1
|
Ma R, Li G, Ye Y, Liang L, Wang C, Zhou H, Zhang P, An L, Shi G, Chen Q, Xu H, Gao Z. Prognosis conferred by molecular features of appendix-derived Pseudomyxoma Peritonei. Transl Oncol 2025; 53:102279. [PMID: 39929063 DOI: 10.1016/j.tranon.2025.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/05/2025] [Indexed: 03/01/2025] Open
Abstract
INTRODUCTION Pseudomyxoma Peritonei (PMP) is an extremely rare disease characterized by progressive accumulation of mucinous ascites and implants in the peritoneum. We investigated the prognostic value for response to cytoreductive surgery (CRS) or hyperthermic intraperitoneal chemotherapy (HIPEC) and dissected potential beneficial targeted therapy utilizing genomic characteristics. METHODS Whole-exome sequencing (WES) was performed on tissue specimens and matched white blood cells from 81 patients with PMP. The study investigated mutational signatures, profiling, and their correlation with progression-free survival (PFS) and overall survival (OS). RESULTS Signature 3 (HRD) and signature 15 (dMMR) were dominant. NMF cluster 1, characterized by signature 4, exhibited a worse prognosis. The p53 and TGF-β signaling pathways may contribute as risk factors for worse OS and PFS, respectively. MUC16-mutated patients had worse PFS (P = 0.016) and OS (P = 0.004) compared to wild-type patients. Patients with tumor mutational burden (TMB) > 1(P = 0.026) or alterations in TP53 (P = 0.006) or SMAD4 (P = 0.013) had significantly worse OS compared to those with a TMB < 1 or normal genes. Patients with homologous recombination deficiency (HRD) positivity (P = 0.003) or alterations in TGFBR2 (P = 0.037) experienced worse PFS compared to their respective control groups. Furthermore, NMF cluster1 (P = 0.020), TP53 (P = 0.004), and MUC16 (P = 0.013) were identified as independent prognostic factors for OS, while HRD status (P = 0.003) was independent predictors for PFS in PMP. CONCLUSIONS The study reveals that genomic profiling can serve as a robust tool for identifying prognostic markers in PMP. The identified genomic mutations and signaling pathway offer new avenues for targeted therapies.
Collapse
Affiliation(s)
- Ruiqing Ma
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China; Department of Myxoma, Aerospace Center Hospital, Beijing, 100049, China.
| | - Guojun Li
- Thorgene Co., Ltd., Beijing, 100176, China.
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.
| | - Lei Liang
- Department of Ultrasound, Aerospace Center Hospital, Beijing, China
| | - Chong Wang
- Department of Myxoma, Aerospace Center Hospital, Beijing, 100049, China
| | - Haipeng Zhou
- Department of Myxoma, Aerospace Center Hospital, Beijing, 100049, China
| | - Pu Zhang
- Department of Myxoma, Aerospace Center Hospital, Beijing, 100049, China
| | - Lubiao An
- Department of Myxoma, Aerospace Center Hospital, Beijing, 100049, China
| | - Guanjun Shi
- Department of Myxoma, Aerospace Center Hospital, Beijing, 100049, China
| | - Qian Chen
- Thorgene Co., Ltd., Beijing, 100176, China.
| | - Hongbin Xu
- Department of Myxoma, Aerospace Center Hospital, Beijing, 100049, China.
| | - Zhidong Gao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
2
|
Li Y, Chen J, Li T, Lin J, Zheng H, Johnson N, Yao X, Ding X. Modeling gastric intestinal metaplasia in 3D organoids using nitrosoguanidine. J Mol Cell Biol 2024; 16:mjae030. [PMID: 39153963 PMCID: PMC11744189 DOI: 10.1093/jmcb/mjae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024] Open
Abstract
Gastric intestinal metaplasia (GIM) represents a precancerous stage characterized by morphological and pathophysiological changes in the gastric mucosa, where gastric epithelial cells transform into a phenotype resembling that of intestinal cells. Previous studies have demonstrated that the intragastric administration of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induces both gastric carcinoma and intestinal metaplasia in mice. Here, we show that MNNG induces GIM in three-dimensional (3D) mouse organoids. Our histological analyses reveal that MNNG-induced gastric organoids undergo classical morphological alterations, exhibiting a distinct up-regulation of CDX2 and MUC2, along with a down-regulation of ATP4B and MUC6. Importantly, metaplastic cells observed in MNNG-treated organoids originate from MIST1+ cells, indicating their gastric chief cell lineage. Functional analyses show that activation of the RAS signaling pathway drives MNNG-induced metaplasia in 3D organoids, mirroring the characteristics observed in human GIM. Consequently, modeling intestinal metaplasia using 3D organoids offers valuable insights into the molecular mechanisms and spatiotemporal dynamics of the gastric epithelial lineage during the development of intestinal metaplasia within the gastric mucosa. We conclude that the MNNG-induced metaplasia model utilizing 3D organoids provides a robust platform for developing preventive and therapeutic strategies to mitigate the risk of gastric cancer before precancerous lesions occur.
Collapse
Affiliation(s)
- Yuan Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing 100029, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Research Center for Spleen and Stomach Diseases of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiena Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Tao Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Lin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haocheng Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Nadia Johnson
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xuebiao Yao
- MOE Key Laboratory of Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Research Center for Spleen and Stomach Diseases of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
3
|
Hamidi Sofiani V, Ebrahimian Shiadeh A, Tabarraei A, Nikoo HR, Sadeghi F, Kamrani G, Yahyapour Y, Moradi A. Association of G12D mutation in the KRAS gene with HPV and EBV in gastrointestinal cancer tissues. J Int Med Res 2024; 52:3000605241302302. [PMID: 39673361 PMCID: PMC11645758 DOI: 10.1177/03000605241302302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/07/2024] [Indexed: 12/16/2024] Open
Abstract
OBJECTIVE This study aimed to explore the potential relationship between viral infections and gastrointestinal (GI) malignancies, focusing on the presence of KRAS G12D mutations. Specifically, we investigated the association of viral agents, including human papillomavirus (HPV) and Epstein-Barr virus (EBV), with KRAS G12D mutations in GI cancers to better understand their combined role in cancer development. METHODS This cross-sectional study comprised 92 patients diagnosed with GI cancer and 100 healthy individuals in the control group. All samples were examined to detect the KRAS G12D gene mutation and the existence of HPV and EBV using real-time polymerase chain reaction assays. RESULTS HPV and EBV DNA were detected in 5.4% and 51.4% of gastric cancer samples and in 7.3% and 49.1% of colorectal cancer samples, respectively. Analysis of KRAS G12D in plasma samples revealed heterozygous mutations in 54% of patients with gastric cancer and 35% of patients with colorectal tumors. Among EBV-positive colorectal cancer samples, 1.8% were wild-type, while 47.2% exhibited heterozygous mutations. Among HPV-positive colorectal cancer patients, 1.8% exhibited wild-type KRAS, 5.4% had heterozygous mutations, and 3.2% had homozygous mutations. CONCLUSION This study detected a significant correlation between the presence of viral agents and KRAS G12D mutations.
Collapse
Affiliation(s)
- Vahideh Hamidi Sofiani
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Arefeh Ebrahimian Shiadeh
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hadi Razavi Nikoo
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farzin Sadeghi
- Department of Medical Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ghodsieh Kamrani
- Department of Pathology, School of Medicine, Faculty of Medicine and Clinical Research Development Center, Babol University of Medical Sciences, Babol, Iran
| | - Yousef Yahyapour
- Department of Medical Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Abdolvahab Moradi
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
4
|
von Ammon JL, Machado GJR, da Matta RRC, Telles AC, Carrijo F, dos Santos BAF, Brandão JCD, da Silva TM, Hecht F, Colozza-Gama GA, Tezzei JH, Cerutti JM, Ramos HE. Follicular cell-derived thyroid carcinomas harboring novel genetic BRAFNON-V600E mutations: real-world data obtained using a multigene panel. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e240067. [PMID: 39420942 PMCID: PMC11460960 DOI: 10.20945/2359-4292-2024-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/08/2024] [Indexed: 10/19/2024]
Abstract
Objectives To assess the molecular profile of follicular cell-derived thyroid carcinomas (FCDTCs) and correlate the identified mutations with the clinical and pathological features of the affected patients. Materials and methods Cross-sectional study of tumor samples from 100 adult patients diagnosed with FCDTC between 2010 and 2019. The patients' clinical and pathological data were collected. Genomic DNA was extracted from formalin-fixed, paraffin-embedded (FFPE) tumors using the ReliaPrep FFPE gDNA Miniprep System. Genotyping of target genomic regions (KRAS, NRAS, BRAF, EGFR, and PIK3CA) was performed using the AmpliSeq panel, while sequencing was performed on the iSeq 100 platform. Results The patients' mean age was 39 years. In all, 82% of the tumors were classic papillary thyroid carcinomas. Overall, 54 (54%) tumor samples yielded satisfactory results on next-generation sequencing (NGS), of which 31 harbored mutations. BRAF gene mutations were the most frequent, with the BRAF V600E mutation present in 10 tumors. Seven tumors had BRAF NON-V600E mutations not previously described in FCDTCs (G464E, G464R, G466E, S467L, G469E, G596D, and the T599Ifs*10 deletion) but described in other types of cancer (i.e., skin/melanoma, lung, colorectal, and others). One tumor had a previously reported BRAF A598V mutation. EGFR gene mutations were found in 16 (29%) and KRAS or NRAS alterations in 8 (14%) of the 54 tumors analyzed. Conclusion We described herein seven non-hotspot/novel variants in the BRAF gene, highlighting their potential role in expanding our understanding of FCDTC genetics.
Collapse
Affiliation(s)
- Juliana Lima von Ammon
- Universidade Federal da BahiaInstituto de Ciências da SaúdePrograma de Pós-graduação em Processos Interativos de Órgãos e SistemasSalvadorBABrasilPrograma de Pós-graduação em Processos Interativos de Órgãos e Sistemas, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Gabriel Jeferson Rodríguez Machado
- Universidade Federal da BahiaInstituto de Ciências da SaúdePrograma de Pós-graduação em Processos Interativos de Órgãos e SistemasSalvadorBABrasilPrograma de Pós-graduação em Processos Interativos de Órgãos e Sistemas, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Rafael Reis Campos da Matta
- Universidade Federal da BahiaInstituto de Ciências da SaúdePrograma de Pós-graduação em Processos Interativos de Órgãos e SistemasSalvadorBABrasilPrograma de Pós-graduação em Processos Interativos de Órgãos e Sistemas, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Ana Clara Telles
- Universidade Federal da BahiaInstituto de Ciências da SaúdePrograma de Pós-graduação em Processos Interativos de Órgãos e SistemasSalvadorBABrasilPrograma de Pós-graduação em Processos Interativos de Órgãos e Sistemas, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Fabiane Carrijo
- Universidade Federal da BahiaInstituto de Ciências da SaúdePrograma de Pós-graduação em Processos Interativos de Órgãos e SistemasSalvadorBABrasilPrograma de Pós-graduação em Processos Interativos de Órgãos e Sistemas, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Bruno Alexsander França dos Santos
- Universidade Federal da BahiaInstituto de Ciências da SaúdeDepartamento de BiorregulaçãoSalvadorBABrasilDepartamento de Biorregulação, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Juliana Cabral Duarte Brandão
- Serviço de Patologia do Hospital Aristides MaltezSalvadorBABrasilServiço de Patologia do Hospital Aristides Maltez, Salvador, BA, Brasil
| | - Thiago Magalhães da Silva
- Universidade Estadual do Sudoeste da BahiaDepartamento de Ciências BiológicasJequiéBABrasilDepartamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA, Brasil
| | - Fabio Hecht
- Universidade Federal do Rio de JaneiroInstituto de Biofísica Carlos Chagas FilhoRio de JaneiroRJBrasilInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Gabriel Avela Colozza-Gama
- Universidade Federal de São PauloDepartamento de Morfologia e GenéticaLaboratório de Bases Genéticas de Tumores de TireoideSão PauloSPBrasilLaboratório de Bases Genéticas de Tumores de Tireoide, Divisão de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Julia Helena Tezzei
- Universidade Federal de São PauloDepartamento de Morfologia e GenéticaLaboratório de Bases Genéticas de Tumores de TireoideSão PauloSPBrasilLaboratório de Bases Genéticas de Tumores de Tireoide, Divisão de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Janete Maria Cerutti
- Universidade Federal de São PauloDepartamento de Morfologia e GenéticaLaboratório de Bases Genéticas de Tumores de TireoideSão PauloSPBrasilLaboratório de Bases Genéticas de Tumores de Tireoide, Divisão de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Helton Estrela Ramos
- Universidade Federal da BahiaInstituto de Ciências da SaúdePrograma de Pós-graduação em Processos Interativos de Órgãos e SistemasSalvadorBABrasilPrograma de Pós-graduação em Processos Interativos de Órgãos e Sistemas, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
- Universidade Federal da BahiaInstituto de Ciências da SaúdeDepartamento de BiorregulaçãoSalvadorBABrasilDepartamento de Biorregulação, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
| |
Collapse
|
5
|
Chakraborty J, Chakraborty S, Chakraborty S, Narayan MN. Entanglement of MAPK pathways with gene expression and its omnipresence in the etiology for cancer and neurodegenerative disorders. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194988. [PMID: 37739217 DOI: 10.1016/j.bbagrm.2023.194988] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Mitogen Activated Protein Kinase (MAPK) is one of the most well characterized cellular signaling pathways that controls fundamental cellular processes including proliferation, differentiation, and apoptosis. These cellular functions are consequences of transcription of regulatory genes that are influenced and regulated by the MAP-Kinase signaling cascade. MAP kinase components such as Receptor Tyrosine Kinases (RTKs) sense external cues or ligands and transmit these signals via multiple protein complexes such as RAS-RAF, MEK, and ERKs and eventually modulate the transcription factors inside the nucleus to induce transcription and other regulatory functions. Aberrant activation, dysregulation of this signaling pathway, and genetic alterations in any of these components results in the developmental disorders, cancer, and neurodegenerative disorders. Over the years, the MAPK pathway has been a prime pharmacological target, to treat complex human disorders that are genetically linked such as cancer, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The current review re-visits the mechanism of MAPK pathways in gene expression regulation. Further, a current update on the progress of the mechanistic understanding of MAPK components is discussed from a disease perspective.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Institute for Advancing Health through Agriculture, Texas A&M Agrilife, College Station, TX, USA
| | - Sayan Chakraborty
- Department of Anesthesiology, Weill Cornell School of Medicine, New York, USA
| | - Sohag Chakraborty
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, USA
| | - Mahesh N Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
6
|
Skórzewska M, Gęca K, Polkowski WP. A Clinical Viewpoint on the Use of Targeted Therapy in Advanced Gastric Cancer. Cancers (Basel) 2023; 15:5490. [PMID: 38001751 PMCID: PMC10670421 DOI: 10.3390/cancers15225490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The development of therapies for advanced gastric cancer (GC) has made significant progress over the past few years. The identification of new molecules and molecular targets is expanding our understanding of the disease's intricate nature. The end of the classical oncology era, which relied on well-studied chemotherapeutic agents, is giving rise to novel and unexplored challenges, which will cause a significant transformation of the current oncological knowledge in the next few years. The integration of established clinically effective regimens in additional studies will be crucial in managing these innovative aspects of GC. This study aims to present an in-depth and comprehensive review of the clinical advancements in targeted therapy and immunotherapy for advanced GC.
Collapse
|
7
|
Abbas Raza SH, Zhong R, Xing S, Yu X, Chengcheng L, Zan L, Schreurs NM, Pant SD, Lei H. Based on the Cancer Genome Atlas Database Development of a prognostic model of RNA binding protein in stomach adenocarcinoma. Comput Biol Med 2023; 164:107307. [PMID: 37544249 DOI: 10.1016/j.compbiomed.2023.107307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
The purpose of this study was to identify potential RNA binding proteins associated with the survival of gastric adenocarcinoma, as well as the corresponding biological characteristics and signaling pathways of these RNA binding proteins. RNA sequencing and clinical data were obtained from the cancer genome map (N = 32, T = 375) and the comprehensive gene expression database (GSE84437, N = 433). The samples in The Cancer Genome Atlas were randomly divided into a development group and a test group. A total of 1495 RNA binding protein related genes were extracted. Using nonparametric tests to analyze the difference of RNA binding protein related genes, 296 differential RNA binding proteins were obtained, 166 were up-regulated and 130 were down regulated. Twenty prognosis-related RNA binding proteins were screened using Cox regression, including 14 high-risk genes (hazard ratio > 1.0) and 6 low-risk genes (hazard ratio < 1.0). Seven RNA binding protein related genes were screened from the final prognostic model and used to construct a new prognostic model. Using the development group and test group, the model was verified with survival analysis, receiver operating characteristics curves and prognosis analysis curves. A prediction nomogram was finally developed and showed good prediction performance.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Shen Xing
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoting Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
| | - Liang Chengcheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Nicola M Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Sameer D Pant
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Ren X, Feng C, Wang Y, Chen P, Wang S, Wang J, Cao H, Li Y, Ji M, Hou P. SLC39A10 promotes malignant phenotypes of gastric cancer cells by activating the CK2-mediated MAPK/ERK and PI3K/AKT pathways. Exp Mol Med 2023; 55:1757-1769. [PMID: 37524874 PMCID: PMC10474099 DOI: 10.1038/s12276-023-01062-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/13/2023] [Accepted: 05/25/2023] [Indexed: 08/02/2023] Open
Abstract
Solute carrier family 39 member 10 (SLC39A10) belongs to a subfamily of zinc transporters and plays a key role in B-cell development. Previous studies have reported that its upregulation promotes breast cancer metastasis by enhancing the influx of zinc ions (Zn2+); however, its role in gastric cancer remains totally unclear. Here, we found that SLC39A10 expression was frequently increased in gastric adenocarcinomas and that SLC39A10 upregulation was strongly associated with poor patient outcomes; in addition, we identified SLC39A10 as a direct target of c-Myc. Functional studies showed that ectopic expression of SLC39A10 in gastric cancer cells dramatically enhanced the proliferation, colony formation, invasiveness abilities of these gastric cancer cells and tumorigenic potential in nude mice. Conversely, SLC39A10 knockdown inhibited gastric cancer cell proliferation and colony formation. Mechanistically, SLC39A10 exerted its carcinogenic effects by increasing Zn2+ availability and subsequently enhancing the enzyme activity of CK2 (casein kinase 2). As a result, the MAPK/ERK and PI3K/AKT pathways, two major downstream effectors of CK2, were activated, while c-Myc, a downstream target of these two pathways, formed a vicious feedback loop with SLC39A10 to drive the malignant progression of gastric cancer. Taken together, our data demonstrate that SLC39A10 is a functional oncogene in gastric cancer and suggest that targeting CK2 is an alternative therapeutic strategy for gastric cancer patients with high SLC39A10 expression.
Collapse
Affiliation(s)
- Xiaojuan Ren
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Chao Feng
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Yubo Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Pu Chen
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Simeng Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Jianling Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Hongxin Cao
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Yujun Li
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, P. R. China.
| | - Meiju Ji
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
| |
Collapse
|
9
|
Won Y, Choi E. Mouse models of Kras activation in gastric cancer. Exp Mol Med 2022; 54:1793-1798. [PMID: 36369466 PMCID: PMC9723172 DOI: 10.1038/s12276-022-00882-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer has one of the highest incidence rates and is one of the leading causes of cancer-related mortality worldwide. Sequential steps within the carcinogenic process are observed in gastric cancer as well as in pancreatic cancer and colorectal cancer. Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most well-known oncogene and can be constitutively activated by somatic mutations in the gene locus. For over 2 decades, the functions of Kras activation in gastrointestinal (GI) cancers have been studied to elucidate its oncogenic roles during the carcinogenic process. Different approaches have been utilized to generate distinct in vivo models of GI cancer, and a number of mouse models have been established using Kras-inducible systems. In this review, we summarize the genetically engineered mouse models in which Kras is activated with cell-type and/or tissue-type specificity that are utilized for studying carcinogenic processes in gastric cancer as well as pancreatic cancer and colorectal cancer. We also provide a brief description of histological phenotypes and characteristics of those mouse models and the current limitations in the gastric cancer field to be investigated further.
Collapse
Affiliation(s)
- Yoonkyung Won
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Eunyoung Choi
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
10
|
Qi Y, Zou H, Zhao X, Kapeleris J, Monteiro M, Li F, Xu ZP, Deng Y, Wu Y, Tang Y, Gu W. Inhibition of colon cancer K-RasG13D mutation reduces cancer cell proliferation but promotes stemness and inflammation via RAS/ERK pathway. Front Pharmacol 2022; 13:996053. [PMID: 36386200 PMCID: PMC9650442 DOI: 10.3389/fphar.2022.996053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022] Open
Abstract
K-Ras is a well-studied oncogene, and its mutation is frequently found in epithelial cancers like pancreas, lung, and colorectal cancers. Cancer cells harboring K-Ras mutations are difficult to treat due to the drug resistance and metastasis properties. Cancer stem cells (CSCs) are believed the major cause of chemotherapeutic resistance and responsible for tumor recurrence and metastasis. But how K-Ras mutation affects CSCs and inflammation is not clear. Here, we compared two colon cancer cell lines, HCT-116 and HT-29, with the former being K-RasG13D mutant and the latter being wildtype. We found that HCT-116 cells treated with a K-Ras mutation inhibitor S7333 formed significantly more tumor spheroids than the untreated control, while the wild type of HT-29 cells remained unchanged. However, the size of tumor spheroids was smaller than the untreated controls, indicating their proliferation was suppressed after S7333 treatment. Consistent with this, the expressions of stem genes Lgr5 and CD133 significantly increased and the expression of self-renewal gene TGF-β1 also increased. The flow cytometry analysis indicated that the expression of stem surface marker CD133 increased in the treated HCT-116 cells. To understand the pathway through which the G13D mutation induced the effects, we studied both RAS/ERK and PI3K/Akt pathways using specific inhibitors SCH772984 and BEZ235. The results indicated that RAS/ERK rather than PI3K/Akt pathway was involved. As CSCs play the initial role in cancer development and the inflammation is a vital step during tumor initiation, we analyzed the correlation between increased stemness and inflammation. We found a close correlation of increased Lgr5 and CD133 with proinflammatory factors like IL-17, IL-22, and IL-23. Together, our findings suggest that K-RasG13D mutation promotes cancer cell growth but decreases cancer stemness and inflammation thus tumorigenesis and metastasis potential in colon cancer. Inhibition of this mutation reverses the process. Therefore, care needs be taken when employing targeted therapies to K-RasG13D mutations in clinics.
Collapse
Affiliation(s)
- Yan Qi
- Department of Pathology, Central People’s Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), Brisbane, QLD, Australia
| | - Hong Zou
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), Brisbane, QLD, Australia
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - XiaoHui Zhao
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), Brisbane, QLD, Australia
| | - Joanna Kapeleris
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), Brisbane, QLD, Australia
| | - Michael Monteiro
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), Brisbane, QLD, Australia
| | - Feng Li
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), Brisbane, QLD, Australia
| | - Yizhen Deng
- Gillion Biotherapeutics Ltd., Guangzhou Huangpu Industrial Zoon, Guangzhou, China
| | - Yanheng Wu
- Gillion Biotherapeutics Ltd., Guangzhou Huangpu Industrial Zoon, Guangzhou, China
| | - Ying Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Ying Tang, ; Wenyi Gu,
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), Brisbane, QLD, Australia
- Gillion Biotherapeutics Ltd., Guangzhou Huangpu Industrial Zoon, Guangzhou, China
- *Correspondence: Ying Tang, ; Wenyi Gu,
| |
Collapse
|
11
|
AIMP2-DX2 provides therapeutic interface to control KRAS-driven tumorigenesis. Nat Commun 2022; 13:2572. [PMID: 35546148 PMCID: PMC9095880 DOI: 10.1038/s41467-022-30149-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/14/2022] [Indexed: 12/11/2022] Open
Abstract
Recent development of the chemical inhibitors specific to oncogenic KRAS (Kirsten Rat Sarcoma 2 Viral Oncogene Homolog) mutants revives much interest to control KRAS-driven cancers. Here, we report that AIMP2-DX2, a variant of the tumor suppressor AIMP2 (aminoacyl-tRNA synthetase-interacting multi-functional protein 2), acts as a cancer-specific regulator of KRAS stability, augmenting KRAS-driven tumorigenesis. AIMP2-DX2 specifically binds to the hypervariable region and G-domain of KRAS in the cytosol prior to farnesylation. Then, AIMP2-DX2 competitively blocks the access of Smurf2 (SMAD Ubiquitination Regulatory Factor 2) to KRAS, thus preventing ubiquitin-mediated degradation. Moreover, AIMP2-DX2 levels are positively correlated with KRAS levels in colon and lung cancer cell lines and tissues. We also identified a small molecule that specifically bound to the KRAS-binding region of AIMP2-DX2 and inhibited the interaction between these two factors. Treatment with this compound reduces the cellular levels of KRAS, leading to the suppression of KRAS-dependent cancer cell growth in vitro and in vivo. These results suggest the interface of AIMP2-DX2 and KRAS as a route to control KRAS-driven cancers. Direct targeting of oncogenic KRAS activity is a challenge. Here the authors report that a splice variant of AIMP2, AIMP2-DX2, enhances KRAS stability by blocking ubiquitin-mediated degradation of KRAS via the E3 ligase, Smurf2, and identify a chemical that can hinder AIMP2-DX2 from interacting with KRAS.
Collapse
|
12
|
Activating KRAS and GNAS mutations in heterotopic submucosal glands of the stomach. J Gastroenterol 2022; 57:333-343. [PMID: 35188590 DOI: 10.1007/s00535-022-01863-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/07/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND The heterotopic submucosal gland (HSG) is a common incidental finding in gastrectomy specimens. The majority of HSGs are small incidental lesions, which are also known as gastritis cystica profunda. However, larger lesions may appear as an inverted growth of well-organized mucosa referred to as gastric inverted polyps. METHODS To determine whether genetic alterations are involved in HSG development, we analyzed 63 gastric HSG lesions using targeted next-generation sequencing and immunohistochemistry. RESULTS Histologically, HSG lesions consistently had areas of pyloric gland differentiation with variable extent of foveolar differentiation. Although the background mucosa showed intestinal metaplasia in most cases (98%), intestinal-type epithelium was seen in only one HSG lesion (2%). Sequencing analysis identified activating KRAS, BRAF, CTNNB1, and GNAS mutations in 34 (54%), 1 (2%), 1 (2%), and 7 (11%) lesions, respectively. HSG lesions harboring a KRAS mutation were more likely to present extensive foveolar differentiation (P = 0.013) and absence of parietal cells (P = 0.0081). Five HSG lesions had a dysplastic component, and concordant genetic alterations were detected between the non-dysplastic and dysplastic areas of two lesions that were successfully analyzed. Immunohistochemical staining demonstrated diffuse expression of mutant KRAS protein in lesions with the most common genetic alteration, KRAS G12D. CONCLUSIONS Our study demonstrated that a major proportion of HSGs were proliferative lesions associated with oncogenic mutations, with more than half of lesions harboring activating KRAS mutations.
Collapse
|
13
|
Pandian J, Ganesan K. Delineation of gastric tumors with activated ERK/MAPK signaling cascades for the development of targeted therapeutics. Exp Cell Res 2022; 410:112956. [PMID: 34864005 DOI: 10.1016/j.yexcr.2021.112956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 11/04/2022]
Abstract
The ERK/MAPK signaling pathway is activated in various cancers including gastric cancer. Targeting the ERK/MAPK/MEK pathway has been considered as a promising strategy for cancer therapy. However, MEK inhibition leads to a series of resistance mechanisms due to mutations in MEK, elevated expression of RAS or RAF proteins and activation of the associated signaling pathways. In the present study, ERK/MAPK pathway specific gene signatures were identified to be highly activated in intestinal subtype gastric tumors. Inhibition of ERK/MAPK pathway with the inhibitor PD98059 in gastric cancer cell lines by in vitro signaling pathway and genome-wide expression profiling revealed the associated signaling pathways. Functional genomic investigation of the ERK/MAPK regulated genes reveals the association of ERK/MAPK pathway with E2F, Myc, SOX-2, TGF-β, OCT4 and Notch pathways in gastric cancer cells. Of these, E2F, Myc and SOX-2 pathways are activated in intestinal subtype gastric tumors and TGF-β, OCT4, Notch pathways are activated in diffuse subtype gastric tumors. Further, the mutational load of gastric tumors was found to have association and correlation with the activation pattern of ERK/MAPK pathways across gastric tumors. ERK/MAPK activation was also found to represent the EBV and MSI activated subtypes of gastric tumors. Identification of potent drug candidates inhibiting the ERK/MAPK and associated pathways would pave a way for developing the targeted therapeutics for a subset of gastric tumors with activated ERK/MAPK signaling cascade.
Collapse
Affiliation(s)
- Jaishree Pandian
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India.
| | - Kumaresan Ganesan
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India.
| |
Collapse
|
14
|
Kim H, Heo YJ, Cho YA, Kang SY, Ahn S, Kim KM. Tumor immune microenvironment is influenced by frameshift mutations and tumor mutational burden in gastric cancer. Clin Transl Oncol 2021; 24:556-567. [PMID: 34767183 DOI: 10.1007/s12094-021-02714-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE Immunoscore can effectively predict prognosis in patients with colon cancer; however, its clinical application is limited. We modified the Immunoscore and created a tumor immune microenvironment (TIM) classification system for gastric carcinoma. Unlike previous studies that used small sample sizes or focused on particular immune-cell subtypes, our simplified system enables pathologists to classify gastric carcinomas intuitively using H&E-stained sections. METHODS Samples from 326 patients with advanced gastric carcinoma were reviewed and analyzed by pathologists using simple determination and digital image analysis. Comprehensive results of cancer-panel sequencing, Epstein-Barr‒virus (EBV) status, and PD-L1, HER2, ATM, PTEN, MET, FGFR2, and EGFR immunohistochemistry were evaluated with respect to the TIM class. RESULTS The TIM was classified as "hot" (n = 22), "immunosuppressed" (n = 178), "excluded" (n = 83), or "cold" (n = 43). TIM category was significantly associated with numbers of frameshift mutations (P < 0.001) and high tumor mutational burden (P < 0.004), and predicted overall survival. It was also significantly associated with age, histological type, degree of fibrosis, PD-L1 expression, loss of ATM and PTEN expression (P < 0.001), sex, EBV positivity, and HER2 overexpression (P < 0.04). "Hot" tumors were frequent in PD-L1 expressing and EBV-positive samples, and in those with ATM and PTEN loss. "Excluded" tumors were frequent in HER2-positive cases, whereas "cold" tumors were more frequent in younger patients with poorly cohesive histology and high fibrosis levels. CONCLUSIONS TIM classification system for gastric carcinoma has prognostic significance and results in classes that are associated with molecular characteristics.
Collapse
Affiliation(s)
- H Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Y J Heo
- The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Y A Cho
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - S Y Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - S Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - K -M Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. .,The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Najar MA, Aravind A, Dagamajalu S, Sidransky D, Ashktorab H, Smoot DT, Gowda H, Prasad TSK, Modi PK, Chatterjee A. Hyperactivation of MEK/ERK pathway by Ca 2+ /calmodulin-dependent protein kinase kinase 2 promotes cellular proliferation by activating cyclin-dependent kinases and minichromosome maintenance protein in gastric cancer cells. Mol Carcinog 2021; 60:769-783. [PMID: 34437731 DOI: 10.1002/mc.23343] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/04/2023]
Abstract
Although CAMKK2 is overexpressed in several cancers, its role and relevant downstream signaling pathways in gastric cancer (GC) are poorly understood. Treatment of AGS GC cells with a CAMKK2 inhibitor, STO-609, resulted in decreased cell proliferation, cell migration, invasion, colony-forming ability, and G1/S-phase arrest. Quantitative phosphoproteomics in AGS cells with the CAMKK2 inhibitor led to the identification of 9603 unique phosphosites mapping to 3120 proteins. We observed decreased phosphorylation of 1101 phosphopeptides (1.5-fold) corresponding to 752 proteins upon CAMKK2 inhibition. Bioinformatics analysis of hypo-phosphorylated proteins revealed enrichment of MAPK1/MAPK3 signaling. Kinase enrichment analysis of hypo-phosphorylated proteins using the X2K Web tool identified ERK1, cyclin-dependant kinase 1 (CDK1), and CDK2 as downstream substrates of CAMKK2. Moreover, inhibition of CAMKK2 and MEK1 resulted in decreased phosphorylation of ERK1, CDK1, MCM2, and MCM3. Immunofluorescence results were in concordance with our mass spectroscopy data and Western blot analysis results. Taken together, our data reveal the essential role of CAMKK2 in the pathobiology of GC through the activation of the MEK/ERK1 signaling cascade.
Collapse
Affiliation(s)
- Mohd A Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington, District of Columbia, USA
| | - Duane T Smoot
- Department of Medicine, Meharry Medical Center, Nashville, Tennessee, USA
| | - Harsha Gowda
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India.,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant K Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Aditi Chatterjee
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India.,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
16
|
Campbell SL, Philips MR. Post-translational modification of RAS proteins. Curr Opin Struct Biol 2021; 71:180-192. [PMID: 34365229 DOI: 10.1016/j.sbi.2021.06.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022]
Abstract
Mutations of RAS genes drive cancer more frequently than any other oncogene. RAS proteins integrate signals from a wide array of receptors and initiate downstream signaling through pathways that control cellular growth. RAS proteins are fundamentally binary molecular switches in which the off/on state is determined by the binding of GDP or GTP, respectively. As such, the intrinsic and regulated nucleotide-binding and hydrolytic properties of the RAS GTPase were historically believed to account for the entirety of the regulation of RAS signaling. However, it is increasingly clear that RAS proteins are also regulated by a vast array of post-translational modifications (PTMs). The current challenge is to understand what are the functional consequences of these modifications and which are physiologically relevant. Because PTMs are catalyzed by enzymes that may offer targets for drug discovery, the study of RAS PTMs has been a high priority for RAS biologists.
Collapse
Affiliation(s)
| | - Mark R Philips
- Perlmutter Cancer Center, NYU Grossman School of Medicine, USA
| |
Collapse
|
17
|
Dai S, Huang Y, Liu T, Xu ZH, Liu T, Chen L, Wang ZW, Luo F. Development and validation of RNA binding protein-applied prediction model for gastric cancer. Aging (Albany NY) 2021; 13:5539-5552. [PMID: 33589575 PMCID: PMC7950299 DOI: 10.18632/aging.202483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/09/2020] [Indexed: 02/05/2023]
Abstract
RNA-binding proteins (RBPs) have been reported to be associated with the occurrence and progression of multiple cancers, but the role in gastric adenocarcinoma remains poorly understood. The present study aims to uncover potential RBPs associated with the survival of gastric adenocarcinoma, as well as corresponding biologic properties and signaling pathways of these RBPs. RNA sequencing and clinical data of GC were obtained from The Cancer Genome Atlas (n=373) and the Gene Expression Omnibus (GSE84437, n=433) database. Tumor samples in TCGA were randomly divided into the training and internal testing group by R software. A total of 238 DERBPs were selected for univariate and multivariate Cox regression analyses. Five pivotal RBP genes (RNASE2, METTL1, ANG, YBX2 and LARP6) were screened out and were used to construct a new prognostic model. Survival relevance and prediction accuracy of model were tested via Kaplan-Meier (K-M) curves and receiver operating characteristic (ROC) curves in internal and external testing groups. Further analysis has also showed that this model could serve as an independent prognosis-related parameter. A prognostic nomogram has been eventually developed, and presents a good performance of prediction.
Collapse
Affiliation(s)
- Shuang Dai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, P.R. China
| | - Yan Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, P.R. China
| | - Ting Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, P.R. China
| | - Zi-Han Xu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, P.R. China
| | - Tao Liu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, P.R. China
| | - Lan Chen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, P.R. China
| | - Zhi-Wu Wang
- Department of Chemoradiotherapy, Tangshan People's Hospital, Tangshan 063000, P.R. China
| | - Feng Luo
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, P.R. China
| |
Collapse
|
18
|
Srinivasan S, Kalinava N, Aldana R, Li Z, van Hagen S, Rodenburg SYA, Wind-Rotolo M, Qian X, Sasson AS, Tang H, Kirov S. Misannotated Multi-Nucleotide Variants in Public Cancer Genomics Datasets Lead to Inaccurate Mutation Calls with Significant Implications. Cancer Res 2020; 81:282-288. [PMID: 33115802 DOI: 10.1158/0008-5472.can-20-2151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
Although next-generation sequencing is widely used in cancer to profile tumors and detect variants, most somatic variant callers used in these pipelines identify variants at the lowest possible granularity, single-nucleotide variants (SNV). As a result, multiple adjacent SNVs are called individually instead of as a multi-nucleotide variants (MNV). With this approach, the amino acid change from the individual SNV within a codon could be different from the amino acid change based on the MNV that results from combining SNV, leading to incorrect conclusions about the downstream effects of the variants. Here, we analyzed 10,383 variant call files (VCF) from the Cancer Genome Atlas (TCGA) and found 12,141 incorrectly annotated MNVs. Analysis of seven commonly mutated genes from 178 studies in cBioPortal revealed that MNVs were consistently missed in 20 of these studies, whereas they were correctly annotated in 15 more recent studies. At the BRAF V600 locus, the most common example of MNV, several public datasets reported separate BRAF V600E and BRAF V600M variants instead of a single merged V600K variant. VCFs from the TCGA Mutect2 caller were used to develop a solution to merge SNV to MNV. Our custom script used the phasing information from the SNV VCF and determined whether SNVs were at the same codon and needed to be merged into MNV before variant annotation. This study shows that institutions performing NGS sequencing for cancer genomics should incorporate the step of merging MNV as a best practice in their pipelines. SIGNIFICANCE: Identification of incorrect mutation calls in TCGA, including clinically relevant BRAF V600 and KRAS G12, will influence research and potentially clinical decisions.
Collapse
Affiliation(s)
- Sujaya Srinivasan
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | - Natallia Kalinava
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | | | - Zhipan Li
- Sentieon Inc., Mountain View, California
| | | | | | | | - Xiaozhong Qian
- Translational Medicine, Bristol Myers Squibb, Princeton, New Jersey.,Translational Sciences, Daichi Sankyo, Basking Ridge, New Jersey
| | - Ariella S Sasson
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | - Hao Tang
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | - Stefan Kirov
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey.
| |
Collapse
|
19
|
The Clinicopathological Characteristics And Genetic Alterations of Signet-ring Cell Carcinoma in Gastric Cancer. Cancers (Basel) 2020; 12:cancers12082318. [PMID: 32824568 PMCID: PMC7463705 DOI: 10.3390/cancers12082318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
Signet-ring cell carcinoma (SRC) in advanced gastric cancer (GC) is often associated with more invasiveness and a worse prognosis than other cell types. The genetic alterations associated with gastric carcinogenesis in SRC are still unclear. In this study, 441 GC patients receiving curative surgery for GC between 2005 and 2013 were enrolled. The clinicopathological characteristics and genetic alterations of GC patients with and without SRC were compared. Among the 441 GC patients, 181 had SRC. For early GC, patients with SRC had more tumors located in the middle and lower stomach, more infiltrating tumors and better overall survival (OS) rates than those without SRC. For advanced GC, patients with SRC had more scirrhous type tumors, more PIK3CA amplifications, fewer microsatellite instability-high (MSI-H) tumors, more peritoneal recurrences and worse 5-year OS rates than those without SRC. For advanced GC with SRC, patients with peritoneal recurrence tended to have PD-L1 expression. For advanced GC without SRC, patients with liver metastasis tended to have PD-L1 expression, PI3K/AKT pathway mutations, TP53 mutations and MSI-H tumors. For advanced GC, PD-L1 expression was associated with peritoneal recurrence in SRC tumors, while non-SRC tumors with liver metastasis were likely to have PI3K/AKT pathway mutations, TP53 mutations and PD-L1 expression; immunotherapy and targeted therapy may be beneficial for these patients.
Collapse
|
20
|
Azad T, Rezaei R, Surendran A, Singaravelu R, Boulton S, Dave J, Bell JC, Ilkow CS. Hippo Signaling Pathway as a Central Mediator of Receptors Tyrosine Kinases (RTKs) in Tumorigenesis. Cancers (Basel) 2020; 12:cancers12082042. [PMID: 32722184 PMCID: PMC7463967 DOI: 10.3390/cancers12082042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
The Hippo pathway plays a critical role in tissue and organ growth under normal physiological conditions, and its dysregulation in malignant growth has made it an attractive target for therapeutic intervention in the fight against cancer. To date, its complex signaling mechanisms have made it difficult to identify strong therapeutic candidates. Hippo signaling is largely carried out by two main activated signaling pathways involving receptor tyrosine kinases (RTKs)—the RTK/RAS/PI3K and the RTK-RAS-MAPK pathways. However, several RTKs have also been shown to regulate this pathway to engage downstream Hippo effectors and ultimately influence cell proliferation. In this text, we attempt to review the diverse RTK signaling pathways that influence Hippo signaling in the context of oncogenesis.
Collapse
Affiliation(s)
- Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Reza Rezaei
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Abera Surendran
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Stephen Boulton
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jaahnavi Dave
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - John C. Bell
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carolina S. Ilkow
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-737-8899 (ext. 75208)
| |
Collapse
|
21
|
Fang WL, Chen MH, Huang KH, Lin CH, Chao Y, Lo SS, Li AFY, Wu CW, Shyr YM. The Clinicopathological Features and Genetic Alterations in Epstein-Barr Virus-Associated Gastric Cancer Patients after Curative Surgery. Cancers (Basel) 2020; 12:cancers12061517. [PMID: 32531970 PMCID: PMC7352714 DOI: 10.3390/cancers12061517] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Epstein–Barr virus (EBV)-associated gastric cancer (GC) is one of four major gastric cancer types and is traditionally considered to be related to lymphoepithelioma-like GC. Few studies have investigated the clinical significance of EBV infection in intestinal/solid type, diffuse (poorly cohesive) type, and lymphoepithelioma-like GC. Methods: A total of 460 GC patients receiving curative surgery were enrolled. The clinicopathological features, genetic alterations and prognoses were compared between patients with and without EBV infection. Results: EBV-positive GC patients (n = 43) had more tumors located in the upper and middle stomach, more common in lymphoepithelioma-like carcinoma, more lymphoid stroma, fewer Helicobacter pylori infections, and higher programmed death-ligand 1 (PD-L1) expression than EBV-negative GC patients. For intestinal/solid type GC, EBV-positive tumors were more likely to be located in the upper and middle stomach, have more lymphoid stroma, fewer Helicobacter pylori infections, higher PD-L1 expression, and more liver metastases than EBV-negative tumors. For diffuse (poorly cohesive) type GC, EBV-positive tumors were more likely to be located in the upper stomach, and have more lymphoid stroma than EBV-negative tumors. For lymphoepithelioma-like GC, EBV-positive tumors had more PI3K/AKT pathway mutations than EBV-negative tumors. Conclusions: Intestinal/solid type GC patients with EBV-positive tumors were associated with higher PD-L1 expression and more liver metastases, while lymphoepithelioma-like GC patients with EBV-positive tumors had more PI3K/AKT pathway mutations. Immunotherapy and targeted therapy may be beneficial for these groups of patients. Routine EBV survey is recommended in GC.
Collapse
Affiliation(s)
- Wen-Liang Fang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (K.-H.H.); (C.-W.W.); (Y.-M.S.)
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (M.-H.C.); (Y.C.); (S.-S.L.); (A.F.-Y.L.)
- Correspondence:
| | - Ming-Huang Chen
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (M.-H.C.); (Y.C.); (S.-S.L.); (A.F.-Y.L.)
- Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Kuo-Hung Huang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (K.-H.H.); (C.-W.W.); (Y.-M.S.)
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (M.-H.C.); (Y.C.); (S.-S.L.); (A.F.-Y.L.)
| | - Chien-Hsing Lin
- Genome Research Center, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Yee Chao
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (M.-H.C.); (Y.C.); (S.-S.L.); (A.F.-Y.L.)
- Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Su-Shun Lo
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (M.-H.C.); (Y.C.); (S.-S.L.); (A.F.-Y.L.)
- Department of Surgery, National Yang-Ming University Hospital, Yilan 26058, Taiwan
| | - Anna Fen-Yau Li
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (M.-H.C.); (Y.C.); (S.-S.L.); (A.F.-Y.L.)
- Department of Pathology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chew-Wun Wu
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (K.-H.H.); (C.-W.W.); (Y.-M.S.)
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (M.-H.C.); (Y.C.); (S.-S.L.); (A.F.-Y.L.)
| | - Yi-Ming Shyr
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (K.-H.H.); (C.-W.W.); (Y.-M.S.)
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (M.-H.C.); (Y.C.); (S.-S.L.); (A.F.-Y.L.)
| |
Collapse
|
22
|
Non-Redundant and Overlapping Oncogenic Readouts of Non-Canonical and Novel Colorectal Cancer KRAS and NRAS Mutants. Cells 2019; 8:cells8121557. [PMID: 31816869 PMCID: PMC6952822 DOI: 10.3390/cells8121557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022] Open
Abstract
RAS oncogene family members are molecular switches of signaling pathways that control cell growth, proliferation, differentiation, and survival. In colorectal cancer, Kirsten-RAS (KRAS) and neuroblastoma-RAS (NRAS) are the commonly mutated isoforms. Activating mutations in RAS result in cellular transformation independent of upregulated epidermal growth factor receptor (EGFR)-initiated signaling. The present study characterized the functional consequences of non-canonical/novel KRAS and NRAS mutants identified in a targeted next-generation sequencing study of colorectal cancer specimens from Filipino patients. In vitro assays in NIH3T3 cells showed that similar to the canonical KRAS G12D mutant, overexpression of KRAS G12S, A59T, and Y137C, but not NRAS G12D and NRAS A11V, confer higher proliferation and migration rates. HCT116 cells transfected with the novel NRAS A11V and the canonical NRAS G12D, but not the KRAS mutants, display enhanced resistance to apoptosis. All four non-canonical/novel KRAS and NRAS mutants induce gross changes in F-actin cytoskeletal organization and cellular morphology of NIH3T3 cells. Only KRAS G12S and KRAS A59T appear to deregulate extracellular signal-regulated kinase (ERK) and its downstream target ETS transcription factor ELK1 (ELK1). Elucidation of differential effector engagement responsible for the variable phenotypic readouts of the mutants is warranted. If validated by mouse studies and clinical correlates, these can have wider implications in choosing treatment options.
Collapse
|
23
|
Yoshino H, Yin G, Kawaguchi R, Popov KI, Temple B, Sasaki M, Kofuji S, Wolfe K, Kofuji K, Okumura K, Randhawa J, Malhotra A, Majd N, Ikeda Y, Shimada H, Kahoud ER, Haviv S, Iwase S, Asara JM, Campbell SL, Sasaki AT. Identification of lysine methylation in the core GTPase domain by GoMADScan. PLoS One 2019; 14:e0219436. [PMID: 31390367 PMCID: PMC6685615 DOI: 10.1371/journal.pone.0219436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022] Open
Abstract
RAS is the founding member of a superfamily of GTPases and regulates signaling pathways involved in cellular growth control. While recent studies have shown that the activation state of RAS can be controlled by lysine ubiquitylation and acetylation, the existence of lysine methylation of the RAS superfamily GTPases remains unexplored. In contrast to acetylation, methylation does not alter the side chain charge and it has been challenging to deduce its impact on protein structure by conventional amino acid substitutions. Herein, we investigate lysine methylation on RAS and RAS-related GTPases. We developed GoMADScan (Go language-based Modification Associated Database Scanner), a new user-friendly application that scans and extracts posttranslationally modified peptides from databases. The GoMADScan search on PhosphoSitePlus databases identified methylation of conserved lysine residues in the core GTPase domain of RAS superfamily GTPases, including residues corresponding to RAS Lys-5, Lys-16, and Lys-117. To follow up on these observations, we immunoprecipitated endogenous RAS from HEK293T cells, conducted mass spectrometric analysis and found that RAS residues, Lys-5 and Lys-147, undergo dimethylation and monomethylation, respectively. Since mutations of Lys-5 have been found in cancers and RASopathies, we set up molecular dynamics (MD) simulations to assess the putative impact of Lys-5 dimethylation on RAS structure. Results from our MD analyses predict that dimethylation of Lys-5 does not significantly alter RAS conformation, suggesting that Lys-5 methylation may alter existing protein interactions or create a docking site to foster new interactions. Taken together, our findings uncover the existence of lysine methylation as a novel posttranslational modification associated with RAS and the RAS superfamily GTPases, and putative impact of Lys-5 dimethylation on RAS structure.
Collapse
Affiliation(s)
- Hirofumi Yoshino
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Guowei Yin
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Risa Kawaguchi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Konstantin I. Popov
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Brenda Temple
- University of North Carolina, R. L. Juliano Structural Bioinformatics Core Facility, Chapel Hill, North Carolina, United States of America
| | - Mika Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Satoshi Kofuji
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Kara Wolfe
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Kaori Kofuji
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Koichi Okumura
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jaskirat Randhawa
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Akshiv Malhotra
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Nazanin Majd
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yoshiki Ikeda
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Hiroko Shimada
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Emily Rose Kahoud
- Harvard Medical School, Department of Medicine and Beth Israel Deaconess Medical Center, Division of Signal Transduction, Boston, Massachusetts, United States of America
| | - Sasson Haviv
- Harvard Medical School, Department of Medicine and Beth Israel Deaconess Medical Center, Division of Signal Transduction, Boston, Massachusetts, United States of America
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, 5815 Medical Science II, Ann Arbor, Michigan, United States of America
| | - John M. Asara
- Harvard Medical School, Department of Medicine and Beth Israel Deaconess Medical Center, Division of Signal Transduction, Boston, Massachusetts, United States of America
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Atsuo T. Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Cancer Biology, University of Cincinnati College of Medicine, Ohio, United States of America
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, Ohio, United States of America
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| |
Collapse
|
24
|
Fu XH, Chen ZT, Wang WH, Fan XJ, Huang Y, Wu XB, Huang JL, Wang JX, Lin HJ, Tan XL, Wang L, Wang JP. KRAS G12V Mutation is an Adverse Prognostic Factor of Chinese Gastric Cancer Patients. J Cancer 2019; 10:821-828. [PMID: 30854087 PMCID: PMC6400811 DOI: 10.7150/jca.27899] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
This study aims to investigate the molecular characteristics of Chinese gastric cancer patients. In our study, the KRAS, BRAF, and PIK3CA mutation status of 485 GC patients were analyzed by Sanger sequencing. Kaplan-Meier analysis was used to plot survival curves according to different genotypes. The results show that the frequency of KRAS, BRAF and PIK3CA mutations were 4.1%, 1.2% and 3.5%, respectively. BRAF mutations were significantly concentrated in stage III and IV gastric cancer (P=0.009). KRAS G12V mutation carriers have much shorter OS than other mutation carriers and wild-type group patients (P=0.013). In conclusion, only the KRAS G12V mutation has an adverse effect on patient survival.
Collapse
Affiliation(s)
- Xin-Hui Fu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Zhi-Ting Chen
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Wen-Hui Wang
- Department of Information and Technology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Xin-Juan Fan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Yan Huang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Xiao-Bin Wu
- Department of GI Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Jing-Lin Huang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Jing-Xuan Wang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Han-Jie Lin
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Xiao-Li Tan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Lei Wang
- Department of GI Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Jian-Ping Wang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| |
Collapse
|
25
|
Polom K, Das K, Marrelli D, Roviello G, Pascale V, Voglino C, Rho H, Tan P, Roviello F. KRAS Mutation in Gastric Cancer and Prognostication Associated with Microsatellite Instability Status. Pathol Oncol Res 2019; 25:333-340. [PMID: 29116623 DOI: 10.1007/s12253-017-0348-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022]
Abstract
Microsatellite instability (MSI) is one of the subgroups based on the new molecular classification of gastric cancer (GC). In this study, we analyzed the role of KRAS status in MSI GC and the impact of MSI status on KRAS mutation. We performed analysis on 595 GC patients. Polymerase chain reaction (PCR) was used for the screening of KRAS mutation (exon 2) and 5 quasi-monomorphic mononucleotide repeats, namely, BAT-26, BAT-25, NR -24, NR-21, and NR-27 were used to determine the MSI status. The KRAS and MSI status were then compared with clinicopathologic data of the GC patients. MSI GC was found in 20.3% of all cases. KRAS mutation was seen in 24 patients; 18 were MSI (75%) and 6 were microsatellite stable (MSS) (25%). MSI GC patients with KRAS mutation were older and mostly female, but MSS presented more advanced T and N stage of the disease, more cardia tumors, and adjuvant treatment. Five-year survival was 72.2% for KRAS mutation patients with MSI and 0% for MSS (p < 0.001). Although KRAS mutations in GC are linked with MSI in the majority of cases, KRAS mutations with MSS status presented with a poor prognosis and a worse outcome. In multivariate analysis, MSI was associated with better survival (p < 0.001) but KRAS was with worse survival (p = 0.304). Our study suggests that KRAS mutations are based on MSI status rather than different codon subtypes of mutation, and such a division could be used to determine the GC patient outcome.
Collapse
Affiliation(s)
- Karol Polom
- General Surgery and Surgical Oncology Department, University of Siena, viale Bracci 16, 53-100, Siena, Italy.
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland.
| | - Kakoli Das
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Daniele Marrelli
- General Surgery and Surgical Oncology Department, University of Siena, viale Bracci 16, 53-100, Siena, Italy
| | - Giandomenico Roviello
- Medical Oncology Unit, Department of Oncology, San Donato Hospital, Via Nenni 20, 52100, Arezzo, Italy
- Department of Medical, Surgery and Health Sciences, University of Trieste, Piazza Ospitale 1, 34129, Trieste, Italy
| | - Valeria Pascale
- General Surgery and Surgical Oncology Department, University of Siena, viale Bracci 16, 53-100, Siena, Italy
| | - Costantino Voglino
- General Surgery and Surgical Oncology Department, University of Siena, viale Bracci 16, 53-100, Siena, Italy
| | - Henry Rho
- University of Medical Sciences Poznan, Poznan, Poland
| | - Patrick Tan
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre, 5 Hospital Drive, Singapore, 169609, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
- Cellular and Molecular Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Franco Roviello
- General Surgery and Surgical Oncology Department, University of Siena, viale Bracci 16, 53-100, Siena, Italy
| |
Collapse
|
26
|
Joutei HAH, Marchoudi N, Mahfoud W, Sadaoui I, Fechtali T, Benomar H. Characterization of PI3KCA and BRAF mutations in gastric adenocarcinoma: An approach to a personalized targeted therapy for Moroccan HER2 overexpressed patients. Arab J Gastroenterol 2018; 19:155-158. [PMID: 30503528 DOI: 10.1016/j.ajg.2018.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 09/08/2017] [Accepted: 08/05/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND STUDY AIMS Targeted therapies have an increasing importance in digestive oncology. To our knowledge, we are the first to report the distribution of PI3KCA and BRAF mutations in Moroccan HER2 overexpressed patients, in order to introduce targeted therapy in the arsenal of therapeutic modalities for management in Morocco. PATIENTS AND METHODS 98 gastric adenocarcinoma tissue samples were collected. Further histological and immunohistochemical examinations were carried out at the Laboratory of Anatomy Pathology in Pasteur Institute-Morocco, in order to select HER2 positive cases. Out of 98 cases, 16 were found to be HER2-positive. The molecular study was performed for 55 good quality tissue samples including the HER2-positive ones, and activating mutations in H1047R PI3KCA and V600E BRAF were analyzed by Cast-PCR and Real-time PCR, respectively, at the Department of Molecular Biology, ANOUAL Specialized Center-Casablanca, Morocco. Statistical analyses were performed using the Epi-info software (version 6.09). RESULTS Pi3KCA mutation was present in 8 cases (14,54%). BRAF mutation was present in 4 cases (7,27%) and 3 cases showed concomitant mutations. In total, 9 cases (16,36%) had PI3KCA and/or BRAF mutations. CONCLUSION The association between HER2 expression and PI3KCA alteration in gastric adenocarcinoma is most probably necessary to identify trastuzumab responders. Consequently, the 83,64% rate of HER2-positive patients harboring wild-type mutations possibly represents the portion of patients responding to trastuzumab while the 16,36% rate of patients carrying at least one of the studied mutations represents the portion of potentially non responsive patients to the targeted therapy, and thus may be considered as good candidates for multi-drug targeted therapy.
Collapse
Affiliation(s)
- Hanaa Amrani Hassani Joutei
- Laboratory of Anatomy Pathology, Pasteur Institue, 20100, Morocco; Laboratory of Neurosciences, Integrated Diseases and Natural Substances, Faculty of Sciences and Techniques, Mohammedia 20650, Morocco.
| | - Nabila Marchoudi
- Laboratory of Pathophysiology and Molecular Genetics, Ben M'Sik Faculty of Science, Casablanca 7955, Morocco; Department of Molecular Biology, Anoual Specialized Center, Casablanca, Morocco
| | - Wafaa Mahfoud
- Department of Biology and Health URAC 34, University Hassan II, Faculty of Sciences Ben'Msik, Casablanca 7955, Morocco
| | - Ilham Sadaoui
- Laboratory of Anatomy Pathology, Pasteur Institue, 20100, Morocco; Department of Medical Genetics, Faculty of Medicine and Pharmacy, Casablanca, Morocco
| | - Taoufiq Fechtali
- Laboratory of Neurosciences, Integrated Diseases and Natural Substances, Faculty of Sciences and Techniques, Mohammedia 20650, Morocco
| | - Hakima Benomar
- Laboratory of Anatomy Pathology, Pasteur Institue, 20100, Morocco
| |
Collapse
|
27
|
Yang Q, Huo S, Sui Y, Du Z, Zhao H, Liu Y, Li W, Wan X, Liu T, Zhang G. Mutation Status and Immunohistochemical Correlation of KRAS, NRAS, and BRAF in 260 Chinese Colorectal and Gastric Cancers. Front Oncol 2018; 8:487. [PMID: 30416987 PMCID: PMC6212577 DOI: 10.3389/fonc.2018.00487] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
KRAS, NRAS and BRAF are kinases involved in the RAS-RAF-MAPK signaling pathway and also potential tumor-driven genes. Patients with KRAS/NRAS/BRAF mutations are resistant to anti-EGFR monoclonal antibody therapy. The main purpose of this study is to investigate the mutation status and distribution of KRAS/NRAS/BRAF in Chinese colorectal and gastric cancers, and to explore the histopathological changes and related immunohistochemical marker changes caused by these mutations. The mutation status of KRAS (exons 2, codon 12/13), NRAS (exons 2/3/4, codon 12/13/59/61/117/146) and BRAF (exons 15, codon 600) were detected by amplification refractory mutation system polymerase chain reaction (ARMS-PCR) in 86 colon cancer, 140 rectal cancer and 34 gastric cancer tissues. Then, the frequencies and distribution of KRAS/NRAS/BRAF mutations were described in detail. Furthermore, the relationship between KRAS/NRAS/BRAF mutations and the features of histopathological and related immunohistochemical markers were analyzed. The results showed that KRAS/NRAS/BRAF mutation rates in colon cancer were 44.2, 1.2, and 3.5%; in rectal cancer were 37.1, 4.3, and 0.7%; in gastric cancer were none, none and 2.9%. The mutation rate of KRAS in female (48.8%) is significantly higher than that of male (27.8%), and the mutation rate increased with the higher degree of differentiation. Additionally, the mutation rate of BRAF detected by ARMS-PCR (1.77%) was significantly lower than that by immunohistochemistry (4.11%). It also showed that the KRAS/NRAS/BRAF mutation status had a certain relationship with the expression of some immunohistochemical markers. This study provides more data support for clinical research on KRAS/NRAS/BRAF mutation in CRCs or gastric cancers.
Collapse
Affiliation(s)
- Qiwei Yang
- Medical Research Center, The Second Hospital of Jilin University, Changchun, China
| | - Sibo Huo
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yujie Sui
- Medical Research Center, The Second Hospital of Jilin University, Changchun, China
| | - Zhenwu Du
- Medical Research Center, The Second Hospital of Jilin University, Changchun, China.,Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Haiyue Zhao
- Center of Reproductive Medicine and Center of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, China
| | - Yu Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xin Wan
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Guizhen Zhang
- Medical Research Center, The Second Hospital of Jilin University, Changchun, China.,Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Aboushousha T, Helal N, Hammam O, Ibrahim M, Khaled S, Mostafa A, Anas A. Overview of MDM2 and B-RAF Expression in Gastric Lesions. Open Access Maced J Med Sci 2018; 6:1795-1802. [PMID: 30455751 PMCID: PMC6236038 DOI: 10.3889/oamjms.2018.338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Globally, gastric cancer (GC) it is the fourth most common cancer and the third cause of cancer-related deaths. Overexpression of MDM2 and B-RAF appeared to be increased in malignancy and associated with poor prognosis in several human tumours, but their role in gastric cancer remains controversial. AIM We had investigated the immunohistochemical expression of MDM2 and B-RAF in 136 gastric lesions with/without H. pylori association. MATERIAL AND METHODS Studied specimens include chronic gastritis (32), intestinal type GC (70), diffuse GC (22) and gastrointestinal stromal tumours (GIST) (12). RESULTS MDM2 expression increased significantly in intestinal GC compared to other groups (p < 0.001), while B-RAF expression increased significantly in GIST compared to other groups (p < 0.001). H. pylori increased expression of MDM2 in intestinal GC cases but did not affect B-RAF expression. MDM2 expression correlated with high grade of tumor differentiation (p < 0.001), deep invasion (p < 0.05), nodal metastases (p < 0.05) and distant metastases (p < 0.1) in intestinal GC, while B-RAF expression did not correlate with TNM stage (p < 0.1). CONCLUSION MDM2 up-regulation was more frequent in intestinal GC, while B-RAF up-regulation was more frequent in GIST compared to other groups; MDM2 expression in intestinal GC was correlated with H. pylori association, high grade of differentiation, deep invasion, nodal and distant metastases, meanwhile, B-RAF expression was correlated with high-grade intestinal GC but did not correlate with H. pylori or TNM stage. The possible role of both MDM2 and B-RAF in predicting progression of gastric tumours and prognosis deserves further investigations.
Collapse
Affiliation(s)
- Tarek Aboushousha
- Department of Pathology, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Noha Helal
- Department of Pathology, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Olfat Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Manar Ibrahim
- Faculty of Biotechnology, October University of Modern Sciences and Arts, Giza, Egypt
| | - Samar Khaled
- Faculty of Biotechnology, October University of Modern Sciences and Arts, Giza, Egypt
| | - Amr Mostafa
- Department of Surgery, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Amgad Anas
- Department of Hepato-Gastroenterology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
29
|
Xu J, Zheng T, Le J, Jia L. Stepwise nanoassembly of a single hairpin probe and its biosensing. Talanta 2018; 187:272-278. [PMID: 29853047 DOI: 10.1016/j.talanta.2018.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 01/06/2023]
Abstract
Herein, we describe a novel trigger-induced DNA nanoassembly method using only one loop-stem shaped hairpin probe (HP) that consists of three different functional regions as a single building unit. The Region I is designed complementary to the trigger, while the Region II and Region III are projected to complementary with each other. When hybridized with the trigger, a toehold mediated strand displacement (TMSD) occurred on the strand of Region I, leading to the release of Region III for further hybridization with the Region II on another HP molecule and in turn inducing a stepwise growth of HP with the aid of polymerase. Unlike the conventional assembly approaches that rely on the sophisticated sequence design and complex operation, the single-HP nanoassembly is easy and fast. Moreover, because many HPs are opened during the assembly process, we exemplified the nanoassembly strategy by re-designing a new labeled hairpin probe to analyze the Kras oncogene with a high sensitivity and specificity. The present study demonstrated a novel promising DNA nanoassembly strategy for biological applications.
Collapse
Affiliation(s)
- Jianguo Xu
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116 China; School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tingting Zheng
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116 China
| | - Jingqing Le
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116 China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116 China.
| |
Collapse
|
30
|
Liu Q, Das M, Liu Y, Huang L. Targeted drug delivery to melanoma. Adv Drug Deliv Rev 2018; 127:208-221. [PMID: 28939379 DOI: 10.1016/j.addr.2017.09.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/29/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022]
Abstract
Melanoma derived from melanocytes is the most aggressive genre of skin cancer. Although the considerable advancement in the study of human cancer biology and drug discovery, most advanced melanoma patients are inevitably unable to be cured. With the emergence of nanotechnology, the use of nano-carriers is widely expected to alter the landscape of melanoma treatment. In this review, we will discuss melanoma biology, current treatment options, mechanisms behind drug resistance, and nano-based solutions for effective anti-cancer therapy, followed by challenges and perspectives in both pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC & NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Manisit Das
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yun Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC & NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
31
|
The Interplay between Oncogenic Signaling Networks and Mitochondrial Dynamics. Antioxidants (Basel) 2017; 6:antiox6020033. [PMID: 28513539 PMCID: PMC5488013 DOI: 10.3390/antiox6020033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are dynamic organelles that alter their organization in response to a variety of cellular cues. Mitochondria are central in many biologic processes, such as cellular bioenergetics and apoptosis, and mitochondrial network morphology can contribute to those physiologic processes. Some of the biologic processes that are in part governed by mitochondria are also commonly deregulated in cancers. Furthermore, patient tumor samples from a variety of cancers have revealed that mitochondrial dynamics machinery may be deregulated in tumors. In this review, we will discuss how commonly mutated oncogenes and their downstream effector pathways regulate the mitochondrial dynamics machinery to promote changes in mitochondrial morphology as well as the physiologic consequences of altered mitochondrial morphology for tumorigenic growth.
Collapse
|
32
|
Peterson TA, Gauran IIM, Park J, Park D, Kann MG. Oncodomains: A protein domain-centric framework for analyzing rare variants in tumor samples. PLoS Comput Biol 2017; 13:e1005428. [PMID: 28426665 PMCID: PMC5398485 DOI: 10.1371/journal.pcbi.1005428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/28/2017] [Indexed: 12/28/2022] Open
Abstract
The fight against cancer is hindered by its highly heterogeneous nature. Genome-wide sequencing studies have shown that individual malignancies contain many mutations that range from those commonly found in tumor genomes to rare somatic variants present only in a small fraction of lesions. Such rare somatic variants dominate the landscape of genomic mutations in cancer, yet efforts to correlate somatic mutations found in one or few individuals with functional roles have been largely unsuccessful. Traditional methods for identifying somatic variants that drive cancer are 'gene-centric' in that they consider only somatic variants within a particular gene and make no comparison to other similar genes in the same family that may play a similar role in cancer. In this work, we present oncodomain hotspots, a new 'domain-centric' method for identifying clusters of somatic mutations across entire gene families using protein domain models. Our analysis confirms that our approach creates a framework for leveraging structural and functional information encapsulated by protein domains into the analysis of somatic variants in cancer, enabling the assessment of even rare somatic variants by comparison to similar genes. Our results reveal a vast landscape of somatic variants that act at the level of domain families altering pathways known to be involved with cancer such as protein phosphorylation, signaling, gene regulation, and cell metabolism. Due to oncodomain hotspots' unique ability to assess rare variants, we expect our method to become an important tool for the analysis of sequenced tumor genomes, complementing existing methods.
Collapse
Affiliation(s)
- Thomas A. Peterson
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
- University of California, San Francisco, Institute for Computational Health Science, San Francisco, California, United States of America
| | - Iris Ivy M. Gauran
- Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Junyong Park
- Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - DoHwan Park
- Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Maricel G. Kann
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
33
|
Lee HS, Kim WH, Kwak Y, Koh J, Bae JM, Kim KM, Chang MS, Han HS, Kim JM, Kim HW, Chang HK, Choi YH, Park JY, Gu MJ, Lhee MJ, Kim JY, Kim HS, Cho MY, The Gastrointestinal Pathology Study Group of Korean Society of Pathologists, The Molecular Pathology Study Group of Korean Society of Pathologists. Molecular Testing for Gastrointestinal Cancer. J Pathol Transl Med 2017; 51:103-121. [PMID: 28219002 PMCID: PMC5357760 DOI: 10.4132/jptm.2017.01.24] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/16/2017] [Accepted: 01/24/2017] [Indexed: 12/20/2022] Open
Abstract
With recent advances in molecular diagnostic methods and targeted cancer therapies, several molecular tests have been recommended for gastric cancer (GC) and colorectal cancer (CRC). Microsatellite instability analysis of gastrointestinal cancers is performed to screen for Lynch syndrome, predict favorable prognosis, and screen patients for immunotherapy. The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor has been approved in metastatic CRCs with wildtype RAS (KRAS and NRAS exon 2-4). A BRAF mutation is required for predicting poor prognosis. Additionally, amplification of human epidermal growth factor receptor 2 (HER2) and MET is also associated with resistance to EGFR inhibitor in metastatic CRC patients. The BRAF V600E mutation is found in sporadic microsatellite unstable CRCs, and thus is helpful for ruling out Lynch syndrome. In addition, the KRAS mutation is a prognostic biomarker and the PIK3CA mutation is a molecular biomarker predicting response to phosphoinositide 3-kinase/AKT/mammalian target of rapamycin inhibitors and response to aspirin therapy in CRC patients. Additionally, HER2 testing should be performed in all recurrent or metastatic GCs. If the results of HER2 immunohistochemistry are equivocal, HER2 silver or fluorescence in situ hybridization testing are essential for confirmative determination of HER2 status. Epstein-Barr virus-positive GCs have distinct characteristics, including heavy lymphoid stroma, hypermethylation phenotype, and high expression of immune modulators. Recent advances in next-generation sequencing technologies enable us to examine various genetic alterations using a single test. Pathologists play a crucial role in ensuring reliable molecular testing and they should also take an integral role between molecular laboratories and clinicians.
Collapse
Affiliation(s)
- Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Hye Seung Han
- Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
| | - Joon Mee Kim
- Department of Pathology, Inha University School of Medicine, Incheon, Korea
| | - Hwal Woong Kim
- Department of Pathology, Seegene Medical Foundation, Busan, Korea
| | - Hee Kyung Chang
- Department of Pathology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| | - Young Hee Choi
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Ji Y. Park
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Mi Jin Gu
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
| | - Min Jin Lhee
- Department of Pathology, Seoul Red Cross Hospital, Seoul, Korea
| | - Jung Yeon Kim
- Department of Pathology, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Hee Sung Kim
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Mee-Yon Cho
- Department of Pathology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - The Gastrointestinal Pathology Study Group of Korean Society of Pathologists
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul, Korea
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
- Department of Pathology, Inha University School of Medicine, Incheon, Korea
- Department of Pathology, Seegene Medical Foundation, Busan, Korea
- Department of Pathology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Korea
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
- Department of Pathology, Seoul Red Cross Hospital, Seoul, Korea
- Department of Pathology, Inje University Sanggye Paik Hospital, Seoul, Korea
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Pathology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - The Molecular Pathology Study Group of Korean Society of Pathologists
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul, Korea
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
- Department of Pathology, Inha University School of Medicine, Incheon, Korea
- Department of Pathology, Seegene Medical Foundation, Busan, Korea
- Department of Pathology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Korea
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
- Department of Pathology, Seoul Red Cross Hospital, Seoul, Korea
- Department of Pathology, Inje University Sanggye Paik Hospital, Seoul, Korea
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Pathology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
34
|
Hirashita Y, Tsukamoto Y, Yanagihara K, Fumoto S, Hijiya N, Nakada C, Uchida T, Matsuura K, Kodama M, Okimoto T, Daa T, Seike M, Iha H, Shirao K, Murakami K, Moriyama M. Reduced phosphorylation of ribosomal protein S6 is associated with sensitivity to MEK inhibition in gastric cancer cells. Cancer Sci 2016; 107:1919-1928. [PMID: 27699948 PMCID: PMC5198963 DOI: 10.1111/cas.13094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 12/28/2022] Open
Abstract
Gastric cancer (GC) is characterized by amplifications of receptor tyrosine kinases (RTK) and KRAS, therefore, targeting of the RTK/KRAS downstream pathways could help to broaden the applicability of molecular targeted therapy for GC. We assembled a panel of 48 GC cell lines and screened predictors of responsiveness to inhibition of the RAF/MEK/ERK pathway, one of the RTK/KRAS downstream pathways. We found that GC cells with MET amplification or KRAS mutation, but not amplification, tended to be sensitive to MEK inhibition. However, several cell lines without RTK/KRAS alterations also showed high sensitivity to MEK inhibition. We then focused on the phosphorylation of RTK/KRAS downstream molecules to screen for predictors’ sensitivity to MEK inhibition. We found that the phosphorylation level of mammalian target of rapamycin complex 1 (mTORC1) downstream molecules, including p70S6K, 4EBP1, and S6, was significantly associated with sensitivity to MEK inhibition in GC cells (P < 0.05), suggesting that mTORC1 activity is related to the sensitivity to MEK inhibition. Furthermore, the change in mTORC1 activity after MEK inhibition was also significantly associated with this sensitivity (P < 0.001). Among the mTORC1 downstream molecules, the change in S6 phosphorylation (pS6) showed the most significant correlation with sensitivity. Using xenograft models derived from highly sensitive and resistant cell lines, we found specific reduction of pS6 in xenografts from highly sensitive cell lines after 6 h of treatment with an MEK inhibitor. Thus, our data suggest the potential clinical applicability of an MEK inhibitor for a proportion of GC patients who could be selected on the basis of pS6 change after MEK inhibition.
Collapse
Affiliation(s)
- Yuka Hirashita
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Shoichi Fumoto
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Naoki Hijiya
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Chisato Nakada
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Keiko Matsuura
- Department of Biology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masaaki Kodama
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Tadayoshi Okimoto
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masataka Seike
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Hidekatsu Iha
- Department of Microbiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kuniaki Shirao
- Department of Medical Oncology and Hematology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Masatsugu Moriyama
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
35
|
Amaki-Takao M, Yamaguchi T, Natsume S, Iijima T, Wakaume R, Takahashi K, Matsumoto H, Miyaki M. Colorectal Cancer with BRAF D594G Mutation Is Not Associated with Microsatellite Instability or Poor Prognosis. Oncology 2016; 91:162-70. [DOI: 10.1159/000447402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/30/2016] [Indexed: 11/19/2022]
|
36
|
Cetin B, Gumusay O, Cengiz M, Ozet A. Advances of Molecular Targeted Therapy in Gastric Cancer. J Gastrointest Cancer 2016; 47:125-134. [PMID: 26875080 DOI: 10.1007/s12029-016-9806-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer is the second most common cause of cancer-related death in the world, and its prognosis remains poor with a median overall survival of 12 months for advanced disease. Advances in the understanding of molecular genetics have led to the development of directed molecular targeted therapy in gastric cancer, leading to improve patient outcomes and quality of life. DISCUSSION In the treatment of human epidermal growth factor receptor 2 (HER2)-positive gastric cancer, the addition of trastuzumab significantly improves survival in the first-line setting of therapy. Ramucirumab, an antibody directed against vascular endothelial growth factor receptor 2, significantly improved progression-free and overall survival and has been approved for second-line treatment of gastric cancer. Anti-mesenchymal-epithelial transition (c-MET), mammalian target of rapamycin inhibitors, and polo-like kinase 1 inhibitors are under investigation as a novel therapeutic option for the treatment of gastric cancer. The novel therapies target the key immune checkpoint interaction between a T cell co-inhibitory receptor called programmed death 1 (PD-1) and one of its immunosuppressive ligands, PD-L1. This article reviews molecular targeted therapies in gastric cancer, in light of recent advances.
Collapse
Affiliation(s)
- Bulent Cetin
- Department of Internal Medicine, Division of Medical Oncology, Cumhuriyet University Faculty of Medicine, Sivas, 58140, Turkey.
| | - Ozge Gumusay
- Faculty of Medicine, Department of Internal Medicine, Division of Medical Oncology, Gaziosmanpasa University, Tokat, Turkey
| | - Mustafa Cengiz
- Department of Internal Medicine, Division of Gastroenterology, Dr. Abdurrahman Yurtaslan Training and Research Hospital, Ankara, Turkey
| | - Ahmet Ozet
- Department of Internal Medicine, Division of Medical Oncology, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
37
|
Gudipaty SA, Rosenblatt J. Epithelial cell extrusion: Pathways and pathologies. Semin Cell Dev Biol 2016; 67:132-140. [PMID: 27212253 DOI: 10.1016/j.semcdb.2016.05.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023]
Abstract
To remove dying or unwanted cells from an epithelium while preserving the barrier function of the layer, epithelia use a unique process called cell extrusion. To extrude, the cell fated to die emits the lipid Sphingosine 1 Phosphate (S1P), which binds the G-protein-coupled receptor Sphingosine 1 Phosphate receptor 2 (S1P2) in the neighboring cells that activates Rho-mediated contraction of an actomyosin ring circumferentially and basally. This contraction acts to squeeze the cell out apically while drawing together neighboring cells and preventing any gaps to the epithelial barrier. Epithelia can extrude out cells targeted to die by apoptotic stimuli to repair the barrier in the face of death or extrude live cells to promote cell death when epithelial cells become too crowded. Indeed, because epithelial cells naturally turn over by cell death and division at some of the highest rates in the body, epithelia depend on crowding-induced live cell extrusion to preserve constant cell numbers. If extrusion is defective, epithelial cells rapidly lose contact inhibition and form masses. Additionally, because epithelia act as the first line of defense in innate immunity, preservation of this barrier is critical for preventing pathogens from invading the body. Given its role in controlling constant cell numbers and maintaining barrier function, a number of different pathologies can result when extrusion is disrupted. Here, we review mechanisms and signaling pathways that control epithelial extrusion and discuss how defects in these mechanisms can lead to multiple diseases. We also discuss tactics pathogens have devised to hijack the extrusion process to infect and colonize epithelia.
Collapse
Affiliation(s)
- Swapna Aravind Gudipaty
- Department of Oncological Sciences, Huntsman Cancer Institute, University Of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Jody Rosenblatt
- Department of Oncological Sciences, Huntsman Cancer Institute, University Of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA.
| |
Collapse
|
38
|
Sabry D, Ahmed R, Abdalla S, Fathy W, Eldemery A, Elamir A. Braf, Kras and Helicobacter pylori epigenetic changes-associated chronic gastritis in Egyptian patients with and without gastric cancer. World J Microbiol Biotechnol 2016; 32:92. [PMID: 27116958 DOI: 10.1007/s11274-016-2048-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 03/08/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED We aimed to study MLH1 and MGMT methylation status in Helicobacter pylori-associated chronic gastritis in Egyptian patients with and without gastric cancer. 39 patients were included in our study. They were divided into 2 groups; patients without (group I) and with gastric adenocarcinoma (group II). Patients were subjected to clinical examination, abdominal ultrasound and upper endoscopy for gastric biopsy. Biopsies were subjected to urease test, histological examination, and DNA purification. H. pylori, Braf, Kras, MLH1 and MGMT methylation were assessed by quantitative PCR. DNA sequencing was performed to assess Braf and Kras genes mutation. qPCR of H. pylori was significantly higher in patients with adenocarcinoma (group II) than those without adenocarcinoma (group I); with a p < 0.001 as well as in patients with age above 50 years with a p value = 0.008. By applying logistic regression analysis it was reported that the H. pylori qPCR is a significant predictor to the adenocarcinoma with OR = 1.025 (95 % CI: 1. 002-1.048), with sensitivity of 90 % and specificity of 100 %. Adenocarcinoma patients had a significantly higher mean age and levels of H. Pylori, Braf, K-ras, methylated MGMT and methylated MLH1 than those of gastritis patients. DNA sequence analysis of Braf (codon 12) and Kras (codon 600) had genes mutation in gastric adenocarcinoma versus chronic gastritis. CONCLUSION H. pylori may cause epigenetic changes predisposing the patients to cancer stomach. Estimation of H. pylori by qPCR can be a good predictor to adenocarcinoma. Braf and Kras genes mutation were reveled in gastritis and adenocarcinoma patients.
Collapse
Affiliation(s)
- Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Giza, Egypt.
| | - Rasha Ahmed
- Endemic Medicine & Hepatology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Sayed Abdalla
- Internal Medicine Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Wael Fathy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ahmed Eldemery
- Medical Biochemistry Department, Faculty of Medicine, October 6 University, Giza, Egypt
| | - Azza Elamir
- Medical Biochemistry Department, Faculty of Medicine, El Fayoum University, Al Fayoum, Egypt
| |
Collapse
|
39
|
Liu M, Watson LT, Zhang L. HMMvar-func: a new method for predicting the functional outcome of genetic variants. BMC Bioinformatics 2015; 16:351. [PMID: 26518340 PMCID: PMC4628267 DOI: 10.1186/s12859-015-0781-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/16/2015] [Indexed: 11/14/2022] Open
Abstract
Background Numerous tools have been developed to predict the fitness effects (i.e., neutral, deleterious, or beneficial) of genetic variants on corresponding proteins. However, prediction in terms of whether a variant causes the variant bearing protein to lose the original function or gain new function is also needed for better understanding of how the variant contributes to disease/cancer. To address this problem, the present work introduces and computationally defines four types of functional outcome of a variant: gain, loss, switch, and conservation of function. The deployment of multiple hidden Markov models is proposed to computationally classify mutations by the four functional impact types. Results The functional outcome is predicted for over a hundred thyroid stimulating hormone receptor (TSHR) mutations, as well as cancer related mutations in oncogenes or tumor suppressor genes. The results show that the proposed computational method is effective in fine grained prediction of the functional outcome of a mutation, and can be used to help elucidate the molecular mechanism of disease/cancer causing mutations. The program is freely available at http://bioinformatics.cs.vt.edu/zhanglab/HMMvar/download.php. Conclusion This work is the first to computationally define and predict functional impact of mutations, loss, switch, gain, or conservation of function. These fine grained predictions can be especially useful for identifying mutations that cause or are linked to cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0781-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingming Liu
- Department of Computer Science, Virginia Polytechnic Institute & State University, Blacksburg, USA.
| | - Layne T Watson
- Department of Computer Science, Virginia Polytechnic Institute & State University, Blacksburg, USA. .,Department of Mathematics, Virginia Polytechnic Institute & State University, Blacksburg, USA. .,Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute & State University, Blacksburg, USA.
| | - Liqing Zhang
- Department of Computer Science, Virginia Polytechnic Institute & State University, Blacksburg, USA.
| |
Collapse
|
40
|
Choi YY, Noh SH, Cheong JH. Molecular Dimensions of Gastric Cancer: Translational and Clinical Perspectives. J Pathol Transl Med 2015; 50:1-9. [PMID: 26498010 PMCID: PMC4734963 DOI: 10.4132/jptm.2015.09.10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer is a global health burden and has the highest incidence in East Asia. This disease is complex in nature because it arises from multiple interactions of genetic, local environmental, and host factors, resulting in biological heterogeneity. This genetic intricacy converges on molecular characteristics reflecting the pathophysiology, tumor biology, and clinical outcome. Therefore, understanding the molecular characteristics at a genomic level is pivotal to improving the clinical care of patients with gastric cancer. A recent landmark study, The Cancer Genome Atlas (TCGA) project, showed the molecular landscape of gastric cancer through a comprehensive molecular evaluation of 295 primary gastric cancers. The proposed molecular classification divided gastric cancer into four subtypes: Epstein-Barr virus–positive, microsatellite unstable, genomic stable, and chromosomal instability. This information will be taken into account in future clinical trials and will be translated into clinical therapeutic decisions. To fully realize the clinical benefit, many challenges must be overcome. Rapid growth of high-throughput biology and functional validation of molecular targets will further deepen our knowledge of molecular dimensions of this cancer, allowing for personalized precision medicine.
Collapse
Affiliation(s)
- Yoon Young Choi
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Hoon Noh
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea ; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea ; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea ; Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site. Proc Natl Acad Sci U S A 2015; 112:6625-30. [PMID: 25941399 DOI: 10.1073/pnas.1419895112] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a prenylated, membrane-associated GTPase protein that is a critical switch for the propagation of growth factor signaling pathways to diverse effector proteins, including rapidly accelerated fibrosarcoma (RAF) kinases and RAS-related protein guanine nucleotide dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS mutations occur frequently in human cancers and predict poor clinical outcome, whereas germ-line mutations are associated with developmental syndromes. However, it is not known how these mutations affect K-RAS association with biological membranes or whether this impacts signal transduction. Here, we used solution NMR studies of K-RAS4B tethered to nanodiscs to investigate lipid bilayer-anchored K-RAS4B and its interactions with effector protein RAS-binding domains (RBDs). Unexpectedly, we found that the effector-binding region of activated K-RAS4B is occluded by interaction with the membrane in one of the NMR-observable, and thus highly populated, conformational states. Binding of the RAF isoform ARAF and RALGDS RBDs induced marked reorientation of K-RAS4B from the occluded state to RBD-specific effector-bound states. Importantly, we found that two Noonan syndrome-associated mutations, K5N and D153V, which do not affect the GTPase cycle, relieve the occluded orientation by directly altering the electrostatics of two membrane interaction surfaces. Similarly, the most frequent KRAS oncogenic mutation G12D also drives K-RAS4B toward an exposed configuration. Further, the D153V and G12D mutations increase the rate of association of ARAF-RBD with lipid bilayer-tethered K-RAS4B. We revealed a mechanism of K-RAS4B autoinhibition by membrane sequestration of its effector-binding site, which can be disrupted by disease-associated mutations. Stabilizing the autoinhibitory interactions between K-RAS4B and the membrane could be an attractive target for anticancer drug discovery.
Collapse
|
42
|
Ali SM, Sanford EM, Klempner SJ, Rubinson DA, Wang K, Palma NA, Chmielecki J, Yelensky R, Palmer GA, Morosini D, Lipson D, Catenacci DV, Braiteh F, Erlich R, Stephens PJ, Ross JS, Ou SHI, Miller VA. Prospective comprehensive genomic profiling of advanced gastric carcinoma cases reveals frequent clinically relevant genomic alterations and new routes for targeted therapies. Oncologist 2015; 20:499-507. [PMID: 25882375 DOI: 10.1634/theoncologist.2014-0378] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/04/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a major global cancer burden and the second most common cause of global cancer-related deaths. The addition of anti-ERBB2 (HER2) targeted therapy to chemotherapy improves survival for ERBB2-amplified advanced GC patients; however, the majority of GC patients do not harbor this alteration and thus cannot benefit from targeted therapy under current practice paradigms. MATERIALS AND METHODS Prospective comprehensive genomic profiling of 116 predominantly locally advanced or metastatic (90.0%) gastric cancer cases was performed to identify genomic alterations (GAs) associated with a potential response to targeted therapies approved by the U.S. Food and Drug Administration or targeted therapy-based clinical trials. RESULTS Overall, 78% of GC cases harbored one clinically relevant GA or more, with the most frequent alterations being found in TP53 (50%), ARID1A (24%), KRAS (16%), CDH1 (15%), CDKN2A (14%), CCND1 (9.5%), ERBB2 (8.5%), PIK3CA (8.6%), MLL2 (6.9%), FGFR2 (6.0%), and MET (6.0%). Receptor tyrosine kinase genomic alterations were detected in 20.6% of cases, primarily ERBB2, FGFR2, and MET amplification, with ERBB2 alterations evenly split between amplifications and base substitutions. Rare BRAF mutations (2.6%) were also observed. One MET-amplified GC patient responded for 5 months to crizotinib, a multitargeted ALK/ROS1/MET inhibitor. CONCLUSION Comprehensive genomic profiling of GC identifies clinically relevant GAs that suggest benefit from targeted therapy including MET-amplified GC and ERBB2 base substitutions.
Collapse
Affiliation(s)
- Siraj M Ali
- Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Eric M Sanford
- Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Samuel J Klempner
- Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Douglas A Rubinson
- Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Kai Wang
- Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Norma A Palma
- Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Juliann Chmielecki
- Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Roman Yelensky
- Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Gary A Palmer
- Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Deborah Morosini
- Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Doron Lipson
- Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Daniel V Catenacci
- Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Fadi Braiteh
- Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Rachel Erlich
- Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Philip J Stephens
- Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Jeffrey S Ross
- Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Sai-Hong Ignatius Ou
- Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| | - Vincent A Miller
- Foundation Medicine Inc., Cambridge, Massachusetts, USA; Chao Family Comprehensive Cancer Center, Division of Hematology-Oncology, Department of Medicine, University of California Irvine School of Medicine, Orange, California, USA; Dana-Farber Cancer Institute, Boston, Massachusetts, USA; University of Chicago, Chicago, Illinois, USA; Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA; Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, USA
| |
Collapse
|
43
|
Sunakawa Y, Lenz HJ. Molecular classification of gastric adenocarcinoma: translating new insights from the cancer genome atlas research network. Curr Treat Options Oncol 2015; 16:17. [PMID: 25813036 DOI: 10.1007/s11864-015-0331-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gastric cancer is a heterogenous cancer, which may be classified into several distinct subtypes based on pathology and epidemiology, each with different initiating pathological processes and each possibly having different tumor biology. A classification of gastric cancer should be important to select patients who can benefit from the targeted therapies or to precisely predict prognosis. The Cancer Genome Atlas (TCGA) study collaborated with previous reports regarding subtyping gastric cancer but also proposed a refined classification based on molecular characteristics. The addition of the new molecular classification strategy to a current classical subtyping may be a promising option, particularly stratification by Epstein-Barr virus (EBV) and microsatellite instability (MSI) statuses. According to TCGA study, EBV gastric cancer patients may benefit the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) antibodies or phosphoinositide 3-kinase (PI3K) inhibitors which are now being developed. The discoveries of predictive biomarkers should improve patient care and individualized medicine in the management since the targeted therapies may have the potential to change the landscape of gastric cancer treatment, moreover leading to both better understanding of the heterogeneity and better outcomes. Patient enrichment by predictive biomarkers for new treatment strategies will be critical to improve clinical outcomes. Additionally, liquid biopsies will be able to enable us to monitor in real-time molecular escape mechanism, resulting in better treatment strategies.
Collapse
Affiliation(s)
- Yu Sunakawa
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, Suite 5410, Los Angeles, CA, 90033, USA,
| | | |
Collapse
|
44
|
Lu W, Wei H, Li M, Wang H, Liu L, Zhang Q, Liu L, Lu S. Identification of KRAS and PIK3CA but not BRAF mutations in patients with gastric cancer. Mol Med Rep 2015; 12:1219-24. [PMID: 25815786 DOI: 10.3892/mmr.2015.3530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 02/26/2015] [Indexed: 11/05/2022] Open
Abstract
Cetuximab, an immunoglobulin G1 chimeric monoclonal antibody directed against the epidermal growth factor receptor, is currently considered to be the strategy with the most potential for the treatment of gastric cancer due to the low frequency of KRAS mutations in patients with gastric cancer. However, the therapeutic success of cetuximab in colorectal cancer (CRC) has demonstrated that the clinical effect of cetuximab is closely dependent not only on KRAS mutations, but also BRAF and phosphoinositide-3-kinase, catalytic, α polypeptide (PIK3CA) mutations. In the present study, the status of KRAS, BRAF and PIK3CA mutations in gastric cancer were investigated concomitantly in order to aid the selection of patients eligible for treatment with cetuximab. Mutations in KRAS (exon 2), BRAF (exon 15) and PIK3CA (exon 9 and exon 20) were retrospectively evaluated by high resolution melting analysis and DNA direct sequencing in samples from 156 patients with gastric cancer. Mutations in either KRAS or PIK3CA were identified in 13 samples (8.3%), 7 samples with KRAS mutations and 6 samples with PIK3CA mutations. No mutations in the BRAF gene were identified. The frequency of mutations in either KRAS or PIK3CA were significantly higher in patients without lymph node metastasis than those with. Furthermore, KRAS and PIK3CA mutations were mutually exclusive. The present study, therefore, suggested that it may be necessary to evaluate KRAS and PIK3CA mutations concomitantly for the selection of patients eligible for treatment with cetuximab.
Collapse
Affiliation(s)
- Weipeng Lu
- Laboratory Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Hong Wei
- Laboratory Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Mei Li
- Laboratory Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Hai Wang
- Department of Pathology, The Third People's Hospital of Dalian, Dalian, Liaoning 116000, P.R. China
| | - Lina Liu
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Qiuping Zhang
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Lisha Liu
- Laboratory Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Shen Lu
- Laboratory Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
45
|
Randomized phase II trial of nimotuzumab plus irinotecan versus irinotecan alone as second-line therapy for patients with advanced gastric cancer. Gastric Cancer 2015; 18:824-32. [PMID: 25185971 PMCID: PMC4572054 DOI: 10.1007/s10120-014-0420-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/28/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND This multicenter, randomized phase II trial was conducted to compare the efficacy and safety of nimotuzumab plus irinotecan (N-IRI) versus irinotecan alone (IRI) in patients with advanced gastric cancer (AGC) showing disease progression after previous 5-fluorouracil-based therapy. METHODS Irinotecan-naive patients (n = 82) received N-IRI (nimotuzumab 400 mg weekly plus irinotecan 150 mg/m(2) biweekly) or IRI (irinotecan 150 mg/m(2) biweekly) until disease progression. The primary endpoint was progression-free survival (PFS), and the secondary endpoints were overall survival (OS), response rate (RR), safety, tolerability, and the correlation between efficacy and tumor epidermal growth factor receptor (EGFR) expression. RESULTS Of 83 patients, 40 and 43 patients were randomly assigned to the N-IRI and IRI groups, respectively. In the N-IRI/IRI treatment group, median PFS was 73.0/85.0 days (P = 0.5668), and median OS and RR at 18 months were 250.5/232.0 days (P = 0.9778) and 18.4/10.3 %, respectively. Median PFS and OS in the EGFR 2+/3+ subgroups were 118.5/59.0 and 358.5/229.5 days, respectively. The RR was 33.3/0.0 % in the N-IRI/IRI treatment group. The incidence of grade 3 or higher adverse events was 77.5/64.3 %. No adverse events of grade 3 or higher skin rash or grade 3 or higher infusion-related reaction were reported. CONCLUSIONS There was no superiority of N-IRI over IRI alone in terms of PFS in 5-fluorouracil-refractory AGC patients. However, N-IRI showed potential improvement in the EGFR 2+/3+ subgroup based on improved RR, PFS, and OS.
Collapse
|
46
|
Velho S, Fernandes MS, Leite M, Figueiredo C, Seruca R. Causes and consequences of microsatellite instability in gastric carcinogenesis. World J Gastroenterol 2014; 20:16433-16442. [PMID: 25469011 PMCID: PMC4248186 DOI: 10.3748/wjg.v20.i44.16433] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/24/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023] Open
Abstract
Loss of DNA mismatch repair (MMR) function, due to somatic or germline epi/genetic alterations of MMR genes leads to the accumulation of numerous mutations across the genome, creating a molecular phenotype known as microsatellite instability (MSI). In gastric cancer (GC), MSI occurs in about 15% to 30% of the cases. This review summarizes the current knowledge on the molecular mechanisms underlying the acquisition of MSI in GC as well as on the clinic, pathologic and molecular consequences of the MSI phenotype. Additionally, current therapeutic strategies for GC and their applicability in the MSI subset are also discussed.
Collapse
|
47
|
Shi J, Qu YP, Hou P. Pathogenetic mechanisms in gastric cancer. World J Gastroenterol 2014; 20:13804-13819. [PMID: 25320518 PMCID: PMC4194564 DOI: 10.3748/wjg.v20.i38.13804] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/15/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a major public health issue as the fourth most common cancer and the second leading cause of cancer-related death. Recent advances have improved our understanding of its molecular pathogenesis, as best exemplified by elucidating the fundamental role of several major signaling pathways and related molecular derangements. Central to these mechanisms are the genetic and epigenetic alterations in these signaling pathways, such as gene mutations, copy number variants, aberrant gene methylation and histone modification, nucleosome positioning, and microRNAs. Some of these genetic/epigenetic alterations represent effective diagnostic and prognostic biomarkers and therapeutic targets for GC. This information has now opened unprecedented opportunities for better understanding of the molecular mechanisms of gastric carcinogenesis and the development of novel therapeutic strategies for this cancer. The pathogenetic mechanisms of GC are the focus of this review.
Collapse
|
48
|
Kim TM, Jung SH, Kim MS, Baek IP, Park SW, Lee SH, Lee HH, Kim SS, Chung YJ, Lee SH. The mutational burdens and evolutionary ages of early gastric cancers are comparable to those of advanced gastric cancers. J Pathol 2014; 234:365-74. [PMID: 25042771 DOI: 10.1002/path.4401] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/22/2014] [Accepted: 06/27/2014] [Indexed: 12/15/2022]
Abstract
Early gastric cancers (EGCs) precede advanced gastric cancers (AGCs), with a favourable prognosis compared to AGC. To understand the progression mechanism of EGC to AGC, it is required to disclose EGC and AGC genomes in mutational and evolutionary perspectives. We performed whole-exome sequencing and copy number profiling of nine microsatellite (MS)-unstable (MSI-H) (five EGCs and four AGCs) and eight MS-stable (MSS) gastric cancers (four EGCs and four AGCs). In the cancers, we observed well-known driver mutations (TP53, APC, PIK3CA, ARID1A, and KRAS) that were enriched in cancer-related pathways, including chromatin remodelling and tyrosine kinase activity. The MSI-H genomes harboured ten times more mutations, but were largely depleted of copy number alterations (CNAs) compared to the MSS cancers. Interestingly, EGC genomes showed a comparable level of mutations to AGC in terms of the number, sequence composition, and functional consequences (potential driver mutations and affected pathways) of mutations. Furthermore, the CNAs between EGC and AGC genomes were not significantly different in either MSI-H and MSS. Evolutionary analyses using somatic mutations and MSI as molecular clocks further identified that EGC genomes were as old as AGC genomes in both MSS and MSI-H cancers. Our results suggest that the genetic makeup for gastric cancer may already be achieved in EGC genomes and that the time required for transition to AGC may be relatively short. Also, the data suggest a possibility that the mutational profiles obtained from early biopsies may be useful in the clinical settings for the molecular diagnosis and therapeutics of gastric cancer patients.
Collapse
Affiliation(s)
- Tae-Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, 137-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Palacio-Rúa KA, Isaza-Jiménez LF, Ahumada-Rodríguez E, Muñetón-Peña CM. Genetic analysis in APC, KRAS, and TP53 in patients with stomach and colon cancer. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2014; 79:79-89. [PMID: 24861525 DOI: 10.1016/j.rgmx.2014.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/10/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Stomach cancer (SC) and colorectal cancer (CRC) present with high rates of incidence and mortality in the worldwide population. These 2 tumors are characterized by great genetic heterogeneity. Up to now, there have been no molecular studies that analyze the mutations in the APC, KRAS, and TP53 genes in the Colombian/Latin American population. OBJECTIVES To analyze mutations in the APC, KRAS, and TP53 genes through direct sequencing in 59 patients with SC and CRC. PATIENTS AND METHODS Twenty-nine patients with SC and 30 with CRC were studied. An analysis of the mutations of the 3 genes was carried out using polymerase chain reaction and direct sequencing techniques. RESULTS A 30.5% total mutation frequency was found. The most frequently mutated gene was APC (15.3%), followed by KRAS (10.1%) and TP53 (5.1%). The CRC samples had a mutation frequency of 46.7% and it was 13.3% in the SC samples (P=.006). No mutations occurred simultaneously in the 3 genes. Mutations in 2 genes were found in only 6 tumor samples (10%). There was also a high frequency of polymorphisms in both types of cancer, the most common of which was the rs41115 polymorphism, located on the APC gene. CONCLUSION The APC, KRAS, and TP53 gene mutations were more common in CRC than in SC. Our results suggest the existence of different genetic pathways in the carcinogenesis of SC and CRC and they also reveal a particular mutation frequency in the Colombian patients studied; this could be influenced by factors related to the environment, ethnicity, and lifestyle of this population.
Collapse
Affiliation(s)
- K A Palacio-Rúa
- Unidad de Genética Médica, Departamento de Pediatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - L F Isaza-Jiménez
- Departamento de Cirugía, Facultad de Medicina, Universidad de Antioquia, Hospital San Vicente de Paúl, Medellín, Colombia
| | - E Ahumada-Rodríguez
- Departamento de Patología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - C M Muñetón-Peña
- Unidad de Genética Médica, Departamento de Pediatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
50
|
Periasamy J, Muthuswami M, Rao DB, Tan P, Ganesan K. Stratification and delineation of gastric cancer signaling by in vitro transcription factor activity profiling and integrative genomics. Cell Signal 2014; 26:880-94. [PMID: 24462706 DOI: 10.1016/j.cellsig.2014.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/12/2023]
Abstract
Integrative functional genomic approaches are helpful in delineating the complex dysregulations in cancers. In the present study, in vitro activity profiling of 45 signaling pathway driven transcription factors in eight gastric cancer cell lines and direct comparison with genome-wide profiles of gastric tumors were performed and the integration resulted in the identification of three categories of factors/pathways: i) highly activated signaling pathways that stem from mutations are the critical oncogenic drivers, ii) constitutively activated stress responsive pathways which are activated not due to genetic alterations, and iii) consistently down-regulated nuclear receptor responsive factors. This functional profiling helps in discriminating therapeutic targets and signaling interactions.
Collapse
Affiliation(s)
- Jayaprakash Periasamy
- Cancer Genetics Laboratory, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Muthulakshmi Muthuswami
- Cancer Genetics Laboratory, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Divya Bhaskar Rao
- Cancer Genetics Laboratory, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Patrick Tan
- Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore
| | - Kumaresan Ganesan
- Cancer Genetics Laboratory, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India.
| |
Collapse
|