 activity in in vitro models caused massive apoptosis of neoplastic hepatocytes. CONCLUSIONS E2F1 may function as a critical antiapoptotic factor both in human and in rodent liver cancer through its ability to counteract c-Myc-driven apoptosis via activation of PIK3CA/Akt/mTOR and c-Myb/COX-2 pathways.
Collapse
Affiliation(s)
- Sara Ladu
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4262, USA
| | - Diego F. Calvisi
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4262, USA,Department of Biomedical Sciences, Experimental Pathology and Oncology Section, University of Sassari, 07100 Sassari, Italy
| | - Elizabeth A. Conner
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4262, USA
| | - Miriam Farina
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4262, USA
| | - Valentina M. Factor
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4262, USA
| | - Snorri S. Thorgeirsson
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4262, USA,Correspondence, proofs and reprint requests to: Dr. Snorri S. Thorgeirsson, National Cancer Institute, Building 37, Room 4146A, 37 Convent Drive, Bethesda, MD 20892-4262; Telephone: (301) 496-1935; Fax: (301) 496-0734; e-mail:
| |
Collapse
|
7
|
Liontos M, Koutsami M, Sideridou M, Evangelou K, Kletsas D, Levy B, Kotsinas A, Nahum O, Zoumpourlis V, Kouloukoussa M, Lygerou Z, Taraviras S, Kittas C, Bartkova J, Papavassiliou AG, Bartek J, Halazonetis TD, Gorgoulis VG. Deregulated overexpression of hCdt1 and hCdc6 promotes malignant behavior. Cancer Res 2007; 67:10899-909. [PMID: 18006835 DOI: 10.1158/0008-5472.can-07-2837] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The accurate execution of DNA replication requires a strict control of the replication licensing factors hCdt1 and hCdc6. The role of these key replication molecules in carcinogenesis has not been clarified. To examine how early during cancer development deregulation of these factors occurs, we investigated their status in epithelial lesions covering progressive stages of hyperplasia, dysplasia, and full malignancy, mostly from the same patients. Abnormal accumulation of both proteins occurred early from the stage of dysplasia. A frequent cause of unregulated hCdc6 and hCdt1 expression was gene amplification, suggesting that these components can play a role per se in cancer development. Overexpression of hCdt1 and hCdc6 promoted rereplication and generated a DNA damage response, which activated the antitumor barriers of senescence and apoptosis. Generating an inducible hCdt1 cellular system, we observed that continuous stimulus by deregulated hCdt1 led to abrogation of the antitumor barriers and resulted in the selection of clones with more aggressive properties. In addition, stable expression of hCdc6 and hCdt1 in premalignant papilloma cells led to transformation of the cells that produced tumors upon injection into nude mice depicting the oncogenic potential of their deregulation.
Collapse
Affiliation(s)
- Michalis Liontos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Xie XK, Yang DS, Ye ZM, Tao HM. Recombinant antisense C-myc adenovirus increase in vitro sensitivity of osteosarcoma MG-63 cells to cisplatin. Cancer Invest 2006; 24:1-8. [PMID: 16466985 DOI: 10.1080/07357900500449520] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
C-myc is an oncogene with the important role of cell proliferation controller. It has been found to be amplified and overexpressed in osteosarcoma. Moreover, it can promote cell transformation and induce metastatic features. Some studies showed that overexpression of c-myc could induce resistance in response to antineoplastic agents. Currently, we constructed the recombinant adenovirus (Ad-Asc-myc) encoding antisense c-myc fragment and investigated its effect on the in vitro sensitivity of osteosarcoma MG-63 cells to cisplatin(CDDP). The osteosarcoma MG-63 cells were transfected by the Ad-Asc-myc in vitro, and Western Blot, MTT assay, RT-PCR, flow cytometry (FCM), and transmission electron microscopy (TEM) were used to study expression of c-myc and caspase-3 protein, tumor cell proliferation in vitro, cell apoptotic morphology and cell cycle change. Ad-Asc-myc encoding antisense c-myc fragment was obtained with the titer of 2.0 x 10(9) pfu/ml. Ad-Asc-myc downregulated the expression of c-myc protein after transfected MG-63 cells for 48 hours, combined with the treatment of 2.0, 5.0 microg/ml cisplatin for 2 hours can inhibited tumor cells proliferation in vitro by 33.4 and 54.2 percent, respectively, which had significant difference compared with control recombinant adenovirus (Ad-LacZ) groups (P < 0.05). RT-PCR revealed that Ad-Asc-myc downregulated expression of bcl-2 and upregulated expression of Bax, and no appreciable changes were observed in the expression of E2F-1. Detection of caspase-3 protein TEM, and FCM analysis showed that Ad-Asc-myc could induce apoptosis of transfected cells, which was enhanced by the treatment of cisplatin. Cell cycle analysis showed that obvious G(2)/M phase arrested in transfected cells. In conclusion, Ad-Asc-myc increased the in vitro sensitivity of osteosarcoma MG-63 cells to cisplatin as well as induced apoptosis.
Collapse
Affiliation(s)
- Xian-Kuan Xie
- Department of Orthopaedics, The Second Hospital Affiliated Zhejiang University, College of Medicine, Hangzhou, People's Republic of China.
| | | | | | | |
Collapse
|
9
|
Goto Y, Hayashi R, Muramatsu T, Ogawa H, Eguchi I, Oshida Y, Ohtani K, Yoshida K. JPO1/CDCA7, a novel transcription factor E2F1-induced protein, possesses intrinsic transcriptional regulator activity. ACTA ACUST UNITED AC 2006; 1759:60-8. [PMID: 16580749 DOI: 10.1016/j.bbaexp.2006.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 02/21/2006] [Accepted: 02/28/2006] [Indexed: 01/13/2023]
Abstract
JPO1/CDCA7 was originally identified as a c-Myc-responsive gene that participates in neoplastic transformation. Here, we report the identification of JPO1/CDCA7 as a direct transcriptional target of transcription factor E2F1. We demonstrated that overexpression of E2F1 by adenoviral-mediated gene transfer upregulated JPO1/CDCA7 mRNA expression in human cells. Analysis of human and mouse JPO1/CDCA7 promoter constructs showed that an E2F-responsive sequence was necessary for E2F1-induced activation of the JPO1/CDCA7 gene transcription. Among the members of the E2F family, E2F1 to E2F4, but not E2F5 or E2F6, activated the JPO1/CDCA7 reporter construct. Chromatin immunoprecipitation analysis demonstrated that E2F1, E2F2, and E2F4 specifically bound to an E2F-responsive sequence of the human JPO1/CDCA7 gene. Like JPO2/R1, which has a homologous transcriptional regulator domain, the C-terminal cysteine-rich region of JPO1/CDCA7 protein induced transcriptional activity in a mammalian one-hybrid assay. Taken together, our results suggest that JPO1/CDCA7 is a unique transcription regulator whose expression is activated by E2F1 as well as c-Myc.
Collapse
Affiliation(s)
- Yuya Goto
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang Z, Li M, Rayburn ER, Hill DL, Zhang R, Wang H. Oncogenes as novel targets for cancer therapy (part III): transcription factors. ACTA ACUST UNITED AC 2005; 5:327-38. [PMID: 16196502 DOI: 10.2165/00129785-200505050-00005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This is the third paper in a four-part serial review on potential therapeutic targeting of oncogenes. The previous parts described the involvement of oncogenes in different aspects of cancer growth and development, and considered the new technologies responsible for the advancement of oncogene identification, target validation, and drug design. Because of such advances, new specific and more efficient therapeutic agents can be developed for cancer. This part of the review continues the exploration of various oncogenes that we have grouped within seven categories: growth factors, tyrosine kinases, intermediate signaling molecules, transcription factors, cell cycle regulators, DNA damage repair genes, and genes involved in apoptosis. Part one discussed growth factors and tyrosine kinases and part two discussed intermediate signaling molecules. This portion of the review covers transcription factors and the various strategies being used to inhibit their expression or decrease their activities.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Pharmacology and Toxicology and Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
11
|
Talos F, Mena P, Fingerle-Rowson G, Moll U, Petrenko O. MIF loss impairs Myc-induced lymphomagenesis. Cell Death Differ 2005; 12:1319-28. [PMID: 15947793 DOI: 10.1038/sj.cdd.4401653] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a potent regulator of inflammation and cell growth. Using the Emu-Myc lymphoma mouse model, we demonstrate that loss of MIF markedly delays the onset of B-cell lymphoma development in vivo. The molecular basis for this MIF-loss-induced phenotype is the perturbed DNA-binding activity of E2F factors and the concomitantly enhanced tumor suppressor activity of the p53 pathway. Accordingly, premalignant MIF-null Emu-Myc B-cells are predisposed to delayed S-phase progression and increased apoptosis. MIF-deficient lymphomas that do arise under these conditions contain frequent ARF deletions and p53 inactivating mutations. Conversely, MIF expression is retained in tumors developed by wild-type Emu-Myc animals, and the presence of one or both MIF alleles is sufficient to accelerate the development of Myc-induced lymphomas. Collectively, these results indicate that MIF promotes Myc-mediated tumorigenesis, at least in the B-lymphoid compartment, and implicate MIF as a mediator of malignant cell growth in vivo.
Collapse
Affiliation(s)
- F Talos
- Department of Pathology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | |
Collapse
|
12
|
Calvisi DF, Conner EA, Ladu S, Lemmer ER, Factor VM, Thorgeirsson SS. Activation of the canonical Wnt/beta-catenin pathway confers growth advantages in c-Myc/E2F1 transgenic mouse model of liver cancer. J Hepatol 2005; 42:842-9. [PMID: 15885355 DOI: 10.1016/j.jhep.2005.01.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 01/05/2005] [Accepted: 01/21/2005] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Previously, we showed that activation of the beta-catenin/Wnt pathway is a dominant event during c-Myc/E2F1 hepatocarcinogenesis. Majority of c-Myc/E2F1 HCCs displayed nuclear accumulation of beta-catenin in the absence of beta-catenin mutations, suggesting that alterations in other members of the Wnt pathway might be responsible for nuclear localization of beta-catenin. Here, we investigated the mechanisms responsible for nuclear translocation of wild-type beta-catenin and addressed the potential contribution of the Wnt pathway in c-Myc/E2F1 hepatocarcinogenesis. METHODS Status of the members of the Wnt pathway was determined through microsatellite and Western blot analysis. RESULTS Majority of c-Myc/E2F1 HCCs exhibited multiple abnormalities in the Wnt pathway regardless of the presence of beta-catenin mutations. The observed abnormalities included overexpression of Wnt-1, Frizzled 1 and 2 receptors, Dishevelled-1, downregulation of Secreted frizzled-related protein-1, GSK-3beta inactivation, microsatellite instability at the Axin locus as well as induction of beta-catenin target genes, such as glutamine synthetase, glutamate transporter-1, and Wisp-1. HCCs with beta-catenin activation displayed significantly higher proliferation rate and larger tumor size when compared with beta-catenin negative tumors. CONCLUSIONS The data demonstrate that multiple abnormalities in the members of the Wnt pathway lead to nuclear accumulation of beta-catenin and suggest that activation of Wnt pathway provides proliferative advantages in c-Myc/E2F1-driven hepatocarcinogenesis.
Collapse
Affiliation(s)
- Diego F Calvisi
- Laboratory of Experimental Carcinogenesis, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Building 37, Room 4146A, 37 Convent Drive MSC 4262, Bethesda, MD 20892-4262, USA
| | | | | | | | | | | |
Collapse
|
13
|
Liu K, Lei XZ, Zhao LS, Tang H, Liu L, Feng P, Lei BJ. Tissue microarray for high-throughput analysis of gene expression profiles in hepatocellular carcinoma. World J Gastroenterol 2005; 11:1369-72. [PMID: 15761978 PMCID: PMC4250687 DOI: 10.3748/wjg.v11.i9.1369] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the expression profiles of HBsAg, HBcAg, p21WAF1/CIP1 (p21), Rb genes in hepatocellular carcinoma (HCC) and to investigate their roles in the hepatocar-cinogenesis.
METHODS: HCC tissue microarray containing 120-min tissues of 40 HCC cases was constructed. HBsAg, HBcAg, p21 and Rb proteins were immunohistochemically stained by streptavidin-peroxidase conjugated method (S-P). The expression loss of these genes in cancerous, para-cancerous tissues and adjacent normal liver tissues of 40 HCCs were comparatively examined.
RESULTS: The positive rate of HBsAg expression in cancerous tissues of 40 HCCs was 7.5%, which was lower than that in para-cancerous and adjacent normal liver tissues (χ2 =12.774, P<0.01; χ2 = 18.442, P<0.01). The positive rate of HBcAg expression in cancerous tissues of 40 HCCs was 20.0%, which was also lower than that in para-cancerous and adjacent normal liver tissues (χ2 = 9.482, P<0.01; χ2 = 14.645, P<0.01). p21 protein deletion rate in cancerous tissues of 40 HCCs was 27.5%, which was higher than that in para-cancerous and adjacent normal liver tissues (χ2 = 7.439, P<0.01; χ2 = 11.174, P<0.01). p21 protein deletion correlated remarkably with the pathological grade of HCC (χ2 = 0.072, P<0.05). Rb protein deletion rate in cancerous tissues of 40 HCCs was 42.5%, which was also higher than that in para-cancerous and adjacent normal liver tissues (χ2 = 10.551, P<0.01; χ2 = 18.353, P<0.01). Rb protein deletion rate did not correlate remarkably with tumor size or pathological grade of HCC (χ2 = 0.014, P>0.05; χ2 = 0.017, P>0.05).
CONCLUSION: Expression deletion of HBsAg, HBcAg, p21 and Rb proteins in HCCs may play important roles in the carcinogenesis of HCC. Tissue microarray is an effective high-throughput technique platform for cancer research.
Collapse
Affiliation(s)
- Kai Liu
- Division of Molecular Biology of Infectious Diseases, Key Laboratory of Biotherapy of Human Disease, Ministry of Education, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Elkon R, Zeller KI, Linhart C, Dang CV, Shamir R, Shiloh Y. In silico identification of transcriptional regulators associated with c-Myc. Nucleic Acids Res 2004; 32:4955-61. [PMID: 15388797 PMCID: PMC521640 DOI: 10.1093/nar/gkh816] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of powerful experimental strategies for functional genomics and accompanying computational tools has brought major advances in the delineation of transcriptional networks in organisms ranging from yeast to human. Regulation of transcription of eukaryotic genes is to a large extent combinatorial. Here, we used an in silico approach to identify transcription factors (TFs) that form recurring regulatory modules with c-Myc, a protein encoded by an oncogene that is frequently disregulated in human malignancies. A recent study identified, on a genomic scale, human genes whose promoters are bound by c-Myc and its heterodimer partner Max in Burkitt's lymphoma cells. Using computational methods, we identified nine TFs whose binding-site signatures are highly overrepresented in this promoter set of c-Myc targets, pointing to possible functional links between these TFs and c-Myc. Binding sites of most of these TFs are also enriched on the set of mouse homolog promoters, suggesting functional conservation. Among the enriched TFs, there are several regulators known to control cell cycle progression. Another TF in this set, EGR-1, is rapidly activated by numerous stress challenges and plays a central role in angiogenesis. Experimental investigation confirmed that c-Myc and EGR-1 bind together on several target promoters. The approach applied here is general and demonstrates how computational analysis of functional genomics experiments can identify novel modules in complex networks of transcriptional regulation.
Collapse
Affiliation(s)
- Ran Elkon
- The David and Inez Myers Laboratory for Genetic Research, Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | |
Collapse
|
15
|
Montigiani S, Müller R, Kontermann RE. Inhibition of cell proliferation and induction of apoptosis by novel tetravalent peptides inhibiting DNA binding of E2F. Oncogene 2003; 22:4943-52. [PMID: 12902977 DOI: 10.1038/sj.onc.1206495] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have isolated several peptides from random peptide phage display libraries that specifically recognize the cell cycle regulatory transcription factor E2F and inhibit DNA binding of E2F/DP heterodimers (E2F-1, E2F-2, E2F-3, E2F-4 or E2F-5, and DP-1). The inhibitory efficiency could be strongly enhanced by generating branched tetravalent molecules. To analyse the biological consequences of peptide-mediated E2F inhibition, we fused two of these branched molecules to a cell-penetrating peptide derived from the HTV-Tat protein. Incubation of human tumor cells with these branched Tat-containing peptides led to an inhibition of cell proliferation and induction of apoptosis. These results provide new insights into the function of E2F and further validate E2F as a potential therapeutic target in proliferative diseases.
Collapse
Affiliation(s)
- Silvia Montigiani
- Institute of Molecular Biology and Tumor Research (IMT), Philipps-University, Emil-Mannkopff-Strasse 2, D-35033 Marburg, Germany
| | | | | |
Collapse
|
16
|
Abstract
Apoptosis and senescence are cellular failsafe programmes that counteract excessive mitogenic signalling from activated oncogenes. Cancellation of apoptosis or senescence is therefore a prerequisite for tumour formation, and the ability of the cancer cell to disrupt these processes can be considered its 'lifeline'. Ironically, the efficacy of anticancer agents also depends on the activation of apoptosis or an acutely inducible form of cellular senescence. Understanding how the 'lifelines' of the cancer cell interfere with treatment sensitivity is of crucial importance for developing safer and more effective treatment strategies.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Max-Delbrück-Center for Molecular Medicine and Charité/Campus Virchow-Hospital, Department of Hematology/Oncology, Humboldt University, 13353 Berlin, Germany.
| |
Collapse
|