1
|
Li Y, Zhao D, Zhang W, Yang M, Wu Z, Shi W, Lan S, Guo Z, Yu H, Wu D. A novel camptothecin derivative, ZBH-01, exhibits superior antitumor efficacy than irinotecan by regulating the cell cycle. J Transl Med 2023; 21:422. [PMID: 37386467 PMCID: PMC10308760 DOI: 10.1186/s12967-023-04196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/14/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Irinotecan (CPT-11) is a classic chemotherapeutic agent that plays an important role in the clinical treatment of metastatic colon cancer and other malignant tumors. We previously designed a series of novel irinotecan derivatives. In this study, we select one representative, ZBH-01, to investigate its sophisticated antitumor mechanism in colon tumor cells. METHODS The cytotoxic activity of ZBH-01 on colon cancer cells was evaluate by MTT or Cell Counting Kit-8 (CCK8) assay, 3D and xenograft model. The inhibitory effect of ZBH-01 on TOP1 was detected by DNA relaxation assay and Immuno Complex of Ezyme (ICE) bioassay. The molecular mechanism of ZBH-01 was explored by Next-Generation Sequencing (NGS), bioinformatics analyses, flow cytometry, qRT-PCR, and western blot etc. RESULTS: ZBH-01 can induce obvious DNA damage and has superior antitumor activity against colon cancer cells compared to CPT-11 and SN38 (7-Ethyl-10-hydroxy camptothecin, the in vivo active form of CPT-11) both in vivo and in vitro. Its inhibitory effect on topoisomerase I (TOP1) was also comparable with these two control drugs. There are a much larger number of 842 downregulated and 927 upregulated mRNAs in ZBH-01 treatment group than that in the controls. The most significantly enriched KEGG pathways for these dysregulated mRNAs were DNA replication, the p53 signaling pathway, and the cell cycle. After constructing a protein-protein interaction (PPI) network and screening out a prominent cluster, 14 involved in the cell cycle process was identified. Consistently, ZBH-01 induced G0/G1 phase arrest in colon cancer cells, while CPT-11/SN38 caused S phase arrest. The initiation of apoptosis by ZBH-01 was also superior to CPT-11/SN38, followed by the increased expression of Bax, active caspase 3, and cleaved-PARP, and decreased expression of Bcl-2. Additionally, CCNA2 (cyclin A2), CDK2 (cyclin-dependent kinase 2), and MYBL2 (MYB proto-oncogene like 2) might be involved in the G0/G1 cell cycle arrest induced by ZBH-01. CONCLUSIONS ZBH-01 can be an antitumor candidate drug for preclinical study in the future.
Collapse
Affiliation(s)
- Yongqi Li
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Dawei Zhao
- Department of Breast Tumor, Jilin Cancer Hospital, Changchun, 130012, China
| | - Wenqiu Zhang
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
| | - Miaomiao Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Zhihui Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Weiguo Shi
- Institute of Pharmacology and Toxicology Academy of Military Medical Sciences, Beijing, 100850, China
| | - Shijie Lan
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen Guo
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hong Yu
- Cell Biology Laboratory, Jilin Province Institute of Cancer Prevention and Treatment, Jilin Cancer Hospital, Changchun, 130012, China.
| | - Di Wu
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Wijeratne TU, Guiley KZ, Lee HW, Müller GA, Rubin SM. Cyclin-dependent kinase-mediated phosphorylation and the negative regulatory domain of transcription factor B-Myb modulate its DNA binding. J Biol Chem 2022; 298:102319. [PMID: 35926712 PMCID: PMC9478404 DOI: 10.1016/j.jbc.2022.102319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
B-Myb is a highly conserved member of the vertebrate Myb family of transcription factors that plays a critical role in cell-cycle progression and proliferation. Myb proteins activate Myb-dependent promoters by interacting specifically with Myb-binding site (MBS) sequences using their DNA-binding domain (DBD). Transactivation of MBS promoters by B-Myb is repressed by its negative regulatory domain (NRD), and phosphorylation of the NRD by Cdk2-CyclinA relieves the repression to activate B-Myb–dependent promoters. However, the structural mechanisms underlying autoinhibition and activation of B-Myb–mediated transcription have been poorly characterized. Here, we determined that a region in the B-Myb NRD (residues 510–600) directly associates with the DBD and inhibits binding of the DBD to the MBS DNA sequence. We demonstrate using biophysical assays that phosphorylation of the NRD at T515, T518, and T520 is sufficient to disrupt the interaction between the NRD and the DBD, which results in increased affinity for MBS DNA and increased B-Myb–dependent promoter activation in cell assays. Our biochemical characterization of B-Myb autoregulation and the activating effects of phosphorylation provide insight into how B-Myb functions as a site-specific transcription factor.
Collapse
Affiliation(s)
- Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Keelan Z Guiley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
3
|
Qin WS, Wu J, Chen Y, Cui FC, Zhang FM, Lyu GT, Zhang HM. The Short Isoform of Nuclear Mitotic Apparatus Protein 1 Functions as a Putative Tumor Suppressor. Chin Med J (Engl) 2018; 130:1824-1830. [PMID: 28748856 PMCID: PMC5547835 DOI: 10.4103/0366-6999.211535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Nuclear mitotic apparatus protein 1 (NuMA1) had been reported to produce three groups of isoforms categorized as long, middle, and short groups, of which short NuMA displayed distinct localization patterns compared to long and middle isoforms. However, the function of short NuMA was not clear in the progress of cancer formation. This study aimed to unveil the role of short NuMA in cancer pathogenesis. Methods: The expression levels of short isoforms were explored in paired gastric carcinoma (GC) samples and different cell lines. Furthermore, the short isoform behaved as a putative tumor suppressor based on cell proliferation and cell colony formation assays. Pull-down assay and whole-genome gene expression analysis were carried out to search candidate interaction partners of short NuMA. Results: The expression of short NuMA was highly expressed in S and G2 phases of the cell cycle; compared with nontumor tissues, short NuMA downregulated in nine GCs (GC1 [0.131, P = 5 × 10−4]; GC2 [0.316, P = 3 × 10−5]; GC3 [0.111, P = 6 × 10−4]; GC4 [0.456, P = 0.011]; GC5 [0.474, P = 0.001]; GC6 [0.311, P = 0.004]; GC7 [0.28, P = 3 × 10−5]; GC8 [0.298, P = 0.007]; and GC9 [0.344, P = 0.002]). Besides, high expression of short NuMA significantly inhibits cell growth (2.43 × 105 vs. 2.97 × 105, P = 0.0029) and cell clone information in vitro (70 vs. 2, P = 1.67 × 10−45). Short NuMA could bind with alpha–actinin-4 (ACTN4), a putative tumor promoting gene. Overexpression of short NuMA could tremendously decrease the expression of MYB proto-oncogene like 2 (MYBL2) of about 92-fold, which played an important role in the cell cycles. Conclusions: Short isoform of NuMA might be functioned as a putative role of tumor suppressor. Further studies should be made to illuminate the relationship between ACTN4, MYBL2, and tumor progression.
Collapse
Affiliation(s)
- Wang-Sen Qin
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Jin Wu
- Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yang Chen
- Central Laboratory, Haikou People's Hospital, Haikou, Hainan 570208, China
| | - Fa-Cai Cui
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Fu-Ming Zhang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Guan-Ting Lyu
- Department of Blood Transfusion, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hong-Mei Zhang
- Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
4
|
Zhan M, Riordon DR, Yan B, Tarasova YS, Bruweleit S, Tarasov KV, Li RA, Wersto RP, Boheler KR. The B-MYB transcriptional network guides cell cycle progression and fate decisions to sustain self-renewal and the identity of pluripotent stem cells. PLoS One 2012; 7:e42350. [PMID: 22936984 PMCID: PMC3427317 DOI: 10.1371/journal.pone.0042350] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 07/04/2012] [Indexed: 01/08/2023] Open
Abstract
Embryonic stem cells (ESCs) are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs), and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity.
Collapse
Affiliation(s)
- Ming Zhan
- Bioinformatics Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- The Methodist Hospital Research Institute, Cornell University Weill Cornell Medical College, Houston, Texas, United States of America
| | - Daniel R. Riordon
- Molecular Cardiology and Stem Cell Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Bin Yan
- Bioinformatics Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yelena S. Tarasova
- Molecular Cardiology and Stem Cell Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sarah Bruweleit
- Molecular Cardiology and Stem Cell Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kirill V. Tarasov
- Molecular Cardiology and Stem Cell Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Ronald A. Li
- Stem Cell and Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Robert P. Wersto
- Flow Cytometry Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kenneth R. Boheler
- Molecular Cardiology and Stem Cell Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- Stem Cell and Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
5
|
Pilkinton M, Sandoval R, Colamonici OR. Mammalian Mip/LIN-9 interacts with either the p107, p130/E2F4 repressor complex or B-Myb in a cell cycle-phase-dependent context distinct from the Drosophila dREAM complex. Oncogene 2007; 26:7535-43. [PMID: 17563750 DOI: 10.1038/sj.onc.1210562] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mammalian Mip/LIN-9 is a cell cycle regulatory protein that is negatively regulated by CDK4/cyclin D. It has been demonstrated that Mip/LIN-9 collaborates with B-Myb during S and G(2)/M in the induction of cyclins A and B, and CDK1. The ortholog of Mip/LIN-9 in Drosophila, Mip130, is part of a large multisubunit protein complex that includes RBF, repressor E2Fs and Myb, in what was termed the dREAM complex. A similar complex, although lacking B-Myb, was also described in Caenorhabditis elegans. Here, we demonstrate that unlike Drosophila, Mip/LIN-9 has mutually exclusive and cell cycle-phase-specific interactions with the mammalian orthologs of the dREAM complex. In G(0)/early G(1), Mip/LIN-9 forms a complex with E2F4 and p107 or p130, while in late G(1)/S phase, it associates with B-Myb. The separation of Mip/LIN-9 from p107,p130/E2F4 is likely driven by phosphorylation of the pocket proteins by CDK4 since Mip/LIN-9 fails to interact with phosphorylated forms of p107,p130. Importantly, the repressor complex that Mip/LIN-9 forms with p107 takes functional precedence over the transcriptional activation linked to the Mip/LIN-9 and B-Myb interaction since expression of p107 blocks the activation of the cyclin B promoter triggered by B-Myb and Mip/LIN-9.
Collapse
Affiliation(s)
- M Pilkinton
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | | | | |
Collapse
|
6
|
Hofmann CS, Wang X, Sullivan CP, Toselli P, Stone PJ, McLean SE, Mecham RP, Schreiber BM, Sonenshein GE. B-Myb Represses Elastin Gene Expression in Aortic Smooth Muscle Cells. J Biol Chem 2005; 280:7694-701. [PMID: 15615710 DOI: 10.1074/jbc.m412501200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
B-Myb represses collagen gene transcription in vascular smooth muscle cells (SMCs) in vitro and in vivo. Here we sought to determine whether elastin is similarly repressed by B-Myb. Levels of tropoelastin mRNA and protein were lower in aortas and isolated SMCs of adult transgenic mice expressing the human B-myb gene, driven by the basal cytomegalovirus promoter, compared with age-matched wild type (WT) animals. However, the vessel wall architecture and levels of insoluble elastin revealed no differences. Since elastin deposition occurs early in development, microarray analysis was performed using nontransgenic mice. Aortic levels of tropoelastin mRNA were low during embryonal growth and increased substantially in neonates, whereas B-myb levels varied inversely. Tropoelastin mRNA expression in aortas of 6-day-old neonatal transgenic and WT animals was comparable. Recently, we demonstrated that cyclin A-Cdk2 prevents B-Myb-mediated repression of collagen promoter activity. Cyclin A2 levels were higher in neonatal versus adult WT or transgenic mouse aortas. Ectopic cyclin A expression reversed the ability of B-Myb to repress elastin gene promoter activity in adult SMCs. These results demonstrate for the first time that B-Myb represses SMC elastin gene expression and that cyclin A plays a role in the developmental regulation of elastin gene expression in the aorta. Furthermore, the findings provide additional insight into the mechanism of B-myb-mediated resistance to femoral artery injury.
Collapse
Affiliation(s)
- Claudia S Hofmann
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hofmann CS, Sullivan CP, Jiang HY, Stone PJ, Toselli P, Reis ED, Chereshnev I, Schreiber BM, Sonenshein GE. B-Myb represses vascular smooth muscle cell collagen gene expression and inhibits neointima formation after arterial injury. Arterioscler Thromb Vasc Biol 2004; 24:1608-13. [PMID: 15256398 DOI: 10.1161/01.atv.0000139010.71779.f3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The function of B-Myb, a negative regulator of vascular smooth muscle cell (SMC) matrix gene transcription, was analyzed in the vasculature. METHODS AND RESULTS Mice were generated in which the human B-myb gene was driven by the basal cytomegalovirus promoter, and 3 founders were identified. Mice appeared to develop normally, and human B-myb was expressed in the aortas. Total B-Myb levels were elevated in aortas of adult transgenic versus wild-type (WT) animals and varied inversely with alpha1(I) collagen mRNA expression. However, neonatal WT and transgenic aortas displayed comparable levels of alpha1(I) collagen mRNA, likely resulting from elevated levels of cyclin A, which ablated repression by B-Myb. Aortic SMCs from adult transgenic animals displayed decreased alpha1(I) collagen mRNA levels. To examine the role of B-Myb after vascular injury, animals were subjected to femoral artery denudation, which induces SMC-rich lesion formation. A dramatic reduction in neointima formation and lumenal narrowing was observed in arteries of B-myb transgenic versus WT mice 4 weeks after injury. CONCLUSIONS Data indicate that B-Myb, which inhibits matrix gene expression in the adult vessel wall, reduces neointima formation after vascular injury. To analyze B-Myb function in the vasculature, mice overexpressing B-myb were generated. Neonates displayed normal alpha1(I) collagen mRNA levels, whereas adults expressed decreased collagen mRNA in aortas and isolated vascular SMCs. On femoral artery denudation, neointima formation was dramatically reduced in B-myb transgenic mice.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Aorta/metabolism
- Cell Cycle Proteins/biosynthesis
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Collagen/biosynthesis
- Collagen/genetics
- Cyclin A/biosynthesis
- Cyclin A/genetics
- Cytomegalovirus/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Female
- Femoral Artery/injuries
- Femoral Artery/metabolism
- Femoral Artery/pathology
- Gene Expression Regulation
- Humans
- Male
- Mice
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transgenes
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Claudia S Hofmann
- Department of Biochemistry, Boston University School of Medicine, 715 Albany St, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|