1
|
Ferraresso M, Bailey S, Alonso‐Crisostomo L, Ward D, Panayi C, Scurlock ZGL, Saini HK, Smith SP, Nicholson JC, Enright AJ, Scarpini CG, Coleman N, Murray MJ. Replenishing co-downregulated miR-100-5p and miR-125b-5p in malignant germ cell tumors causes growth inhibition through cell cycle disruption. Mol Oncol 2025; 19:1203-1228. [PMID: 39522951 PMCID: PMC11977657 DOI: 10.1002/1878-0261.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/12/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
MicroRNAs (miRNAs) are short, nonprotein-coding RNAs, and their expression is dysregulated in malignant germ cell tumors (GCTs). Here, we investigated the causes and consequences of downregulated miR-99a-5p/miR-100-5p (functionally identical) and miR-125b-5p levels in malignant GCTs regardless of age, site, or subtype. Quantitative RT-PCR was used to assess miR-99a-5p/miR-100-5p, miR-125b-5p, and associated gene expression in malignant GCT tissues/cell lines [seminoma (Sem), yolk sac tumor (YST), embryonal carcinoma (EC)]. Cells were treated with demethylating 5-azacytidine and pyrosequencing was performed. Combination miR-100-5p/miR-125b-5p mimic replenishment was used to treat malignant GCT cells. Global messenger RNA (mRNA) targets of the replenished miRNAs were identified and Metascape used to study pathway effects. We found that expression levels of miR-99a-5p/miR-100-5p and miR-125b-5p, their respective pri-miRNAs, and associated genes from chromosomes 11 and 21 (chr11/chr21) were downregulated and highly correlated in malignant GCT cells. Treatment with 5-azacytidine caused upregulation of these miRNAs, with pyrosequencing revealing hypermethylation of their chr11/chr21 loci, likely contributing to miR-100-5p/miR-125b-5p downregulation. Combination miR-100-5p/miR-125b-5p mimic replenishment resulted in growth inhibition in Sem/YST cells, with miR-100-5p/miR-125b-5p mRNA targets enriched in downregulated genes, which were involved in cell cycle (confirmed by flow cytometry) and signaling pathways. Knockdown of the miR-100-5p/miR-125b-5p target tripartite motif containing 71 (TRIM71kd) recapitulated miR-100-5p/miR-125b-5p replenishment, with growth inhibition and cell cycle disruption of Sem/YST/EC cells. Further, replenishment led to reduced lin-28 homolog A (LIN28A) levels and concomitant increases in let-7 (MIRLET7B) tumor suppressor miRNAs, creating a sustained reversion of cell phenotype. In summary, combination miR-100-5p/miR-125b-5p mimic replenishment or TRIM71kd caused growth inhibition in malignant GCT cells via cell cycle disruption. Further studies are now warranted, including mimic treatment alongside conventional platinum-based chemotherapy.
Collapse
Affiliation(s)
| | | | | | - Dawn Ward
- Department of PathologyUniversity of CambridgeUK
| | | | | | | | | | - James C. Nicholson
- Department of PaediatricsUniversity of Cambridge, Cambridge University Hospitals NHS Foundation TrustUK
- Department of Paediatric Haematology and OncologyCambridge University Hospitals NHS Foundation TrustUK
| | | | | | - Nicholas Coleman
- Department of PathologyUniversity of CambridgeUK
- Department of HistopathologyCambridge University Hospitals NHS Foundation TrustUK
| | - Matthew J. Murray
- Department of PathologyUniversity of CambridgeUK
- Department of Paediatric Haematology and OncologyCambridge University Hospitals NHS Foundation TrustUK
| |
Collapse
|
2
|
Mangla M, Palo S, Kanikaram P, Kaur H. Non-gestational choriocarcinoma: unraveling the similarities and distinctions from its gestational counterpart. Int J Gynecol Cancer 2024; 34:926-934. [PMID: 38123189 DOI: 10.1136/ijgc-2023-004906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Choriocarcinoma is a highly vascular and invasive tumor of anaplastic trophoblast, predominantly made up of cytotrophoblasts and syncytiotrophoblasts without villi. Based on its origin, choriocarcinoma can be either gestational or non-gestational. Non-gestational choriocarcinoma can be of germ cell origin, or can be seen in association with a somatic high-grade malignancy. It is difficult to differentiate gestational from non-gestational choriocarcinoma, especially in the reproductive age group. It is important to distinguish between the two, for accurate staging and prognostication, deciding the primary treatment modality, (ie, surgery or chemotherapy), and tailoring follow-up timeframes after diagnosis. An extensive literature search was performed regarding all cases of non-gestational choriocarcinoma, published before March 2023. A note was made of whether the origin of choriocarcinoma was ascertained and how gestational choriocarcinoma was differentiated from non-gestational choriocarcinoma. The keywords used for literature search were "non-gestational choriocarcinoma", "primary choriocarcinoma", "ovarian choriocarcinoma", "ovarian germ cell tumors", or "choriocarcinomatous differentiation". This review aims to summarize the similarities and differences in the epidemiology, pathogenesis, clinical presentation, and management guidelines between gestational and non-gestational choriocarcinoma, which can form an important educational resource for clinicians and laboratory physicians dealing with such cases.
Collapse
Affiliation(s)
- Mishu Mangla
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences - Bibinagar, Hyderabad, Telangana, India
| | - Seetu Palo
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences - Bibinagar, Hyderabad, Telangana, India
| | - Poojitha Kanikaram
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences - Bibinagar, Hyderabad, Telangana, India
| | - Harpreet Kaur
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences - Bilaspur, Bilaspur, Himachal Pradesh, India
| |
Collapse
|
3
|
Testicular germ cell tumors: Genomic alternations and RAS-dependent signaling. Crit Rev Oncol Hematol 2023; 183:103928. [PMID: 36717007 DOI: 10.1016/j.critrevonc.2023.103928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are a common malignancy occurring in young adult men. The various genetic risk factors have been suggested to contribute to TGCT pathogenesis, however, they have a distinct mutational profile with a low rate of somatic point mutations, more frequent chromosomal gains, and aneuploidy. The most frequently mutated oncogenes in human cancers are RAS oncogenes, while their impact on testicular carcinogenesis and refractory disease is still poorly understood. In this mini-review, we summarize current knowledge on genetic alternations of RAS signaling-associated genes (the single nucleotide polymorphisms and point mutations) in this particular cancer type and highlight their link to chemotherapy resistance mechanisms. We also mention the impact of epigenetic changes on TGCT progression. Lastly, we propose a model for RAS-dependent signaling networks, regulation, cross-talks, and outcomes in TGCTs.
Collapse
|
4
|
Nicu AT, Medar C, Chifiriuc MC, Gradisteanu Pircalabioru G, Burlibasa L. Epigenetics and Testicular Cancer: Bridging the Gap Between Fundamental Biology and Patient Care. Front Cell Dev Biol 2022; 10:861995. [PMID: 35465311 PMCID: PMC9023878 DOI: 10.3389/fcell.2022.861995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 11/15/2022] Open
Abstract
Testicular cancer is the most common solid tumor affecting young males. Most testicular cancers are testicular germ cell tumors (TGCTs), which are divided into seminomas (SGCTs) and non-seminomatous testicular germ cell tumors (NSGCTs). During their development, primordial germ cells (PGCs) undergo epigenetic modifications and any disturbances in their pattern might lead to cancer development. The present study provides a comprehensive review of the epigenetic mechanisms–DNA methylation, histone post-translational modifications, bivalent marks, non-coding RNA–associated with TGCT susceptibility, initiation, progression and response to chemotherapy. Another important purpose of this review is to highlight the recent investigations regarding the identification and development of epigenetic biomarkers as powerful tools for the diagnostic, prognostic and especially for epigenetic-based therapy.
Collapse
Affiliation(s)
- Alina-Teodora Nicu
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Genetics, University of Bucharest, Bucharest, Romania
| | - Cosmin Medar
- University of Medicine and Pharmacy “Carol Davila”, Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest (ICUB), Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | | | - Liliana Burlibasa
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Genetics, University of Bucharest, Bucharest, Romania
| |
Collapse
|
5
|
Lobo J, van Zogchel LMJ, Nuru MG, Gillis AJM, van der Schoot CE, Tytgat GAM, Looijenga LHJ. Combining Hypermethylated RASSF1A Detection Using ddPCR with miR-371a-3p Testing: An Improved Panel of Liquid Biopsy Biomarkers for Testicular Germ Cell Tumor Patients. Cancers (Basel) 2021; 13:5228. [PMID: 34680375 PMCID: PMC8534014 DOI: 10.3390/cancers13205228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022] Open
Abstract
The classical serum tumor markers used routinely in the management of testicular germ cell tumor (TGCT) patients-alpha fetoprotein (AFP) and human chorionic gonadotropin (HCG)-show important limitations. miR-371a-3p is the most recent promising biomarker for TGCTs, but it is not sufficiently informative for detection of teratoma, which is therapeutically relevant. We aimed to test the feasibility of hypermethylated RASSF1A (RASSF1AM) detected in circulating cell-free DNA as a non-invasive diagnostic marker of testicular germ cell tumors, combined with miR-371a-3p. A total of 109 serum samples of patients and 29 sera of healthy young adult males were included, along with representative cell lines and tumor tissue samples. We describe a novel droplet digital polymerase chain reaction (ddPCR) method for quantitatively assessing RASSF1AM in liquid biopsies. Both miR-371a-3p (sensitivity = 85.7%) and RASSF1AM (sensitivity = 86.7%) outperformed the combination of AFP and HCG (sensitivity = 65.5%) for TGCT diagnosis. RASSF1AM detected 88% of teratomas. In this representative cohort, 14 cases were negative for miR-371a-3p, all of which were detected by RASSF1AM, resulting in a combined sensitivity of 100%. We have described a highly sensitive and specific panel of biomarkers for TGCT patients, to be validated in the context of patient follow-up and detection of minimal residual disease.
Collapse
Affiliation(s)
- João Lobo
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (J.L.); (L.M.J.v.Z.); (A.J.M.G.)
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Lieke M. J. van Zogchel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (J.L.); (L.M.J.v.Z.); (A.J.M.G.)
- Department of Experimental Immunohematology, Sanquin Research Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (M.G.N.); (C.E.v.d.S.)
| | - Mohammed G. Nuru
- Department of Experimental Immunohematology, Sanquin Research Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (M.G.N.); (C.E.v.d.S.)
| | - Ad J. M. Gillis
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (J.L.); (L.M.J.v.Z.); (A.J.M.G.)
| | - C. Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (M.G.N.); (C.E.v.d.S.)
| | - Godelieve A. M. Tytgat
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (J.L.); (L.M.J.v.Z.); (A.J.M.G.)
| | - Leendert H. J. Looijenga
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (J.L.); (L.M.J.v.Z.); (A.J.M.G.)
- Lab. for Exp. Patho-Oncology (LEPO), Department of Pathology, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
6
|
Raos D, Ulamec M, Katusic Bojanac A, Bulic-Jakus F, Jezek D, Sincic N. Epigenetically inactivated RASSF1A as a tumor biomarker. Bosn J Basic Med Sci 2021; 21:386-397. [PMID: 33175673 PMCID: PMC8292865 DOI: 10.17305/bjbms.2020.5219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
RASSF1A, one of the eight isoforms of the RASSF1 gene, is a tumor suppressor gene that influences tumor initiation and development. In cancer, RASSF1A is frequently inactivated by mutations, loss of heterozygosity, and, most commonly, by promoter hypermethylation. Epigenetic inactivation of RASSF1A was detected in various cancer types and led to significant interest; current research on RASSF1A promoter methylation focuses on its roles as an epigenetic tumor biomarker. Typically, researchers analyzed genomic DNA (gDNA) to measure the amount of RASSF1A promoter methylation. Cell-free DNA (cfDNA) from liquid biopsies is a recent development showing promise as an early cancer diagnostic tool using biomarkers, such as RASSF1A. This review discusses the evidence on aberrantly methylated RASSF1A in gDNA and cfDNA from different cancer types and its utility for early cancer diagnosis, prognosis, and surveillance. We compared methylation frequencies of RASSF1A in gDNA and cfDNA in various cancer types. The weaknesses and strengths of these analyses are discussed. In conclusion, although the importance of RASSSF1A methylation to cancer has been established and is included in several diagnostic panels, its diagnostic utility is still experimental.
Collapse
Affiliation(s)
- Dora Raos
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Group for Research on Epigenetic Biomarkers, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Monika Ulamec
- Scientific Group for Research on Epigenetic Biomarkers, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia; Department of Pathology, University of Zagreb School of Dental Medicine and School of Medicine, Zagreb, Croatia
| | - Ana Katusic Bojanac
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Floriana Bulic-Jakus
- University of Zagreb School of Medicine, Department of Medical Biology, Zagreb, Croatia
| | - Davor Jezek
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nino Sincic
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Group for Research on Epigenetic Biomarkers, University of Zagreb School of Medicine, Zagreb, Croatia; Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
7
|
Lobo J, Leão R, Jerónimo C, Henrique R. Liquid Biopsies in the Clinical Management of Germ Cell Tumor Patients: State-of-the-Art and Future Directions. Int J Mol Sci 2021; 22:ijms22052654. [PMID: 33800799 PMCID: PMC7961393 DOI: 10.3390/ijms22052654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Liquid biopsies constitute a minimally invasive means of managing cancer patients, entailing early diagnosis, follow-up and prediction of response to therapy. Their use in the germ cell tumor field is invaluable since diagnostic tissue biopsies (which are invasive) are often not performed, and therefore only a presumptive diagnosis can be made, confirmed upon examination of the surgical specimen. Herein, we provide an overall review of the current liquid biopsy-based biomarkers of this disease, including the classical, routinely used serum tumor markers—the promising microRNAs rapidly approaching the introduction into clinical practice—but also cell-free DNA markers (including DNA methylation) and circulating tumor cells. Finally, and importantly, we also explore novel strategies and challenges for liquid biopsy markers and methodologies, providing a critical view of the future directions for liquid biopsy tests in this field, highlighting gaps and unanswered questions.
Collapse
Affiliation(s)
- João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Ricardo Leão
- Faculty of Medicine, University of Coimbra, Rua Larga, 3000-370 Coimbra, Portugal;
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Correspondence: (C.J.); (R.H.); Tel.: +351-22-225084000 (C.J. & R.H.); Fax: +351-22-5084199 (C.J. & R.H.)
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Correspondence: (C.J.); (R.H.); Tel.: +351-22-225084000 (C.J. & R.H.); Fax: +351-22-5084199 (C.J. & R.H.)
| |
Collapse
|
8
|
Ahmad F, Surve P, Natarajan S, Patil A, Pol S, Patole K, Das BR. Aberrant epigenetic inactivation of RASSF1A and MGMT gene and genetic mutations of KRAS, cKIT and BRAF in Indian testicular germ cell tumours. Cancer Genet 2020; 241:42-50. [PMID: 31653608 DOI: 10.1016/j.cancergen.2019.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
Abstract
Testicular germ cell tumor (TGCT) development may involve a series of modification at epigenetic and genetic level which may act synergistically and transform the primordial gonocyte. This study evaluated the frequency and distribution pattern of RASSF1A/MGMT gene methylation and KRAS, BRAF and cKIT gene mutation in Indian TGCT patient, and their correlation with clinicopathological features. Forty-one TGCT tumors were used to investigate hypermethylation of RASSF1A and MGMT gene and mutations of KRAS codon 12/13, BRAF V600E and cKIT exon 17 mutations. RASSF1A and MGMT methylation was noted in 58.5% and 10% of the TGCTs. A higher frequency of RASSF1A methylation was noted in seminomas (71%, 17/24), while MGMT methylation was frequent in mixed tumors (23%, 3/13). Interestingly, 3 of 41 cases showed concurrent methylation of both the genes. The absence of tumor necrosis was significantly associated with increased frequency of MGMT hypermethylation (30% vs. 3%, p = 0.03). KRAS mutation was identified in 17% (7/41), while none showed BRAF and cKIT mutation. KRAS mutations were predominantly found in codon 12 with G12V as the most recurrent mutations. Mixed germ tumors tends to show increased frequency of KRAS mutation (31%, 4/13), followed by pure seminomas (4%, 1/24). Interestingly, KRAS mutation rate was significantly higher in metastatic tumors in comparison to primary tumors (100% vs. 13%, p = 0.02). No other association of RASSF1A/MGMT/KRAS alterations with other clinicopathological features was noted. In conclusion, these data support the notion that the cancer-associated alterations in the RASSF1, MGMT and KRAS gene may significantly contribute to TGCT pathogenesis.
Collapse
Affiliation(s)
- Firoz Ahmad
- Research and Development Division, SRL Ltd, Plot no. 1, Prime Square Building, S.V. Road, Goregaon (W), Mumbai, India
| | - Purva Surve
- Research and Development Division, SRL Ltd, Plot no. 1, Prime Square Building, S.V. Road, Goregaon (W), Mumbai, India
| | - Sripriya Natarajan
- Research and Development Division, SRL Ltd, Plot no. 1, Prime Square Building, S.V. Road, Goregaon (W), Mumbai, India
| | - Ashwini Patil
- Research and Development Division, SRL Ltd, Plot no. 1, Prime Square Building, S.V. Road, Goregaon (W), Mumbai, India
| | - Smita Pol
- Histopathology Division, SRL Ltd, Plot no. 1, Prime Square Building, S.V. Road, Goregaon (W), Mumbai, India
| | - Kamlakar Patole
- Histopathology Division, SRL Ltd, Plot no. 1, Prime Square Building, S.V. Road, Goregaon (W), Mumbai, India
| | - Bibhu Ranjan Das
- Research and Development Division, SRL Ltd, Plot no. 1, Prime Square Building, S.V. Road, Goregaon (W), Mumbai, India.
| |
Collapse
|
9
|
García-Gutiérrez L, McKenna S, Kolch W, Matallanas D. RASSF1A Tumour Suppressor: Target the Network for Effective Cancer Therapy. Cancers (Basel) 2020; 12:cancers12010229. [PMID: 31963420 PMCID: PMC7017281 DOI: 10.3390/cancers12010229] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
The RASSF1A tumour suppressor is a scaffold protein that is involved in cell signalling. Increasing evidence shows that this protein sits at the crossroad of a complex signalling network, which includes key regulators of cellular homeostasis, such as Ras, MST2/Hippo, p53, and death receptor pathways. The loss of expression of RASSF1A is one of the most common events in solid tumours and is usually caused by gene silencing through DNA methylation. Thus, re-expression of RASSF1A or therapeutic targeting of effector modules of its complex signalling network, is a promising avenue for treating several tumour types. Here, we review the main modules of the RASSF1A signalling network and the evidence for the effects of network deregulation in different cancer types. In particular, we summarise the epigenetic mechanism that mediates RASSF1A promoter methylation and the Hippo and RAF1 signalling modules. Finally, we discuss different strategies that are described for re-establishing RASSF1A function and how a multitargeting pathway approach selecting druggable nodes in this network could lead to new cancer treatments.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
| | - Stephanie McKenna
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Correspondence:
| |
Collapse
|
10
|
Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Rep 2019; 23:3392-3406. [PMID: 29898407 PMCID: PMC6075738 DOI: 10.1016/j.celrep.2018.05.039] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 03/09/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
We studied 137 primary testicular germ cell tumors (TGCTs) using high-dimensional assays of genomic, epigenomic, transcriptomic, and proteomic features. These tumors exhibited high aneuploidy and a paucity of somatic mutations. Somatic mutation of only three genes achieved significance-KIT, KRAS, and NRAS-exclusively in samples with seminoma components. Integrated analyses identified distinct molecular patterns that characterized the major recognized histologic subtypes of TGCT: seminoma, embryonal carcinoma, yolk sac tumor, and teratoma. Striking differences in global DNA methylation and microRNA expression between histology subtypes highlight a likely role of epigenomic processes in determining histologic fates in TGCTs. We also identified a subset of pure seminomas defined by KIT mutations, increased immune infiltration, globally demethylated DNA, and decreased KRAS copy number. We report potential biomarkers for risk stratification, such as miRNA specifically expressed in teratoma, and others with molecular diagnostic potential, such as CpH (CpA/CpC/CpT) methylation identifying embryonal carcinomas.
Collapse
|
11
|
Predicting Gonadal Germ Cell Cancer in People with Disorders of Sex Development; Insights from Developmental Biology. Int J Mol Sci 2019; 20:ijms20205017. [PMID: 31658757 PMCID: PMC6834166 DOI: 10.3390/ijms20205017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 01/03/2023] Open
Abstract
The risk of gonadal germ cell cancer (GGCC) is increased in selective subgroups, amongst others, defined patients with disorders of sex development (DSD). The increased risk is due to the presence of part of the Y chromosome, i.e., GonadoBlastoma on Y chromosome GBY region, as well as anatomical localization and degree of testicularization and maturation of the gonad. The latter specifically relates to the germ cells present being at risk when blocked in an embryonic stage of development. GGCC originates from either germ cell neoplasia in situ (testicular environment) or gonadoblastoma (ovarian-like environment). These precursors are characterized by presence of the markers OCT3/4 (POU5F1), SOX17, NANOG, as well as TSPY, and cKIT and its ligand KITLG. One of the aims is to stratify individuals with an increased risk based on other parameters than histological investigation of a gonadal biopsy. These might include evaluation of defined susceptibility alleles, as identified by Genome Wide Association Studies, and detailed evaluation of the molecular mechanism underlying the DSD in the individual patient, combined with DNA, mRNA, and microRNA profiling of liquid biopsies. This review will discuss the current opportunities as well as limitations of available knowledge in the context of predicting the risk of GGCC in individual patients.
Collapse
|
12
|
|
13
|
Wang Y, Gray DR, Robbins AK, Crowgey EL, Chanock SJ, Greene MH, McGlynn KA, Nathanson K, Turnbull C, Wang Z, Devoto M, Barthold JS. Subphenotype meta-analysis of testicular cancer genome-wide association study data suggests a role for RBFOX family genes in cryptorchidism susceptibility. Hum Reprod 2019; 33:967-977. [PMID: 29618007 DOI: 10.1093/humrep/dey066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/09/2018] [Indexed: 12/25/2022] Open
Abstract
STUDY QUESTION Can subphenotype analysis of genome-wide association study (GWAS) data from subjects with testicular germ cell tumor (TGCT) provide insight into cryptorchidism (undescended testis, UDT) susceptibility? SUMMARY ANSWER Suggestive intragenic GWAS signals common to UDT, TGCT case-case and TGCT case-control analyses occur in genes encoding RBFOX RNA-binding proteins (RBPs) and their neurodevelopmental targets. WHAT IS KNOWN ALREADY UDT is a strong risk factor for TGCT, but while genetic risk factors for TGCT are well-known, genetic susceptibility to UDT is poorly understood and appears to be more complex. STUDY DESIGN, SIZE, DURATION We performed a secondary subphenotype analysis of existing GWAS data from the Testicular Cancer Consortium (TECAC) and compared these results with our previously published UDT GWAS data, and with data previously acquired from studies of the fetal rat gubernaculum. PARTICIPANTS/MATERIALS, SETTING, METHODS Studies from the National Cancer Institute (NCI), United Kingdom (UK) and University of Pennsylvania (Penn) that enrolled white subjects were the source of the TGCT GWAS data. We completed UDT subphenotype case-case (TGCT/UDT vs TGCT/non-UDT) and case-control (TGCT/UDT vs control), collectively referred to as 'TECAC' analyses, followed by a meta-analysis comprising 129 TGCT/UDT cases, 1771 TGCT/non-UDT cases, and 3967 unaffected controls. We reanalyzed our UDT GWAS results comprising 844 cases and 2718 controls by mapping suggestive UDT and TECAC signals (defined as P < 0.001) to genes using Ingenuity Pathway Analysis (IPA®). We compared associated pathways and enriched gene categories common to all analyses after Benjamini-Hochberg multiple testing correction, and analyzed transcript levels and protein expression using qRT-PCR and rat fetal gubernaculum confocal imaging, respectively. MAIN RESULTS AND THE ROLE OF CHANCE We found suggestive signals within 19 genes common to all three analyses, including RBFOX1 and RBFOX3, neurodevelopmental paralogs that encode RBPs targeting (U)GCATG-containing transcripts. Ten of the 19 genes participate in neurodevelopment and/or contribute to risk of neurodevelopmental disorders. Experimentally predicted RBFOX gene targets were strongly overrepresented among suggestive intragenic signals for the UDT (117 of 628 (19%), P = 3.5 × 10-24), TECAC case-case (129 of 711 (18%), P = 2.5 × 10-27) and TECAC case-control (117 of 679 (17%), P = 2 × 10-21) analyses, and a majority of the genes common to all three analyses (12 of 19 (63%), P = 3 × 10-9) are predicted RBFOX targets. Rbfox1, Rbfox2 and their encoded proteins are expressed in the rat fetal gubernaculum. Predicted RBFOX targets are also enriched among transcripts differentially regulated in the fetal gubernaculum during normal development (P = 3 × 10-31), in response to in vitro hormonal stimulation (P = 5 × 10-45) and in the cryptorchid LE/orl rat (P = 2 × 10-42). LARGE SCALE DATA GWAS data included in this study are available in the database of Genotypes and Phenotypes (dbGaP accession numbers phs000986.v1.p1 and phs001349.v1p1). LIMITATIONS, REASONS FOR CAUTION These GWAS data did not reach genome-wide significance for any individual analysis. UDT appears to have a complex etiology that also includes environmental factors, and such complexity may require much larger sample sizes than are currently available. The current methodology may also introduce bias that favors false discovery of larger genes. WIDER IMPLICATIONS OF THE FINDINGS Common suggestive intragenic GWAS signals suggest that RBFOX paralogs and other neurodevelopmental genes are potential UDT risk candidates, and potential TGCT susceptibility modifiers. Enrichment of predicted RBFOX targets among differentially expressed transcripts in the fetal gubernaculum additionally suggests a role for this RBP family in regulation of testicular descent. As RBFOX proteins regulate alternative splicing of Calca to generate calcitonin gene-related peptide, a protein linked to development and function of the gubernaculum, additional studies that address the role of these proteins in UDT are warranted. STUDY FUNDING/COMPETING INTEREST(S) The Eunice Kennedy Shriver National Institute for Child Health and Human Development (R01HD060769); National Center for Research Resources (P20RR20173), National Institute of General Medical Sciences (P20GM103464), Nemours Biomedical Research, the Testicular Cancer Consortium (U01CA164947), the Intramural Research Program of the NCI, a support services contract HHSN26120130003C with IMS, Inc., the Abramson Cancer Center at Penn, National Cancer Institute (CA114478), the Institute of Cancer Research, UK and the Wellcome Trust Case-Control Consortium (WTCCC) 2. None of the authors reports a conflict of interest.
Collapse
Affiliation(s)
- Yanping Wang
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Dione R Gray
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Alan K Robbins
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Erin L Crowgey
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Katherine Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Zhaoming Wang
- St. Jude Children's Research Hospital, Department of Computational Biology, Memphis, TN, USA
| | - Marcella Devoto
- Division of Genetics, Children's Hospital of Philadelphia and Departments of Biostatistics and Epidemiology, and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | | |
Collapse
|
14
|
Chovanec M, Albany C, Mego M, Montironi R, Cimadamore A, Cheng L. Emerging Prognostic Biomarkers in Testicular Germ Cell Tumors: Looking Beyond Established Practice. Front Oncol 2018; 8:571. [PMID: 30547014 PMCID: PMC6280583 DOI: 10.3389/fonc.2018.00571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/14/2018] [Indexed: 11/21/2022] Open
Abstract
Testicular germ cell tumors are unique among solid cancers. Historically, this disease was deadly if progressed beyond the stage I. The implementation of cisplatin-based chemotherapy regimens has drastically changed the clinical outcome of metastatic testicular cancer. Several biomarkers were established to refine the prognosis by International Germ Cell Collaborative Group in 1997. Among these, the most significant were primary tumor site; metastatic sites, such as non-pulmonary visceral metastases; and the amplitude of serum tumor markers α-fetoprotein, β-chorionic gonadotropin, and lactate dehydrogenase. Since then, oncology has experienced discoveries of various molecular biomarkers to further refine the prognosis and treatment of malignancies. However, the ability to predict the prognosis and treatment response in germ cell tumors did not improve for many years. Clinical trials with novel targeting agents that were conducted in refractory germ cell tumor patients have proven to have negative outcomes. With the recent advances and developments, novel biomarkers emerge in the field of germ cell tumor oncology. This review article aims to summarize the current knowledge in the research of novel prognostic biomarkers in testicular germ cell tumors.
Collapse
Affiliation(s)
- Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
- Division of Hematology and Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, United States
| | - Costantine Albany
- Division of Hematology and Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, United States
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
15
|
Costa AL, Moreira-Barbosa C, Lobo J, Vilela-Salgueiro B, Cantante M, Guimarães R, Lopes P, Braga I, Oliveira J, Antunes L, Henrique R, Jerónimo C. DNA methylation profiling as a tool for testicular germ cell tumors subtyping. Epigenomics 2018; 10:1511-1523. [PMID: 30418048 DOI: 10.2217/epi-2018-0034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Assess differential patterns of selected five genes' promoter methylation among testicular germ cell tumors (TGCT) subtypes. MATERIALS & METHODS CRIPTO, HOXA9, MGMT, RASSF1A and SCGB3A1 promoter methylation levels were evaluated by quantitative methylation-specific PCR in 161 TGCT and 16 controls. Associations between clinicopathological parameters and promoter methylation levels were assessed, and receiver operating characteristics curve analysis was performed. RESULTS Promoter methylation of CRIPTO/HOXA9/SCGB3A1 panel and RASSF1A best discriminated between controls and nonseminomatous tumors or seminomas, respectively, whereas HOXA9/RASSF1A panel displayed the best discriminative performance between nonseminomatous tumor and seminomas. Significant differences in CRIPTO, MGMT and RASSF1A methylation levels were depicted between pure forms and matched mixed components of seminomas and embryonal carcinoma. HOXA9, RASSF1A and SCGB3A1 promoter methylation significantly associated with tumor stage. CONCLUSION Different combinations of five genes' promoter methylation levels discriminate among TGCT subtypes. Methylation patterns may also assist in identification of more clinically aggressive tumors.
Collapse
Affiliation(s)
- Ana L Costa
- Cancer Biology & Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar - University of Porto (ICBAS-UP), Porto, Portugal
| | - Catarina Moreira-Barbosa
- Cancer Biology & Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - João Lobo
- Cancer Biology & Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology & Molecular Immunology, Institute of Biomedical Sciences Abel Salazar - University of Porto (ICBAS-UP), Porto, Portugal
| | - Bárbara Vilela-Salgueiro
- Cancer Biology & Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Mariana Cantante
- Cancer Biology & Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Rita Guimarães
- Cancer Biology & Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Paula Lopes
- Cancer Biology & Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Isaac Braga
- Department of Urology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Jorge Oliveira
- Department of Urology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Luís Antunes
- Department of Epidemiology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology & Molecular Immunology, Institute of Biomedical Sciences Abel Salazar - University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology & Molecular Immunology, Institute of Biomedical Sciences Abel Salazar - University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
16
|
Markulin D, Vojta A, Samaržija I, Gamulin M, Bečeheli I, Jukić I, Maglov Č, Zoldoš V, Fučić A. Association Between RASSF1A Promoter Methylation and Testicular Germ Cell Tumor: A Meta-analysis and a Cohort Study. Cancer Genomics Proteomics 2018; 14:363-372. [PMID: 28871003 DOI: 10.21873/cgp.20046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/05/2017] [Accepted: 08/08/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The RAS association domain family protein 1a (RASSF1A) is a prominent tumor suppressor gene showing altered promoter methylation in testicular germ cell tumors (TGCT). RASSF1A promoter hypermethylation might represent an early event in TGCT tumorigenesis. We investigated whether the RASSF1A promoter methylation in peripheral blood of TGCT patients can be associated with testicular cancer risk. MATERIALS AND METHODS Following a meta-analysis, we performed a cohort study including 32 testicular cancer patients and 32 healthy controls. Promoter methylation of the RASSF1A and O6-methylguanine-DNA-methyltransferase (MGMT) genes was analyzed using bisulfite pyrosequencing of DNA from peripheral blood. RESULTS Meta-analysis showed an odds ratio (OR) of 7.69 for RASSF1A promoter methylation as a risk factor for TGCT. Cohort study found altered methylation of the RASSF1A promoter in blood of TGCT patients. Methylation was higher in TGCT patients before BEP chemotherapy. CONCLUSION The meta-analysis indicates a role of the RASSF1A promoter hypermethylation from peripheral blood in TCGT. We confirmed that finding in our cohort study, which represents the first report of changed RASSF1A promoter methylation in peripheral blood TGCT.
Collapse
Affiliation(s)
- Dora Markulin
- University of Zagreb, Faculty of Science, Department of Biology, Division of Molecular Biology, Zagreb, Croatia
| | - Aleksandar Vojta
- University of Zagreb, Faculty of Science, Department of Biology, Division of Molecular Biology, Zagreb, Croatia
| | - Ivana Samaržija
- University of Zagreb, Faculty of Science, Department of Biology, Division of Molecular Biology, Zagreb, Croatia
| | - Marija Gamulin
- University Hospital Centre Zagreb, Department of Oncology, Zagreb, Croatia
| | | | - Irena Jukić
- Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Čedomir Maglov
- Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Vlatka Zoldoš
- University of Zagreb, Faculty of Science, Department of Biology, Division of Molecular Biology, Zagreb, Croatia
| | - Aleksandra Fučić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
17
|
Epigenetics and testicular germ cell tumors. Gene 2018; 661:22-33. [PMID: 29605605 DOI: 10.1016/j.gene.2018.03.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/07/2018] [Accepted: 03/21/2018] [Indexed: 11/20/2022]
|
18
|
Martinelli CMDS, Lengert AVH, Cárcano FM, Silva ECA, Brait M, Lopes LF, Vidal DO. MGMT and CALCA promoter methylation are associated with poor prognosis in testicular germ cell tumor patients. Oncotarget 2016; 8:50608-50617. [PMID: 28881587 PMCID: PMC5584175 DOI: 10.18632/oncotarget.11167] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/26/2016] [Indexed: 02/05/2023] Open
Abstract
Testicular germ cell tumors (TGCT) represent the second main cause of cancer-related death in young men. Despite high cure rates, refractory disease results in poor prognosis. Epigenetic reprogramming occurs during the development of seminomas and non-seminomas. Understanding the molecular and genetic basis of these tumors would represent an important advance in the search for new TGCT molecular markers. Hence the frequency of methylation of a gene panel (VGF, MGMT, ADAMTS1, CALCA, HOXA9, CDKN2B, CDO1 and NANOG) was evaluated in 72 primary TGCT by quantitative methylation specific PCR. A high frequency of MGMT (90.9%, 20/22; p=0.019) and CALCA (90.5%, 19/21; p<0.026) methylation was associated with non-seminomatous tumors while CALCA methylation was also associated with refractory disease (47.4%, 09/19; p=0.005). Moreover, promoter methylation of both genes predicts poor clinical outcome for TGCT patients (5-year EFS: 50.5% vs 77.1%; p=0.032 for MGMT and 51.3% vs 77.0%; p=0.029 for CALCA). The findings of this study indicate that methylation of MGMT and CALCA are frequent and could be used as new molecular markers of prognosis in TGCT.
Collapse
Affiliation(s)
- Camila Maria da Silva Martinelli
- Pediatric Oncology Laboratory, Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Brazilian Childhood Germ Cell Tumor Study Group, Brazilian Pediatric Oncology Society, São Paulo, SP, Brazil
| | - André van Helvoort Lengert
- Pediatric Oncology Laboratory, Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Brazilian Childhood Germ Cell Tumor Study Group, Brazilian Pediatric Oncology Society, São Paulo, SP, Brazil
| | - Flavio Mavignier Cárcano
- Department of Clinical Oncology, Barretos Cancer Hospital, Barretos, SP, Brazil.,Barretos School of Health Sciences, Dr. Paulo Prata/FACISB, Barretos, SP, Brazil.,Brazilian Childhood Germ Cell Tumor Study Group, Brazilian Pediatric Oncology Society, São Paulo, SP, Brazil
| | - Eduardo Caetano Albino Silva
- Department of Pathology, Barretos Cancer Hospital, Barretos, SP, Brazil.,Brazilian Childhood Germ Cell Tumor Study Group, Brazilian Pediatric Oncology Society, São Paulo, SP, Brazil
| | - Mariana Brait
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luiz Fernando Lopes
- Barretos School of Health Sciences, Dr. Paulo Prata/FACISB, Barretos, SP, Brazil.,Barretos Children's Cancer Hospital, Barretos, SP, Brazil.,Brazilian Childhood Germ Cell Tumor Study Group, Brazilian Pediatric Oncology Society, São Paulo, SP, Brazil
| | - Daniel Onofre Vidal
- Pediatric Oncology Laboratory, Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Barretos Children's Cancer Hospital, Barretos, SP, Brazil.,Brazilian Childhood Germ Cell Tumor Study Group, Brazilian Pediatric Oncology Society, São Paulo, SP, Brazil
| |
Collapse
|
19
|
RASSF1A inactivation unleashes a tumor suppressor/oncogene cascade with context-dependent consequences on cell cycle progression. Mol Cell Biol 2014; 34:2350-8. [PMID: 24732797 DOI: 10.1128/mcb.01506-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The RASSF1A gene is one of the most frequently inactivated genes in over 30 different types of cancers (H. Donninger, M. D. Vos, and G. J. Clark, J. Cell Sci. 120:3163-3172, 2007, http://dx.doi.org/10.1242/jcs.010389). Despite the prevalence of RASSF1A silencing in human cancer, the mechanism by which RASSF1A functions as a tumor suppressor is not well understood. Characterization of the consequences of RASSF1A loss on epithelial cell proliferation revealed that RASSF1A expression suppresses both microRNA 21 (miR-21) expression and extracellular signal-regulated kinase 1/2 (ERK1/2) activation. The mechanism of the former is through restraint of SCF(βTrCP)-dependent destruction of the repressor element 1 silencing transcription factor (REST) tumor suppressor and consequent inhibition of miR-21 promoter activation. The mechanism of the latter is through physical sequestration of MST2, which results in accumulation of inactivating S259 phosphorylation of RAF1. Whether or not inactivation of these RASSF1A regulatory relationships can unleash enhanced proliferative capacity is dependent upon the coupling of SCF(βTrCP) and miR-21 to suppression of SKP2 protein translation and stability. Airway epithelial cultures retain this coupling and therefore respond to RASSF1A inactivation by p27-dependent cell cycle arrest. In contrast, colonic crypt-derived epithelial cells have uncoupled SCF(βTrCP) from SKP2 and respond to RASSF1A inactivation by enhanced proliferation rates. These observations help account for context-specific molecular etiology of oncogenic transformation and suggest intervention strategies for recently developed SKP2 inhibitors.
Collapse
|
20
|
Yeste-Velasco M, Mao X, Grose R, Kudahetti SC, Lin D, Marzec J, Vasiljević N, Chaplin T, Xue L, Xu M, Foster JM, Karnam SS, James SY, Chioni AM, Gould D, Lorincz AT, Oliver RTD, Chelala C, Thomas GM, Shipley JM, Mather SJ, Berney DM, Young BD, Lu YJ. Identification of ZDHHC14 as a novel human tumour suppressor gene. J Pathol 2014; 232:566-77. [PMID: 24407904 DOI: 10.1002/path.4327] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 12/20/2013] [Accepted: 01/03/2014] [Indexed: 01/19/2023]
Abstract
Genomic changes affecting tumour suppressor genes are fundamental to cancer. We applied SNP array analysis to a panel of testicular germ cell tumours to search for novel tumour suppressor genes and identified a frequent small deletion on 6q25.3 affecting just one gene, ZDHHC14. The expression of ZDHHC14, a putative protein palmitoyltransferase with unknown cellular function, was decreased at both RNA and protein levels in testicular germ cell tumours. ZDHHC14 expression was also significantly decreased in a panel of prostate cancer samples and cell lines. In addition to our findings of genetic and protein expression changes in clinical samples, inducible overexpression of ZDHHC14 led to reduced cell viability and increased apoptosis through the classic caspase-dependent apoptotic pathway and heterozygous knockout of ZDHHC14 increased [CORRECTED] cell colony formation ability. Finally, we confirmed our in vitro findings of the tumour suppressor role of ZDHHC14 in a mouse xenograft model, showing that overexpression of ZDHHC14 inhibits tumourigenesis. Thus, we have identified a novel tumour suppressor gene that is commonly down-regulated in testicular germ cell tumours and prostate cancer, as well as given insight into the cellular functional role of ZDHHC14, a potential protein palmitoyltransferase that may play a key protective role in cancer.
Collapse
Affiliation(s)
- Marc Yeste-Velasco
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Boublikova L, Buchler T, Stary J, Abrahamova J, Trka J. Molecular biology of testicular germ cell tumors: Unique features awaiting clinical application. Crit Rev Oncol Hematol 2014; 89:366-85. [DOI: 10.1016/j.critrevonc.2013.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/30/2013] [Accepted: 10/01/2013] [Indexed: 01/29/2023] Open
|
22
|
Age-related biological features of germ cell tumors. Genes Chromosomes Cancer 2013; 53:215-27. [DOI: 10.1002/gcc.22131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/06/2013] [Indexed: 12/15/2022] Open
|
23
|
Cusack M, Scotting P. DNA methylation in germ cell tumour aetiology: current understanding and outstanding questions. Reproduction 2013; 146:R49-60. [PMID: 23661326 DOI: 10.1530/rep-12-0382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Germ cell tumours (GCTs) are a diverse group of neoplasms that can be histologically subclassified as either seminomatous or non-seminomatous. These two subtypes have distinct levels of differentiation and clinical characteristics, the non-seminomatous tumours being associated with poorer prognosis. In this article, we review how different patterns of aberrant DNA methylation relate to these subtypes. Aberrant DNA methylation is a hallmark of all human cancers, but particular subsets of cancers show unusually high frequencies of promoter region hypermethylation. Such a 'methylator phenotype' has been described in non-seminomatous tumours. We discuss the possible cause of distinct methylation profiles in GCTs and the potential of DNA methylation to provide new targets for therapy. We also consider how recent developments in our understanding of this epigenetic modification and the development of genome-wide technologies are shedding new light on the role of DNA methylation in cancer aetiology.
Collapse
Affiliation(s)
- Martin Cusack
- School of Biology, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | |
Collapse
|
24
|
Hernandez-Vargas H, Sincic N, Ouzounova M, Herceg Z. Epigenetic signatures in stem cells and cancer stem cells. Epigenomics 2012; 1:261-80. [PMID: 22122702 DOI: 10.2217/epi.09.19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The physiological properties of pluripotency in stem cells and the processes of cell specialization are governed by epigenetic mechanisms, as they are inheritable but not dependent on the cell genotype. There is cumulating evidence demonstrating the presence of cells with stem cell properties within tumors, suggesting that these cells are responsible for tumor growth and heterogeneity. As epigenetic control of self-renewal and pluripotency is a hallmark of stem cells, there is increased interest in studying similar epigenetic mechanisms governing these stemness properties in cancer stem cells. Here we will review the evidence supporting a role for epigenetic mechanisms in the induction of cancer stem cells, with an emphasis on the epigenetic regulatory networks involved in the establishment of normal self-renewal and pluripotency, and their potential deregulation in cancer. We will also discuss the data supporting the plasticity of these mechanisms and its potential therapeutic implications.
Collapse
Affiliation(s)
- Hector Hernandez-Vargas
- Epigenetics Group, International Agency for Research on Cancer, 150 cours Albert-Thomas, Lyon cedex 08, France
| | | | | | | |
Collapse
|
25
|
Okamoto K. Epigenetics: A way to understand the origin and biology of testicular germ cell tumors. Int J Urol 2012; 19:504-11. [DOI: 10.1111/j.1442-2042.2012.02986.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Jerónimo C, Henrique R. Epigenetic biomarkers in urological tumors: A systematic review. Cancer Lett 2011; 342:264-74. [PMID: 22198482 DOI: 10.1016/j.canlet.2011.12.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/14/2011] [Accepted: 12/16/2011] [Indexed: 01/23/2023]
Abstract
Prostate, bladder, kidney and testis cancers, the most common genitourinary (GU) neoplasms, are generally clinically silent at their earliest stages when curative treatment is most likely successful. However, there are no consensual guidelines for GU cancer screening and available methods are characterized by suboptimal sensitivity and specificity. Moreover, standard clinical and pathological parameters meet with important limitations in the assessment of prognosis in an individual basis. Herein, we focus on the development of epigenetic-based GU cancer biomarkers, which have emerged from exploratory studies in recent years and that hold the promise to revolutionize the clinical management of GU cancer patients.
Collapse
Affiliation(s)
- Carmen Jerónimo
- Cancer Epigenetics Group, Research Center of the Portuguese Oncology Institute, Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Department of Genetics, Portuguese Oncology Institute, Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Largo Prof. Abel Salazar 2, 4099-003 Porto, Portugal.
| | | |
Collapse
|
27
|
Abstract
BACKGROUND It remains important to understand the biology and identify biomarkers for less studied cancers like testicular cancer. The purpose of this study was to determine the methylation frequency of several cancer-related genes in different histological types of testicular cancer and normal testis tissues (NT). METHODS DNA was isolated from 43 seminomas (SEs), 14 non-SEs (NSEs) and 23 NT, and was assayed for promoter methylation status of 15 genes by quantitative methylation-specific PCR. The methylation status was evaluated for an association with cancer, and between SEs and NSEs. RESULTS We found differential methylation pattern in SEs and NSEs. MGMT, VGF, ER-β and FKBP4 were predominately methylated in NSEs compared with SEs. APC and hMLH1 are shown to be significantly more methylated in both subtypes in comparison with NT. When combining APC, hMLH1, ER-β and FKBP4, it is possible to identify 86% of the NSEs, whereas only 7% of the SEs. CONCLUSIONS Our results indicate that the methylation profile of cancer-associated genes in testicular cancer correlates with histological types and show cancer-specific pattern for certain genes. Further methylation analysis, in a larger cohort is needed to elucidate their role in testicular cancer development and potential for therapy, early detection and disease monitoring.
Collapse
|
28
|
Jeyapalan JN, Noor DAM, Lee SH, Tan CL, Appleby VA, Kilday JP, Palmer RD, Schwalbe EC, Clifford SC, Walker DA, Murray MJ, Coleman N, Nicholson JC, Scotting PJ. Methylator phenotype of malignant germ cell tumours in children identifies strong candidates for chemotherapy resistance. Br J Cancer 2011; 105:575-85. [PMID: 21712824 PMCID: PMC3170957 DOI: 10.1038/bjc.2011.218] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/11/2011] [Accepted: 05/17/2011] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Yolk sac tumours (YSTs) and germinomas are the two major pure histological subtypes of germ cell tumours. To date, the role of DNA methylation in the aetiology of this class of tumour has only been analysed in adult testicular forms and with respect to only a few genes. METHODS A bank of paediatric tumours was analysed for global methylation of LINE-1 repeat elements and global methylation of regulatory elements using GoldenGate methylation arrays. RESULTS Both germinomas and YSTs exhibited significant global hypomethylation of LINE-1 elements. However, in germinomas, methylation of gene regulatory regions differed little from control samples, whereas YSTs exhibited increased methylation at a large proportion of the loci tested, showing a 'methylator' phenotype, including silencing of genes associated with Caspase-8-dependent apoptosis. Furthermore, we found that the methylator phenotype of YSTs was coincident with higher levels of expression of the DNA methyltransferase, DNA (cytosine-5)-methyltransferase 3B, suggesting a mechanism underlying the phenotype. CONCLUSION Epigenetic silencing of a large number of potential tumour suppressor genes in YSTs might explain why they exhibit a more aggressive natural history than germinomas and silencing of genes associated with Caspase-8-dependent cell death might explain the relative resistance of YSTs to conventional therapy.
Collapse
Affiliation(s)
- J N Jeyapalan
- Children's Brain Tumour Research Centre, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - D A Mohamed Noor
- Children's Brain Tumour Research Centre, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - S-H Lee
- Children's Brain Tumour Research Centre, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - C L Tan
- Children's Brain Tumour Research Centre, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - V A Appleby
- Children's Brain Tumour Research Centre, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - J P Kilday
- Children's Brain Tumour Research Centre, Child Health, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - R D Palmer
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Box 197, Hills Road, Cambridge CB2 0XZ, UK
| | - E C Schwalbe
- Northern Institute for Cancer Research, Sir James Spence Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - S C Clifford
- Northern Institute for Cancer Research, Sir James Spence Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - D A Walker
- Children's Brain Tumour Research Centre, Child Health, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - M J Murray
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Box 197, Hills Road, Cambridge CB2 0XZ, UK
| | - N Coleman
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Box 197, Hills Road, Cambridge CB2 0XZ, UK
| | - J C Nicholson
- Department of Paediatric Oncology, Addenbrooke's Hospital, Box 181, Hills Road, Cambridge CB2 0QQ, UK
| | - P J Scotting
- Children's Brain Tumour Research Centre, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
29
|
Alva AS, Hahn NM, Aparicio AM, Singal R, Yellapragada S, Sonpavde G. Hypomethylating agents for urologic cancers. Future Oncol 2011; 7:447-63. [PMID: 21417907 DOI: 10.2217/fon.11.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Silencing of tumor suppressor genes by promoter-region methylation as an epigenetic mechanism of gene regulation is increasingly recognized as beneficial in cancer. Initially developed as cytotoxic high-dose therapies, azacitidine and decitabine are now being reinvestigated in lower-dose cancer treatment regimens with a different paradigm - hypomethylation. Recent evidence for benefit in myelodysplastic syndromes and acute myeloid leukemias has renewed interest in hypomethylation as a therapeutic option in epithelial cancers. In this article, we describe the mechanistic aspects of DNA methylation, which alters gene expression, and review the evidence for hypomethylation as a therapeutic option in urologic cancers. Potential correlative studies that may assist in developing tailored therapy with hypomethylating agents are reviewed. Given that the population with urologic cancers is typically elderly with multiple comorbidities, the excellent tolerability of lower-dose hypomethylating agents provides a high therapeutic index and rational development is warranted, bearing in mind that the cytostatic and delayed activity present challenges in the choice of appropriate trial end points.
Collapse
Affiliation(s)
- Ajjai S Alva
- Baylor College of Medicine & Michael E DeBakey VA Medical Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Looijenga LHJ, Gillis AJM, Stoop H, Biermann K, Oosterhuis JW. Dissecting the molecular pathways of (testicular) germ cell tumour pathogenesis; from initiation to treatment-resistance. ACTA ACUST UNITED AC 2011; 34:e234-51. [PMID: 21564133 DOI: 10.1111/j.1365-2605.2011.01157.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human type II germ cell tumours (GCTs) originate from an embryonic germ cell, either as a primordial germ cell or gonocyte. This start determines the biological as well as clinical characteristics of this type of cancer, amongst others their totipotency as well as their overall (exceptional) sensitivity to DNA damaging agents. The histology of the precursor lesion, either carcinoma in situ or gonadoblastoma, depends on the level of testicularization (i.e. testis formation) of the gonad. The impact of either intrinsic (genetic) - and environmental factors involved in the pathogenesis is demonstrated by disorders of sex development as well as testicular dysgenesis syndrome as risk factors, including cryptorchidism, hypospadias and disturbed fertility as parameters. This knowledge allows identification of individuals at risk for development of this type of cancer, being a population of interest for screening. Factors known to regulate pluripotency during embryogenesis are proven to be of diagnostic value for type II GCTs, including OCT3/4, even applicable for non-invasive screening. In addition, presence of stem cell factor, also known as KITLG, allows distinction between delayed matured germ cells and the earliest stages of malignant transformation. This is of special interest because of the identified association between development of type II GCTs of the testis and a limited number of single nucleotide polymorphisms, including some likely related to KITL. Transition from the precursor lesion to an invasive cancer is associated with gain of the short arm of chromosome 12, in which multiple genes might be involved, including KRAS2 and possibly NANOG (pseudogenes). While most precursor lesions will progress to an invasive cancer, only a limited number of cancers will develop treatment resistance. Putative explanatory mechanisms are identified, including presence of microsatellite instability, BRAF mutations, apoptosis suppression and p21 sub-cellular localization. It remains to be investigated how these different pathways integrate to each other and how informative they are at the patient-individual level. Further understanding will allow development of more targeted treatment, which will benefit quality of life of these young cancer patients.
Collapse
Affiliation(s)
- L H J Looijenga
- Department of Pathology, Erasmus MC-University Medical Center Rotterdam, Josephine Nefkens Institute, Daniel den Hoed Cancer Center, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
32
|
Okpanyi V, Schneider DT, Zahn S, Sievers S, Calaminus G, Nicholson JC, Palmer RD, Leuschner I, Borkhardt A, Schönberger S. Analysis of the adenomatous polyposis coli (APC) gene in childhood and adolescent germ cell tumors. Pediatr Blood Cancer 2011; 56:384-91. [PMID: 21225915 DOI: 10.1002/pbc.22669] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 05/03/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND Aberrant Wnt signaling due to deregulation of Wnt regulators is implicated in the development and progression of numerous embryonal tumors. This study addresses the questions if activation of Wnt signaling in germ cell tumors (GCTs) arising during childhood and adolescence is associated with aberrations of the tumor suppressor adenomatous polyposis coli (APC), and whether APC aberrations might be responsible for progression from benign teratoma to malignant yolk sac tumor (YST). PROCEDURE Forty-eight GCTs were analyzed, including mature (n = 5) and immature (n = 7) teratomas, mixed malignant GCTs (n = 10), YSTs (n = 17) as well as dysgerminomas (n = 9). To screen APC for genetic aberrations, we conducted direct sequencing of the mutation cluster region (MCR), loss of heterozygosity analyses (LOH) and protein truncation test. Epigenetic analyses included methylation specific PCR and bisulfite genomic sequencing of the APC 1a promoter. Gene expression was determined by quantitative real-time PCR. RESULTS Aberrant promoter methylation was detected in YSTs, teratomas and mixed malignant GCTs, with a pronounced hypermethylation exclusively in YSTs (11/13) while dysgerminomas were not methylated (0/9). Teratomas (2/2) and YSTs (4/5) show LOH at the APC locus. However, neither mutations within the MCR nor truncated protein were detected. APC expression did not significantly vary between the different histological subgroups. CONCLUSIONS Methylation of APC and LOH 5q21-22 in YSTs and teratomas provide evidence for involvement of APC in the accumulation of β-catenin and activation of the WNT pathway. Our additional analyses suggest that APC is unlikely to be solely responsible for the formation and progression of childhood GCTs.
Collapse
Affiliation(s)
- Vera Okpanyi
- University of Düsseldorf, Medical faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital Düsseldorf, D-40225 Dusseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Germ Cell Cancer, Testicular Dysgenesis Syndrome and Epigenetics. EPIGENETICS AND HUMAN REPRODUCTION 2011. [DOI: 10.1007/978-3-642-14773-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Abstract
We review the evidence suggesting the involvement of Cadherin 13 (CDH13, T-cadherin, H-cadherin) in various cancers. CDH13 is an atypical member of the cadherin family, devoid of a transmembrane domain and anchored to the exterior surface of the plasma membrane via a glycosylphosphatidylinositol anchor. CDH13 is thought to affect cellular behavior largely through its signaling properties. It is often down-regulated in cancerous cells. CDH13 down-regulation has been associated with poorer prognosis in various carcinomas, such as lung, ovarian, cervical and prostate cancer. CDH13 re-expression in most cancer cell lines inhibits cell proliferation and invasiveness, increases susceptibility to apoptosis, and reduces tumor growth in in vivo models. These properties suggest that CDH13 may represent a possible target for therapy in some cancers. At the same time, CDH13 is up-regulated in blood vessels growing through tumors and promotes tumor neovascularization. In contrast to most cancer cell lines, CDH13 overexpression in endothelial cells promotes their proliferation and migration, and has a pro-survival effect. We also discuss molecular mechanisms that may regulate CDH13 expression and underlie its roles in cancer.
Collapse
Affiliation(s)
- Alexandra V Andreeva
- Department of Pharmacology, University of Illinois, College of Medicine, Chicago, IL, USA.
| | | |
Collapse
|
35
|
Hill VK, Underhill-Day N, Krex D, Robel K, Sangan CB, Summersgill HR, Morris M, Gentle D, Chalmers AD, Maher ER, Latif F. Epigenetic inactivation of the RASSF10 candidate tumor suppressor gene is a frequent and an early event in gliomagenesis. Oncogene 2010; 30:978-89. [DOI: 10.1038/onc.2010.471] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Loss of heterozygosity of CDKN2A (p16INK4a) and RB1 tumor suppressor genes in testicular germ cell tumors. Radiol Oncol 2010; 44:168-73. [PMID: 22933911 PMCID: PMC3423692 DOI: 10.2478/v10019-010-0035-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 05/25/2010] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Testicular germ cell tumors (TGCTs) are the most frequent malignances in young adult men. The two main histological forms, seminomas and nonseminomas, differ biologically and clinically. pRB protein and its immediate upstream regulator p16INK4a are involved in the RB pathway which is deregulated in most TGCTs. The objective of this study was to evaluate the occurrence of loss of heterozygosity (LOH) of the CDKN2A (p16INK4a) and RB1 tumor suppressor genes in TGCTs. MATERIALS AND METHODS.: Forty TGCTs (18 seminomas and 22 nonseminomas) were analyzed by polymerase chain reaction using the restriction fragment length polymorphism or the nucleotide repeat polymorphism method. RESULTS LOH of the CDKN2A was found in two (6%) out of 34 (85%) informative cases of our total TGCT sample. The observed changes were assigned to two (11%) nonseminomas out of 18 (82%) informative samples. Furthermore, LOH of the RB1 was detected in two (6%) out of 34 (85%) informative cases of our total TGCT sample. Once again, the observed changes were assigned to two (10.5%) nonseminomas out of 19 (86%) informative samples. Both LOHs of the CDKN2A were found in nonseminomas with a yolk sac tumor component, and both LOHs of the RB1 were found in nonseminomas with an embryonal carcinoma component. CONCLUSIONS The higher incidence of observed LOH in nonseminomas may provide a clue to their invasive behavior.
Collapse
|
37
|
Vladusić T, Hrasćan R, Vrhovac I, Kruslin B, Gamulin M, Grgić M, Pećina-Slaus N, Franekić Colić J. Loss of heterozygosity of selected tumor suppressor genes in human testicular germ cell tumors. Pathol Res Pract 2010; 206:163-7. [PMID: 20092957 DOI: 10.1016/j.prp.2009.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/05/2009] [Accepted: 10/22/2009] [Indexed: 10/19/2022]
Abstract
Human testicular germ cell tumors (TGCTs) are histologically heterogenous neoplasms with a variable malignant potential. Two main groups of germ cell tumors occur in men: seminomas and nonseminomas. In the present study, a set of four tumor suppressor genes was investigated in testicular cancers. CDH1, APC, p53, and nm23-H1 genes were tested for loss of heterozygosity (LOH). Thirty-eight testicular germ cell tumors (17 seminomas and 21 nonseminomas) were analyzed by PCR using restriction fragment length polymorphism or the dinucleotide/tetranucleotide repeat polymorphism method. An allelic loss of p53 at exon 4 was detected in five nonseminomas, whereas LOH of p53 at intron 6 occurred in one of the seminoma and two of the nonseminoma samples. Allelic losses of the APC gene were present in three seminomas and one nonseminoma, whereas one seminoma and three nonseminomas showed LOH of CDH1. The analysis of allelic losses showed no common structural genetic alterations in tumor tissues, although a different pattern of LOH was observed between the two main histological groups of TGCTs.
Collapse
Affiliation(s)
- Tomislav Vladusić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Beyrouthy MJ, Garner KM, Hever MP, Freemantle SJ, Eastman A, Dmitrovsky E, Spinella MJ. High DNA methyltransferase 3B expression mediates 5-aza-deoxycytidine hypersensitivity in testicular germ cell tumors. Cancer Res 2009; 69:9360-6. [PMID: 19951990 PMCID: PMC2795063 DOI: 10.1158/0008-5472.can-09-1490] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Testicular germ cell tumors (TGCT) are the most common solid tumors of 15- to 35-year-old men. TGCT patients are frequently cured with cytotoxic cisplatin-based therapy. However, TGCT patients refractory to cisplatin-based chemotherapy have a poor prognosis, as do those having a late relapse. Pluripotent embryonal carcinomas (EC) are the malignant counterparts to embryonic stem cells and are considered the stem cells of TGCTs. Here, we show that human EC cells are highly sensitive to 5-aza-deoxycytidine (5-aza-CdR) compared with somatic solid tumor cells. Decreased proliferation and survival with low nanomolar concentrations of 5-aza-CdR is associated with ATM activation, H2AX phosphorylation, increased expression of p21, and the induction of genes known to be methylated in TGCTs (MGMT, RASSF1A, and HOXA9). Notably, 5-aza-CdR hypersensitivity is associated with markedly abundant expression of the pluripotency-associated DNA methyltransferase 3B (DNMT3B) compared with somatic tumor cells. Knockdown of DNMT3B in EC cells results in substantial resistance to 5-aza-CdR, strongly indicating that 5-aza-CdR sensitivity is mechanistically linked to high levels of DNMT3B. Intriguingly, cisplatin-resistant EC cells retain an exquisite sensitivity to low-dose 5-aza-CdR treatment, and pretreatment of 5-aza-CdR resensitizes these cells to cisplatin-mediated toxicity. This resensitization is also partially dependent on high DNMT3B levels. These novel findings indicate that high expression of DNMT3B, a likely byproduct of their pluripotency and germ cell origin, sensitizes TGCT-derived EC cells to low-dose 5-aza-CdR treatment.
Collapse
Affiliation(s)
- Maroun J. Beyrouthy
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Kristen M. Garner
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Mary P. Hever
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Sarah J. Freemantle
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Alan Eastman
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755
| | - Ethan Dmitrovsky
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
- Department of Medicine, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755
| | - Michael J. Spinella
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755
| |
Collapse
|
39
|
Godmann M, Lambrot R, Kimmins S. The dynamic epigenetic program in male germ cells: Its role in spermatogenesis, testis cancer, and its response to the environment. Microsc Res Tech 2009; 72:603-19. [PMID: 19319879 DOI: 10.1002/jemt.20715] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spermatogenesis is a truly remarkable process that requires exquisite control and synchronization of germ cell development. It is prone to frequent error, as paternal infertility contributes to 30-50% of all infertility cases; yet, in many cases, the mechanisms underlying its causes are unknown. Strikingly, aberrant epigenetic profiles, in the form of anomalous DNA and histone modifications, are characteristic of cancerous testis cells. Germ cell development is a critical period during which epigenetic patterns are established and maintained. The progression from diploid spermatogonia to haploid spermatozoa involves stage- and testis-specific gene expression, mitotic and meiotic division, and the histone-protamine transition. All are postulated to engender unique epigenetic controls. In support of this idea are the findings that mouse models with gene deletions for epigenetic modifiers have severely compromised fertility. Underscoring the importance of understanding how epigenetic marks are set and interpreted is evidence that abnormal epigenetic programming of gametes and embryos contributes to heritable instabilities in subsequent generations. Numerous studies have documented the existence of transgenerational consequences of maternal nutrition, or other environmental exposures, but it is only now recognized that there are sex-specific male-line transgenerational responses in humans and other species. Epigenetic events in the testis have just begun to be studied. New work on the function of specific histone modifications, chromatin modifiers, DNA methylation, and the impact of the environment on developing sperm suggests that the correct setting of the epigenome is required for male reproductive health and the prevention of paternal disease transmission.
Collapse
Affiliation(s)
- Maren Godmann
- Department of Animal Science, McGill University, Montreal H9X3V9 Canada
| | | | | |
Collapse
|
40
|
Cheung ANY, Zhang HJ, Xue WC, Siu MKY. Pathogenesis of choriocarcinoma: clinical, genetic and stem cell perspectives. Future Oncol 2009; 5:217-31. [PMID: 19284380 DOI: 10.2217/14796694.5.2.217] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Choriocarcinoma is a unique malignant neoplasm composed of mononuclear cytotrophoblasts and multinucleated syncytiotrophoblasts that produce human chorionic gonadotrophin. Choriocarcinoma can occur after a pregnancy, as a component of germ cell tumors, or in association with a poorly differentiated somatic carcinoma, each with distinct clinical features. Cytogenetic and molecular studies, predominantly on gestational choriocarcinoma, revealed the impact of oncogenes, tumor suppressor genes and imprinting genes on its pathogenesis. The role of stem cells in various types of choriocarcinoma has been studied recently. This review will discuss how such knowledge can enhance our understanding of the pathogenesis of choriocarcinoma, enable exploration of novel anti-choriocarcinoma targeted therapy and possibly improve our insight on embryological and placental development.
Collapse
Affiliation(s)
- Annie N Y Cheung
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
| | | | | | | |
Collapse
|
41
|
Ellinger J, Albers P, Perabo FG, Müller SC, von Ruecker A, Bastian PJ. CpG island hypermethylation of cell-free circulating serum DNA in patients with testicular cancer. J Urol 2009; 182:324-9. [PMID: 19447423 DOI: 10.1016/j.juro.2009.02.106] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Indexed: 11/16/2022]
Abstract
PURPOSE DNA hypermethylation is a common cancer associated alteration. We analyzed methylation patterns of cell-free serum DNA in patients with testicular cancer. MATERIALS AND METHODS Hypermethylation at APC, GSTP1, PTGS2, p14(ARF), p16(INK) and RASSF1A was analyzed using real-time polymerase chain reaction following methylation sensitive restriction endonuclease treatment in 73 patients with testicular cancer and 35 healthy individuals. RESULTS Hypermethylation was more common in patients with testicular cancer than in healthy individuals, including APC 57% and 6%, p16(INK) 53% and 17%, p14(ARF) 53% and 0%, RASSF1A 47% and 0%, PTGS2 45% and 0%, and GSTP1 25% and 0%, respectively (each p <0.01). Methylation frequencies at the investigated gene sites were similar in nonseminoma and seminoma cases (p >0.05). Diagnostic information was increased when multiple gene sites were analyzed in combination (ROC AUC 0.834, 67% sensitivity and 97% specificity). Diagnostic information was superior to the analysis of AFP/HCG/PLAP/LDH (combined sensitivity 58% and AUC 0.791). The sensitivity of hypermethylation in patients with unsuspicious conventional tumor markers was 71% (AUC 0.871, 97% specificity). Hypermethylation at PTGS2 was more common in patients with pT1 stage tumors (p = 0.011). CONCLUSIONS The detection of hypermethylated cell-free serum DNA has the potential of a useful additional diagnostic parameter in patients with testicular germ cell cancer. Furthermore, in cases without conventional tumor marker increases testing CpG island hypermethylation in cell-free circulation DNA may improve the ability to detect early and/or recurrent testicular cancer.
Collapse
Affiliation(s)
- Jörg Ellinger
- Klinik und Poliklinik für Urologie and Institut für Pathologie, Universitätsklinikum Bonn, Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Sirintrapun SJ, Parwani AV. Molecular Pathology of the Genitourinary Tract: Molecular Pathology of Kidney and Testes. Surg Pathol Clin 2009; 2:199-223. [PMID: 26838102 DOI: 10.1016/j.path.2008.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
With the advent of newer molecular technologies, our knowledge of cellular mechanisms with tumors of the kidney and testis has grown exponentially. Molecular technologies have led to better understanding of interplay between the von Hippel-Lindau gene and angiogenic cytokines in renal cancer and isochromosome 12p in testicular neoplasms. The result has been development of antiangiogenic-targeted therapy within recent years that has become the mainstay treatment for metastatic renal cell cancer. In the near future, classification and diagnosis of renal and testicular tumors through morphologic analysis will be supplemented by molecular information correlating to prognosis and targeted therapy. This article outlines tumor molecular pathology of the kidney and testis encompassing current genomic, epigenomic, and proteonomic findings.
Collapse
Affiliation(s)
- S Joseph Sirintrapun
- Pathology Informatics, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Anil V Parwani
- Department of Pathology, University of Pittsburgh Medical Center Shadyside Hospital, Room WG 07, 5230 Centre Avenue, Pittsburgh, PA 15232, USA.
| |
Collapse
|
43
|
van de Geijn GJM, Hersmus R, Looijenga LHJ. Recent developments in testicular germ cell tumor research. ACTA ACUST UNITED AC 2009; 87:96-113. [DOI: 10.1002/bdrc.20140] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Hussain SA, Ma YT, Palmer DH, Hutton P, Cullen MH. Biology of testicular germ cell tumors. Expert Rev Anticancer Ther 2009; 8:1659-73. [PMID: 18925857 DOI: 10.1586/14737140.8.10.1659] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Germ cell tumors are derived from cells of the germ cell lineage and are the most common solid malignancies to affect young Caucasian men between the ages of 15 and 40 years. All testicular germ cell tumors develop from the same precursor lesion, intratubular germ cell neoplasia unclassified, which in turn is thought to arise from malignant transformation of a primordial germ cell or gonocyte. These tumors are characterized by extreme chemosensitivity and are considered a model for curative disease. In spite of this, a small subset of patients with metastatic disease fail to achieve a complete response with cisplatin-based chemotherapy or relapse from complete remission. Understanding the molecular biology may help the design of new therapies for those patients with a poor prognosis and could also improve the treatment of cancer in general. Current understanding of the role of genetic and epigenetic factors in the etiology of germ cell tumors and the biochemical mechanisms underlying chemotherapy sensitivity and resistance is discussed in detail in this review.
Collapse
Affiliation(s)
- Syed A Hussain
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, University Hospital Birmingham NHS Foundation Trust, Edgbaston, Birmingham , UK.
| | | | | | | | | |
Collapse
|
45
|
Harbeck N, Nimmrich I, Hartmann A, Ross JS, Cufer T, Grützmann R, Kristiansen G, Paradiso A, Hartmann O, Margossian A, Martens J, Schwope I, Lukas A, Müller V, Milde-Langosch K, Nährig J, Foekens J, Maier S, Schmitt M, Lesche R. Multicenter study using paraffin-embedded tumor tissue testing PITX2 DNA methylation as a marker for outcome prediction in tamoxifen-treated, node-negative breast cancer patients. J Clin Oncol 2008; 26:5036-42. [PMID: 18711169 DOI: 10.1200/jco.2007.14.1697] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE We recently reported DNA methylation of the paired-like homeodomain transcription factor 2 (PITX2) gene to be strongly correlated with increased risk of recurrence in node-negative, hormone receptor-positive, tamoxifen-treated breast cancer patients using fresh frozen specimens. Aims of the present study were to establish determination of PITX2 methylation for routine analysis in formalin-fixed paraffin-embedded (FFPE) breast cancer tissue and to test PITX2 DNA methylation as a biomarker for outcome prediction in an independent patient cohort. PATIENTS AND METHODS Real-time polymerase chain reaction (PCR) technology was validated for FFPE tissue by comparing methylation measurements in FFPE specimens with those in fresh frozen specimens from the same tumor. The impact of PITX2 methylation on time to distant metastasis was then evaluated in FFPE specimens from hormone receptor-positive, node-negative breast cancer patients (n = 399, adjuvant tamoxifen monotherapy). RESULTS Reproducibility of the PCR assay in replicate measurements (r(s) > or = 0.95; n = 150) and concordant measurements between fresh frozen and FFPE tissues (r(s) = 0.81; n = 89) were demonstrated. In a multivariate model, PITX2 methylation added significant information (hazard ratio = 2.35; 95% CI, 1.20 to 4.60) to established prognostic factors (tumor size, grade, and age). CONCLUSION PITX2 methylation can be reliably assessed by real-time PCR technology in FFPE tissue. Together with our earlier studies, we have accumulated substantial evidence that PITX2 methylation analysis holds promise as a practical assay for routine clinical use to predict outcome in node-negative, tamoxifen-treated breast cancer, which might allow, based on future validation studies, the identification of low-risk patients who may be treated by tamoxifen alone.
Collapse
Affiliation(s)
- Nadia Harbeck
- Department of Obstetrics and Gynecology and Pathology, Technical University of Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Gene expression is tightly regulated in normal cells, and epigenetic changes disturbing this regulation are a common mechanism in the development of cancer. Testicular germ cell tumor (TGCT) is the most common malignancy among young males and can be classified into two main histological subgroups: seminomas, which are basically devoid of DNA methylation, and nonseminomas, which in general have methylation levels comparable with other tumor tissues, as shown by restriction landmark genome scanning (RLGS). In general, DNA methylation seems to increase with differentiation, and among the nonseminomas, the pluripotent and undifferentiated embryonal carcinomas harbor the lowest levels of DNA promoter hypermethylation, whereas the well-differentiated teratomas display the highest. In this regard, TGCTs resemble the early embryogenesis. So far, only a limited number of tumor suppressor genes have been shown to be inactivated by DNA promoter hypermethylation in more than a minor percentage of TGCTs, including MGMT, SCGB3A1, RASSF1A, HIC1, and PRSS21. In addition, imprinting defects, DNA hypomethylation of testis/cancer associated genes, and the presence of unmethylated XIST are frequent in TGCTs. Aberrant DNA methylation has the potential to improve current diagnostics by noninvasive testing and might also serve as a prognostic marker for treatment response.
Collapse
Affiliation(s)
- Guro E Lind
- Department of Cancer Prevention, Rikshospitalet - Radiumhospitalet Medical Centre, Montebello and Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
47
|
Yang JY, Yang MQ, Luo Z, Ma Y, Li J, Deng Y, Huang X. A hybrid machine learning-based method for classifying the Cushing's Syndrome with comorbid adrenocortical lesions. BMC Genomics 2008; 9 Suppl 1:S23. [PMID: 18366613 PMCID: PMC2386065 DOI: 10.1186/1471-2164-9-s1-s23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The prognosis for many cancers could be improved dramatically if they could be detected while still at the microscopic disease stage. It follows from a comprehensive statistical analysis that a number of antigens such as hTERT, PCNA and Ki-67 can be considered as cancer markers, while another set of antigens such as P27KIP1 and FHIT are possible markers for normal tissue. Because more than one marker must be considered to obtain a classification of cancer or no cancer, and if cancer, to classify it as malignant, borderline, or benign, we must develop an intelligent decision system that can fullfill such an unmet medical need. RESULTS We have developed an intelligent decision system using machine learning techniques and markers to characterize tissue as cancerous, non-cancerous or borderline. The system incorporates learning techniques such as variants of support vector machines, neural networks, decision trees, self-organizing feature maps (SOFM) and recursive maximum contrast trees (RMCT). These variants and algorithms we have developed, tend to detect microscopic pathological changes based on features derived from gene expression levels and metabolic profiles. We have also used immunohistochemistry techniques to measure the gene expression profiles from a number of antigens such as cyclin E, P27KIP1, FHIT, Ki-67, PCNA, Bax, Bcl-2, P53, Fas, FasL and hTERT in several particular types of neuroendocrine tumors such as pheochromocytomas, paragangliomas, and the adrenocortical carcinomas (ACC), adenomas (ACA), and hyperplasia (ACH) involved with Cushing's syndrome. We provided statistical evidence that higher expression levels of hTERT, PCNA and Ki-67 etc. are associated with a higher risk that the tumors are malignant or borderline as opposed to benign. We also investigated whether higher expression levels of P27KIP1 and FHIT, etc., are associated with a decreased risk of adrenomedullary tumors. While no significant difference was found between cell-arrest antigens such as P27KIP1 for malignant, borderline, and benign tumors, there was a significant difference between expression levels of such antigens in normal adrenal medulla samples and in adrenomedullary tumors. CONCLUSIONS Our frame work focused on not only different classification schemes and feature selection algorithms, but also ensemble methods such as boosting and bagging in an effort to improve upon the accuracy of the individual classifiers. It is evident that when all sorts of machine learning and statistically learning techniques are combined appropriately into one integrated intelligent medical decision system, the prediction power can be enhanced significantly. This research has many potential applications; it might provide an alternative diagnostic tool and a better understanding of the mechanisms involved in malignant transformation as well as information that is useful for treatment planning and cancer prevention.
Collapse
Affiliation(s)
- Jack Y Yang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mary Qu Yang
- Genomic Functional Analysis Laboratory, National Human Genome Research Institute, National Institutes of Health, U.S. Department of Health and Human Services. Bethesda, MD 20852, USA
| | - Zuojie Luo
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Province 530021, China
| | - Yan Ma
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Province 530021, China
| | - Jianling Li
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Province 530021, China
| | - Youping Deng
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Xudong Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
48
|
Abstract
RASSF1A (Ras association domain family 1 isoform A) is a recently discovered tumor suppressor whose inactivation is implicated in the development of many human cancers. Although it can be inactivated by gene deletion or point mutations, the most common contributor to loss or reduction of RASSF1A function is transcriptional silencing of the gene by inappropriate promoter methylation. This epigenetic mechanism can inactivate numerous tumor suppressors and is now recognized as a major contributor to the development of cancer. RASSF1A lacks apparent enzymatic activity but contains a Ras association (RA) domain and is potentially an effector of the Ras oncoprotein. RASSF1A modulates multiple apoptotic and cell cycle checkpoint pathways. Current evidence supports the hypothesis that it serves as a scaffold for the assembly of multiple tumor suppressor complexes and may relay pro-apoptotic signaling by K-Ras.
Collapse
Affiliation(s)
- Howard Donninger
- Molecular Targets Group, Department of Medicine, J. G. Brown Cancer Center, University of Louisville, 119C Baxter Boulevard, 580 S. Preston Street, Louisville, KY 40202, USA
| | | | | |
Collapse
|
49
|
Abstract
DNA methylation is the best known and most thoroughly studied epigenetic mechanism. Hypermethylation of CpG islands associated with silencing of tumour suppressor genes or tumour-related genes is a common hallmark of human cancer. The list of tumour-related genes with aberrant hypermethylation in their CpG islands has been increasing. There is also the potential for using DNA methylation profile data as markers for various types of human cancer. In this paper, we review the methylation profile of testicular germ cell tumours (TGCTs). We show that TGCTs have distinctive DNA methylation profiles that differ from those of somatic tissue-derived cancers or somatic tissues. We also discuss the methylation profile of TGCTs in terms of the DNA reprogramming that occurs in primordial germ cells or pre-implantation embryos. Finally, we describe the potential clinical utility of this unique methylation phenotype in TGCTs with regard to developing a novel tumour marker. These data suggest that unmethylated DNA fragments in TGCTs may have diagnostic implications. Further elucidation of epigenetic profiles in TGCTs is expected to provide a new insight into the biology of this disease.
Collapse
Affiliation(s)
- Keisei Okamoto
- Department of Urology, Shiga University of Medical Science, Shiga, Japan.
| | | |
Collapse
|
50
|
Abstract
DNA methylation is a common mechanism of inactivation of tumour-suppressor and other cancer genes in neoplastic cells. The advantages of gene methylation as a target for the detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as urine or blood has led to many studies of application in genitourinary cancer. Here, we consider the background, promise and status, challenges and future directions of gene methylation and its clinical utility for the early detection of genitourinary cancer. The challenges of, and strategies for, advancing gene-methylation-based detection are relevant to all types of cancer.
Collapse
Affiliation(s)
- Paul Cairns
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|