1
|
Kim K, Kim JH, Kim I, Seong S, Kook H, Koh JT, Kim N. Tripartite motif-containing 27 negatively regulates NF-κB activation in bone remodeling. Mol Med 2025; 31:141. [PMID: 40251491 PMCID: PMC12008848 DOI: 10.1186/s10020-025-01204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/09/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Tripartite motif-containing 27 (TRIM27) is highly expressed in the mouse thymus, spleen, and hematopoietic compartment cells and regulates cell proliferation, apoptosis, and innate immune responses. However, the role of TRIM27 in bone remodeling remains unknown. This study aimed to investigate the role of TRIM27 in the differentiation of osteoclasts and osteoblasts. METHODS We measured the effects of overexpression or knockdown of TRIM27 in osteoclasts and osteoblasts using real-time PCR and Western blot analysis to quantify the mRNA and protein levels of marker genes. Additionally, we performed an in vivo analysis of TRIM27 knockout mice through bone mineral density analysis and histological analysis. RESULTS TRIM27 deficiency decreased bone mineral density by enhancing osteoclast differentiation and inhibiting osteoblast differentiation. Overexpression of TRIM27 in osteoclast precursors suppressed osteoclast formation and resorption activity, and ectopic expression of TRIM27 in osteoblast precursors induced osteoblast differentiation and mineralization. Additionally, we found that TRIM27 attenuated NF-κB activation in both osteoclasts and osteoblasts by interacting with TAB2 and promoting TAB2 degradation through lysosomal-dependent pathways, thereby inhibiting NF-κB signaling. CONCLUSIONS Our results identify TRIM27 as a novel negative regulator of NF-κB in bone remodeling, suggesting that regulating TRIM27 may be useful in developing treatments for musculoskeletal diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
2
|
Zhao F, Su Y, Liu H, Zhao Y, Zhang L, Zhuge N, Zhao P, Ning Z, Kang Q, Liu D. Facile Nanocomposite Hydrogel Scaffold with Sustained Drug Release and Osteo-Immunomodulatory Effects to Enhance Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19286-19303. [PMID: 40116446 DOI: 10.1021/acsami.4c20390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
High-quality repair of critical bone defects without exogenous cells remains a major clinical challenge worldwide. Herein, we fabricated a nanocomposite hydrogel scaffold (ASA/MSNs/CSH) by incorporating aspirin (ASA)-loaded mesoporous silica nanoparticles (MSNs) into genipin-cross-linked chitosan hydrochloride (CSH). The resulting scaffold was designed to provide immunomodulatory support during the process of bone regeneration. ASA-loaded MSNs were encapsulated in CSH, forming a composite hydrogel capable of sustained drug release for over 35 days. This composite hydrogel was able to meet key criteria for physicochemical properties, mechanical strength, biocompatibility, and cell affinity. The study showed that the scaffolds could create a beneficial immune microenvironment through reducing inflammation and inducing macrophages toward M2-polarized phenotype in vitro. The scaffold also enhanced the osteogenesis of bone marrow mesenchymal stromal cells, as demonstrated by enhancing the alkaline phosphatase activity and the formation of calcium nodules. Meanwhile, the TGF-β/Smad pathway was identified as an important regulatory mechanism via Western blot analysis. Moreover, the critical size defect models were established in rat skulls, and the results demonstrated that the ASA/MSNs/CSH nanocomposite scaffolds exhibited adequate biocompatibility, superior anti-inflammatory effect, and an admirable capacity for bone regeneration in vivo.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Disease, Ji'nan 250012, P. R. China
- Department of Orthodontics, Tai'an Stomatological Hospital, Tai' an 271000, P. R. China
| | - Yuxuan Su
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Disease, Ji'nan 250012, P. R. China
| | - Hong Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Disease, Ji'nan 250012, P. R. China
| | - Yong Zhao
- Department of Orthodontics, Tai'an Stomatological Hospital, Tai' an 271000, P. R. China
| | - Liao Zhang
- Department of Orthodontics, Tai'an Stomatological Hospital, Tai' an 271000, P. R. China
| | - Nanshan Zhuge
- Department of Orthodontics, Tai'an Stomatological Hospital, Tai' an 271000, P. R. China
| | - Peng Zhao
- Department of Orthodontics, Tai'an Stomatological Hospital, Tai' an 271000, P. R. China
| | - Zhaoliang Ning
- Department of Orthodontics, Tai'an Stomatological Hospital, Tai' an 271000, P. R. China
| | - Qi Kang
- Department of Radiology, the Affiliated Tai'an City Central Hospital of Qingdao University, Tai'an 271000, P. R. China
| | - Dongxu Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Disease, Ji'nan 250012, P. R. China
| |
Collapse
|
3
|
Jaiswal AK, Raj A, Kushawaha AK, Maji B, Bhatt H, Verma S, Katiyar S, Ansari A, Bisen AC, Tripathi A, Siddiqi MI, Bhatta RS, Trivedi R, Sashidhara KV. Design, synthesis and biological evaluation of new class of pyrazoles-dihydropyrimidinone derivatives as bone anabolic agents. Bioorg Chem 2025; 157:108216. [PMID: 39952063 DOI: 10.1016/j.bioorg.2025.108216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/17/2025]
Abstract
This study explores a series of twenty-four newly synthesized pyrzole-dihydropyrimidinone hybrids as potential bone anabolic agents. Initially, an alkaline phosphatase assay, a common marker of bone formation, was used to screen all compounds for their ability to stimulate osteogenic potential. Initial screening identified three promising candidates (5f, 5u and 5w) that were subsequently confirmed to be non-toxic to osteoblasts. Further investigation revealed that compound 5w displayed the most potent osteoanabolic effect, promoting osteoblast differentiation and upregulating mRNAs expression of osteogenic gene. Based on the promising in vitro and in vivo activity, structure-activity relationship (SAR) analysis revealed a furan ring on the dihydropyrimidinone unit and electron-donating groups on the N-phenyl ring of the pyrazole moiety to be crucial for osteogenic activity. Additionally, molecular docking, favorable pharmacokinetic properties and In silico ADME predictions suggest potential oral bioavailability. These findings establish the pyrazole-dihydropyrimidinone scaffold as a promising hit for developing a new class of orally active bone anabolic agents.
Collapse
Affiliation(s)
- Arvind Kumar Jaiswal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Anuj Raj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India; Division of Endocrinology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Ajay Kishor Kushawaha
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Bhaskar Maji
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India; Division of Endocrinology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Hemlata Bhatt
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Shikha Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India; Division of Endocrinology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sarita Katiyar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Alisha Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Amol Chhatrapati Bisen
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India; Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Arsh Tripathi
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mohammad Imran Siddiqi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India; Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Rabi Sankar Bhatta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India; Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ritu Trivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India; Division of Endocrinology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India.
| |
Collapse
|
4
|
Wilson ET, Graham P, Eidelman DH, Baglole CJ. Transcriptomic changes in oxidative stress, immunity, and cancer pathways caused by cannabis vapor on alveolar epithelial cells. Cell Biol Toxicol 2025; 41:57. [PMID: 40056285 DOI: 10.1007/s10565-025-09997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/11/2025] [Indexed: 03/10/2025]
Abstract
As legalization of cannabis increases worldwide, vaping cannabis is gaining popularity due to the belief that it is less harmful than smoking cannabis. However, the safety of cannabis vaping remains untested. To address this, we developed a physiologically relevant method for in vitro assessment of cannabis vapor on alveolar epithelial cell cultures. We compared the transcriptional response in three in vitro models of cannabis vapor exposure using A549 epithelial cells in submerged culture, pseudo-air liquid interface (ALI) culture, and ALI culture coupled with the expoCube™ advanced exposure system. Baseline gene expression in ALI-maintained A549 cells showed higher expression of type 2 alveolar epithelial (AEC2) genes related to surfactant production, ion movement, and barrier integrity. Acute exposure to cannabis vapor significantly affected gene expression in AEC2 cells belonging to pathways related to cancer, oxidative stress, and the immune response without being associated with a DNA damage response. This study identifies potential risks of cannabis vaping and underscores the need for further exploration into its respiratory health implications.
Collapse
Affiliation(s)
- Emily T Wilson
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Percival Graham
- SCIREQ - Scientific Respiratory Equipment Inc, Montreal, Canada
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, Canada
| | - Carolyn J Baglole
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.
- Department of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
5
|
Ze Y, Wu Y, Tan Z, Li R, Li R, Gao W, Zhao Q. Signaling pathway mechanisms of circadian clock gene Bmal1 regulating bone and cartilage metabolism: a review. Bone Res 2025; 13:19. [PMID: 39870641 PMCID: PMC11772753 DOI: 10.1038/s41413-025-00403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/29/2025] Open
Abstract
Circadian rhythm is ubiquitous in nature. Circadian clock genes such as Bmal1 and Clock form a multi-level transcription-translation feedback network, and regulate a variety of physiological and pathological processes, including bone and cartilage metabolism. Deletion of the core clock gene Bmal1 leads to pathological bone alterations, while the phenotypes are not consistent. Studies have shown that multiple signaling pathways are involved in the process of Bmal1 regulating bone and cartilage metabolism, but the exact regulatory mechanisms remain unclear. This paper reviews the signaling pathways by which Bmal1 regulates bone/cartilage metabolism, the upstream regulatory factors that control Bmal1, and the current Bmal1 knockout mouse models for research. We hope to provide new insights for the prevention and treatment of bone/cartilage diseases related to circadian rhythms.
Collapse
Affiliation(s)
- Yiting Ze
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yongyao Wu
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Tan
- Department of Implant Dentistry, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Rui Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Rong Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wenzhen Gao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qing Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Pereira CT, Adams SH, Lloyd KCK, Knotts TA, James AW, Price TJ, Levi B. Exploring the role of peripheral nerves in trauma-induced heterotopic ossification. JBMR Plus 2025; 9:ziae155. [PMID: 39677925 PMCID: PMC11646309 DOI: 10.1093/jbmrpl/ziae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/08/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Recent studies have linked pain and the resultant nociception-induced neural inflammation (NINI) to trauma-induced heterotopic ossification (THO). It is postulated that nociception at the injury site stimulates the transient receptor potential vanilloid-1 (the transient receptor potential cation channel subfamily V member 1) receptors on sensory nerves within the injured tissues resulting in the expression of neuroinflammatory peptides, substance P (SP), and calcitonin gene-related peptide (CGRP). Additionally, BMP-2 released from fractured bones and soft tissue injury also selectively activates TRVP1 receptors, resulting in the release of SP and CGRP and causing neuroinflammation and degranulation of mast cells causing the breakdown the blood-nerve barrier (BNB), leading to release of neural crest derived progenitor cells (NCDPCs) into the injured tissue. Parallel to this process BMP-2 initiates the NCDPCs toward osteogenic differentiation. CGRP has direct osteogenic effects on osteoprogenitor cells/mesenchymal stem cells, by activating BMP-2 via canonical Wnt/β-catenin signaling and cAMP-cAMP-response element binding protein signaling. BMP-2 binds to TGF-βRI and activates TGF-β-activated kinase 1 (TAK1) leading to phosphorylation of SMAD1/5/8, which binds to the co-activator SMAD4 and translocates to the nucleus to serve as transcription factor for BMP responsive genes critical in osteogenesis such as Runx2 and others. Thus, NINI phenotypes, and specifically CGRP induction, play a crucial role in THO initiation and progression through the activation of the BMP pathway, breakdown of the BNB, leading to the escape of NCDPCs, and the osteogenic differentiation of the latter.
Collapse
Affiliation(s)
- Clifford T Pereira
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95816, United States
| | - Sean H Adams
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95816, United States
- University of California, Davis Center for Alimentary and Metabolic Science, Davis, CA 95816, United States
| | - K C Kent Lloyd
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95816, United States
- University of California, Davis Center for Alimentary and Metabolic Science, Davis, CA 95816, United States
| | - Trina A Knotts
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95816, United States
- University of California, Davis Center for Alimentary and Metabolic Science, Davis, CA 95816, United States
| | - Aaron W James
- Department of Pathology, John’s Hopkins University, Baltimore, MD 21287, United States
| | - Theodore J Price
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Benjamin Levi
- University of Texas, Southwestern Medical Center, Dallas, TX 75080, United States
| |
Collapse
|
7
|
Wang Y, Wu Z, Wang C, Wu N, Wang C, Hu S, Shi J. The role of WWP1 and WWP2 in bone/cartilage development and diseases. Mol Cell Biochem 2024; 479:2907-2919. [PMID: 38252355 DOI: 10.1007/s11010-023-04917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Bone and cartilage diseases are often associated with trauma and senescence, manifested as pain and limited mobility. The repair of bone and cartilage lesion by mesenchymal stem cells is regulated by various transcription factors. WW domain-containing protein 1 (WWP1) and WW domain-containing protein 2 (WWP2) are named for WW domain which recognizes PPXY (phono Ser Pro and Pro Arg) motifs of substrate. WWP1and WWP2 are prominent components of the homologous to the E6-AP carboxyl terminus (HECT) subfamily, a group of the ubiquitin ligase. Recently, some studies have found that WWP1 and WWP2 play an important role in the pathogenesis of bone and cartilage diseases and regulate the level and the transactivation of various transcription factors through ubiquitination. Therefore, this review summarizes the distribution and effects of WWP1 and WWP2 in the development of bone and cartilage, discusses the potential mechanism and therapeutic drugs in bone and cartilage diseases such as osteoarthritis, fracture, and osteoporosis.
Collapse
Affiliation(s)
- Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Zuping Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Cunyi Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Na Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Chenyu Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Shiyu Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China
| | - Jiejun Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
8
|
Zhang Y, Feng X, Zheng B, Liu Y. Regulation and mechanistic insights into tensile strain in mesenchymal stem cell osteogenic differentiation. Bone 2024; 187:117197. [PMID: 38986825 DOI: 10.1016/j.bone.2024.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are integral to bone remodeling and homeostasis, as they are capable of differentiating into osteogenic and adipogenic lineages. This differentiation is substantially influenced by mechanosensitivity, particularly to tensile strain, which is a prevalent mechanical stimulus known to enhance osteogenic differentiation. This review specifically examines the effects of various cyclic tensile stress (CTS) conditions on BMSC osteogenesis. It delves into the effects of different loading devices, magnitudes, frequencies, elongation levels, dimensionalities, and coculture conditions, providing a comparative analysis that aids identification of the most conducive parameters for the osteogenic differentiation of BMSCs. Subsequently, this review delineates the signaling pathways activated by CTS, such as Wnt/β-catenin, BMP, Notch, MAPK, PI3K/Akt, and Hedgehog, which are instrumental in mediating the osteogenic differentiation of BMSCs. Through a detailed examination of these pathways, this study elucidates the intricate mechanisms whereby tensile strain promotes osteogenic differentiation, offering valuable guidance for optimizing therapeutic strategies aimed at enhancing bone regeneration.
Collapse
Affiliation(s)
- Yongxin Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China
| | - Xu Feng
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China
| | - Bowen Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China.
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang 110002, China; Shenyang Clinical Medical Research Center of Orthodontic Disease, China.
| |
Collapse
|
9
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
10
|
Wei E, Hu M, Wu L, Pan X, Zhu Q, Liu H, Liu Y. TGF-β signaling regulates differentiation of MSCs in bone metabolism: disputes among viewpoints. Stem Cell Res Ther 2024; 15:156. [PMID: 38816830 PMCID: PMC11140988 DOI: 10.1186/s13287-024-03761-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into cells of different lineages to form mesenchymal tissues, which are promising in regard to treatment for bone diseases. Their osteogenic differentiation is under the tight regulation of intrinsic and extrinsic factors. Transforming growth factor β (TGF-β) is an essential growth factor in bone metabolism, which regulates the differentiation of MSCs. However, published studies differ in their views on whether TGF-β signaling regulates the osteogenic differentiation of MSCs positively or negatively. The controversial results have not been summarized systematically and the related explanations are required. Therefore, we reviewed the basics of TGF-β signaling and summarized how each of three isoforms regulates osteogenic differentiation. Three isoforms of TGF-β (TGF-β1/β2/β3) play distinct roles in regulating osteogenic differentiation of MSCs. Additionally, other possible sources of conflicts are summarized here. Further understanding of TGF-β signaling regulation in MSCs may lead to new applications to promote bone regeneration and improve therapies for bone diseases.
Collapse
Affiliation(s)
- Erfan Wei
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Central Laboratory, Peking University School and Hospital of Stomatology , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Menglong Hu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Central Laboratory, Peking University School and Hospital of Stomatology , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Likun Wu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Central Laboratory, Peking University School and Hospital of Stomatology , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Xingtong Pan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Central Laboratory, Peking University School and Hospital of Stomatology , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Qiyue Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Central Laboratory, Peking University School and Hospital of Stomatology , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Hao Liu
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials , Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Central Laboratory, Peking University School and Hospital of Stomatology , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
| |
Collapse
|
11
|
Manzano-Moreno FJ, Gónzalez-Acedo A, de Luna-Bertos E, García-Recio E, Ruiz C, Reyes-Botella C. Effect of amoxicillin and clindamycin on the gene expression of markers involved in osteoblast physiology. J Dent Sci 2024; 19:990-997. [PMID: 38618075 PMCID: PMC11010622 DOI: 10.1016/j.jds.2023.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/10/2023] [Indexed: 04/16/2024] Open
Abstract
Background/purpose Amoxicillin and clindamycin are the most effective decontaminants for intraoral bone grafts before their application in bone regeneration without cytotoxic effects on osteoblasts, but their effects on the gene expression of markers involved in osteoblast growth and differentiation remain unclear. The study objective was to determine the effects of amoxicillin and clindamycin on the gene expression of markers involved in osteoblast growth and differentiation. Materials and methods Real-time polymerase chain reaction (RT-PCR) was performed to explore the effect of 150 μg/mL clindamycin or 400 μg/mL amoxicillin on the gene expression by primary human osteoblasts (HOBs) of runt-related transcription factor 2 (Runx-2), osterix (OSX), alkaline phosphatase (ALP), osteocalcin (OSC), osteoprotegerin (OPG), receptor activator for nuclear factor κ B ligand (RANKL), type I collagen (Col-I), bone morphogenetic proteins 2 and 7 (BMP-2 and BMP-7), TGF-β1 and TGF-β receptors (TGF-βR1, TGF-βR2, and TGF-βR3), and vascular endothelial growth factor (VEGF). Results Treatment with 150 μg/mL clindamycin significantly increased the gene expression of TFG-β1, TGF-βR1, TGF-βR2, TGF-βR3, RUNX-2, Col-1, OSX, OSC, BMP-2, BMP-7, ALP, VEGF, and RANKL by HOBs. Treatment with 400 μg/mL amoxicillin significantly increased the gene expression of TGF-β R1, Col-I, OSC, RANKL, and OPG alone. Conclusion These findings suggest that 150 μg/mL clindamycin is the decontaminant of choice to treat intraoral bone grafts before their application in bone regeneration. The osteogenic and antibacterial properties of clindamycin can favor and accelerate the integration of bone grafts in the oral cavity.
Collapse
Affiliation(s)
- Francisco Javier Manzano-Moreno
- Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, Granada, Spain
- Instituto Investigación Biosanitaria, ibs.Granada, Spain
| | - Anabel Gónzalez-Acedo
- Instituto Investigación Biosanitaria, ibs.Granada, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Hearth Science, University of Granada, Melilla, Spain
| | - Elvira de Luna-Bertos
- Instituto Investigación Biosanitaria, ibs.Granada, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Hearth Science, University of Granada, Granada, Spain
| | - Enrique García-Recio
- Instituto Investigación Biosanitaria, ibs.Granada, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Hearth Science, University of Granada, Melilla, Spain
| | - Concepción Ruiz
- Instituto Investigación Biosanitaria, ibs.Granada, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Hearth Science, University of Granada, Granada, Spain
- Institute of Neuroscience, University of Granada, Granada, Spain
| | - Candela Reyes-Botella
- Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, Granada, Spain
- Instituto Investigación Biosanitaria, ibs.Granada, Spain
| |
Collapse
|
12
|
Wang TH, Watanabe K, Hamada N, Tani-Ishii N. Role of MAPKs in TGF-β1-induced maturation and mineralization in human osteoblast-like cells. J Oral Biosci 2024; 66:61-67. [PMID: 38110177 DOI: 10.1016/j.job.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVES Our study aimed to clarify the role of mitogen-activated protein kinases (MAPKs) in transforming growth factor (TGF)-β1-stimulated mineralization in the human osteoblast-like MG63 cells. METHODS The viability of MG63 cells under TGF-β1 stimulation was assessed by MTS assay. Western blotting determined TGF-β1-mediated activation of extracellular signal-related protein kinase (ERK), p38, and c-Jun amino-terminal kinase (JNK). Mineralization-related gene expression was examined by quantitative real-time PCR, and mineral deposition levels were evaluated by alizarin red S staining. RESULTS TGF-β1 had no effect on MG63 cell proliferation. Activation of p38 was observed at 3 h post TGF-β1 stimulation. Moreover, JNK phosphorylation was upregulated by TGF-β1 from 1 to 6 h post stimulation, but had no activation on ERK phosphorylation throughout the experimental period. Treatment with JNK inhibitor diminished the alizarin red S-stained area in a dose-dependent manner. Mineral deposition was unaffected by MEK inhibitor, whereas p38 inhibitor increased the red-stained area. Gene expression levels of ALP and BSP were significantly decreased under treatment with JNK inhibitor and p38 inhibitor. The MEK inhibitor had no effect on the TGF-β1-mediated upregulation of ALP and BSP. Although all three inhibitors suppressed expression of COL I, none were found to stimulate expression of OCN. CONCLUSIONS Human osteoblast-like MG63 cells maturation and mineralization are induced through JNK activation of MAPK signaling in response to TGF-β1.
Collapse
Affiliation(s)
- Ting-Hsuan Wang
- Department of Pulp Biology and Endodontics, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan
| | - Kiyoko Watanabe
- Department of Liberal Arts Education, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan
| | - Nobushiro Hamada
- Department of Oral Microbiology, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan
| | - Nobuyuki Tani-Ishii
- Department of Pulp Biology and Endodontics, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, 238-8580, Japan.
| |
Collapse
|
13
|
Shi W, Jiang Y, Wu T, Zhang Y, Li T. Advancements in drug-loaded hydrogel systems for bone defect repair. Regen Ther 2024; 25:174-185. [PMID: 38230308 PMCID: PMC10789937 DOI: 10.1016/j.reth.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
Bone defects are primarily the result of high-energy trauma, pathological fractures, bone tumor resection, or infection debridement. The treatment of bone defects remains a huge clinical challenge. The current treatment options for bone defects include bone traction, autologous/allogeneic bone transplantation, gene therapy, and bone tissue engineering amongst others. With recent developments in the field, composite scaffolds prepared using tissue engineering techniques to repair bone defects are used more often. Among the various composite scaffolds, hydrogel exhibits the advantages of good biocompatibility, high water content, and degradability. Its three-dimensional structure is similar to that of the extracellular matrix, and as such it is possible to load stem cells, growth factors, metal ions, and small molecule drugs upon these scaffolds. Therefore, the hydrogel-loaded drug system has great potential in bone defect repair. This review summarizes the various natural and synthetic materials used in the preparation of hydrogels, in addition to the latest research status of hydrogel-loaded drug systems.
Collapse
Affiliation(s)
- Weipeng Shi
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Tingyu Wu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Li
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Bi R, Sun Y, Xiang L, Xu Z, Ye X, Tian Y, Lin Y, Yang C, Gao Y. TGF-β1/Smad3 Signaling Is Required to Alleviate Fluoride-Induced Enamel Hypomineralization. Biol Trace Elem Res 2024; 202:569-579. [PMID: 37140770 DOI: 10.1007/s12011-023-03688-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Excessive fluoride intake during enamel development can affect enamel mineralization, leading to dental fluorosis. However, its potential mechanisms remain largely unexplored. In the present study, we aimed to investigate the impact of fluoride on the expressions of RUNX2 and ALPL during mineralization and the effect of TGF-β1 administration on fluoride treatment. A dental fluorosis model of newborn mice and an ameloblast cell line ALC were both used in the present study. The mice of the NaF group, including the mothers and newborns, were fed with water containing 150 ppm NaF after delivery to induce dental fluorosis. The mandibular incisors and molars showed significant abrasion in the NaF group. Immunostaining, qRT-PCR, and Western blotting analysis indicated that exposure to fluoride markedly down-regulated RUNX2 and ALPL in mouse ameloblasts and ALCs. Besides, fluoride treatment significantly decreased the mineralization level detected by ALP staining. Furthermore, exogenous TGF-β1 up-regulated RUNX2 and ALPL and promoted mineralization, while the addition of SIS3 could block such TGF-β1-induced up-regulation. In TGF-β1 conditional knockout mice, the immunostaining of RUNX2 and ALPL was weaker compared with wild-type mice. Exposure to fluoride inhibited the expressions of TGF-β1 and Smad3. Co-treatment of TGF-β1 and fluoride up-regulated RUNX2 and ALPL compared with the fluoride alone treatment, promoting mineralization. Collectively, our data indicated that TGF-β1/Smad3 signaling pathway was necessary for the regulatory effects of fluoride on RUNX2 and ALPL, and the fluoride-induced suppression of ameloblast mineralization was mitigated by activating TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Ruonan Bi
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Yiqun Sun
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Lili Xiang
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Zhenzhen Xu
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Xiaoyuan Ye
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Yanying Tian
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Yao Lin
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Chunyan Yang
- Institute of Stomatology, Binzhou Medical University, Shandong, 264003, Yantai, China.
| | - Yuguang Gao
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China.
| |
Collapse
|
15
|
Li R, Liu H, Shi Q, Zhang G, Pang G, Xu Y, Song J, Lu Y. An ascorbic acid-decorated nanostructured surface on titanium inhibits breast cancer development and promotes osteogenesis. Biomed Mater 2023; 19:015006. [PMID: 38000084 DOI: 10.1088/1748-605x/ad0fa2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/24/2023] [Indexed: 11/26/2023]
Abstract
The chest wall is the most frequent metastatic site of breast cancer (BC) and the metastasis usually occurs in a solitary setting. Chest wall resection is a way to treat solitary BC metastasis, but intraoperative bone defects and local tumor recurrence still affect the life quality of patients. Titanium-based prostheses are widely used for chest wall repair and reconstruction, but their inherent bio-inertness makes their clinical performance unfavorable. Nanostructured surfaces can give titanium substrates the ability to excellently modulate a variety of cellular functions. Ascorbic acid is a potential stimulator of tumor suppression and osteogenic differentiation. An ascorbic acid-decorated nanostructured titanium surface was prepared through alkali treatment and spin-coating technique and its effects on the biological responses of BC cells and osteoblasts were assessed. The results exhibited that the nanorod structure and ascorbic acid synergistically inhibited the proliferation, spreading, and migration of BC cells. Additionally, the ascorbic acid-decorated nanostructured surface significantly promoted the proliferation and osteogenic differentiation of osteoblasts. This work may provide valuable references for the clinical application of titanium materials in chest wall reconstruction after the resection of metastatic BC.
Collapse
Affiliation(s)
- Rong Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
| | - Hongyu Liu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, People's Republic of China
| | - Qinying Shi
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
| | - Guannan Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan 030006, People's Republic of China
| | - Guobao Pang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
| | - Yannan Xu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
| | - Jianbo Song
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan 030006, People's Republic of China
| | - Ying Lu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, People's Republic of China
| |
Collapse
|
16
|
Mierzejewski B, Pulik Ł, Grabowska I, Sibilska A, Ciemerych MA, Łęgosz P, Brzoska E. Coding and noncoding RNA profile of human heterotopic ossifications - Risk factors and biomarkers. Bone 2023; 176:116883. [PMID: 37597797 DOI: 10.1016/j.bone.2023.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Heterotopic ossification (HO) means the formation of bone in muscles and soft tissues, such as ligaments or tendons. HO could have a genetic history or develop after a traumatic event, as a result of muscle injury, fractures, burns, surgery, or neurological disorders. Many lines of evidence suggest that the formation of HO is related to the pathological differentiation of stem or progenitor cells present within soft tissues or mobilized from the bone marrow. The cells responsible for the initiation and progression of HO are generally called HO precursor cells. The exact mechanisms behind the development of HO are not fully understood. However, several factors have been identified as potential contributors. For example, local tissue injury and inflammation disturb soft tissue homeostasis. Inflammatory cells release growth factors and cytokines that promote osteogenic or chondrogenic differentiation of HO precursor cells. The bone morphogenetic protein (BMP) is one of the main factors involved in the development of HO. In this study, next-generation sequencing (NGS) and RT-qPCR were performed to analyze the differences in mRNA, miRNA, and lncRNA expression profiles between muscles, control bone samples, and HO samples coming from patients who underwent total hip replacement (THR). As a result, crucial changes in the level of gene expression between HO and healthy tissues were identified. The bioinformatic analysis allowed to describe the processes most severely impacted, as well as genes which level differed the most significantly between HO and control samples. Our analysis showed that the level of transcripts involved in leukocyte migration, differentiation, and activation, as well as markers of chronic inflammatory diseases, that is, miR-148, increased in HO, as compared to muscle. Furthermore, the levels of miR-195 and miR-143, which are involved in angiogenesis, were up-regulated in HO, as compared to bone. Thus, we suggested that inflammation and angiogenesis play an important role in HO formation. Importantly, we noticed that HO is characterized by a higher level of TLR3 expression, compared to muscle and bone. Thus, we suggest that infection may also be a risk factor in HO development. Furthermore, an increased level of transcripts coding proteins involved in osteogenesis and signaling pathways, such as ALPL, SP7, BGLAP, BMP8A, BMP8B, SMPD3 was noticed in HO, as compared to muscles. Interestingly, miR-99b, miR-146, miR-204, and LINC00320 were up-regulated in HO, comparing to muscles and bone. Therefore, we suggested that these molecules could be important biomarkers of HO formation and a potential target for therapies.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Łukasz Pulik
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005 Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Aleksandra Sibilska
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005 Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Paweł Łęgosz
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005 Warsaw, Poland.
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland.
| |
Collapse
|
17
|
Yuan W, Liu W, Zhang Y, Wang X, Xu C, Li Q, Ji P, Wang J, Feng P, Wu Y, Shen H, Wang P. Reduced APPL1 impairs osteogenic differentiation of mesenchymal stem cells by facilitating MGP expression to disrupt the BMP2 pathway in osteoporosis. J Biol Chem 2023:104823. [PMID: 37187293 DOI: 10.1016/j.jbc.2023.104823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023] Open
Abstract
An imbalance of human mesenchymal stem cells (MSCs) adipogenic and osteogenic differentiation plays an important role in the pathogenesis of osteoporosis. Our previous study verified that APPL1/myoferlin deficiency promotes adipogenic differentiation of mesenchymal stem cells by blocking autophagic flux in osteoporosis. However, the function of APPL1 in the osteogenic differentiation of MSCs remains unclear. This study aimed to investigate the role of APPL1 in the osteogenic differentiation of MSCs in osteoporosis and the underlying regulatory mechanism. In this study, we demonstrated the downregulation of APPL1 expression in osteoporosis patients and osteoporosis mice. The severity of clinical osteoporosis was negatively correlated with the expression of APPL1 in bone marrow MSCs. We found that APPL1 positively regulates the osteogenic differentiation of MSCs in vitro and in vivo. Moreover, RNA sequencing showed that the expression of MGP, an osteocalcin/matrix Gla family member, was significantly upregulated after APPL1 knockdown. Mechanistically, our study showed that reduced APPL1 impaired the osteogenic differentiation of mesenchymal stem cells by facilitating MGP expression to disrupt the BMP2 pathway in osteoporosis. We also evaluated the significance of APPL1 in promoting osteogenesis in a mouse model of osteoporosis. These results suggest that APPL1 may be an important target for the diagnosis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Weiquan Yuan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Yunhui Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Xinglang Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Chenhao Xu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Quanfeng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Pengfei Ji
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Jiaxin Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Pei Feng
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China.
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China.
| |
Collapse
|
18
|
Toledano-Osorio M, de Luna-Bertos E, Toledano M, Manzano-Moreno FJ, Costela-Ruiz V, Ruiz C, Gil J, Osorio R. Dexamethasone and doxycycline functionalized nanoparticles enhance osteogenic properties of titanium surfaces. Dent Mater 2023:S0109-5641(23)00114-8. [PMID: 37173196 DOI: 10.1016/j.dental.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVES To evaluate the effect of doxycycline and dexamethasone doped nanoparticles covering titanium surfaces, on osteoblasts proliferation and differentiation. METHODS Doxycycline and dexamethasone doped polymeric nanoparticles were applied on titanium discs (Ti-DoxNPs and Ti-DexNPs). Undoped NPs and uncovered Ti discs were used as control. Human MG-63 osteoblast-like cells were cultured. Osteoblasts proliferation was tested by MTT assay. Alkaline phosphatase activity was analyzed. Differentiation gene expression was assessed by real-time quantitative polymerase chain reaction. Scanning Electron Microscopy was performed to assess osteoblasts morphology. Mean comparisons were conducted by ANOVA and Wilcoxon or Tukey tests (p < 0.05). RESULTS No differences in osteoblasts proliferation were found. Osteoblasts grown on Ti-DoxNPs significantly increased alkaline phosphatase activity. Doxycycline and dexamethasone nanoparticles produced an over-expression of the main osteogenic proliferative genes (TGF-β1, TGF-βR1 and TGF-βR2). The expression of Runx-2 was up-regulated. The osteogenic proteins (AP, OSX and OPG) were also overexpressed on osteoblasts cultured on Ti-DoxNPs and Ti-DexNPs. The OPG/RANKL ratio was the highest when DoxNPs were present (75-fold increase with respect to the control group). DexNPs also produced a significantly higher OPG/RANKL ratio with respect to the control (20 times higher). Osteoblasts grown on titanium discs were mainly flat and polygonal in shape, with inter-cellular connections. In contrast, osteoblasts cultured on Ti-DoxNPs or Ti-DexNPs were found to be spindle-shaped and had abundant secretions on their surfaces. SIGNIFICANCE DoxNPs and DexNPs were able to stimulate osteoblasts differentiation when applied on titanium surfaces, being considered potential inducers of osteogenic environment when performing regenerative procedures around titanium dental implants.
Collapse
Affiliation(s)
- Manuel Toledano-Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain; Medicina Clínica y Salud Pública PhD Programme, Spain
| | - Elvira de Luna-Bertos
- Biomedical Group (BIO277). Department of Nursing, Faculty of Health Sciences. University of Granada, Spain; Instituto Investigación Biosanitaria, IBS. Granada, Granada, Spain.
| | - Manuel Toledano
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain; Instituto Investigación Biosanitaria, IBS. Granada, Granada, Spain
| | - Francisco Javier Manzano-Moreno
- Instituto Investigación Biosanitaria, IBS. Granada, Granada, Spain; Biomedical Group (BIO277). Department of Stomatology, School of Dentistry, University of Granada, Spain
| | - Victor Costela-Ruiz
- Instituto Investigación Biosanitaria, IBS. Granada, Granada, Spain; Biomedical Group (BIO277). Department of Nursing, Faculty of Health Sciences, Campus de Ceuta. University of Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277). Department of Nursing, Faculty of Health Sciences. University of Granada, Spain; Instituto Investigación Biosanitaria, IBS. Granada, Granada, Spain; Institute of Neuroscience, University of Granada, Centro de Investigación Biomédica (CIBM). Parque de Tecnológico de la Salud (PTS), Granada, Spain
| | - Javier Gil
- International University of Cataluña (UIC), Barcelona, Spain
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain; Instituto Investigación Biosanitaria, IBS. Granada, Granada, Spain
| |
Collapse
|
19
|
Bai L, Liu Y, Zhang X, Chen P, Hang R, Xiao Y, Wang J, Liu C. Osteoporosis remission via an anti-inflammaging effect by icariin activated autophagy. Biomaterials 2023; 297:122125. [PMID: 37058900 DOI: 10.1016/j.biomaterials.2023.122125] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/14/2023] [Accepted: 04/09/2023] [Indexed: 04/16/2023]
Abstract
The pace of bone formation slows down with aging, which leads to the development of osteoporosis. In addition to senescent bone marrow mesenchymal stem cells (S-BMSCs), senescent macrophages (S-MΦs) present in the bone marrow produce numerous inflammatory cytokines that contribute to the inflammaged microenvironment and are involved in the development of osteoporosis. Although autophagy activation has shown a significant anti-aging effect, its influence on inflammaging and its role in osteoporosis treatment remain unclear. Traditional Chinese herbal medicine contains bioactive components that exhibit remarkable advantages in bone regeneration. We have demonstrated that icariin (ICA), a bioactive component of traditional Chinese herbal medicine, activates autophagy, exerts a significant anti-inflammaging effect on S-MΦs, and rejuvenates osteogenesis of S-BMSCs, thereby alleviating bone loss in osteoporotic mice. The transcriptomic analysis further reveals that the TNF-α signaling pathway, which is significantly associated with the level of autophagy, regulates this effect. Moreover, the expression of senescence-associated secretory phenotype (SASP) is significantly reduced after ICA treatment. In summary, our findings suggest that bioactive components/materials targeting autophagy can effectively modulate the inflammaging of S-MΦs, offering an innovative treatment strategy for osteoporosis remission and various age-related comorbidities.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China; Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China; The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanpeng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China; The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaohui Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China; The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Peiru Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, 102206, China
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yin Xiao
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia.
| | - Jing Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China; The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China; The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
20
|
Yam-derived exosome-like nanovesicles stimulate osteoblast formation and prevent osteoporosis in mice. J Control Release 2023; 355:184-198. [PMID: 36736431 DOI: 10.1016/j.jconrel.2023.01.071] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/15/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Plants-releasing exosome-like nanovesicles (PENs) contain miRNA, bioactive lipids, mRNAs, and proteins to exert antioxidant, anti-inflammatory, and regenerative activity. Substances extracted from yams have been reported to promote osteoblast growth in bone regeneration, which prevent weak and brittle bones in osteoporosis. Herein, we describe the beneficial effects of yam-derived exosome-like nanovesicles (YNVs) on promoting differentiation and mineralization of osteoblasts for bone regeneration in ovariectomized (OVX)-induced osteoporotic mice. YNVs were successfully isolated and characterized. YNVs stimulate the proliferation, differentiation, and mineralization of osteoblasts with increased bone differentiation markers (OPN, ALP, and COLI). Interestingly, YNVs do not contain saponins including diosgenin and dioscin known to mainly exert osteogenic activity of yams. Instead, the osteogenic activity of YNVs was revealed to be resulted from activation of the BMP-2/p-p38-dependent Runx2 pathway. As a result, YNVs promote longitudinal bone growth and mineral density of the tibia in the OVX-induced osteoporotic mice in vivo, and these results positively correlate the significant increases in osteoblast-related parameters. In addition, the orally administered YNVs were transported through the GI tract and absorbed through the small intestine. These results showed an excellent systemic biosafety determined by histological analysis and liver/kidney toxicity tests. Taken together, YNVs can serve as a safe and orally effective agent in the treatment of osteoporosis.
Collapse
|
21
|
Wang T, Wang L, Zhang L, Long Y, Zhang Y, Hou Z. Single-cell RNA sequencing in orthopedic research. Bone Res 2023; 11:10. [PMID: 36828839 PMCID: PMC9958119 DOI: 10.1038/s41413-023-00245-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 02/26/2023] Open
Abstract
Although previous RNA sequencing methods have been widely used in orthopedic research and have provided ideas for therapeutic strategies, the specific mechanisms of some orthopedic disorders, including osteoarthritis, lumbar disc herniation, rheumatoid arthritis, fractures, tendon injuries, spinal cord injury, heterotopic ossification, and osteosarcoma, require further elucidation. The emergence of the single-cell RNA sequencing (scRNA-seq) technique has introduced a new era of research on these topics, as this method provides information regarding cellular heterogeneity, new cell subtypes, functions of novel subclusters, potential molecular mechanisms, cell-fate transitions, and cell‒cell interactions that are involved in the development of orthopedic diseases. Here, we summarize the cell subpopulations, genes, and underlying mechanisms involved in the development of orthopedic diseases identified by scRNA-seq, improving our understanding of the pathology of these diseases and providing new insights into therapeutic approaches.
Collapse
Affiliation(s)
- Tao Wang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Ling Wang
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Department of Orthopedic Oncology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Liping Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yubin Long
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yingze Zhang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- NHC Key Laboratory of Intelligent Orthopedic Equipment (Third Hospital of Hebei Medical University), Hebei, PR China
| | - Zhiyong Hou
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China.
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China.
- NHC Key Laboratory of Intelligent Orthopedic Equipment (Third Hospital of Hebei Medical University), Hebei, PR China.
| |
Collapse
|
22
|
Yi X, Hu G, Yang Y, Li J, Jin J, Chang B. Role of MOTS-c in the regulation of bone metabolism. Front Physiol 2023; 14:1149120. [PMID: 37200834 PMCID: PMC10185875 DOI: 10.3389/fphys.2023.1149120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
MOTS-c, a mitochondrial-derived peptide (MDP), is an essential regulatory mediator of cell protection and energy metabolism and is involved in the development of specific diseases. Recent studies have revealed that MOTS-c promotes osteoblast proliferation, differentiation, and mineralization. Furthermore, it inhibits osteoclast production and mediates the regulation of bone metabolism and bone remodeling. Exercise effectively upregulates the expression of MOTS-c, but the specific mechanism of MOTS-c regulation in bone by exercise remains unclear. Therefore, this article reviewed the distribution and function of MOTS-c in the tissue, discussed the latest research developments in the regulation of osteoblasts and osteoclasts, and proposed potential molecular mechanisms for the effect of exercise on the regulation of bone metabolism. This review provides a theoretical reference for establishing methods to prevent and treat skeletal metabolic diseases.
Collapse
Affiliation(s)
- Xuejie Yi
- Social Science Research Center, Shenyang Sport University, Shenyang, Liaoning, China
| | - Guangxuan Hu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yang Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jing Li
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Junjie Jin
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Bo Chang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
- *Correspondence: Bo Chang,
| |
Collapse
|
23
|
Xiang S, Lin Z, Makarcyzk MJ, Riewruja K, Zhang Y, Zhang X, Li Z, Clark KL, Li E, Liu S, Hao T, Fritch MR, Alexander PG, Lin H. Differences in the intrinsic chondrogenic potential of human mesenchymal stromal cells and iPSC-derived multipotent cells. Clin Transl Med 2022; 12:e1112. [PMID: 36536500 PMCID: PMC9763539 DOI: 10.1002/ctm2.1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Human multipotent progenitor cells (hiMPCs) created from induced pluripotent stem cells (iPSCs) represent a new cell source for cartilage regeneration. In most studies, bone morphogenetic proteins (BMPs) are needed to enhance transforming growth factor-β (TGFβ)-induced hiMPC chondrogenesis. In contrast, TGFβ alone is sufficient to result in robust chondrogenesis of human primary mesenchymal stromal cells (hMSCs). Currently, the mechanism underlying this difference between hiMPCs and hMSCs has not been fully understood. METHODS In this study, we first tested different growth factors alone or in combination in stimulating hiMPC chondrogenesis, with a special focus on chondrocytic hypertrophy. The reparative capacity of hiMPCs-derived cartilage was assessed in an osteochondral defect model created in rats. hMSCs isolated from bone marrow were included in all studies as the control. Lastly, a mechanistic study was conducted to understand why hiMPCs and hMSCs behave differently in responding to TGFβ. RESULTS Chondrogenic medium supplemented with TGFβ3 and BMP6 led to robust in vitro cartilage formation from hiMPCs with minimal hypertrophy. Cartilage tissue generated from this new method was resistant to osteogenic transition upon subcutaneous implantation and resulted in a hyaline cartilage-like regeneration in osteochondral defects in rats. Interestingly, TGFβ3 induced phosphorylation of both Smad2/3 and Smad1/5 in hMSCs, but only activated Smad2/3 in hiMPCs. Supplementing BMP6 activated Smad1/5 and significantly enhanced TGFβ's compacity in inducing hiMPC chondrogenesis. The chondro-promoting function of BMP6 was abolished by the treatment of a BMP pathway inhibitor. CONCLUSIONS This study describes a robust method to generate chondrocytes from hiMPCs with low hypertrophy for hyaline cartilage repair, as well as elucidates the difference between hMSCs and hiMPCs in response to TGFβ. Our results also indicated the importance of activating both Smad2/3 and Smad1/5 in the initiation of chondrogenesis.
Collapse
Affiliation(s)
- Shiqi Xiang
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of OrthopaedicsThe Second Xiangya HospitalCentral South UniversityChangshaHunanPR China
| | - Zixuan Lin
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Meagan J. Makarcyzk
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPennsylvaniaUSA
| | - Kanyakorn Riewruja
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Osteoarthritis and Musculoskeleton Research Unit, Faculty of MedicineChulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Yiqian Zhang
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Xiurui Zhang
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Zhong Li
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Karen L. Clark
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Eileen Li
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Silvia Liu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Tingjun Hao
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Madalyn R. Fritch
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Peter G. Alexander
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- McGowan Institute for Regenerative MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Hang Lin
- Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of BioengineeringUniversity of Pittsburgh Swanson School of EngineeringPittsburghPennsylvaniaUSA
- McGowan Institute for Regenerative MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
24
|
Zheng W, Bai Z, Huang S, Jiang K, Liu L, Wang X. The Effect of Angiogenesis-Based Scaffold of MesoporousBioactive Glass Nanofiber on Osteogenesis. Int J Mol Sci 2022; 23:12670. [PMID: 36293527 PMCID: PMC9604128 DOI: 10.3390/ijms232012670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
There is still an urgent need for more efficient biological scaffolds to promote the healing of bone defects. Vessels can accelerate bone growth and regeneration by transporting nutrients, which is an excellent method to jointly increase osteogenesis and angiogenesis in bone regeneration. Therefore, we aimed to prepare a composite scaffold that could promote osteogenesis with angiogenesis to enhance bone defect repair. Here, we report that scaffolds were prepared by coaxial electrospinning with mesoporous bioactive glass modified with amino (MBG-NH2) adsorbing insulin-like growth factor-1 (IGF-1) as the core and silk fibroin (SF) adsorbing vascular endothelial growth factor (VEGF) as the shell. These scaffolds were named MBG-NH2/IGF@SF/VEGF and might be used as repair materials to promote bone defect repair. Interestingly, we found that the MBG-NH2/IGF@SF/VEGF scaffolds had nano-scale morphology and high porosity, as well as enough mechanical strength to support the tissue. Moreover, MBG-NH2 could sustain the release of IGF-1 to achieve long-term repair. Additionally, the MBG-NH2/IGF@SF/VEGF scaffolds could significantly promote the mRNA expression levels of osteogenic marker genes and the protein expression levels of Bmp2 and Runx2 in bone marrow mesenchymal stem cells (BMSCs). Meanwhile, the MBG-NH2/IGF@SF/VEGF scaffolds promoted osteogenesis by simulating Runx2 transcription activity through the phosphorylated Erk1/2-activated pathway. Intriguingly, the MBG-NH2/IGF@SF/VEGF scaffolds could also significantly promote the mRNA expression level of angiogenesis marker genes and the protein expression level of CD31. Furthermore, RNA sequencing verified that the MBG-NH2/IGF@SF/VEGF scaffolds had excellent performance in promoting bone defect repair and angiogenesis. Consistent with these observations, we found that the MBG-NH2/IGF@SF/VEGF scaffolds demonstrated a good repair effect on a critical skull defect in mice in vivo, which not only promoted the formation of blood vessels in the haversian canal but also accelerated the bone repair process. We concluded that these MBG-NH2/IGF@SF/VEGF scaffolds could promote bone defect repair under accelerating angiogenesis. Our finding provides a new potential biomaterial for bone tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | - Long Liu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha 410073, China
| | - Xiaoyan Wang
- Correspondence: (L.L.); (X.W.); Tel.: +86-0731-8700-1351 (X.W.); Fax: +86-0731-8700-1040 (X.W.)
| |
Collapse
|
25
|
Kim H, Oh N, Kwon M, Kwon OH, Ku S, Seo J, Roh S. Exopolysaccharide of Enterococcus faecium L15 promotes the osteogenic differentiation of human dental pulp stem cells via p38 MAPK pathway. Stem Cell Res Ther 2022; 13:446. [PMID: 36056447 PMCID: PMC9440579 DOI: 10.1186/s13287-022-03151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background Bone has important functions in the body. Several researchers have reported that the polysaccharides and lipopolysaccharide derived from microbes can promote osteogenic differentiation of stem cells. Enterococcus faecium, a lactic acid bacterium (LAB), produces several bioactive metabolites and has been widely applied in the food and nutraceutical industries. The exopolysaccharide (EPS) from LAB has also been extensively examined for its postbiotic effects and for its in vivo and in vitro functionalities. However, studies on promoting bone differentiation using polysaccharides from LAB are lacking. Therefore, the purpose of this study was to investigate the effect of E. faecium L15 extract and EPS on osteogenic differentiation of human dental pulp stem cells (hDPSCs) and to identify the underlying mechanisms. Methods hDPSCs were obtained from dental pulp tissue, and L15 extract and EPS were isolated from L15. Gene and protein expression of the osteogenic differentiation markers were analyzed with qPCR and western blotting and the possible signaling pathways were also investigated using western blotting. Osteogenic differentiation potential was examined by alkaline phosphatase (ALP) staining and alizarin red s (ARS) staining. In addition, osteogenic differentiation potential of L15 EPS was explored in ex vivo culture of neonate murine calvaria. Results The calcium deposition and ALP activity were enhanced by addition of L15 extract or EPS. The expression levels of RUNX2, ALP, and COL1A1 mRNA and the protein expression levels of RUNX2, ALP, and BMP4 were increased in hDPSCs treated with the L15 extract or EPS. The L15 EPS treatment enhanced phosphorylation of the p38 mitogen-activated protein kinase (MAPK). The L15 EPS-induced increases in RUNX2, ALP, and BMP4 expression were suppressed by the p38 MAPK inhibitor SB203580. The promoting effect of L15 EPS on osteogenic differentiation was not only seen in hDPSCs, but also in osteoblast precursors. ALP activity and the expression of RUNX2, ALP, and COL1A1 increased in the L15 EPS-treated osteoblast precursors. In addition, L15 EPS increased bone thickness of neonate murine calvaria in ex vivo culture. Conclusions The stimulatory effect of L15 extract and EPS on osteogenic differentiation occurred through the p38 MAPK pathway, and L15 EPS enhanced new bone formation in neonate murine calvaria. These data suggest that L15 EPS has therapeutic potential applicable to bone regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03151-0.
Collapse
Affiliation(s)
- Hyewon Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, Korea
| | - Naeun Oh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, Korea
| | - Mijin Kwon
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, Korea
| | - Oh-Hee Kwon
- Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Gyeonggi-do, 16641, Korea
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jeongmin Seo
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, Korea. .,Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Gyeonggi-do, 16641, Korea.
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, Korea.
| |
Collapse
|
26
|
Application of Mesoporous Silica Nanoparticle-Chitosan-Loaded BMP-2 in the Repair of Bone Defect in Chronic Osteomyelitis. J Immunol Res 2022; 2022:4450196. [PMID: 35958879 PMCID: PMC9357812 DOI: 10.1155/2022/4450196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
In order to test the effectiveness of nanoparticle- (NP-) loaded bone morphogenetic protein 2 (BMP-2) in chronic osteomyelitis (CO) complicated with bone defect, a new nanodrug delivery system composed of mesoporous silica NP (MSN) and chitosan were used to load BMP-2 and transfer it to the target region. Bone marrow mesenchymal stem cells (BMSCs) were purchased and cultivated to detect the osteogenesis of chitosan-MSN (Chi-MSN) and polylactic acid glycolic acid (PLGA) delivery system. In addition, the osteogenesis of Chi-MSN was further determined by constructing a bone defect mouse model. In physicochemical property test, we found Chi-MSN NPs could effectively maintain stability in vivo and had pH response characteristics. As a result, the release efficiency of dexamethasone (Dex) and BMP-2 in the environment with pH 7.4 was less, while it increased significantly in pH 6, so as to reduce the BMP-2 and Dex loss during transportation in vivo. Otherwise, we found that the permeation efficiency of Chi-MSN was significantly higher than that of PLGA delivery system, so as to effectively transport BMP-2 and Dex to action target. In the BMSC test, we found that Chi-MSN could better promote their activity and osteogenesis, and the expression of osteogenesis-related genes (runt-related transcription factor 2 (RUNX-2), osteopontine (OPN), alkaline phosphatase (ALP), and osteopontine (OCN)) in the Chi-MSN group was higher. In the bone defect mouse model test, we also found obviously increased bone trabecula number and thickness by Chi-MSN, contributing to better repair of bone defects. Therefore, BMP-2@Chi-MSN may be a better choice for the therapy of CO complicated with bone defect in the future.
Collapse
|
27
|
Guo B, Shan SK, Xu F, Lin X, Li FXZ, Wang Y, Xu QS, Zheng MH, Lei LM, Li CC, Zhou ZA, Ullah MHE, Wu F, Liao XB, Yuan LQ. Protective role of small extracellular vesicles derived from HUVECs treated with AGEs in diabetic vascular calcification. J Nanobiotechnology 2022; 20:334. [PMID: 35842695 PMCID: PMC9287893 DOI: 10.1186/s12951-022-01529-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
The pathogenesis of vascular calcification in diabetic patients remains elusive. As an effective information transmitter, small extracellular vesicles (sEVs) carry abundant microRNAs (miRNAs) that regulate the physiological and pathological states of recipient cells. In the present study, significant up-regulation of miR-126-5p was observed in sEVs isolated from human umbilical vein endothelial cells (HUVECs) stimulated with advanced glycation end-products (A-EC/sEVs). Intriguingly, these sEVs suppressed the osteogenic differentiation of vascular smooth muscle cells (VSMCs) by targeting BMPR1B, which encodes the receptor for BMP, thereby blocking the smad1/5/9 signalling pathway. In addition, knocking down miR-126-5p in HUVECs significantly diminished the anti-calcification effect of A-EC/sEVs in a mouse model of type 2 diabetes. Overall, miR-126-5p is highly enriched in sEVs derived from AGEs stimulated HUVECs and can target BMPR1B to negatively regulate the trans-differentiation of VSMCs both in vitro and in vivo.
Collapse
Affiliation(s)
- Bei Guo
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Zhi-Ang Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Muhammad Hasnain Ehsan Ullah
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China.
| |
Collapse
|
28
|
Kim K, Kim JH, Kim I, Seong S, Han JE, Lee KB, Koh JT, Kim N. Transcription Factor Lmx1b Negatively Regulates Osteoblast Differentiation and Bone Formation. Int J Mol Sci 2022; 23:5225. [PMID: 35563615 PMCID: PMC9103437 DOI: 10.3390/ijms23095225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 01/09/2023] Open
Abstract
The LIM-homeodomain transcription factor Lmx1b plays a key role in body pattern formation during development. Although Lmx1b is essential for the normal development of multiple tissues, its regulatory mechanism in bone cells remains unclear. Here, we demonstrated that Lmx1b negatively regulates bone morphogenic protein 2 (BMP2)-induced osteoblast differentiation. Overexpressed Lmx1b in the osteoblast precursor cells inhibited alkaline phosphatase (ALP) activity and nodule formation, as well as the expression of osteoblast maker genes, including runt-related transcription factor 2 (Runx2), alkaline phosphatase (Alpl), bone sialoprotein (Ibsp), and osteocalcin (Bglap). Conversely, the knockdown of Lmx1b in the osteoblast precursors enhanced the osteoblast differentiation and function. Lmx1b physically interacted with and repressed the transcriptional activity of Runx2 by reducing the recruitment of Runx2 to the promoter region of its target genes. In vivo analysis of BMP2-induced ectopic bone formation revealed that the knockdown of Lmx1b promoted osteogenic differentiation and bone regeneration. Our data demonstrate that Lmx1b negatively regulates osteoblast differentiation and function through regulation of Runx2 and provides a molecular basis for therapeutic targets for bone diseases.
Collapse
Affiliation(s)
- Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| | - Jeong Eun Han
- Department of Orthopedic Surgery, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (J.E.H.); (K.-B.L.)
| | - Keun-Bae Lee
- Department of Orthopedic Surgery, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (J.E.H.); (K.-B.L.)
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 61469, Korea; (K.K.); (J.H.K.); (I.K.); (S.S.)
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| |
Collapse
|
29
|
Sojan JM, Gundappa MK, Carletti A, Gaspar V, Gavaia P, Maradonna F, Carnevali O. Zebrafish as a Model to Unveil the Pro-Osteogenic Effects of Boron-Vitamin D3 Synergism. Front Nutr 2022; 9:868805. [PMID: 35571926 PMCID: PMC9105455 DOI: 10.3389/fnut.2022.868805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
The micronutrient boron (B) plays a key role during the ossification process as suggested by various in vitro and in vivo studies. To deepen our understanding of the molecular mechanism involved in the osteogenicity of B and its possible interaction with vitamin D3 (VD), wild-type AB zebrafish (Danio rerio) were used for morphometric analysis and transcriptomic analysis in addition to taking advantage of the availability of specific zebrafish osteoblast reporter lines. First, osteoactive concentrations of B, VD, and their combinations were established by morphometric analysis of the opercular bone in alizarin red-stained zebrafish larvae exposed to two selected concentrations of B (10 and 100 ng/ml), one concentration of VD (10 pg/ml), and their respective combinations. Bone formation, as measured by opercular bone growth, was significantly increased in the two combination treatments than VD alone. Subsequently, a transcriptomic approach was adopted to unveil the molecular key regulators involved in the synergy. Clustering of differentially expressed genes revealed enrichment toward bone and skeletal functions in the groups co-treated with B and VD. Downstream analysis confirmed mitogen-activated protein kinase as the most regulated pathway by the synergy groups in addition to transforming growth factor-β signaling, focal adhesion, and calcium signaling. The best-performing synergistic treatment, B at 10 ng/ml and VD at 10 pg/ml, was applied to two zebrafish transgenic lines, Tg(sp7:mCherry) and Tg(bglap:EGFP), at multiple time points to further explore the results of the transcriptomic analysis. The synergistic treatment with B and VD induced enrichment of intermediate (sp7+) osteoblast at 6 and 9 days post fertilization (dpf) and of mature (bglap +) osteoblasts at 15 dpf. The results obtained validate the role of B in VD-dependent control over bone mineralization and can help to widen the spectrum of therapeutic approaches to alleviate pathological conditions caused by VD deficiency by using low concentrations of B as a nutritional additive.
Collapse
Affiliation(s)
- Jerry Maria Sojan
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
| | - Alessio Carletti
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Vasco Gaspar
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Paulo Gavaia
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
30
|
Zieba J, Forlenza KN, Heard K, Martin JH, Bosakova M, Cohn DH, Robertson SP, Krejci P, Krakow D. Intervertebral disc degeneration is rescued by TGFβ/BMP signaling modulation in an ex vivo filamin B mouse model. Bone Res 2022; 10:37. [PMID: 35474298 PMCID: PMC9042866 DOI: 10.1038/s41413-022-00200-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/01/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Spondylocarpotarsal syndrome (SCT) is a rare musculoskeletal disorder characterized by short stature and vertebral, carpal, and tarsal fusions resulting from biallelic nonsense mutations in the gene encoding filamin B (FLNB). Utilizing a FLNB knockout mouse, we showed that the vertebral fusions in SCT evolved from intervertebral disc (IVD) degeneration and ossification of the annulus fibrosus (AF), eventually leading to full trabecular bone formation. This resulted from alterations in the TGFβ/BMP signaling pathway that included increased canonical TGFβ and noncanonical BMP signaling. In this study, the role of FLNB in the TGFβ/BMP pathway was elucidated using in vitro, in vivo, and ex vivo treatment methodologies. The data demonstrated that FLNB interacts with inhibitory Smads 6 and 7 (i-Smads) to regulate TGFβ/BMP signaling and that loss of FLNB produces increased TGFβ receptor activity and decreased Smad 1 ubiquitination. Through the use of small molecule inhibitors in an ex vivo spine model, TGFβ/BMP signaling was modulated to design a targeted treatment for SCT and disc degeneration. Inhibition of canonical and noncanonical TGFβ/BMP pathway activity restored Flnb-/- IVD morphology. These most effective improvements resulted from specific inhibition of TGFβ and p38 signaling activation. FLNB acts as a bridge for TGFβ/BMP signaling crosstalk through i-Smads and is key for the critical balance in TGFβ/BMP signaling that maintains the IVD. These findings further our understanding of IVD biology and reveal new molecular targets for disc degeneration as well as congenital vertebral fusion disorders.
Collapse
Affiliation(s)
- Jennifer Zieba
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA
| | | | - Kelly Heard
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA
| | - Jorge H Martin
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
| | - Daniel H Cohn
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
| | - Deborah Krakow
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA.
- Department of Human Genetics, Los Angeles, CA, 90095, USA.
- Department of Obstetrics and Gynecology, Los Angeles, CA, 90095, USA.
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
31
|
Chen F, Liang Q, Mao L, Yin Y, Zhang L, Li C, Liu C. Synergy effects of Asperosaponin VI and bioactive factor BMP-2 on osteogenesis and anti-osteoclastogenesis. Bioact Mater 2022; 10:335-344. [PMID: 34901550 PMCID: PMC8636809 DOI: 10.1016/j.bioactmat.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoporosis is a reduction in skeletal mass due to the decrease of osteogenic ability and the activation of the osteoclastic function. Inhibiting bone resorption and accelerating the new bone formation is a promising strategy to repair the bone defect of osteoporosis. In this study, we first systematically investigated the roles of Chinese medicine Asperosaponin VI (ASP VI) on osteogenic mineralization of BMSCs and osteoclastogenesis of BMMs, and then explored the synergistic effect of ASP VI and BS (BMP-2 immobilized in 2-N, 6-O-sulfated chitosan) on bone formation. The result showed that ASP VI with the concentration lower than 10-4 M contributed to the expression of osteogenic gene and inhibited osteoclastic genes RANKL of BMSCs. Simultaneously, ASP VI significantly reduced the differentiation of mononuclear osteoclasts in the process of osteoclast formation induced by M-CSF and RANKL. Furthermore, by stimulating the SMADs, TGF-β1, VEGFA, and OPG/RANKL signaling pathways, ASBS (ASP VI and BS) substantially enhanced osteogenesis, greatly promoted angiogenesis, and suppressed osteoclastogenesis. The findings provide a new perspective on osteoporosis care and prevention.
Collapse
Affiliation(s)
- Fangping Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Qing Liang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Lijie Mao
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yanrong Yin
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Lixin Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Cuidi Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
32
|
Feng X, Jiang S, Zhang F, Wang R, Zhao Y, Zeng M. Shell water-soluble matrix protein from oyster shells promoted proliferation, differentiation and mineralization of osteoblasts in vitro and vivo. Int J Biol Macromol 2022; 201:288-297. [PMID: 34998879 DOI: 10.1016/j.ijbiomac.2021.12.168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022]
Abstract
Matrix protein is secreted by the membrane of bivalve shellfish to and used to regulate shell biomineralization. In this study, we extracted water-soluble matrix protein (WSMP) from oyster shells to investigate its effects on osteogenic differentiation and mineralization of MC3T3-E1 cells and osteoporosis rats. Our results suggested that WSMP was an acidic glycoprotein by amino acid analysis and secondary structure analysis. In vitro, WSMP could promote osteoblastic proliferation. Moreover, alkaline phosphatase (ALP) and osteocalcin (OCN) were increased, mineralized nodules were increased, and BMP-2 expression was up-regulated. Additionally, in vivo, tartrate-resistant acid phosphatase (TRAP) and Bone alkaline phosphatase (BALP) expressions in the medium-dose and high-dose groups were significantly decreased compared with the model group, while OCN expression was significantly increased. Bone mineral density (BMD) and bone mineral content (BMC) of bone recovered significantly. In summary, WSMP can promote the proliferation, differentiation and mineralization of osteoblasts in vitro and in vivo.
Collapse
Affiliation(s)
- Xue Feng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Suisui Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Fan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Runfang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
33
|
Deng L, Qing W, Lai S, Zheng J, Liu C, Huang H, Peng P, Mu Y. Differential Expression Profiling of microRNAs in Human Placenta-Derived Mesenchymal Stem Cells Cocultured with Grooved Porous Hydroxyapatite Scaffolds. DNA Cell Biol 2022; 41:292-304. [PMID: 35180361 DOI: 10.1089/dna.2021.0850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Scaffold materials used for bone defect repair are often limited by osteogenic efficacy. Moreover, microRNAs (miRNAs) are involved in regulating the expression of osteogenic-related genes. In previous studies, we verified the enhancement of osteogenesis using a grooved porous hydroxyapatite scaffold (HAG). In the present study, we analyzed the contribution of HAG to the osteogenic differentiation of human placenta-derived mesenchymal stem cells (hPMSCs) from the perspective of miRNA differential expression. Furthermore, results showed that miRNAs were differentially expressed in the osteogenic differentiation of hPMSCs cocultured with HAG. In detail, 16 miRNAs were significantly upregulated and 29 miRNAs were downregulated with HAG. In addition, bioinformatics analyses showed that the differentially expressed miRNAs were enriched in a variety of biological processes, including signal transduction, cell metabolism, cell junctions, cell development and differentiation, and that they were associated with osteogenic differentiation through axon guidance, mitogen-activated protein kinase, and the transforming growth factor beta signaling pathway. Furthermore, multiple potential target genes of these miRNAs were closely related to osteogenic differentiation. Importantly, overexpression of miR-146a-5p (an upregulated miRNA) promoted the osteogenic differentiation of hPMSCs, and miR-145-5p overexpression (a downregulated miRNA) inhibited the osteogenic differentiation of hPMSCs.
Collapse
Affiliation(s)
- Li Deng
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic and Technology of China, Chengdu, China
| | - Wei Qing
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Shuang Lai
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic and Technology of China, Chengdu, China
| | - Jiajun Zheng
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Cong Liu
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic and Technology of China, Chengdu, China
| | - Hao Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Pairan Peng
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yandong Mu
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic and Technology of China, Chengdu, China
| |
Collapse
|
34
|
Regulation of collagen deposition in the trout heart during thermal acclimation. Curr Res Physiol 2022; 5:99-108. [PMID: 35243359 PMCID: PMC8857596 DOI: 10.1016/j.crphys.2022.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022] Open
Abstract
The passive mechanical properties of the vertebrate heart are controlled in part by the composition of the extracellular matrix (ECM). Changes in the ECM, caused by increased blood pressure, injury or disease can affect the capacity of the heart to fill with blood during diastole. In mammalian species, cardiac fibrosis caused by an increase in collagen in the ECM, leads to a loss of heart function and these changes in composition are considered to be permanent. Recent work has demonstrated that the cardiac ventricle of some fish species have the capacity to both increase and decrease collagen content in response to thermal acclimation. It is thought that these changes in collagen content help maintain ventricle function over seasonal changes in environmental temperatures. This current work reviews the cellular mechanisms responsible for regulating collagen deposition in the mammalian heart and proposes a cellular pathway by which a change in temperature can affect the collagen content of the fish ventricle through mechanotransduction. This work specifically focuses on the role of transforming growth factor β1, MAPK signaling pathways, and biomechanical stretch in regulating collagen content in the fish ventricle. It is hoped that this work increases the appreciation of the use of comparative models to gain insight into phenomenon with biomedical relevance.
Collapse
|
35
|
Mukherjee S, Park JP, Yun JW. Carboxylesterase3 (Ces3) Interacts with Bone Morphogenetic Protein 11 and Promotes Differentiation of Osteoblasts via Smad1/5/9 Pathway. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
36
|
Impact of perlecan, a core component of basement membrane, on regeneration of cartilaginous tissues. Acta Biomater 2021; 135:13-26. [PMID: 34454085 DOI: 10.1016/j.actbio.2021.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023]
Abstract
As an indispensable component of the extracellular matrix, perlecan (Pln) plays an essential role in cartilaginous tissue function. Although there exist studies suggesting that Pln expressed by cartilaginous tissues is critical for chondrogenesis, few papers have discussed the potential impact Pln may have on cartilage regeneration. In this review, we delineate Pln structure, biomechanical properties, and interactive ligands-which together contribute to the effect Pln has on cartilaginous tissue development. We also review how the signaling pathways of Pln affect cartilage development and scrutinize the potential application of Pln to divisions of cartilage regeneration, spanning vascularization, stem cell differentiation, and biomaterial improvement. The aim of this review is to deepen our understanding of the spatial and temporal interactions that occur between Pln and cartilaginous tissue and ultimately apply Pln in scaffold design to improve cell-based cartilage engineering and regeneration. STATEMENT OF SIGNIFICANCE: As a key component of the basement membrane, Pln plays a critical role in tissue development and repair. Recent findings suggest that Pln existing in the pericellular matrix surrounding mature chondrocytes is actively involved in cartilage regeneration and functionality. We propose that Pln is essential to developing an in vitro matrix niche within biological scaffolds for cartilage tissue engineering.
Collapse
|
37
|
Klemmer VA, Khera N, Siegenthaler BM, Bhattacharya I, Weber FE, Ghayor C. Effect of N-Vinyl-2-Pyrrolidone (NVP), a Bromodomain-Binding Small Chemical, on Osteoblast and Osteoclast Differentiation and Its Potential Application for Bone Regeneration. Int J Mol Sci 2021; 22:ijms222011052. [PMID: 34681710 PMCID: PMC8541071 DOI: 10.3390/ijms222011052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022] Open
Abstract
The human skeleton is a dynamic and remarkably organized organ system that provides mechanical support and performs a variety of additional functions. Bone tissue undergoes constant remodeling; an essential process to adapt architecture/resistance to growth and mechanical needs, but also to repair fractures and micro-damages. Despite bone's ability to heal spontaneously, certain situations require an additional stimulation of bone regeneration, such as non-union fractures or after tumor resection. Among the growth factors used to increase bone regeneration, bone morphogenetic protein-2 (BMP2) is certainly the best described and studied. If clinically used in high quantities, BMP2 is associated with various adverse events, including fibrosis, overshooting bone formation, induction of inflammation and swelling. In previous studies, we have shown that it was possible to reduce BMP2 doses significantly, by increasing the response and sensitivity to it with small molecules called "BMP2 enhancers". In the present study, we investigated the effect of N-Vinyl-2-pyrrolidone (NVP) on osteoblast and osteoclast differentiation in vitro and guided bone regeneration in vivo. We showed that NVP increases BMP2-induced osteoblast differentiation and decreases RANKL-induced osteoclast differentiation in a dose-dependent manner. Moreover, in a rabbit calvarial defect model, the histomorphometric analysis revealed that bony bridging and bony regenerated area achieved with NVP-loaded poly (lactic-co-glycolic acid (PLGA) membranes were significantly higher compared to unloaded membranes. Taken together, our results suggest that NVP sensitizes BMP2-dependent pathways, enhances BMP2 effect, and inhibits osteoclast differentiation. Thus, NVP could prove useful as "osteopromotive substance" in situations where a high rate of bone regeneration is required, and in the management of bone diseases associated with excessive bone resorption, like osteoporosis.
Collapse
Affiliation(s)
- Viviane A. Klemmer
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
| | - Nupur Khera
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
| | - Barbara M. Siegenthaler
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
| | - Indranil Bhattacharya
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
| | - Franz E. Weber
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland
- Correspondence: (F.E.W.); (C.G.)
| | - Chafik Ghayor
- Oral Biotechnology and Bioengineering, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (V.A.K.); (N.K.); (B.M.S.); (I.B.)
- Correspondence: (F.E.W.); (C.G.)
| |
Collapse
|
38
|
Bai L, Chen P, Zhao Y, Hang R, Yao X, Tang B, Liu C, Xiao Y, Hang R. A micro/nano-biomimetic coating on titanium orchestrates osteo/angio-genesis and osteoimmunomodulation for advanced osseointegration. Biomaterials 2021; 278:121162. [PMID: 34628191 DOI: 10.1016/j.biomaterials.2021.121162] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/26/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023]
Abstract
Osseointegration is a sophisticated bone and implant healing process comprising of initial hematoma formation, immediate osteoimmunomodulation, angiogenesis, and osteogenesis. To fulfill rapid and satisfying osseointegration, this study developed a biomimetic implant coating that could confer the intraosseous implants a systematical regulation of the participatory processes. Herein, we shaped dissimilar nano-scale (NS) to form highly biomimetic structures of natural extracellular matrix (ECM) of the host bone and bone healing hematoma with micro/nano-scale (MNS) titania fiber-like network on the surface of titanium (Ti) implants. In vitro experiments revealed that the MNS not only facilitated osteogenic and angiogenic differentiation of bone marrow stromal cells (BMSCs) and endothelial cells, respectively, but also suppressed M1 macrophages (MΦs), whereas, stimulated pro-healing M2 phenotype. Notably, BMSCs on MNS surfaces enabled a significant immunomodulatory effect on MΦs resulting in the downregulation of inflammation-related cell signaling pathways. The favorable osteoimmune microenvironment manipulated by MNS further facilitated osteo-/angio-genesis via the crosstalk of multi-signaling pathways. In vivo evaluation mirrored the aforementioned results, and depicted that MNS induced ameliorative osseointegration when compared with the NS as well as the pristine Ti implant. The study demonstrated the modulatory effect of the multifaceted biomimetic structure on spatiotemporal regulation of the participatory processes during osseointegration.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China; School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Peiru Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, 102206, China
| | - Ya Zhao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Ruiyue Hang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiaohong Yao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Bin Tang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China; Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Australia.
| | - Ruiqiang Hang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China.
| |
Collapse
|
39
|
Shen J, Fu B, Li Y, Wu Y, Sang H, Zhang H, Lin H, Liu H, Huang W. E3 Ubiquitin Ligase-Mediated Regulation of Osteoblast Differentiation and Bone Formation. Front Cell Dev Biol 2021; 9:706395. [PMID: 34513836 PMCID: PMC8430030 DOI: 10.3389/fcell.2021.706395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is an essential pathway that regulates the homeostasis and function of intracellular proteins and is a crucial protein-degradation system in osteoblast differentiation and bone formation. Abnormal regulation of ubiquitination leads to osteoblast differentiation disorders, interfering with bone formation and ultimately leading to osteoporosis. E3 ubiquitin ligases (E3) promote addition of a ubiquitin moiety to substrate proteins, specifically recognizing the substrate and modulating tyrosine kinase receptors, signaling proteins, and transcription factors involved in the regulation of osteoblast proliferation, differentiation, survival, and bone formation. In this review, we summarize current progress in the understanding of the function and regulatory effects of E3 ligases on the transcription factors and signaling pathways that regulate osteoblast differentiation and bone formation. A deep understanding of E3 ligase-mediated regulation of osteoblast differentiation provides a scientific rationale for the discovery and development of novel E3-targeting therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Jianlin Shen
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
| | - Bowen Fu
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanfang Li
- Department of Pediatric Surgery, Affiliated Hospital of Putian University, Putian, China
| | - Yanjiao Wu
- Department of Orthopedics, Shunde Hospital of Southern Medical University, Guangzhou, China
| | - Hongxun Sang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Heshi Zhang
- Department of Vessel and Breast, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Haibin Lin
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
| | - Huan Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Wenhua Huang
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
40
|
Peng CH, Lin WY, Yeh KT, Chen IH, Wu WT, Lin MD. The molecular etiology and treatment of glucocorticoid-induced osteoporosis. Tzu Chi Med J 2021; 33:212-223. [PMID: 34386357 PMCID: PMC8323641 DOI: 10.4103/tcmj.tcmj_233_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the most common form of secondary osteoporosis, accounting for 20% of osteoporosis diagnoses. Using glucocorticoids for >6 months leads to osteoporosis in 50% of patients, resulting in an increased risk of fracture and death. Osteoblasts, osteocytes, and osteoclasts work together to maintain bone homeostasis. When bone formation and resorption are out of balance, abnormalities in bone structure or function may occur. Excess glucocorticoids disrupt the bone homeostasis by promoting osteoclast formation and prolonging osteoclasts' lifespan, leading to an increase in bone resorption. On the other hand, glucocorticoids inhibit osteoblasts' formation and facilitate apoptosis of osteoblasts and osteocytes, resulting in a reduction of bone formation. Several signaling pathways, signaling modulators, endocrines, and cytokines are involved in the molecular etiology of GIOP. Clinically, adults ≥40 years of age using glucocorticoids chronically with a high fracture risk are considered to have medical intervention. In addition to vitamin D and calcium tablet supplementations, the major therapeutic options approved for GIOP treatment include antiresorption drug bisphosphonates, parathyroid hormone N-terminal fragment teriparatide, and the monoclonal antibody denosumab. The selective estrogen receptor modulator can only be used under specific condition for postmenopausal women who have GIOP but fail to the regular GIOP treatment or have specific therapeutic contraindications. In this review, we focus on the molecular etiology of GIOP and the molecular pharmacology of the therapeutic drugs used for GIOP treatment.
Collapse
Affiliation(s)
- Cheng-Huan Peng
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Ying Lin
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kuang-Ting Yeh
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ing-Ho Chen
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Tien Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ming-Der Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
41
|
Habuddha V, Suwannasing C, Buddawong A, Seenprachawong K, Duangchan T, Sombutkayasith C, Supokawej A, Weerachatyanukul W, Asuvapongpatana S. Characterization of Thrombospondin Type 1 Repeat in Haliotis diversicolor and Its Possible Role in Osteoinduction. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:641-652. [PMID: 34471969 DOI: 10.1007/s10126-021-10054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Thrombospondin repeats (TSR) are important peptide domains present in the sequences of many extracellular and transmembrane proteins with which a variety of ligands interact. In this study, we characterized HdTSR domains in the ADAMTS3 protein of Thai abalone, Haliotis diversicolor, based on the transcriptomic analysis of its mantle tissues. PCR amplification and localization studies demonstrated the existence of HdTSR transcript and protein in H. diversicolor tissues, particularly in both the inner and outer mantle epithelial folds. We, therefore, generated a short recombinant protein, termed HdTSR1/2, based on the existence of the WxxWxxW or WxxxxW motif (which binds to TGF-β, a known signaling in bone formation/repair) in HdTSR1 and HdTSR2 sequences and used it to test the osteoinduction function in the pre-osteoblastic cell line, MC3T3-E1. This recombinant protein demonstrated the ability to induce the differentiation of MC3T3-E1 cells by the concentration- and time-dependent upregulation of many known osteogenic markers, including RUNX2, COL1A1, OCN, and OPN. We also demonstrated the upregulation of the SMAD2 gene after cell treatment with HdTSR1/2 proteinindicating its possible interaction through TGF-β, which thus activates its downstream signaling cascade and triggers the biomineralization process in the differentiated osteoblastic cells. Together, HdTSR domains existed in an extracellular ADAMTS3 protein in the mantle epithelium of H. diversicolor and played a role in osteoinduction as similar to the other nacreous proteins, opening up its possibility to be developed as an inducing agent of bone repair.
Collapse
Affiliation(s)
- Valainipha Habuddha
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- School of Allied Health Science, Walailak University, Nakhon Si Thammarat, Thailand
| | - Chanyatip Suwannasing
- Department of Radiological Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Aticha Buddawong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- Chulabhorn International College of Medicine, Thammasat University, Khlong Nueng Pathumthani 12121, Rangsit Campus, Thailand
| | - Kanokwan Seenprachawong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University (Salaya Campus), Salaya, Nakhonpathom, Thailand
| | - Thitinat Duangchan
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University (Salaya Campus), Salaya, Nakhonpathom, Thailand
| | | | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University (Salaya Campus), Salaya, Nakhonpathom, Thailand
| | | | | |
Collapse
|
42
|
Cen X, Pan X, Zhang B, Huang W, Pei F, Luo T, Huang X, Liu J, Zhao Z. miR-20a-5p contributes to osteogenic differentiation of human dental pulp stem cells by regulating BAMBI and activating the phosphorylation of Smad5 and p38. Stem Cell Res Ther 2021; 12:421. [PMID: 34294156 PMCID: PMC8296686 DOI: 10.1186/s13287-021-02501-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/04/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Human dental pulp stem cells (hDPSCs) are the preferable choice of seed cells for craniomaxillofacial bone tissue regeneration. As a member of the miR-17-92 cluster, miR-20a-5p functions as an important regulator during bone remodeling. This study aimed to investigate the roles and mechanisms of miR-20a-5p during osteogenesis of hDPSCs. METHODS Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to determine the expression of miR-20a-5p during osteogenesis of hDPSCs. We interfered with the expression of miR-20a-5p in hDPSCs to clarify the function of miR-20a-5p on osteogenesis both in vitro and vivo. Direct bind sites between miR-20a-5p and BAMBI were confirmed by dual-luciferase reporter assay, and the underlying mechanisms were investigated with cell co-transfections. RESULTS The expression of miR-20a-5p was showed to be upregulated during osteogenesis of hDPSCs. Inhibition of miR-20a-5p could weaken the intensity of ALP/ARS staining and downregulate the expression of mRNAs and proteins of osteogenic markers, while overexpression of miR-20a-5p could enhance the intensity of ALP/ARS staining and the expression of osteogenic markers. Both micro-CT reconstruction images and histological results showed that miR-20a-5p could promote the regeneration of calvarial defects. miR-20a-5p directly targeted bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), and the latter one was an inhibitor of hDPSC osteogenesis. Silencing BAMBI partially reversed the suppression effect of miR-20a-5p knockdown on osteogenesis. Phosphorylation of Smad5 and p38 was decreased when miR-20a-5p was silenced, whereas p-Smad5 and p-p38 were upregulated when miR-20a-5p was overexpressed or BAMBI was silenced. CONCLUSIONS It is demonstrated that miR-20a-5p functioned as a regulator of BAMBI to activate the phosphorylation of Smad5 and p38 during osteogenic differentiation of hDPSCs.
Collapse
Affiliation(s)
- Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuefeng Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fang Pei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Luo
- Department of Stomatology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Yan T, Xie Y, He H, Fan W, Huang F. Role of nitric oxide in orthodontic tooth movement (Review). Int J Mol Med 2021; 48:168. [PMID: 34278439 PMCID: PMC8285047 DOI: 10.3892/ijmm.2021.5001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO) is an ubiquitous signaling molecule that mediates numerous cellular processes associated with cardiovascular, nervous and immune systems. NO also plays an essential role in bone homeostasis regulation. The present review article summarized the effects of NO on bone metabolism during orthodontic tooth movement in order to provide insight into the regulatory role of NO in orthodontic tooth movement. Orthodontic tooth movement is a process in which the periodontal tissue and alveolar bone are reconstructed due to the effect of orthodontic forces. Accumulating evidence has indicated that NO and its downstream signaling molecule, cyclic guanosine monophosphate (cGMP), mediate the mechanical signals during orthodontic-related bone remodeling, and exert complex effects on osteogenesis and osteoclastogenesis. NO has a regulatory effect on the cellular activities and functional states of osteoclasts, osteocytes and periodontal ligament fibroblasts involved in orthodontic tooth movement. Variations of NO synthase (NOS) expression levels and NO production in periodontal tissues or gingival crevicular fluid (GCF) have been found on the tension and compression sides during tooth movement in both orthodontic animal models and patients. Furthermore, NO precursor and NOS inhibitor administration increased and reduced the tooth movement in animal models, respectively. Further research is required in order to further elucidate the underlying mechanisms and the clinical application prospect of NO in orthodontic tooth movement.
Collapse
Affiliation(s)
- Tong Yan
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yongjian Xie
- Department of Orthodontic Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Fang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
44
|
Sun W, Li M, Xie L, Mai Z, Zhang Y, Luo L, Yan Z, Li Z, Dong H, Huang F, Shen Z, Jiang Z. Exploring the Mechanism of Total Flavonoids of Drynariae Rhizoma to Improve Large Bone Defects by Network Pharmacology and Experimental Assessment. Front Pharmacol 2021; 12:603734. [PMID: 34149403 PMCID: PMC8210422 DOI: 10.3389/fphar.2021.603734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Drynariae Rhizoma (DR) has been demonstrated to be effective in promoting fracture healing in clinical use. In the study, we tried to predicate potential signaling pathways and active ingredients of DR via network pharmacology, uncover its regulation mechanism to improve large bone defects by in vivo and in vitro experiment. We total discovered 18 potential active ingredients such as flavonoids and 81 corresponding targets, in which mitogen-activated protein kinase (MAPK) signaling pathway has the highest correlation with bone defects in pathway and functional enrichment analysis. Therefore, we hypothesized that flavonoids in DR improve large bone defects by activating MAPK signaling pathway. Animal experiments were carried out and all rats randomly divided into TFDR low, medium, and high dosage group, model group and control group. 12 weeks after treatment, according to X-ray and Micro-CT, TFDR medium dosage group significantly promote new bone mineralization compared with other groups. The results of HE and Masson staining and in vitro ALP level of BMSC also demonstrated the formation of bone matrix and mineralization in the TFDR groups. Also, angiographic imaging suggested that flavonoids in DR promoting angiogenesis in the defect area. Consistently, TFDR significantly enhanced the expression of BMP-2, RUNX-2, VEGF, HIF-1 in large bone defect rats based on ELISA and Real-Time PCR. Overall, we not only discover the active ingredients of DR in this study, but also explained how flavonoids in DR regulating MAPK signaling pathway to improve large bone defects.
Collapse
Affiliation(s)
- Weipeng Sun
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Minying Li
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Lei Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Zhexing Mai
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yan Zhang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Lieliang Luo
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Zijian Yan
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Zige Li
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Hang Dong
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Feng Huang
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Zhen Shen
- Department of Orthopaedics, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan Province, China
| | - Ziwei Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
45
|
Wang B, Yang J, Fan L, Wang Y, Zhang C, Wang H. Osteogenic effects of antihypertensive drug benidipine on mouse MC3T3-E1 cells in vitro. J Zhejiang Univ Sci B 2021; 22:410-420. [PMID: 33973422 DOI: 10.1631/jzus.b2000628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypertension is a prevalent systemic disease in the elderly, who can suffer from several pathological skeletal conditions simultaneously, including osteoporosis. Benidipine (BD), which is widely used to treat hypertension, has been proved to have a beneficial effect on bone metabolism. In order to confirm the osteogenic effects of BD, we investigated its osteogenic function using mouse MC3T3-E1 preosteoblast cells in vitro. The proliferative ability of MC3T3-E1 cells was significantly associated with the concentration of BD, as measured by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay and cell cycle assay. With BD treatment, the osteogenic differentiation and maturation of MC3T3-E1 cells were increased, as established by the alkaline phosphatase (ALP) activity test, matrix mineralized nodules formation, osteogenic genetic test, and protein expression analyses. Moreover, our data showed that the BMP2/Smad pathway could be the partial mechanism for the promotion of osteogenesis by BD, while BD might suppress the possible function of osteoclasts through the OPG/RANKL/RANK (receptor activator of nuclear factor-κB (NF-κB)) pathway. The hypothesis that BD bears a considerable potential in further research on its dual therapeutic effect on hypertensive patients with poor skeletal conditions was proved within the limitations of the present study.
Collapse
Affiliation(s)
- Baixiang Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Jiakang Yang
- School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Lijie Fan
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Yu Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Chenqiu Zhang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China.
| |
Collapse
|
46
|
Huang X, Pan X, Zhang B, Huang W, Cen X, Liu J, Zhao Z. CircRFWD2 Promotes Osteogenic Differentiation of human Dental Pulp Stem Cells by Targeting miR-6817-5p Through BMP-Smad and p38 MAPK Pathway. Cell Transplant 2021; 30:9636897211052959. [PMID: 34693745 PMCID: PMC8549467 DOI: 10.1177/09636897211052959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/28/2021] [Accepted: 09/27/2021] [Indexed: 02/05/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are one promising cell source of mesenchymal stem cells in bone tissue engineering. However, it remains unknown that the molecules and signaling pathways involved in osteogenesis of DPSCs. Hence, this study investigated the functional roles and underlying mechanisms of circRFWD2 during osteogenesis of DPSCs. Knockdown of circRFWD2 suppressed osteogenesis of DPSCs significantly. Mechanistically, circRFWD2 could crosstalk with miR-6817-5p, which was an inhibitor of DPSCs osteogenesis. MiR-6817-5p functioned as a sponge of BMPR2, which regulated the phosphorylation of Smad5 and p38 to impact osteogenesis activity of DPSCs. Collectively, circRFWD2/miR-6817-5p/BMPR2 axis could regulate DPSCs osteogenesis via BMP-Smad and p38 MAPK pathway, which are novel mechanisms in the osteogenic differentiation of DPSCs and suggest potential therapeutic methods for bone defects regeneration.
Collapse
Affiliation(s)
- Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuefeng Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Temporomandibular joint, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Jiang Y, Zhang P, Zhang X, Lv L, Zhou Y. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Prolif 2021; 54:e12956. [PMID: 33210341 PMCID: PMC7791182 DOI: 10.1111/cpr.12956] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a systemic metabolic bone disease with characteristics of bone loss and microstructural degeneration. The personal and societal costs of osteoporosis are increasing year by year as the ageing of population, posing challenges to public health care. Homing disorders, impaired capability of osteogenic differentiation, senescence of mesenchymal stem cells (MSCs), an imbalanced microenvironment, and disordered immunoregulation play important roles during the pathogenesis of osteoporosis. The MSC transplantation promises to increase osteoblast differentiation and block osteoclast activation, and to rebalance bone formation and resorption. Preclinical investigations on MSC transplantation in the osteoporosis treatment provide evidences of enhancing osteogenic differentiation, increasing bone mineral density, and halting the deterioration of osteoporosis. Meanwhile, the latest techniques, such as gene modification, targeted modification and co-transplantation, are promising approaches to enhance the therapeutic effect and efficacy of MSCs. In addition, clinical trials of MSC therapy to treat osteoporosis are underway, which will fill the gap of clinical data. Although MSCs tend to be effective to treat osteoporosis, the urgent issues of safety, transplant efficiency and standardization of the manufacturing process have to be settled. Moreover, a comprehensive evaluation of clinical trials, including safety and efficacy, is still needed as an important basis for clinical translation.
Collapse
Affiliation(s)
- Yuhe Jiang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNational Engineering Laboratory for Digital and Material Technology of StomatologyNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyBeijingP.R. China
| | - Ping Zhang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNational Engineering Laboratory for Digital and Material Technology of StomatologyNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyBeijingP.R. China
| | - Xiao Zhang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNational Engineering Laboratory for Digital and Material Technology of StomatologyNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyBeijingP.R. China
| | - Longwei Lv
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNational Engineering Laboratory for Digital and Material Technology of StomatologyNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyBeijingP.R. China
| | - Yongsheng Zhou
- Department of ProsthodonticsPeking University School and Hospital of StomatologyNational Engineering Laboratory for Digital and Material Technology of StomatologyNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyBeijingP.R. China
| |
Collapse
|
48
|
Alcorta-Sevillano N, Macías I, Infante A, Rodríguez CI. Deciphering the Relevance of Bone ECM Signaling. Cells 2020; 9:E2630. [PMID: 33297501 PMCID: PMC7762413 DOI: 10.3390/cells9122630] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Bone mineral density, a bone matrix parameter frequently used to predict fracture risk, is not the only one to affect bone fragility. Other factors, including the extracellular matrix (ECM) composition and microarchitecture, are of paramount relevance in this process. The bone ECM is a noncellular three-dimensional structure secreted by cells into the extracellular space, which comprises inorganic and organic compounds. The main inorganic components of the ECM are calcium-deficient apatite and trace elements, while the organic ECM consists of collagen type I and noncollagenous proteins. Bone ECM dynamically interacts with osteoblasts and osteoclasts to regulate the formation of new bone during regeneration. Thus, the composition and structure of inorganic and organic bone matrix may directly affect bone quality. Moreover, proteins that compose ECM, beyond their structural role have other crucial biological functions, thanks to their ability to bind multiple interacting partners like other ECM proteins, growth factors, signal receptors and adhesion molecules. Thus, ECM proteins provide a complex network of biochemical and physiological signals. Herein, we summarize different ECM factors that are essential to bone strength besides, discussing how these parameters are altered in pathological conditions related with bone fragility.
Collapse
Affiliation(s)
| | | | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| |
Collapse
|
49
|
Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int J Mol Sci 2020; 21:ijms21207597. [PMID: 33066607 PMCID: PMC7589189 DOI: 10.3390/ijms21207597] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors-in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins-not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.
Collapse
|
50
|
Strong AL, Spreadborough PJ, Pagani CA, Haskins RM, Dey D, Grimm PD, Kaneko K, Marini S, Huber AK, Hwang C, Westover K, Mishina Y, Bradley MJ, Levi B, Davis TA. Small molecule inhibition of non-canonical (TAK1-mediated) BMP signaling results in reduced chondrogenic ossification and heterotopic ossification in a rat model of blast-associated combat-related lower limb trauma. Bone 2020; 139:115517. [PMID: 32622875 PMCID: PMC7945876 DOI: 10.1016/j.bone.2020.115517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Heterotopic ossification (HO) is defined as ectopic bone formation around joints and in soft tissues following trauma, particularly blast-related extremity injuries, thermal injuries, central nerve injuries, or orthopaedic surgeries, leading to increased pain and diminished quality of life. Current treatment options include pharmacotherapy with non-steroidal anti-inflammatory drugs, radiotherapy, and surgical excision, but these treatments have limited efficacy and have associated complication profiles. In contrast, small molecule inhibitors have been shown to have higher specificity and less systemic cytotoxicity. Previous studies have shown that bone morphogenetic protein (BMP) signaling and downstream non-canonical (SMAD-independent) BMP signaling mediated induction of TGF-β activated kinase-1 (TAK1) contributes to HO. In the current study, small molecule inhibition of TAK1, NG-25, was evaluated for its efficacy in limiting ectopic bone formation following a rat blast-associated lower limb trauma and a murine burn tenotomy injury model. A significant decrease in total HO volume in the rat blast injury model was observed by microCT imaging with no systemic complications following NG-25 therapy. Furthermore, tissue-resident mesenchymal progenitor cells (MPCs) harvested from rats treated with NG-25 demonstrated decreased proliferation, limited osteogenic differentiation capacity, and reduced gene expression of Tac1, Col10a1, Ibsp, Smad3, and Sox2 (P < 0.05). Single cell RNA-sequencing of murine cells harvested from the injury site in a burn tenotomy injury model showed increased expression of these genes in MPCs during stages of chondrogenic differentiation. Additional in vitro cell cultures of murine tissue-resident MPCs and osteochondrogenic progenitors (OCPs) treated with NG-25 demonstrated reduced chondrogenic differentiation by 10.2-fold (P < 0.001) and 133.3-fold (P < 0.001), respectively, as well as associated reduction in chondrogenic gene expression. Induction of HO in Tak1 knockout mice demonstrated a 7.1-fold (P < 0.001) and 2.7-fold reduction (P < 0.001) in chondrogenic differentiation of murine MPCs and OCPs, respectively, with reduced chondrogenic gene expression. Together, our in vivo models and in vitro cell culture studies demonstrate the importance of TAK1 signaling in chondrogenic differentiation and HO formation and suggest that small molecule inhibition of TAK1 is a promising therapy to limit the formation and progression of HO.
Collapse
Affiliation(s)
- Amy L Strong
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Philip J Spreadborough
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States of America; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America; Academic Department of Military Surgery and Trauma, Royal Centre for Defense Medicine, Birmingham, United Kingdom
| | - Chase A Pagani
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Ryan M Haskins
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Devaveena Dey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States of America; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Patrick D Grimm
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States of America; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Keiko Kaneko
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Simone Marini
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Amanda K Huber
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Charles Hwang
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Kenneth Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States of America
| | - Yuji Mishina
- Department of Biologic and Materials Science and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States of America
| | - Matthew J Bradley
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States of America; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Benjamin Levi
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America.
| | - Thomas A Davis
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States of America; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America.
| |
Collapse
|