1
|
Bokhary RY. Prevalence of HER2 expression and its association with clinicopathological parameters in gastric and gastroesophageal junction adenocarcinoma: A 10?year experience of an academic center. Mol Clin Oncol 2025; 22:49. [PMID: 40242368 PMCID: PMC12001012 DOI: 10.3892/mco.2025.2844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
HER2 overexpression is a marker for targeted therapy in adenocarcinoma of the gastroesophageal junction (GEJ) and stomach. The present study aimed to evaluate the frequency of HER2 overexpression with reference to clinicopathological characteristics in subjects from King Abdulaziz University Hospital, Jeddah, Saudi Arabia over a 10-year period. A retrospective cross-sectional study was conducted on all biopsy and resection specimens diagnosed with either gastric cancer (GC) or GEJ adenocarcinomas from patients between January 2014 and December 2023 that had a final pathology report. Demographic characteristics of 122 patients, including age and sex, were collected, along with pathological details such as tumor grade, histological subtype and HER2 status. χ2 test was used to analyze the association between collected clinicopathological characteristics and HER2 status of the tumor. Most patients were aged 40-60 years. Males constituted 66% of the patients, and the ethnic distribution between Saudi and non-Saudi was almost equal. The most common subtype of cancer was the intestinal type (49%), and the majority of cases were poorly differentiated (64%). HER2 status was assessed in only 61% of cases, with 13.5% showing gene amplification. There was no significant association found between HER2 status and clinicopathological features.
Collapse
Affiliation(s)
- Rana Y. Bokhary
- Department of Pathology, Faculty of Medicine, King Abdulaziz University & King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Heo Y, Kim WJ, Cho YJ, Jung JW, Kim NS, Choi IY. Advances in cancer genomics and precision oncology. Genes Genomics 2025; 47:399-416. [PMID: 39849190 DOI: 10.1007/s13258-024-01614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Next-generation sequencing has revolutionized genome science over the last two decades. Indeed, the wealth of sequence information on our genome has deepened our understanding on cancer. Cancer is a genetic disease caused by genetic or epigenetic alternations that affect the expression of genes that control cell functions, particularly cell growth and division. Utilization of next-generation sequencing in cancer gene panels has enabled the identification of actionable gene alterations in cancer patients to guide personalized precision medicine. OBJECTIVE The aim is to provide information that can identify actionable gene alterations, enabling personalized precision medicine for cancer patients. RESULTS & DISCUSSION Equipped with next-generation sequencing techniques, international collaboration programs on cancer genomics have identified numerous mutations, gene fusions, microsatellite variations, copy number variations, and epigenetics changes that promote the transformation of normal cells into tumors. Cancer classification has traditionally been based on cell type or tissue-of-origin and the morphological characteristics of the cancer. However, interactive genomic analyses have currently reclassified cancers based on systemic molecular-based taxonomy. Although all cancer-causing genes and mechanisms have yet to be completely understood or identified, personalized or precision medicine is now currently possible for some forms of cancer. Unlike the "one-size-fits-all" approach of traditional medicine, precision medicine allows for customized or personalized treatment based on genomic information. CONCLUSION Despite the availability of numerous cancer gene panels, technological innovation in genomics and expansion of knowledge on the cancer genome will allow precision oncology to manage even more types of cancers.
Collapse
Affiliation(s)
- Yonjong Heo
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, Gangwon, Republic of Korea
| | - Woo-Jin Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, Gangwon, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jae-Won Jung
- Genetic Sciences Group, Thermo Fisher Scientific Solutions Korea Co., Ltd., Seoul, 06349, Republic of Korea
| | - Nam-Soo Kim
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- NBIT Co., Ltd., Chuncheon, 24341, Republic of Korea.
| | - Ik-Young Choi
- Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
3
|
Palma M. Advancing Breast Cancer Treatment: The Role of Immunotherapy and Cancer Vaccines in Overcoming Therapeutic Challenges. Vaccines (Basel) 2025; 13:344. [PMID: 40333213 PMCID: PMC12030785 DOI: 10.3390/vaccines13040344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 05/09/2025] Open
Abstract
Breast cancer (BC) remains a significant global health challenge due to its complex biology, which complicates both diagnosis and treatment. Immunotherapy and cancer vaccines have emerged as promising alternatives, harnessing the body's immune system to precisely target and eliminate cancer cells. However, several key factors influence the selection and effectiveness of these therapies, including BC subtype, tumor mutational burden (TMB), tumor-infiltrating lymphocytes (TILs), PD-L1 expression, HER2 resistance, and the tumor microenvironment (TME). BC subtypes play a critical role in shaping treatment responses. Triple-negative breast cancer (TNBC) exhibits the highest sensitivity to immunotherapy, while HER2-positive and hormone receptor-positive (HR+) subtypes often require combination strategies for optimal outcomes. High TMB enhances immune responses by generating neoantigens, making tumors more susceptible to immune checkpoint inhibitors (ICIs); whereas, low TMB may indicate resistance. Similarly, elevated TIL levels are associated with better immunotherapy efficacy, while PD-L1 expression serves as a key predictor of checkpoint inhibitor success. Meanwhile, HER2 resistance and an immunosuppressive TME contribute to immune evasion, highlighting the need for multi-faceted treatment approaches. Current breast cancer immunotherapies encompass a range of targeted treatments. HER2-directed therapies, such as trastuzumab and pertuzumab, block HER2 dimerization and enhance antibody-dependent cellular cytotoxicity (ADCC), while small-molecule inhibitors, like lapatinib and tucatinib, suppress HER2 signaling to curb tumor growth. Antibody-drug conjugates (ADCs) improve tumor targeting by coupling monoclonal antibodies with cytotoxic agents, minimizing off-target effects. Meanwhile, ICIs, including pembrolizumab, restore T-cell function, and CAR-macrophage (CAR-M) therapy leverages macrophages to reshape the TME and overcome immunotherapy resistance. While immunotherapy, particularly in TNBC, has demonstrated promise by eliciting durable immune responses, its efficacy varies across subtypes. Challenges such as immune-related adverse events, resistance mechanisms, high costs, and delayed responses remain barriers to widespread success. Breast cancer vaccines-including protein-based, whole-cell, mRNA, dendritic cell, and epitope-based vaccines-aim to stimulate tumor-specific immunity. Though clinical success has been limited, ongoing research is refining vaccine formulations, integrating combination therapies, and identifying biomarkers for improved patient stratification. Future advancements in BC treatment will depend on optimizing immunotherapy through biomarker-driven approaches, addressing tumor heterogeneity, and developing innovative combination therapies to overcome resistance. By leveraging these strategies, researchers aim to enhance treatment efficacy and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Marco Palma
- Institute for Globally Distributed Open Research and Education (IGDORE), 03181 Torrevieja, Spain
| |
Collapse
|
4
|
Hu Y, Liu S, Cui C, Liu X, Li H, Liu H, Lu S, Lu Z, Chen Z, Pang D, Fan JB, Lin D, Zhang X, Sun Y. Enhanced HER2 status detection in breast and gastric cancers using surrogate DNA methylation markers. IUBMB Life 2025; 77:e70004. [PMID: 39988770 DOI: 10.1002/iub.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025]
Abstract
There is a limited understanding of specific DNA methylation patterns associated with HER2 overexpression in breast and gastric cancers. Here we aim to solve the problem using inferred DNA methylation markers. DNA methylation data from The Cancer Genome Atlas (TCGA) were analyzed for breast and gastric cancers regarding HER2 status. We further applied a targeted bisulfite sequencing approach to elaborate the DNA methylation profile of the HER2 region, covering 7635 CpG sites. Based on these two sets of data, we selected specific DNA methylation markers inferring HER2 status for both breast and gastric cancers and validated their performance in assisting HER2-status determination on a retrospective cohort with 496 breast cancer and 372 gastric cancer. HER2-Meth could well distinguish HER2 IHC0/1+ from HER2 IHC3+ cases in both breast cancer (AUC = 0.983, n = 130) and gastric cancer (AUC = 0.974, n = 63), also could effectively discriminate HER2 IHC2+/FISH+ from HER2 IHC2+/FISH- cases in equivocal situations for both breast cancer (test set AUC = 0.879, n = 74; validation set AUC = 0.875, n = 75) and gastric cancer (test set AUC = 0.910, n = 70; validation set AUC = 0.941, n = 71), outperforming regular HER2 copy number test (An AUC of 0.793 for breast cancer and an AUC of 0.759 for gastric cancer) on HER2 IHC2+ cases. Furthermore, HER2-Meth demonstrated its potential for stratifying HER2-positive patients, enabling predictions regarding overall survivals, and the potential benefits of HER2-targeted therapies in breast cancer. The strong agreement observed between the methylation qPCR test and the results of IHC and FISH indicates significant potential for this approach as a complementary tool in guiding HER2-targeted therapies for patients with breast and gastric cancers.
Collapse
Affiliation(s)
- Yajie Hu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Siyu Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Liu
- AnchorDx, Inc., Fremont, USA
| | - Hui Li
- AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Hong Liu
- AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Shiyao Lu
- AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Zhipeng Lu
- AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Zhiwei Chen
- AnchorDx, Inc., Fremont, USA
- AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jian-Bing Fan
- AnchorDx Medical Co., Ltd., Guangzhou, China
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Dongmei Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Sun
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
5
|
Scalambra L, Ruzzi F, Pittino OM, Semprini MS, Cappello C, Angelicola S, Palladini A, Nanni P, Goksøyr L, Fougeroux C, Penichet ML, Sander AF, Lollini PL. Targeting PCSK9, through an innovative cVLP-based vaccine, enhanced the therapeutic activity of a cVLP-HER2 vaccine in a preclinical model of HER2-positive mammary carcinoma. J Transl Med 2025; 23:136. [PMID: 39885551 PMCID: PMC11784117 DOI: 10.1186/s12967-025-06126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND HER2-targeted therapies have revolutionized the treatment of HER2-positive breast cancer patients, leading to significant improvements in tumor response rates and survival. However, resistance and incomplete response remain considerable challenges. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a novel therapeutic strategy for the management of dyslipidemia by enhancing the clearance of low-density lipoprotein cholesterol receptors, however recent evidence also shows links between PCSK9 and cancer cells. We present an innovative immunization approach combining capsid virus-like particle (cVLP)-based vaccines against HER2 and PCSK9. METHODS The therapeutic activity of the combined vaccine was evaluated in female mice challenged with HER2-positive mammary carcinoma cells. Controls included untreated mice and mice treated with cVLP-PCSK9 and cVLP-HER2 as standalone therapies. Antibodies elicited by vaccinations were detected through ELISA immunoassay. The functional activity of the antibodies was tested in 3D-soft agar assay on human HER2 + + + trastuzumab sensitive and resistant cells. RESULTS Mice vaccinated with cVLP-HER2 + cVLP-PCSK9 displayed tumor regression from the 40th day after cell challenge in 100% of mice remaining tumor-free even 4 months later. In contrast, 83% of mice treated with cVLP-HER2 vaccine alone experienced an initial tumor regression, followed by tumor relapse in 60% of subjects. Untreated mice and mice treated with the cVLP-PCSK9 vaccine alone developed progressive tumors within 1-2 months after cell injection. The combined vaccine approach elicited strong anti-human HER2 antibody responses (reaching 1-2 mg/ml range) comprising multiple immunoglobulins isotypes. cVLP-PCSK9 vaccine elicited anti-PCSK9 antibody responses, resulting in a marked reduction in PCSK9 serum levels. Although the anti-PCSK9 response was reduced when co-administered with cVLP-HER2, it remained significant. Moreover, both cVLP-HER2 + cVLP-PCSK9 and cVLP-HER2 alone induced anti-HER2 antibodies able to inhibit the 3D growth of human HER2 + + + BT-474 and trastuzumab-resistant BT-474 C5 cells. Strikingly, antibodies elicited by the combined vaccination were more effective than those elicited by the cVLP-HER2 vaccine alone in the inhibition of trastuzumab-resistant C5 cells. CONCLUSIONS The results indicate that cVLP-PCSK9 vaccination shows adjuvant activity when combined with cVLP-HER2 vaccine, enhancing its therapeutic efficacy against HER2-positive breast cancer and holding promise in overcoming the challenges posed by resistance and incomplete responses to HER2-targeted therapy.
Collapse
Affiliation(s)
- Laura Scalambra
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Ruzzi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| | - Olga Maria Pittino
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Maria Sofia Semprini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Chiara Cappello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Stefania Angelicola
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Policlinico Di Sant'Orsola University Hospital, Bologna, Italy
| | - Arianna Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Medical Oncology Division, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Patrizia Nanni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | | | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery and Department of Microbiology, Immunology and Molecular GeneticsThe Molecular Biology InstituteJonsson Comprehensive Cancer Centre, University of California, Los Angeles (UCLA), CA, USA
| | - Adam Frederik Sander
- AdaptVac Aps, Copenhagen, Denmark
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pier-Luigi Lollini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Policlinico Di Sant'Orsola University Hospital, Bologna, Italy.
| |
Collapse
|
6
|
Yao R, Xie C, Xia X. Recent progress in mRNA cancer vaccines. Hum Vaccin Immunother 2024; 20:2307187. [PMID: 38282471 PMCID: PMC10826636 DOI: 10.1080/21645515.2024.2307187] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024] Open
Abstract
The research and development of messenger RNA (mRNA) cancer vaccines have gradually overcome numerous challenges through the application of personalized cancer antigens, structural optimization of mRNA, and the development of alternative RNA-based vectors and efficient targeted delivery vectors. Clinical trials are currently underway for various cancer vaccines that encode tumor-associated antigens (TAAs), tumor-specific antigens (TSAs), or immunomodulators. In this paper, we summarize the optimization of mRNA and the emergence of RNA-based expression vectors in cancer vaccines. We begin by reviewing the advancement and utilization of state-of-the-art targeted lipid nanoparticles (LNPs), followed by presenting the primary classifications and clinical applications of mRNA cancer vaccines. Collectively, mRNA vaccines are emerging as a central focus in cancer immunotherapy, offering the potential to address multiple challenges in cancer treatment, either as standalone therapies or in combination with current cancer treatments.
Collapse
Affiliation(s)
- Ruhui Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
7
|
Alkhatabi HA, Alatyb HN. In Silico Design of Peptide Inhibitors Targeting HER2 for Lung Cancer Therapy. Cancers (Basel) 2024; 16:3979. [PMID: 39682166 DOI: 10.3390/cancers16233979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Human epidermal growth factor receptor 2 (HER2) is overexpressed in several malignancies, such as breast, gastric, ovarian, and lung cancers, where it promotes aggressive tumor proliferation and unfavorable prognosis. Targeting HER2 has thus emerged as a crucial therapeutic strategy, particularly for HER2-positive malignancies. The present study focusses on the design and optimization of peptide inhibitors targeting HER2, utilizing machine learning to identify and enhance peptide candidates with elevated binding affinities. The aim is to provide novel therapeutic options for malignancies linked to HER2 overexpression. METHODS This study started with the extraction and structural examination of the HER2 protein, succeeded by designing the peptide sequences derived from essential interaction residues. A machine learning technique (XGBRegressor model) was employed to predict binding affinities, identifying the top 20 peptide possibilities. The candidates underwent further screening via the FreeSASA methodology and binding free energy calculations, resulting in the selection of four primary candidates (pep-17, pep-7, pep-2, and pep-15). Density functional theory (DFT) calculations were utilized to evaluate molecular and reactivity characteristics, while molecular dynamics simulations were performed to investigate inhibitory mechanisms and selectivity effects. Advanced computational methods, such as QM/MM simulations, offered more understanding of peptide-protein interactions. RESULTS Among the four principal peptides, pep-7 exhibited the most elevated DFT values (-3386.93 kcal/mol) and the maximum dipole moment (10,761.58 Debye), whereas pep-17 had the lowest DFT value (-5788.49 kcal/mol) and the minimal dipole moment (2654.25 Debye). Molecular dynamics simulations indicated that pep-7 had a steady binding free energy of -12.88 kcal/mol and consistently bound inside the HER2 pocket during a 300 ns simulation. The QM/MM simulations showed that the overall total energy of the system, which combines both QM and MM contributions, remained around -79,000 ± 400 kcal/mol, suggesting that the entire protein-peptide complex was in a stable state, with pep-7 maintaining a strong, well-integrated binding. CONCLUSIONS Pep-7 emerged as the most promising therapeutic peptide, displaying strong binding stability, favorable binding free energy, and molecular stability in HER2-overexpressing cancer models. These findings suggest pep-7 as a viable therapeutic candidate for HER2-positive cancers, offering a potential novel treatment strategy against HER2-driven malignancies.
Collapse
Affiliation(s)
- Heba Ahmed Alkhatabi
- Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Hematology Research Unit (HRU), King Fahd Medical Research Center (KFMRC), Jeddah 22252, Saudi Arabia
- Center of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Hisham N Alatyb
- Center of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| |
Collapse
|
8
|
Zheng S, Chen R, Zhang L, Tan L, Li L, Long F, Wang T. Unraveling the future: Innovative design strategies and emerging challenges in HER2-targeted tyrosine kinase inhibitors for cancer therapy. Eur J Med Chem 2024; 276:116702. [PMID: 39059182 DOI: 10.1016/j.ejmech.2024.116702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a transmembrane receptor-like protein with tyrosine kinase activity that plays a vital role in processes such as cell proliferation, differentiation, and angiogenesis. The degree of malignancy of different cancers, notably breast cancer, is strongly associated with HER2 amplification, overexpression, and mutation. Currently, widely used clinical HER2 tyrosine kinase inhibitors (TKIs), such as lapatinib and neratinib, have several drawbacks, including susceptibility to drug resistance caused by HER2 mutations and adverse effects from insufficient HER2 selectivity. To address these issues, it is essential to create innovative HER2 TKIs with enhanced safety, effectiveness against mutations, and high selectivity. Typically, SPH5030 has advanced to phase I clinical trials for its strong suppression of four HER2 mutations. This review discusses the latest research progress in HER2 TKIs, with a focus on the structural optimization process and structure-activity relationship analysis. In particular, this study highlights promising design strategies to address these challenges, providing insightful information and inspiration for future development in this field.
Collapse
Affiliation(s)
- Sixiang Zheng
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ruixian Chen
- Department of Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lele Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lun Tan
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lintao Li
- Department of Radiotherapy, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China.
| | - Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
9
|
Ma S, Zhou Y, Ma D, Qi X, Jiang J. Application and challenge of HER2DX genomic assay in HER2+ breast cancer treatment. Am J Cancer Res 2024; 14:4218-4235. [PMID: 39417184 PMCID: PMC11477836 DOI: 10.62347/jwha6355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
HER2-positive breast cancer is highly aggressive, with a significant risk of recurrence and metastasis, leading to a poor prognosis. While most early-stage HER2-positive breast cancer patients benefit from combining trastuzumab monoclonal antibody with chemotherapy, the therapeutic response to various drug combinations varies across the HER2+ patient population. Therefore, predicting the prognosis and treatment response of HER2+ breast cancer patients to specific regimens is crucial for selecting appropriate precision individualized therapies. HER2DX is the first genomic tool designed to guide the treatment of HER2+ breast cancer patients. The three scores provided by HER2DX inform the entire treatment process, including predicting survival outcomes, recurrence, metastasis, and treatment responses like Pathological Complete Response Rate (pCR). It offers recommendations on follow-up intervals, treatment plans, and the duration of drug therapy. This review examines the literature and analyzes studies applying HER2DX to guide the comprehensive treatment and predict prognosis in HER2+ breast cancer patients, aiming to promote the widespread use of HER2DX in individualized treatment.
Collapse
Affiliation(s)
- Shujuan Ma
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical UniversityChongqing 400038, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast CancerChongqing 400038, China
| | - Yan Zhou
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical UniversityChongqing 400038, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast CancerChongqing 400038, China
| | - Dandan Ma
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical UniversityChongqing 400038, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast CancerChongqing 400038, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical UniversityChongqing 400038, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast CancerChongqing 400038, China
| | - Jun Jiang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical UniversityChongqing 400038, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast CancerChongqing 400038, China
| |
Collapse
|
10
|
Mo C, Sterpi M, Jeon H, Bteich F. Resistance to Anti-HER2 Therapies in Gastrointestinal Malignancies. Cancers (Basel) 2024; 16:2854. [PMID: 39199625 PMCID: PMC11352490 DOI: 10.3390/cancers16162854] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Human epidermal growth factor 2 (HER2) is a tyrosine kinase receptor that interacts with multiple signaling pathways related to cellular growth and proliferation. Overexpression or amplification of HER2 is linked to various malignancies, and there have been decades of research dedicated to targeting HER2. Despite the landmark ToGA trial, progress in HER2-positive gastrointestinal malignancies has been hampered by drug resistance. This review examines current HER2 expression patterns and therapies for gastroesophageal, colorectal, biliary tract, and small bowel cancers, while dissecting potential resistance mechanisms that limit treatment effectiveness.
Collapse
Affiliation(s)
- Christiana Mo
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.M.); (M.S.); (H.J.)
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Michelle Sterpi
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.M.); (M.S.); (H.J.)
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Hyein Jeon
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.M.); (M.S.); (H.J.)
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Fernand Bteich
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.M.); (M.S.); (H.J.)
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY 10467, USA
| |
Collapse
|
11
|
Dunenova G, Kalmataeva Z, Kaidarova D, Dauletbaev N, Semenova Y, Mansurova M, Grjibovski A, Kassymbekova F, Sarsembayev A, Semenov D, Glushkova N. The Performance and Clinical Applicability of HER2 Digital Image Analysis in Breast Cancer: A Systematic Review. Cancers (Basel) 2024; 16:2761. [PMID: 39123488 PMCID: PMC11311684 DOI: 10.3390/cancers16152761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
This systematic review aims to address the research gap in the performance of computational algorithms for the digital image analysis of HER2 images in clinical settings. While numerous studies have explored various aspects of these algorithms, there is a lack of comprehensive evaluation regarding their effectiveness in real-world clinical applications. We conducted a search of the Web of Science and PubMed databases for studies published from 31 December 2013 to 30 June 2024, focusing on performance effectiveness and components such as dataset size, diversity and source, ground truth, annotation, and validation methods. The study was registered with PROSPERO (CRD42024525404). Key questions guiding this review include the following: How effective are current computational algorithms at detecting HER2 status in digital images? What are the common validation methods and dataset characteristics used in these studies? Is there standardization of algorithm evaluations of clinical applications that can improve the clinical utility and reliability of computational tools for HER2 detection in digital image analysis? We identified 6833 publications, with 25 meeting the inclusion criteria. The accuracy rate with clinical datasets varied from 84.19% to 97.9%. The highest accuracy was achieved on the publicly available Warwick dataset at 98.8% in synthesized datasets. Only 12% of studies used separate datasets for external validation; 64% of studies used a combination of accuracy, precision, recall, and F1 as a set of performance measures. Despite the high accuracy rates reported in these studies, there is a notable absence of direct evidence supporting their clinical application. To facilitate the integration of these technologies into clinical practice, there is an urgent need to address real-world challenges and overreliance on internal validation. Standardizing study designs on real clinical datasets can enhance the reliability and clinical applicability of computational algorithms in improving the detection of HER2 cancer.
Collapse
Affiliation(s)
- Gauhar Dunenova
- Department of Epidemiology, Biostatistics and Evidence-Based Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Zhanna Kalmataeva
- Rector Office, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan;
| | - Dilyara Kaidarova
- Kazakh Research Institute of Oncology and Radiology, Almaty 050022, Kazakhstan;
| | - Nurlan Dauletbaev
- Department of Internal, Respiratory and Critical Care Medicine, Philipps University of Marburg, 35037 Marburg, Germany;
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Faculty of Medicine and Health Care, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Madina Mansurova
- Department of Artificial Intelligence and Big Data, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Andrej Grjibovski
- Central Scientific Research Laboratory, Northern State Medical University, Arkhangelsk 163000, Russia;
- Department of Epidemiology and Modern Vaccination Technologies, I.M. Sechenov First Moscow State Medical University, Moscow 105064, Russia
- Department of Biology, Ecology and Biotechnology, Northern (Arctic) Federal University, Arkhangelsk 163000, Russia
- Department of Health Policy and Management, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Fatima Kassymbekova
- Department of Public Health and Social Sciences, Kazakhstan Medical University “KSPH”, Almaty 050060, Kazakhstan;
| | - Aidos Sarsembayev
- School of Digital Technologies, Almaty Management University, Almaty 050060, Kazakhstan;
- Health Research Institute, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Daniil Semenov
- Computer Science and Engineering Program, Astana IT University, Astana 020000, Kazakhstan;
| | - Natalya Glushkova
- Department of Epidemiology, Biostatistics and Evidence-Based Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Health Research Institute, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| |
Collapse
|
12
|
Nipper AJ, Warren EAK, Liao KS, Liu HC, Michikawa C, Porter CE, Wells GA, Villanueva M, Brasil da Costa FH, Veeramachaneni R, Villanueva H, Suzuki M, Sikora AG. Chick Embryo Chorioallantoic Membrane as a Platform for Assessing the In Vivo Efficacy of Chimeric Antigen Receptor T-cell Therapy in Solid Tumors. Immunohorizons 2024; 8:598-605. [PMID: 39225630 PMCID: PMC11374747 DOI: 10.4049/immunohorizons.2400059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
The fertilized chicken egg chorioallantoic membrane (CAM), a highly vascularized membrane nourishing the developing embryo, also supports rapid growth of three-dimensional vascularized tumors from engrafted cells and tumor explants. Because murine xenograft models suffer limitations of time, cost, and scalability, we propose CAM tumors as a rapid, efficient screening tool for assessing anti-tumor efficacy of chimeric Ag receptor (CAR) T cells against solid tumors. We tested the efficacy of human epidermal growth factor receptor 2 (HER2)-specific CAR T cells against luminescent, HER2-expressing (FaDu, SCC-47) or HER2-negative (MDA-MB-468) CAM-engrafted tumors. Three days after tumor engraftment, HER2-specific CAR T cells were applied to tumors grown on the CAM. Four days post-CAR T cell treatment, HER2-expressing FaDu and SCC-47 tumors treated with CAR T showed reduced viable cancer cells as assessed by luciferase activity. This reduction in viable tumor cells was confirmed by histology, with lower Ki-67 staining observed in CAR T cell-treated tumors relative to T cell-treated controls. Persistence of CAR T in CAM and tumor tissue 4 days post-treatment was confirmed by CD3 staining. Altogether, our findings support further development of the chick CAM as an in vivo system for rapid, scalable screening of CAR T cell efficacy against human solid tumors.
Collapse
Affiliation(s)
- Allison J. Nipper
- Department of Head and Neck Surgery, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Emilie A. K. Warren
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX
| | - Kershena S. Liao
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX
| | - Hsuan-Chen Liu
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX
| | - Chieko Michikawa
- Department of Head and Neck Surgery, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Caroline E. Porter
- Department of Family and Community Medicine, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | | | - Mariana Villanueva
- Department of Family and Community Medicine, Baylor College of Medicine, Houston, TX
| | | | - Ratna Veeramachaneni
- Department of Head and Neck Surgery, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Hugo Villanueva
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX
| | - Masataka Suzuki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Andrew G. Sikora
- Department of Head and Neck Surgery, University of Texas M.D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
13
|
Dias T, Figueiras R, Vagueiro S, Domingues R, Hung YH, Sethi J, Persia E, Arsène P. An electro-optical platform for the ultrasensitive detection of small extracellular vesicle sub-types and their protein epitope counts. iScience 2024; 27:109866. [PMID: 38840839 PMCID: PMC11152657 DOI: 10.1016/j.isci.2024.109866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Methods for detecting proteins in small extracellular vesicles (sEVs) lack sensitivity and quantitative accuracy, missing clues about health and disease. Our study introduces the Nano-Extracellular Omics Sensing (NEXOS) platform, merging electrical (E-NEXOS) and optical detection (O-NEXOS). E-NEXOS determines the concentration of target sEV sub-types, and O-NEXOS quantifies the concentration of target protein epitopes (TEPs) on those TEVs. In this work, both technologies were compared to several sEV detection tools, showing superior detection limits for CD9+CD81+ and CD9+HER2+ sEVs. Furthermore, the additional information on TEVs and TEPs from bulk sEV samples, provided new phenotyping capabilities. We determined the average number of CD81 and HER2 proteins on CD9+ sEVs, a number which was later validated on spiked human plasma. These results highlight the compatibility of NEXOS with complex biofluids and, as importantly, hint at its many potential applications, ranging from basic research to the anticipated clinical translation of sEVs.
Collapse
|
14
|
Plotkin A, Olkhov-Mitsel E, Huang WY, Nofech-Mozes S. Implementation of HER2 Testing in Endometrial Cancer, a Summary of Real-World Initial Experience in a Large Tertiary Cancer Center. Cancers (Basel) 2024; 16:2100. [PMID: 38893219 PMCID: PMC11171265 DOI: 10.3390/cancers16112100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
HER2-targeted therapies have transformed the management of advanced or recurrent serous endometrial cancer (EC), leading to an increased clinical demand for HER2 testing. Despite its adoption in select academic centers, the global extent of such tumor testing is unclear. In this study, we report on the initial two-year experience of HER2 testing at a major academic center with a reference gynecologic oncology service and biomarker reference laboratory. All patients who underwent HER2 testing based on physician discretion, reflex HER2 testing, and reference laboratory requests were included. From February 2021 to October 2023, HER2 testing was performed on 192 tumor tissue samples from 180 EC patients. Serous carcinoma constituted 52% of samples, reflecting diagnostic challenges and limited therapeutic options for advanced EC. HER2 positivity was found in 28% of all cases and 30% of p53-aberrant cases. An immunohistochemistry (IHC) score of 3+ was found in 15% of samples, while IHC 2+ was found in 45% (13% IHC 2+/ISH+ and 32% IHC 2+/ISH-). The newly identified 'HER2-low' category comprised 46% of the samples. Heterogeneity was noted in 42% of HER2-positive cases, with complex patterns in 3%. NGS and HER2 IHC-FISH showed a 24% discordance, attributed to intratumoral heterogeneity, tumor cellularity, a small number of amplified cells, and the HER2/CEP17 ratio near the cut-off. This study offers real-world insights into HER2 testing in EC, highlighting the challenges and underscoring the need for standardized guidelines in specimen handling, proficiency testing, and scoring criteria to enhance patient management and therapeutic decision-making.
Collapse
Affiliation(s)
- Anna Plotkin
- Department of Anatomic Pathology, Precision Diagnostics & Therapeutics Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ekaterina Olkhov-Mitsel
- Department of Anatomic Pathology, Precision Diagnostics & Therapeutics Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Weei-Yuarn Huang
- Department of Anatomic Pathology, Precision Diagnostics & Therapeutics Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sharon Nofech-Mozes
- Department of Anatomic Pathology, Precision Diagnostics & Therapeutics Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
15
|
Han R, Madariaga A, Gonzalez-Ochoa E, Smith AC, Wang L, Lheureux S, Rouzbahman M. HER2-low and Overexpression in Mucinous Ovarian Cancer: Analysis of ASCO/CAP and ToGA Immunohistochemical Scoring. Int J Gynecol Pathol 2024; 43:275-283. [PMID: 38436360 DOI: 10.1097/pgp.0000000000000972] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Mucinous ovarian carcinoma is an uncommon malignancy characterized by resistance to chemotherapy and poor survival in the metastatic setting. HER2 amplification is a frequent late event in carcinogenesis, yet the incidence of HER2-low in mucinous ovarian carcinoma is unknown. Further, the optimal method for determining overexpression in these tumors is not established. We sought to assess the ASCO/CAP and ToGA trial scoring methods for HER2 IHC with correlation to FISH, p53, and mismatch repair protein status and to determine the incidence of HER2-low in mucinous ovarian carcinoma. A total of 29 tumors from 23 patients were included. Immunohistochemistry for HER2, p53, MLH1, PMS2, MSH2, and MSH6 was performed. Scoring was performed according to the ASCO/CAP and ToGA trial criteria. HER2 FISH was performed and scored according to the ASCO/CAP criteria. The proportion of HER2-low, defined as 1+ or 2+ staining with negative FISH, was determined. Using ASCO/CAP, 26% demonstrated 3+ while 35% demonstrated 2+ staining. Using ToGA, 30% demonstrated 3+ while 57% demonstrated 2+ staining. By FISH, 26% were positive for HER2 amplification. Both systems captured all FISH-positive cases; the use of ASCO/CAP resulted in fewer equivocal and false-positive cases. Among HER2-negative cases, 88% were HER2-low. Aberrant p53 expression was detected in 55% of cases; mismatch repair deficiency was not identified in any cases. ASCO/CAP guidelines are accurate and resource-effective in determining HER2 overexpression in mucinous ovarian carcinoma. HER2-low is common in these tumors; further studies to determine the role of HER2-targeted therapy including antibody-drug conjugates are indicated.
Collapse
|
16
|
Fakhrioliaei A, Tanhaei S, Pakmehr S, Noori Shakir M, Qasim MT, Hariri M, Nouhi Kararoudi A, Valilo M. Potential Role of Nrf2, HER2, and ALDH in Cancer Stem Cells: A Narrative Review. J Membr Biol 2024; 257:3-16. [PMID: 38356054 DOI: 10.1007/s00232-024-00307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Cancer is one of the main causes of death among humans, second only to cardiovascular diseases. In recent years, numerous studies have been conducted on the pathophysiology of cancer, and it has been established that this disease is developed by a group of stem cells known as cancer stem cells (CSCs). Thus, cancer is considered a stem cell disease; however, there is no comprehensive consensus about the characteristics of these cells. Several different signaling pathways including Notch, Hedgehog, transforming growth factor-β (TGF-β), and WNT/β-catenin pathways cause the self-renewal of CSCs. CSCs change their metabolic pathways in order to access easy energy. Therefore, one of the key objectives of researchers in cancer treatment is to destroy CSCs. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays an essential role in the protection of CSCs from reactive oxygen species (ROS) and chemotherapeutic agents by regulating antioxidants and detoxification enzymes. Human epidermal growth factor receptor 2 (HER2) is a member of the tyrosine kinase receptor family, which contributes to the protection of cancer cells against treatment and implicated in the invasion, epithelial-mesenchymal transition (EMT), and tumorigenesis. Aldehyde dehydrogenases (ALDHs) are highly active in CSCs and protect the cells against damage caused by active aldehydes through the regulation of aldehyde metabolism. On the other hand, ALDHs promote the formation and maintenance of tumor cells and lead to drug resistance in tumors through the activation of various signaling pathways, such as the ALDH1A1/HIF-1α/VEGF axis and Wnt/β-catenin, as well as changing the intracellular pH value. Given the growing body of information in this field, in the present narrative review, we attempted to shed light on the function of Nrf2, HER2, and ALDH in CSCs.
Collapse
Affiliation(s)
| | | | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Maryam Hariri
- Department of Pathobiology, Auburn University, Auburn, AL, 36832, USA
| | - Alireza Nouhi Kararoudi
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohammad Valilo
- Dpartment of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
17
|
Pezzicoli G, Ciciriello F, Musci V, Minei S, Biasi A, Ragno A, Cafforio P, Rizzo M. Genomic Profiling and Molecular Characterisation of Metastatic Urothelial Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:585. [PMID: 38674231 PMCID: PMC11052409 DOI: 10.3390/medicina60040585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The clinical management of metastatic urothelial carcinoma (mUC) is undergoing a major paradigm shift; the integration of immune checkpoint inhibitors (ICIs) and antibody-drug conjugates (ADCs) into the mUC therapeutic strategy has succeeded in improving platinum-based chemotherapy outcomes. Given the expanding therapeutic armamentarium, it is crucial to identify efficacy-predictive biomarkers that can guide an individual patient's therapeutic strategy. We reviewed the literature data on mUC genomic alterations of clinical interest, discussing their prognostic and predictive role. In particular, we explored the role of the fibroblast growth factor receptor (FGFR) family, epidermal growth factor receptor 2 (HER2), mechanistic target of rapamycin (mTOR) axis, DNA repair genes, and microsatellite instability. Currently, based on the available clinical data, FGFR inhibitors and HER2-directed ADCs are effective therapeutic options for later lines of biomarker-driven mUC. However, emerging genomic data highlight the opportunity for earlier use and/or combination with other drugs of both FGFR inhibitors and HER2-directed ADCs and also reveal additional potential drug targets that could change mUC management.
Collapse
Affiliation(s)
- Gaetano Pezzicoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Federica Ciciriello
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Vittoria Musci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Silvia Minei
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Antonello Biasi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Anna Ragno
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, 70124 Bari, Italy;
| | - Paola Cafforio
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Mimma Rizzo
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, 70124 Bari, Italy;
| |
Collapse
|
18
|
Asghari Lalami Z, Tafvizi F, Naseh V, Salehipour M. Fabrication, optimization, and characterization of pH-responsive PEGylated nanoniosomes containing gingerol for enhanced treatment of breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3867-3886. [PMID: 37368028 DOI: 10.1007/s00210-023-02579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Multiple potential drug delivery strategies have emerged as a result of recent advances in nanotechnology and nanomedicine. The aim of this research was to prepare an optimized system of PEGylated gingerol-loaded niosomes (Nio-Gin@PEG) as an excellent candidate for the treatment of human breast cancer cells. The preparation procedure was modified by adjusting the drug concentration, lipid content, and Span60/Tween60 ratio, resulting in high encapsulation efficacy (EE%), rapid release rate, and reduced size. The Nio-Gin@PEG exhibited significantly improved storage stability compared to the gingerol-loaded niosomes formulation (Nio-Gin), with minimal changes in EE%, release profile, and size during storage. Furthermore, Nio-Gin@PEG demonstrated pH-dependent release behavior, with delayed drug diffusion at physiological pH and significant drug diffusion under acidic conditions (pH = 5.4), making it a promising option for cancer treatment. Cytotoxicity tests indicated that Nio-Gin@PEG possessed excellent biocompatibility with human fibroblast cells while exerting a remarkable inhibitory effect on MCF-7 and SKBR3 breast cancer cells, attributed to the presence of gingerol and the PEGylated structure in the preparation. Nio-Gin@PEG also exhibited the ability to modulate the expression of target genes. We observed statistically significant down-regulation of the expression of BCL2, MMP2, MMP9, HER2, CCND1, CCNE1, BCL2, CDK4, and VEGF genes, along with up-regulation of the expression of BAX, CASP9, CASP3, and P21 genes. Flow cytometry results revealed that Nio-Gin@PEG could induce a higher rate of apoptosis in both cancerous cells compared to gingerol and Nio-Gin, owing to the optimal encapsulation and efficient drug release from the formulation, as confirmed by cell cycle tests. ROS generation demonstrated the superior antioxidant effect of Nio-Gin@PEG compared to other prepared formulations. The results of this study emphasize the potential of formulating highly biocompatible niosomes in the future of nanomedicine, enabling more precise and effective treatment of cancers.
Collapse
Affiliation(s)
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Vahid Naseh
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Masoud Salehipour
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| |
Collapse
|
19
|
DiPeri TP, Evans KW, Raso MG, Zhao M, Rizvi YQ, Zheng X, Wang B, Kirby BP, Kong K, Kahle M, Yap TA, Dumbrava EE, Ajani JA, Fu S, Keyomarsi K, Meric-Bernstam F. Adavosertib Enhances Antitumor Activity of Trastuzumab Deruxtecan in HER2-Expressing Cancers. Clin Cancer Res 2023; 29:4385-4398. [PMID: 37279095 PMCID: PMC10618648 DOI: 10.1158/1078-0432.ccr-23-0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/22/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
PURPOSE Cyclin E (CCNE1) has been proposed as a biomarker of sensitivity to adavosertib, a Wee1 kinase inhibitor, and a mechanism of resistance to HER2-targeted therapy. EXPERIMENTAL DESIGN Copy number and genomic sequencing data from The Cancer Genome Atlas and MD Anderson Cancer Center databases were analyzed to assess ERBB2 and CCNE1 expression. Molecular characteristics of tumors and patient-derived xenografts (PDX) were assessed by next-generation sequencing, whole-exome sequencing, fluorescent in situ hybridization, and IHC. In vitro, CCNE1 was overexpressed or knocked down in HER2+ cell lines to evaluate drug combination efficacy. In vivo, NSG mice bearing PDXs were subjected to combinatorial therapy with various treatment regimens, followed by tumor growth assessment. Pharmacodynamic markers in PDXs were characterized by IHC and reverse-phase protein array. RESULTS Among several ERBB2-amplified cancers, CCNE1 co-amplification was identified (gastric 37%, endometroid 43%, and ovarian serous adenocarcinoma 41%). We hypothesized that adavosertib may enhance activity of HER2 antibody-drug conjugate trastuzumab deruxtecan (T-DXd). In vitro, sensitivity to T-DXd was decreased by cyclin E overexpression and increased by knockdown, and adavosertib was synergistic with topoisomerase I inhibitor DXd. In vivo, the T-DXd + adavosertib combination significantly increased γH2AX and antitumor activity in HER2 low, cyclin E amplified gastroesophageal cancer PDX models and prolonged event-free survival (EFS) in a HER2-overexpressing gastroesophageal cancer model. T-DXd + adavosertib treatment also increased EFS in other HER2-expressing tumor types, including a T-DXd-treated colon cancer model. CONCLUSIONS We provide rationale for combining T-DXd with adavosertib in HER2-expressing cancers, especially with co-occuring CCNE1 amplifications. See related commentary by Rolfo et al., p. 4317.
Collapse
Affiliation(s)
- Timothy P. DiPeri
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kurt W. Evans
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ming Zhao
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasmeen Q. Rizvi
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaofeng Zheng
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bailiang Wang
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bryce P. Kirby
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kathleen Kong
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Kahle
- Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy A. Yap
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ecaterina E. Dumbrava
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Funda Meric-Bernstam
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
20
|
Scheel AH, Lamberty H, Tolkach Y, Gebauer F, Schoemig-Markiefka B, Zander T, Buettner R, Rueschoff J, Bruns CJ, Schroeder W, Quaas A. Tumour area infiltration and cell count in endoscopic biopsies of therapy-naive upper GI tract carcinomas by QuPath analysis: implications for predictive biomarker testing. Sci Rep 2023; 13:17580. [PMID: 37845307 PMCID: PMC10579338 DOI: 10.1038/s41598-023-43903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
Guidelines regulate how many (tumour-bearing) tissue particles should be sampled during gastric cancer biopsy to obtain representative results in predictive biomarker testing. Little is known about how well these guidelines are applied, how the number of tissue particles correlates with the actual tumour-infiltrated area and how many absolute tumour cells are captured. The study included endoscopic biopsies of untreated carcinomas of the upper gastrointestinal (GI)-tract during the 2016-2020 review period. Archival (H&E)-stained histological sections were digitised and the tumour areas were manually annotated. The tumour-bearing tissue area and absolute carcinoma cell count per case were determined by image analysis and compared with a reference primary surgical specimen. Biopsies from 253 patients were analysed. The following mean values were determined: (a) tumour tissue particle number: 6.5 (range: 1-25, standard deviation (SD) = 3.33), (b) number of tumour-bearing tissue particles: 4.7 (range: 1-20, SD = 2.80), (c) tumour-infiltrated area: 7.5 mm2 (range: 0.18-59.46 mm2, SD = 6.67 mm2), (d) absolute tumour cell count: 13,492 (range: 193-92,834, SD = 14,185) and (e) tumour cell count in a primary surgical specimen (tumour size: 6.7 cm): 105,200,176. The guideline-recommended tissue particle count of 10 was not achieved in 208 patients (82.2%) and the required tumour-bearing tissue particle count of 5 was not achieved in 133 patients (52.6%). Tissue particle count, tumour-infiltrated area and tumour cell count were only weakly correlated. Most cases featured an infiltrated area ≥ 4.5 mm2 (156, 61.7%). Cases with more tissue particles showed only a moderate increase in infiltrated area and tumour cells compared to cases with fewer particles. Biopsies are often used to determine predictive biomarkers, particularly Her2/neu and PD-L1. Diagnostic standards to ensure representative material have been suggested in guidelines to reduce false-negative predictions. However, the real-world practice seems to substantially deviate from recommended standards. To the best of our knowledge, this is the first systematic study describing the relationships between endoscopic tissue fragment number, actual infiltrated tumour area and carcinoma cell number. The data question the tissue particle number as a quality assessment parameter. We advocate histopathological reports indicating on which basis statements on therapy-relevant biomarkers were made. Digital pathology has the potential to objectively quantify the tissue for documentation, quality assessment and future clinical studies.
Collapse
Affiliation(s)
- Andreas H Scheel
- Institute of Pathology, University Hospital Cologne, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Hannah Lamberty
- Institute of Pathology, University Hospital Cologne, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Yuri Tolkach
- Institute of Pathology, University Hospital Cologne, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Florian Gebauer
- Department of General, Visceral and Cancer Surgery, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Birgid Schoemig-Markiefka
- Institute of Pathology, University Hospital Cologne, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Thomas Zander
- Department of Internal Medicine I, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Reinhard Buettner
- Institute of Pathology, University Hospital Cologne, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | | | - Christiane Josephine Bruns
- Department of General, Visceral and Cancer Surgery, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Wolfgang Schroeder
- Department of General, Visceral and Cancer Surgery, University Hospital Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University Hospital Cologne, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
21
|
Saleh NH, Al-Khafaji ASK, Babaei E. Study of hesperetin effect on modulating transcription levels of MLH1 and MSH2 genes in SKBR3 breast cancer cell line. J Adv Pharm Technol Res 2023; 14:338-344. [PMID: 38107455 PMCID: PMC10723173 DOI: 10.4103/japtr.japtr_278_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 12/19/2023] Open
Abstract
Hesperetin (HSP), a flavonoid, has been validated to modify gene expression and function as an epigenetic agent to stop the development of breast carcinoma cells. HSP was investigated in this research to evaluate the expression of the MLH1 and MSH2 genes in cancerous breast cell lines (SKBR3) and healthy cell lines (MCF-11A) after exposure to different dosages (200, 400, and 600 µM/mL) of HSP. After 48 h of exposure, SKBR3's half-maximal inhibitory concentration was 289.6 µM/mL and MCF-10A's was 855.4 µM/mL. The research found that increasing HSP concentrations were closely correlated with an increase in MLH1 gene levels in the SKBR3 cell line, as shown by median and percentile values. HSP therapy caused the MLH1 gene expression to substantially vary in different groups, and in the SKBR3 cell line, MSH2 gene expressions were elevated in a dose-escalating manner. Moreover, HSP also raised the number of apoptotic cells, with the fraction of apoptotic cells escalating substantially at doses of 400 and 600 µM/mL. The outcomes suggested that HSP has the potential to be utilized as a therapeutic intervention for breast cancer, as it can induce apoptosis and reduce cell viability.
Collapse
Affiliation(s)
- Naser Hameed Saleh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Esmaeil Babaei
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
22
|
Choi JH, Yu J, Jung M, Jekal J, Kim KS, Jung SU. Prognostic significance of TP53 and PIK3CA mutations analyzed by next-generation sequencing in breast cancer. Medicine (Baltimore) 2023; 102:e35267. [PMID: 37747019 PMCID: PMC10519541 DOI: 10.1097/md.0000000000035267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/02/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Breast cancer is one of the most prevalent malignant tumors affecting women globally. It is a heterogeneous disease characterized by mutations in several genes. Several gene panels have been applied to assess the risk of breast cancer and determine the appropriate treatment. As a powerful tool, Next-generation sequencing (NGS) has been widely utilized in cancer research due to its advantages, including high speed, high throughput, and high accuracy. In this study, we aim to analyze the correlation between somatic mutations in breast cancer, analyzed using NGS, and the prognosis of patients. Between May 2018 and May 2019, a total of 313 patients with breast cancer underwent surgical treatment, which included total mastectomy and breast-conserving surgery. Among these patients, 265 were diagnosed with invasive ductal carcinoma. In this study, we analyzed the NGS results, clinicopathological characteristics, and their correlation with prognosis. Using a gene panel, we examined 143 somatic mutations in solid cancers. Notably, the study population included patients who had received neoadjuvant chemotherapy. The mean age of the patients was 53.1 (±10.28) years, and the median follow-up time was 48 months (range, 8-54). Among the 265 patients, 68 had received prior systemic therapy. Of these, 203 underwent breast-conserving surgery, and 62 underwent a mastectomy. Various somatic mutations were observed in NGS, with the most frequent mutation being PIK3CA mutations, which accounted for 44% of all mutations. TP53 mutations were the second most frequent, and ERBB2 mutations were the third most frequent. TP53 mutations were associated with poor disease-free survival (P = .027), while PIK3CA mutations were associated with better disease-free survival (P = .035) than PIK3CA wild-type. In our study, we identified various somatic mutations in breast cancer. Particularly, we found that TP53 and PIK3CA mutations are potentially associated with the prognosis of breast cancer. These findings suggest that the presence of specific mutations may have implications for predicting the prognosis of breast cancer. Further research and validation are needed to gain a deeper understanding of the role of these mutations and their mechanisms in prognosis prediction.
Collapse
Affiliation(s)
- Jin Hyuk Choi
- Division of Breast Surgery, Department of Surgery, Kosin University Gospel Hospital, Busan, Korea
- Kosin University College of Medicine, Busan, Korea
| | - Jesang Yu
- Kosin University College of Medicine, Busan, Korea
- Department of Radiation Oncology, Kosin University Gospel Hospital, Busan, Korea
| | - Minjung Jung
- Kosin University College of Medicine, Busan, Korea
- Department of Pathology, Kosin University Gospel Hospital, Busan, Korea
| | - Junyong Jekal
- Division of Breast Surgery, Department of Surgery, Kosin University Gospel Hospital, Busan, Korea
| | - Ku Sang Kim
- Division of Breast Surgery, Department of Surgery, Kosin University Gospel Hospital, Busan, Korea
| | - Sung Ui Jung
- Division of Breast Surgery, Department of Surgery, Kosin University Gospel Hospital, Busan, Korea
- Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
23
|
Huang S, Ye J, Gao X, Huang X, Huang J, Lu L, Lu C, Li Y, Luo M, Xie M, Lin Y, Liang R. Progress of research on molecular targeted therapies for colorectal cancer. Front Pharmacol 2023; 14:1160949. [PMID: 37614311 PMCID: PMC10443711 DOI: 10.3389/fphar.2023.1160949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies, accounting for approximately 10% of global cancer incidence and mortality. Approximately 20% of patients with CRC present metastatic disease (mCRC) at the time of diagnosis. Moreover, up to 50% of patients with localized disease eventually metastasize. mCRC encompasses a complex cascade of reactions involving multiple factors and processes, leading to a diverse array of molecular mechanisms. Improved comprehension of the pathways underlying cancer cell development and proliferation, coupled with the accessibility of relevant targeted agents, has propelled advancements in CRC treatment, ultimately leading to enhanced survival rates. Mutations in various pathways and location of the primary tumor in CRC influences the efficacy of targeted agents. This review summarizes available targeted agents for different CRC pathways, with a focus on recent advances in anti-angiogenic and anti-epidermal growth factor receptor agents, BRAF mutations, and human epidermal growth factor receptor 2-associated targeted agents.
Collapse
Affiliation(s)
- Shilin Huang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiazhou Ye
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xing Gao
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xi Huang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Julu Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lu Lu
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Cheng Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yongqiang Li
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Min Luo
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mingzhi Xie
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Lin
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Rong Liang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
24
|
Dong X, Fan J, Xie W, Wu X, Wei J, He Z, Wang W, Wang X, Shen P, Bei Y. Efficacy evaluation of chimeric antigen receptor-modified human peritoneal macrophages in the treatment of gastric cancer. Br J Cancer 2023; 129:551-562. [PMID: 37386139 PMCID: PMC10403530 DOI: 10.1038/s41416-023-02319-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/06/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the most common cancers. Peritoneal carcinomatosis (PC) appears to be the most common pattern of recurrence, and more than half of the GC patients eventually die from PC. Novel strategies for the management of patients with PC are urgently needed. Recently, rapid progress has been made in adoptive transfer therapy by using macrophages as the effector cells due to their capabilities of phagocytosis, antigen presentation, and high penetration. Here, we generated a novel macrophage-based therapy and investigated anti-tumoral effects on GC and potential toxicity. METHODS We developed a novel Chimeric Antigen Receptor-Macrophage (CAR-M) based on genetically modifying human peritoneal macrophages (PMs), expressing a HER2-FcεR1γ-CAR (HF-CAR). We tested HF-CAR macrophages in a variety of GC models in vitro and in vivo. RESULTS HF-CAR-PMs specifically targeted HER2-expressed GC, and harboured the FcεR1γ moieties to trigger engulfment. Intraperitoneal administration of HF-CAR-PMs significantly facilitated the HER2-positive tumour regression in PC mouse model and prolonged the overall survival rate. In addition, the combined use of oxaliplatin and HF-CAR-PMs exhibited significantly augment anti-tumour activity and survival benefit. CONCLUSIONS HF-CAR-PMs could represent an exciting therapeutic option for patients with HER2-positive GC cancer, which should be tested in carefully designed clinical trials.
Collapse
Affiliation(s)
- Xuhui Dong
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Jiqiang Fan
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Wangxu Xie
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Xiang Wu
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Jia Wei
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China
| | - Zhonglei He
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Xueting Wang
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Pingping Shen
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China.
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 210023, Nanjing, China.
- Shenzhen Research Institute of Nanjing University, 518000, Shenzhen, China.
| | - Yuncheng Bei
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, 210008, Nanjing, PR China.
| |
Collapse
|
25
|
Yanagimoto Y, Imamura H, Adachi S, Odagiri K, Kawase T, Yamashita M, Takeyama H, Suzuki Y, Ikenaga M, Shimizu J, Tomita N, Dono K. The effect of specimen processing time on HER2 expression in gastric cancer and esophagogastric junction cancer: a single-center retrospective observational study. BMC Cancer 2023; 23:645. [PMID: 37434116 PMCID: PMC10334514 DOI: 10.1186/s12885-023-11148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Recent developments in the field of companion diagnosis and molecular-targeting therapeutic agents have helped in developing treatments targeting human epidermal growth factor receptor 2 (HER2) in gastric cancer (GC) and esophagogastric junction cancer (EGJC), and the importance of accurate diagnosis of HER2 expression is increasing. However, the HER2-positivity rate significantly differs among reports in GC and EGJC, and factors that affect HER2-positivity require elucidation. METHODS The present study retrospectively examined factors related to HER2-positivity in a single institution, including age, sex, body mass index, the American Society of Anesthesiologists physical status, tumor information, and surgery information, including time to specimen processing. RESULTS Our study included 165 patients tested for HER2 using GC and EGJC surgery specimens among the 1,320 patients who underwent gastrectomy from January 2007 to June 2022. In total, 35 (21.2%) and 130 (78.8%) patients were HER2-positive and -negative, respectively. Multivariate analysis revealed that intestinal type (odds ratio [OR]: 3.41, 95% confidence interval [CI]: 1.44-8.09, p = 0.005), pM1 (OR: 3.99, 95% CI: 1.51-10.55, p = 0.005), and time to specimen processing of < 120 min (OR: 2.65, 95% CI: 1.01-6.98, p = 0.049) were independent factors that affected HER2-positivity. CONCLUSIONS The outcomes of the present study indicated that intestinal type, pM, and time to specimen processing are important factors affecting HER2-positive rates in GC and EGJC. Therefore, the risk of false-negative HER2 results may be reduced by decreasing the time required to process the resected specimen. Additionally, accurate diagnosis of HER2 expression may increase the opportunity to administer molecular-targeted drugs that can expect therapeutic effects to patients appropriately. TRAIL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Yoshitomo Yanagimoto
- Department of Surgery, Toyonaka Municipal Hospital, 4-14-1 Shimahara-Cho, Toyonaka, Osaka, 560-8565, Japan.
| | - Hiroshi Imamura
- Department of Surgery, Toyonaka Municipal Hospital, 4-14-1 Shimahara-Cho, Toyonaka, Osaka, 560-8565, Japan
| | - Shiro Adachi
- Department Diagnostic Pathology, Toyonaka Municipal Hospital, 4-14-1 Shimahara-Cho, Toyonaka, Osaka, 560-8565, Japan
| | - Kazuki Odagiri
- Department of Surgery, Toyonaka Municipal Hospital, 4-14-1 Shimahara-Cho, Toyonaka, Osaka, 560-8565, Japan
| | - Tomono Kawase
- Department of Surgery, Toyonaka Municipal Hospital, 4-14-1 Shimahara-Cho, Toyonaka, Osaka, 560-8565, Japan
| | - Masafumi Yamashita
- Department of Surgery, Toyonaka Municipal Hospital, 4-14-1 Shimahara-Cho, Toyonaka, Osaka, 560-8565, Japan
| | - Hiroshi Takeyama
- Department of Surgery, Toyonaka Municipal Hospital, 4-14-1 Shimahara-Cho, Toyonaka, Osaka, 560-8565, Japan
| | - Yozo Suzuki
- Department of Surgery, Toyonaka Municipal Hospital, 4-14-1 Shimahara-Cho, Toyonaka, Osaka, 560-8565, Japan
| | - Masakazu Ikenaga
- Department of Surgery, Toyonaka Municipal Hospital, 4-14-1 Shimahara-Cho, Toyonaka, Osaka, 560-8565, Japan
| | - Junzo Shimizu
- Department of Surgery, Toyonaka Municipal Hospital, 4-14-1 Shimahara-Cho, Toyonaka, Osaka, 560-8565, Japan
| | - Naohiro Tomita
- Department of Surgery, Toyonaka Municipal Hospital, 4-14-1 Shimahara-Cho, Toyonaka, Osaka, 560-8565, Japan
| | - Keizo Dono
- Department of Surgery, Toyonaka Municipal Hospital, 4-14-1 Shimahara-Cho, Toyonaka, Osaka, 560-8565, Japan
| |
Collapse
|
26
|
Parvin D, Hashemi ZS, Shokati F, Mohammadpour Z, Bazargan V. Immunomagnetic Isolation of HER2-Positive Breast Cancer Cells Using a Microfluidic Device. ACS OMEGA 2023; 8:21745-21754. [PMID: 37360498 PMCID: PMC10286087 DOI: 10.1021/acsomega.3c01287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Analysis of circulating tumor cells (CTCs) as a tool for monitoring metastatic cancers, early diagnosis, and evaluation of disease prognosis paves the way toward personalized cancer treatment. Developing an effective, feasible, and low-cost method to facilitate CTC isolation is, therefore, vital. In the present study, we integrated magnetic nanoparticles (MNPs) with microfluidics and used them for the isolation of HER2-positive breast cancer cells. Iron oxide MNPs were synthesized and functionalized with the anti-HER2 antibody. The chemical conjugation was verified by Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and dynamic light scattering/zeta potential analysis. The specificity of the functionalized NPs for the separation of HER2-positive from HER2-negative cells was demonstrated in an off-chip test setting. The off-chip isolation efficiency was 59.38%. The efficiency of SK-BR-3 cell isolation using a microfluidic chip with a S-shaped microchannel was considerably enhanced to 96% (a flow rate of 0.5 mL/h) without chip clogging. Besides, the analysis time for the on-chip cell separation was 50% faster. The clear advantages of the present microfluidic system offer a competitive solution in clinical applications.
Collapse
Affiliation(s)
- Delaram Parvin
- School
of Mechanical Engineering, College of Engineering, University of Tehran, North Amirabad, 1439957131 Tehran, Iran
| | - Zahra Sadat Hashemi
- ATMP
Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No. 146, South Gandhi Street, Vanak Square, 1517964311 Tehran, Iran
| | - Farhad Shokati
- Biomaterials
and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, No. 146, South Gandhi Street, Vanak Square, 1517964311 Tehran, Iran
| | - Zahra Mohammadpour
- Biomaterials
and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, No. 146, South Gandhi Street, Vanak Square, 1517964311 Tehran, Iran
| | - Vahid Bazargan
- School
of Mechanical Engineering, College of Engineering, University of Tehran, North Amirabad, 1439957131 Tehran, Iran
| |
Collapse
|
27
|
Shteinman ER, Vergara IA, Rawson RV, Lo SN, Maeda N, Koyama K, da Silva IP, Long GV, Scolyer RA, Wilmott JS, Menzies AM. Molecular and clinical correlates of HER3 expression highlights its potential role as a therapeutic target in melanoma. Pathology 2023:S0031-3025(23)00121-6. [PMID: 37286471 DOI: 10.1016/j.pathol.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/14/2022] [Accepted: 03/13/2023] [Indexed: 06/09/2023]
Abstract
Overexpression of the epidermal growth factor receptor family member HER3 (erbB3) has been implicated in several types of cancer and recently drugs targeting HER3 have shown promising clinical activity. In melanoma, HER3 overexpression has been linked to both metastasis formation and resistance to drug therapy in cell culture models. Here, we sought to characterise the expression of HER3 in 187 melanoma biopsies (149 cutaneous, 38 mucosal) using immunohistochemistry, as well as to analyse the association between HER3 expression and molecular, clinical and pathological variables. A subset of the cutaneous melanoma specimens was taken prior to treatment with immune checkpoint blockade therapy (pre-ICB) (n=79). HER3 expression (≥1+) was observed in 136 of 187 samples (∼73%). HER3 expression was found to be markedly lower in the mucosal melanomas, with 17 of the 38 tumours (∼45%) demonstrating no HER3 expression. In cutaneous melanomas, there was a negative association between HER3 expression and mutational load, a positive association with NRAS mutational status, and a trend of negative association with PD-L1 expression. In the pre-ICB cohort, an association was found between high HER3 expression (≥2+) and overall survival after anti-PD-1-based immunotherapy. Overall, our results indicate that HER3 is a promising therapeutic avenue in cutaneous melanoma worthy of further clinical evaluation.
Collapse
Affiliation(s)
- Eva R Shteinman
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Ismael A Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Robert V Rawson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - Serigne N Lo
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | | | - Inês Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; Blacktown Hospital, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Royal North Shore and Mater Hospitals, Sydney, NSW, Australia.
| |
Collapse
|
28
|
Zimpfer A, Kdimati S, Mosig M, Rudolf H, Zettl H, Erbersdobler A, Hakenberg OW, Maruschke M, Schneider B. ERBB2 Amplification as a Predictive and Prognostic Biomarker in Upper Tract Urothelial Carcinoma. Cancers (Basel) 2023; 15:cancers15092414. [PMID: 37173881 PMCID: PMC10177383 DOI: 10.3390/cancers15092414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Upper tract urothelial carcinomas (UTUCs) occur in about 5-10% of all urothelial carcinomas and are frequently discovered in high-stage disease. We aimed to evaluate human epidermal growth factor receptor 2 (ERBB2) protein expression immunohistochemically and ERBB2 amplification in UTUCs by fluorescence in situ hybridization, applying a tissue microarray technique. ERBB2 overexpression and ERBB2 amplification were defined according to the recommendations of the American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) for breast cancer and gastric carcinoma (GC), revealing scores of 2+ and 3+ in 10.2% and 41.8% of UTUCs, respectively. The performance parameters showed obviously higher sensitivity of ERBB2 immunoscoring according to the ASCO/CAP criteria for GC. ERBB2 amplification was detected in 10.5% of UTUCs. ERBB2 overexpression was more likely to be found in high-grade tumors and was associated with tumor progression. Univariable Cox regression analysis revealed a significantly lower progression-free survival (PFS) in cases with ERBB2 immunoscores of 2+ or 3+ according to the ASCO/CAP guidelines for GC. UTUCs with ERBB2 amplification showed a significantly shorter PFS in the multivariable Cox regression analysis. Irrespective of their ERBB2 status, patients with UTUC treated with platin showed a significantly lower PFS than UTUC patients who had not received any platin-based therapy. In addition, UTUC patients with a normal ERBB2 gene status who had not received platin-based therapy showed significantly longer overall survival. The results suggest that ERBB2 is a biomarker for progression in UTUCs and may define a distinct subgroup of UTUCs. As previously shown, ERBB2 amplification is infrequent. However, the small number of patients diagnosed with ERBB2-amplified UTUC might benefit from ERBB2-targeted cancer therapy. In clinical-pathological routine diagnostics, the determination of ERBB2 amplification is an established method in some defined entities and also successful in small samples. Still, the simultaneous use of ERBB2 immunohistochemistry and ERBB2 in situ hybridization would be important in order to record the low rate of amplified UTUC cases as completely as possible.
Collapse
Affiliation(s)
- Annette Zimpfer
- Institute of Pathology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Said Kdimati
- Institute of Pathology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Melanie Mosig
- Institute of Pathology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Henrik Rudolf
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University Medical Center Rostock, 18057 Rostock, Germany
| | - Heike Zettl
- Clinical Cancer Registry, University of Rostock, 18055 Rostock, Germany
| | - Andreas Erbersdobler
- Institute of Pathology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Oliver W Hakenberg
- Department of Urology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Matthias Maruschke
- Department of Urology, University Medical Center Rostock, 18057 Rostock, Germany
- Department of Urology, HELIOS Hanseklinikum, 18435 Stralsund, Germany
| | - Björn Schneider
- Institute of Pathology, University Medical Center Rostock, 18057 Rostock, Germany
| |
Collapse
|
29
|
Leong SW, Wang J, Okuda KS, Su Q, Zhang Y, Abas F, Chia SL, Yusoff K. Discovery of a novel dual functional phenylpyrazole-styryl hybrid that induces apoptotic and autophagic cell death in bladder cancer cells. Eur J Med Chem 2023; 254:115335. [PMID: 37098306 DOI: 10.1016/j.ejmech.2023.115335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/27/2023]
Abstract
Unpleasant side effects and resistance development remained the Achilles heel of chemotherapy. Since low tumor-selectivity and monotonous effect of chemotherapy are closely related to such bottleneck, targeting tumor-selective multi-functional anticancer agents may be an ideal strategy in the search of new safer drugs. Herein, we report the discovery of compound 21, a nitro-substituted 1,5-diphenyl-3-styryl-1H-pyrazole that possesses dual functional characteristics. The 2D- and 3D-culture-based studies revealed that 21 not only could induce ROS-independent apoptotic and EGFR/AKT/mTOR-mediated autophagic cell deaths in EJ28 cells simultaneously but also has the ability in inducing cell death at both proliferating and quiescent zones of EJ28 spheroids. The molecular modelling analysis showed that 21 possesses EGFR targeting capability as it forms stable interactions in the EGFR active site. Together with its good safety profile in the zebrafish-based model, the present study showed that 21 is promising and may lead to the discovery of tumor-selective multi-functional anti-cancer agents.
Collapse
Affiliation(s)
- Sze Wei Leong
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - JingJing Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Kazuhide Shaun Okuda
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Australia; Department of Anatomy and Physiology and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Qi Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Suet Lin Chia
- Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; Malaysia Genome and Vaccine Institute (MGVI), National Institute of Biotechnology Malaysia (NIBM), Jalan Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Khatijah Yusoff
- Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; Malaysia Genome and Vaccine Institute (MGVI), National Institute of Biotechnology Malaysia (NIBM), Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
30
|
Businello G, Angerilli V, Lonardi S, Bergamo F, Valmasoni M, Farinati F, Savarino E, Spolverato G, Fassan M. Current molecular biomarkers evaluation in gastric/gastroesophageal junction adenocarcinoma: pathologist does matter. Updates Surg 2023; 75:291-303. [PMID: 35834132 PMCID: PMC9852175 DOI: 10.1007/s13304-022-01330-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/05/2022] [Indexed: 01/24/2023]
Abstract
The comprehensive molecular characterization of gastric and gastroesophageal junction adenocarcinomas has led to the improvement of targeted and more effective treatments. As a result, several biomarkers have been introduced into clinical practice and the implementation of innovative diagnostic tools is under study. Such assessments are mainly based on the evaluation of limited biopsy material in clinical practice. In this setting, the pathologist represents a key player in the selection of patients facilitating precision medicine approaches.
Collapse
Affiliation(s)
| | | | - Sara Lonardi
- Veneto Institute of Oncology, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Padua, Italy
| | - Francesca Bergamo
- Veneto Institute of Oncology, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Padua, Italy
| | - Michele Valmasoni
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - Fabio Farinati
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - Edoardo Savarino
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - Gaya Spolverato
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua, Italy.
- Veneto Institute of Oncology, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS), Padua, Italy.
| |
Collapse
|
31
|
Balakrishnan N, Baskar G, Balaji S, Kullappan M, Krishna Mohan S. Machine learning modeling to identify affinity improved biobetter anticancer drug trastuzumab and the insight of molecular recognition of trastuzumab towards its antigen HER2. J Biomol Struct Dyn 2022; 40:11638-11652. [PMID: 34392800 DOI: 10.1080/07391102.2021.1961866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the present study, a machine learning (ML) model was developed to predict the epistatic phenomena of combination mutants to improve the anticancer antibody-drug trastuzumab's binding affinity towards its antigen human epidermal growth factor receptor 2 (HER2). An ML algorithm, Support Vector Regression (SVR) was used to develop ML models with a data set consists of 193 affinity values of single mutants of trastuzumab and its associated various amino acid sequence derived descriptors. The subset selection of descriptors and SVR hyperparameters were done using the Genetic Algorithm (GA) within the SVR and the wrapper approach called GA-SVR. A 100 evolutionary cycles of GA produced the best 100 probable GA-SVR models based on their fitness score (Q2) estimated using a stratified 5 fold cross-validation procedure. The final ML model found to be highly predictive of test data set of six combination mutants and one single mutant with Rpre2 = 0.71. The analysis of descriptors in the ML model highlighted the importance of mutant induced secondary structural variation causes the binding affinity variation of the trastuzumab. The same was verified using a short 20 ns and a long 100 ns in duplicate molecular dynamics simulation of a wild and mutant variant of trastuzumab. The secondary structure induced affinity change due to mutations in the CDR-H3 is a novel insight that came out of this study. That should help rational mutant selection to develop a biobetter trastuzumab with a multifold improved binding affinity into the market quickly.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, India
| | - Sathyanarayan Balaji
- Department of Biotechnology, Bannari Amman Institute of Technology, Erode, India
| | - Malathi Kullappan
- Department of Research, Panimalar Medical College Hospital & Research Institute, Chennai, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Chennai, India.,Department of Molecular Virology, Panimalar Medical College Hospital & Research Institute, Chennai, India.,Department of Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Chennai, India
| |
Collapse
|
32
|
Al-Hujaily EM, Al-Sowayan BS, Alyousef Z, Uddin S, Alammari F. Recruiting Immunity for the Fight against Colorectal Cancer: Current Status and Challenges. Int J Mol Sci 2022; 23:13696. [PMID: 36430176 PMCID: PMC9697544 DOI: 10.3390/ijms232213696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Cancer immunotherapies have changed the landscape of cancer management and improved the standard treatment protocols used in multiple tumors. This has led to significant improvements in progression-free survival and overall survival rates. In this review article, we provide an insight into the major immunotherapeutic methods that are currently under investigation for colorectal cancer (CRC) and their clinical implementations. We emphasize therapies that are based on monoclonal antibodies (mAbs) and adoptive cell therapy, their mechanisms of action, their advantages, and their potential in combination therapy. We also highlight the clinical trials that have demonstrated both the therapeutic efficacy and the toxicities associated with each method. In addition, we summarize emerging targets that are now being evaluated as potential interventions for CRC. Finally, we discuss current challenges and future direction for the cancer immunotherapy field.
Collapse
Affiliation(s)
- Ensaf M. Al-Hujaily
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
| | - Batla S. Al-Sowayan
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
| | - Zeyad Alyousef
- Department of Surgery, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 14611, Saudi Arabia
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Farah Alammari
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
| |
Collapse
|
33
|
Guan Y, Wang Y, Li H, Meng J, You X, Zhu X, Zhang Q, Sun T, Qi C, An G, Fan Y, Xu B. Molecular and clinicopathological characteristics of ERBB2 gene fusions in 32,131 Chinese patients with solid tumors. Front Oncol 2022; 12:986674. [PMID: 36276102 PMCID: PMC9582139 DOI: 10.3389/fonc.2022.986674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/15/2022] [Indexed: 12/04/2022] Open
Abstract
ERBB2 amplification is one of the most important and mature targets for HER2-targeted drug therapy. Somatic mutations of ERBB2 in the tyrosine kinase domain have been studied extensively, and play a role in response to anti-HER2 therapy among different cancer types. However, ERBB2 fusion has not been got attention and its relevance to HER2-targeted therapy is unclear. We comprehensively characterized ERBB2 fusions from next-generation sequencing (NGS) data between May 2018 and October 2021 in 32,131 various solid tumors. Among the tumors, 0.28% harbored ERBB2 fusions, which occurred more commonly in gastroesophageal junction cancer (3.12%; 3/96), breast cancer (1.89%; 8/422), urothelial carcinoma (1.72%; 1/58), and gastric cancer (1.60%; 23/1,437). Our population presented with a median age of 65 years (range 28 to 88 years), a high proportion of men (55 men vs 34 women; 61.80%). Among the patients with ERBB2 fusions, TP53 (82%), APC (18%), and CDK4 (15%) were the top3 co-mutant genes. What’s more, most patients with ERBB2 fusion also had ERBB2 amplification (75.28%; 67/89), which was similar to the data in the TCGA database (88.00%; 44/50). Furthermore, TCGA database shows that patients with ERBB2 fusions in pan-cancer had a worse prognosis than those without ERBB2 fusions, as well as in breast cancer. Besides, ERBB2 amplification combined with ERBB2 fusion had worse prognosis than those with only ERBB2 amplification. ERBB2 fusion may interfere the effect of anti-HER2-targeted antibody drugs and influence the prognosis of patients with ERBB2 amplification. Prospective clinical trials are warranted to confirm the results in the future.
Collapse
Affiliation(s)
- Yin Guan
- Department of Medical Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yutong Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongxia Li
- Department of Oncology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Jing Meng
- Department of Medical Oncology, The Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xia You
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
- Medicial Department, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, China
- The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Xiaofeng Zhu
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
- Medicial Department, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, China
- The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Qin Zhang
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
- Medicial Department, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, China
- The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Tingting Sun
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
- Medicial Department, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, China
- The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Chuang Qi
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
- Medicial Department, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, China
- The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Guangyu An
- Department of Medical Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Guangyu An, ; Binghe Xu, ; Ying Fan,
| | - Ying Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guangyu An, ; Binghe Xu, ; Ying Fan,
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guangyu An, ; Binghe Xu, ; Ying Fan,
| |
Collapse
|
34
|
Lin CY, Yu CJ, Shen CI, Liu CY, Chao TC, Huang CC, Tseng LM, Lai JI. IKZF3 amplification frequently occurs in HER2-positive breast cancer and is a potential therapeutic target. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:242. [PMID: 36180600 DOI: 10.1007/s12032-022-01812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/27/2022] [Indexed: 10/14/2022]
Abstract
Breast cancer is one of the leading causes of cancer death in women, and although treatment outcome has substantially improved in the past decades, advanced or metastatic breast cancers still carry a poor prognosis. Gene amplification is one of the frequent genetic alterations in cancer, and oncogene amplification may be associated with cancer aggressiveness and oncogenicity. Targeting amplified genes such as HER2 has vastly improved disease outcome and survival, and anti-HER2 therapeutics have revolutionized the standard of care in HER2 breast cancer. Besides currently known druggable gene amplifications including ERBB2 and FGFR2, other frequently amplified genes are relatively less well known for function and clinical significance. By querying four large databases from TCGA and AACR-Genie, from a total of 11,890 patients with invasive ductal breast carcinoma, we discover IKZF3, CCND1, ERBB2 to be consistently amplified across different cohorts. We further identify IKZF3 as a frequently amplified gene in breast cancer with a prevalence of 12-15% amplification rate. Interestingly, IKZF3 amplification is frequently co-amplified with ERBB2/HER2, and is also associated with worse prognosis compared to IKZF3 non-amplified cancers. Analysis of HER2 breast cancer patients treated with trastuzumab revealed decrease in both ERBB2/HER2 and IKZF3 expression. Further investigation using the DepMap for gene dependency by genome-wide CRISPR screening revealed dependence on IKZF3 in HER2 breast cancer cell lines. Our study utilized an integrative analysis of large-scale patient genomics, transcriptomics and clinical data to reveal IKZF3 as a frequently amplified gene, and suggest a potential role of IKZF3 as a druggable target for HER2 breast cancer.
Collapse
Affiliation(s)
- Chih-Yi Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Jen Yu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-I Shen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yu Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ta-Chung Chao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jiun-I Lai
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
35
|
López-Cade I, García-Barberán V, Cabañas Morafraile E, Díaz-Tejeiro C, Saiz-Ladera C, Sanvicente A, Pérez Segura P, Pandiella A, Győrffy B, Ocaña A. Genomic mapping of copy number variations influencing immune response in breast cancer. Front Oncol 2022; 12:975437. [PMID: 36119512 PMCID: PMC9476651 DOI: 10.3389/fonc.2022.975437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Identification of genomic alterations that influence the immune response within the tumor microenvironment is mandatory in order to identify druggable vulnerabilities. In this article, by interrogating public genomic datasets we describe copy number variations (CNV) present in breast cancer (BC) tumors and corresponding subtypes, associated with different immune populations. We identified regulatory T-cells associated with the Basal-like subtype, and type 2 T-helper cells with HER2 positive and the luminal subtype. Using gene set enrichment analysis (GSEA) for the Type 2 T-helper cells, the most relevant processes included the ERBB2 signaling pathway and the Fibroblast Growth Factor Receptor (FGFR) signaling pathway, and for CD8+ T-cells, cellular response to growth hormone stimulus or the JAK-STAT signaling pathway. Amplification of ERBB2, GRB2, GRB7, and FGF receptor genes strongly correlated with the presence of type 2 T helper cells. Finally, only 8 genes were highly upregulated and present in the cellular membrane: MILR1, ACE, DCSTAMP, SLAMF8, CD160, IL2RA, ICAM2, and SLAMF6. In summary, we described immune populations associated with genomic alterations with different BC subtypes. We observed a clear presence of inhibitory cells, like Tregs or Th2 when specific chromosomic regions were amplified in basal-like or HER2 and luminal groups. Our data support further evaluation of specific therapeutic strategies in specific BC subtypes, like those targeting Tregs in the basal-like subtype.
Collapse
Affiliation(s)
- Igor López-Cade
- Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Vanesa García-Barberán
- Molecular Oncology Laboratory, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Esther Cabañas Morafraile
- Center for Biological Research, Margarita Salas Centro de Investigaciones Biologicas (CIB)-Consejo Superior de Investigaciones Cientificas (CSIC), Spanish National Research Council, Madrid, Spain
| | - Cristina Díaz-Tejeiro
- Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Cristina Saiz-Ladera
- Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Adrián Sanvicente
- Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Pedro Pérez Segura
- Medical Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer [IBMCC-Centro de Investigacion del Cancer (CIC)], Instituto de Investigación Biomédica de Salamanca (IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- 2Department of Pediatrics, Semmelweis University, Budapest, Hungary
- Termeszettudomanyi Kutatokozpont (TTK) Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Alberto Ocaña
- Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
- Translational Oncology Laboratory, Translational Research Unit, Albacete University Hospital, Albacete, Spain
- Centro Regional de Investigaciones Biomédicas, Castilla-La Mancha University (CRIB-UCLM), Albacete, Spain
- *Correspondence: Alberto Ocaña,
| |
Collapse
|
36
|
Bloom MJ, Song PN, Virostko J, Yankeelov TE, Sorace AG. Quantifying the Effects of Combination Trastuzumab and Radiation Therapy in Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer. Cancers (Basel) 2022; 14:cancers14174234. [PMID: 36077773 PMCID: PMC9454606 DOI: 10.3390/cancers14174234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Trastuzumab induces cell cycle arrest in HER2-overexpressing cells and demonstrates potential in radiosensitizing cancer cells. The purpose of this study is to quantify combination trastuzumab and radiotherapy to determine their synergy. Methods: In vitro, HER2+ cancer cells were treated with trastuzumab, radiation, or their combination, and imaged to evaluate treatment kinetics. In vivo, HER2+ tumor-bearing mice were treated with trastuzumab and radiation, and assessed longitudinally. An additional cohort was treated and sacrificed to quantify CD45, CD31, α-SMA, and hypoxia. Results: The interaction index revealed the additive effects of trastuzumab and radiation in vitro in HER2+ cell lines. Furthermore, the results revealed significant differences in tumor response when treated with radiation (p < 0.001); however, no difference was seen in the combination groups when trastuzumab was added to radiotherapy (p = 0.56). Histology revealed increases in CD45 staining in tumors receiving trastuzumab (p < 0.05), indicating potential increases in immune infiltration. Conclusions: The in vitro results showed the additive effect of combination trastuzumab and radiotherapy. The in vivo results showed the potential to achieve similar efficacy of radiotherapy with a reduced dose when combined with trastuzumab. If trastuzumab and low-dose radiotherapy induce greater tumor kill than a higher dose of radiotherapy, combination therapy can achieve a similar reduction in tumor burden.
Collapse
Affiliation(s)
- Meghan J. Bloom
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
| | - Patrick N. Song
- Department of Radiology, The University of Alabama, Birmingham, AL 35294, USA
| | - John Virostko
- LiveSTRONG Cancer Institutes, The University of Texas, Austin, TX 78713, USA
- Department of Oncology, The University of Texas Dell Medical School, Austin, TX 78701, USA
- Department of Diagnostic Medicine, The University of Texas, Austin, TX 78712, USA
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
- LiveSTRONG Cancer Institutes, The University of Texas, Austin, TX 78713, USA
- Department of Oncology, The University of Texas Dell Medical School, Austin, TX 78701, USA
- Department of Diagnostic Medicine, The University of Texas, Austin, TX 78712, USA
- Oden Institute for Computational and Engineering Sciences, The University of Texas, Austin, TX 78712, USA
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anna G. Sorace
- Department of Radiology, The University of Alabama, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, The University of Alabama, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama, Birmingham, AL 35233, USA
- Correspondence:
| |
Collapse
|
37
|
Novel 2,6,9-Trisubstituted Purines as Potent CDK Inhibitors Alleviating Trastuzumab-Resistance of HER2-Positive Breast Cancers. Pharmaceuticals (Basel) 2022; 15:ph15091041. [PMID: 36145262 PMCID: PMC9506414 DOI: 10.3390/ph15091041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
HER2-positive (HER2+) breast cancer is defined by HER2 oncogene amplification on chromosome 17q12 and accounts for 15−20% population of breast-cancer patients. Therapeutic anti-HER2 antibody such as trastuzumab is used as the first-line therapy for HER2-positive breast cancers. However, more than 50% of the patients respond poorly to trastuzumab, illustrating that novel therapy is warranted to overcome the resistance. We previously reported that in the majority of HER2+ breast-cancer patients, CDK12 is co-amplified on 17q12 and involved in developing tumors and trastuzumab resistance, proposing CDK12 as a potential drug target for HER2+ breast cancers. Here, we designed and synthesized novel 2,6,9-trisubstituted purines as potent CDK12 inhibitors showing strong, equipotent antiproliferative activity against trastuzumab-sensitive HER2+ SK-Br3 cells and trastuzumab-resistant HER2+ HCC1954 cells (GI50 values < 50 nM) both of which express a high level of CDK12. Two potent analogue 30d and 30e at 40, 200 nM greatly downregulated the levels of cyclinK and Pol II p-CTD (Ser2), as well as the expression of CDK12 downstream genes (IRS1 and WNT1) in a dose-dependent manner. We also observed structure-property relationship for a subset of potent analogues, and found that 30e is highly stable in liver microsomes with lack of CYP inhibition. In addition, 30d exhibited a synergy with trastuzumab in the both cells, suggesting that our inhibitors could be applied to alleviate trastuzumab-resistance of HER2+ breast cancers and escalate the efficacy of trastuzumab as well. Our study may provide insight into developing a novel therapy for HER2+ breast cancers.
Collapse
|
38
|
Bledsoe MJ, Grizzle WE. The Use of Human Tissues for Research: What Investigators Need to Know. Altern Lab Anim 2022; 50:265-274. [PMID: 35801971 DOI: 10.1177/02611929221107933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
While laboratory animals are necessary for some aspects of the development of scientific and biomedical advances, including those of precision medicine, the use of human tissues is necessary in order to explore the findings and ensure that they are relevant to human systems. Many sources of human tissues exist, but researchers - particularly those making the transition from animal to human systems - may not be aware of how best to find quality sources of human tissues or how best to use them in their research. In this article, we discuss the advantages of using human tissues in research. In addition, we highlight some of the major advances made possible through the use of human tissue, and describe how human tissue is collected for research. We discuss the various types of bioresources that make human tissue available, and advise on how investigators can find and use appropriate bioresources to support their research - with the hope that this information will help facilitate the transition from research on animals to research using human tissues, as rapidly as is practicable.
Collapse
Affiliation(s)
| | - William E Grizzle
- Department of Pathology; 9968University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
39
|
Liu R, Wang X, Ji Z, Deng T, Li HL, Zhang YH, Yang YC, Ge SH, Zhang L, Bai M, Ning T, Ba Y. Toripalimab combined with targeted therapy and chemotherapy achieves pathologic complete response in gastric carcinoma: A case report. World J Clin Cases 2022; 10:6184-6191. [PMID: 35949814 PMCID: PMC9254214 DOI: 10.12998/wjcc.v10.i18.6184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Neoadjuvant or perioperative chemotherapy combined with surgery can reduce postoperative recurrence and improve the long-term survival rate of patients with locally advanced resectable gastric carcinoma. Nivolumab combined with chemotherapy has been recommended by the National Comprehensive Cancer Network guidelines as a first-line therapy for advanced gastric carcinoma/ adenocarcinoma of the gastroesophageal junction and serves as the basis for immunotherapy combined with chemotherapy to become a neoadjuvant therapy. Herein, we report a case in which pathologic complete response was achieved by neoadjuvant administration of toripalimab, Herceptin, and docetaxel, oxaliplatin, calcium folinate, and fluorouracil (FLOT) chemotherapy followed by surgery for human epidermal growth factor receptor 2 (HER2)- and programmed death-ligand 1 (PD-L1)-positive locally advanced gastric carcinoma. We hope that this case will shed some light on neoadjuvant therapy for gastric carcinoma.
CASE SUMMARY The patient was diagnosed with locally advanced adenocarcinoma of the cardia. Immunohistochemistry of the baseline tissues suggested that the tissues were HER2- (fluorescent in situ hybridization) and PD-L1-positive (combined positive score = 1). The patient underwent surgery following a four-cycle neoadjuvant therapy comprising Herceptin, toripalimab, and FLOT chemotherapy. The postoperative pathological findings showed mild atypical hyperplasia of the local glands with chronic mucosal inflammation (proximal stomach), no clear residual tumor (tumor regression grade 0), no regional lymph node metastasis, and negative upper and lower cut ends. The levels of tumor markers were reduced to normal levels after re-examination. With good postoperative recovery, the four-cycle preoperative chemotherapy was continued at the same dosage as that previously administered. After the treatment, the patient was monitored every 3 mo with a follow-up of 12 mo (4 times). As of February 27, 2022, he was in a good condition without disease progression. The clinical trial registration number is E2019401.
CONCLUSION There are many ongoing studies on neoadjuvant immunotherapy combined with chemotherapy or radiotherapy; however, most of these studies are phase II studies with small cohorts. According to the results of some current studies, these combined regimens have shown promising results in terms of efficacy and safety. However, the clinical efficacy and safety of the neoadjuvant therapies used in these combined regimens need to be confirmed by additional prospective phase III clinical trials, and further exploration of molecular markers for effective populations is required.
Collapse
Affiliation(s)
- Rui Liu
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300000, China
| | - Xia Wang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300000, China
| | - Zhi Ji
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300000, China
| | - Ting Deng
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300000, China
| | - Hong-Li Li
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300000, China
| | - Yan-Hui Zhang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300000, China
| | - Yu-Chong Yang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300000, China
| | - Shao-Hua Ge
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300000, China
| | - Le Zhang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300000, China
| | - Ming Bai
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300000, China
| | - Tao Ning
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300000, China
| | - Yi Ba
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300000, China
| |
Collapse
|
40
|
Jaquilin P J R, Oluwafemi OS, Thomas S, Oyedeji AO. Recent advances in drug delivery nanocarriers incorporated in temperature-sensitive Pluronic F-127–A critical review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103390] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Roviello G, Catalano M, Iannone LF, Marano L, Brugia M, Rossi G, Aprile G, Antonuzzo L. Current status and future perspectives in HER2 positive advanced gastric cancer. Clin Transl Oncol 2022; 24:981-996. [PMID: 35091998 DOI: 10.1007/s12094-021-02760-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Gastric cancer is one of the most common malignancy worldwide with a prognosis less than 1 year in unresectable or metastatic disease. HER2 expression is the main biomarker to lead the addition of trastuzumab to first line systemic chemotherapy improving the overall survival in advanced HER2-positivegastric adenocarcinoma. The inevitable development of resistance to trastuzumab remains a great problem inasmuch several treatment strategies that have proven effective in breast cancer failed to show clinical benefit in advanced gastric cancer. In this review, we summarize the available data on the mechanisms underlying primary and secondary resistance toHER2-targeted therapy and current challenges in the treatment of HER2-positive advanced gastric cancer refractory to trastuzumab. Further, we describe the prognostic value of new non-invasive screening techniques, the current development of novel agents such us HER2 antibody-drug conjugates and bispecific antibodies, and the strategies with antitumor activity on going.
Collapse
Affiliation(s)
- G Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy.
| | - M Catalano
- School of Human Health Sciences, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - L F Iannone
- Department of Health Science, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - L Marano
- Department of Medical, Surgical and NeuroSciences, Section of Surgery, Azienda Ospedaliera Universitaria Senese, University of Siena, Siena, Italy
| | - M Brugia
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - G Rossi
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - G Aprile
- Department of Oncology, San Bortolo General Hospital, AULSS8 Berica, Vicenza, Italy
| | - L Antonuzzo
- Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
- Medical Oncology Unit, Careggi University Hospital, 50134, Florence, Italy
| |
Collapse
|
42
|
Menon SR, Mitra A, Chakraborty A, Tawate M, Sahu S, Rakshit S, Gaikwad S, Dhotre G, Damle A, Banerjee S. Clinical Dose Preparation of [ 177Lu]Lu-DOTA-Pertuzumab Using Medium Specific Activity [ 177Lu]LuCl 3 for Radioimmunotherapy of Breast and Epithelial Ovarian Cancers, with HER2 Receptor Overexpression. Cancer Biother Radiopharm 2022; 37:384-402. [PMID: 35575711 DOI: 10.1089/cbr.2021.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The overexpression of human epidermal growth factor receptor 2 (HER2) is commonly associated with metastatic breast cancer and epithelial ovarian cancer. The U.S. Food and Drug Administration (FDA) has approved Trastuzumab as an anti-HER2 agent for the metastatic breast and epithelial ovarian cancer. However, Trastuzumab has severe limitations in the treatment of metastatic breast cancer associated with ligand-dependent dimerization of HER2 receptor at the extracellular domain-II (ECD-II) region. The therapeutic approach in combination of pertuzumab and trastuzumab is found to be effective in preventing HER2 dimerization at the ECD-II region. The radioimmunotherapeutic approach, utilizing both these anti-HER2 agents (trastuzumab/pertuzumab), radiolabeled with [177Lu]Lu3+, has proved to be clinically efficacious with promising potential. Toward this, the formulation for clinical doses of [177Lu]Lu-DOTA-pertuzumab has been optimized using medium specific activity (0.81 GBq/μg) [177Lu]LuCl3. Materials and Methods: Preconcentrated pertuzumab was conjugated with p-NCS-benzyl-DOTA. Purified DOTA-benzyl-pertuzumab conjugate was radiolabeled with carrier-added [177Lu]LuCl3. Quality control parameters were evaluated for the [177Lu]Lu-DOTA-pertuzumab. In vivo biodistribution was carried out at different time points postadministration. Specific cell binding, immunoreactivity, and internalization were investigated by using SKOV3 and SKBR3 cells. Results: In this study, the authors reported a consistent and reproducible protocol for clinical dose formulations of [177Lu]Lu-DOTA-pertuzumab, with a radiochemical yield of 86.67% ± 1.03% and radiochemical purity (RCP) of 99.36% ± 0.36% (n = 10). Preclinical cell binding studies of [177Lu]Lu-DOTA-pertuzumab revealed specific binding with SKOV3 and SKBR3 cells up to 24.4% ± 1.4% and 23.2% ± 0.8%, respectively. The uptakes in SKOV3- and SKBR3-xenografted tumor in severe combined immunodeficiency mice were observed to be 25.9% ± 0.8% and 25.2% ± 1.2% ID/g at 48 and 120 h postinjection, respectively. Conclusions: A protocol was optimized for the preparation of ready-to-use clinical dose of [177Lu]Lu-DOTA-pertuzumab, in hospital radiopharmacy settings. The retention of RCP of the radiopharmaceutical, on storage in saline and serum, at -20°C, up to 120 h postradiolabeling, confirmed its in vitro stability.
Collapse
Affiliation(s)
- Sreeja Raj Menon
- Health Physics Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Arpit Mitra
- Medical Cyclotron Facility, Board of Radiation and Isotope Technology, Mumbai, India
| | - Avik Chakraborty
- Homi Bhabha National Institute, Mumbai, India.,Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Megha Tawate
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sudeep Sahu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sujay Gaikwad
- Homi Bhabha National Institute, Mumbai, India.,Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Geetanjali Dhotre
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Archana Damle
- Homi Bhabha National Institute, Mumbai, India.,Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sharmila Banerjee
- Homi Bhabha National Institute, Mumbai, India.,Radiological Research Unit, Advance Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| |
Collapse
|
43
|
Mollica V, Massari F, Rizzo A, Ferrara R, Menta AK, Adashek JJ. Genomics and Immunomics in the Treatment of Urothelial Carcinoma. Curr Oncol 2022; 29:3499-3518. [PMID: 35621673 PMCID: PMC9139747 DOI: 10.3390/curroncol29050283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/21/2022] Open
Abstract
Urothelial carcinoma is a complex cancer with genomic immunomic drivers that have prognostic and predictive treatment implications. Identifying potential targetable alterations via next-generation sequencing and RNA sequencing may allow for elucidation of such targets and exploitation with targeted therapeutics. The role of immunotherapy in treating urothelial carcinoma has shown benefit, but it is unclear in which patients immunotherapeutics have the highest yield. Continuing efforts into better identifying which patients may benefit most from targeted therapies, immunotherapies, and combination therapies may ultimately lead to improved outcomes for patients with this disease.
Collapse
Affiliation(s)
- Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy; (V.M.); (F.M.)
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy; (V.M.); (F.M.)
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico ‘Don Tonino Bello’, I.R.C.C.S. Istituto Tumori ‘Giovanni Paolo II’, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Roberto Ferrara
- Medical Oncology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Istituto Nazionale dei Tumori, 20133 Milan, Italy;
- Molecular Immunology Unit, Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Arjun K. Menta
- Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Jacob J. Adashek
- Department of Internal Medicine, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
44
|
Luiz MT, Dutra JAP, Tofani LB, de Araújo JTC, Di Filippo LD, Marchetti JM, Chorilli M. Targeted Liposomes: A Nonviral Gene Delivery System for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14040821. [PMID: 35456655 PMCID: PMC9030342 DOI: 10.3390/pharmaceutics14040821] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second most frequent cause of death worldwide, with 28.4 million new cases expected for 2040. Despite de advances in the treatment, it remains a challenge because of the tumor heterogenicity and the increase in multidrug resistance mechanisms. Thus, gene therapy has been a potential therapeutic approach owing to its ability to introduce, silence, or change the content of the human genetic code for inhibiting tumor progression, angiogenesis, and metastasis. For the proper delivery of genes to tumor cells, it requires the use of gene vectors for protecting the therapeutic gene and transporting it into cells. Among these vectors, liposomes have been the nonviral vector most used because of their low immunogenicity and low toxicity. Furthermore, this nanosystem can have its surface modified with ligands (e.g., antibodies, peptides, aptamers, folic acid, carbohydrates, and others) that can be recognized with high specificity and affinity by receptor overexpressed in tumor cells, increasing the selective delivery of genes to tumors. In this context, the present review address and discuss the main targeting ligands used to functionalize liposomes for improving gene delivery with potential application in cancer treatment.
Collapse
Affiliation(s)
- Marcela Tavares Luiz
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto 14040-900, Brazil; (M.T.L.); (J.M.M.)
| | - Jessyca Aparecida Paes Dutra
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (J.A.P.D.); (L.B.T.); (J.T.C.d.A.); (L.D.D.F.)
| | - Larissa Bueno Tofani
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (J.A.P.D.); (L.B.T.); (J.T.C.d.A.); (L.D.D.F.)
| | | | - Leonardo Delello Di Filippo
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (J.A.P.D.); (L.B.T.); (J.T.C.d.A.); (L.D.D.F.)
| | - Juliana Maldonado Marchetti
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto 14040-900, Brazil; (M.T.L.); (J.M.M.)
| | - Marlus Chorilli
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (J.A.P.D.); (L.B.T.); (J.T.C.d.A.); (L.D.D.F.)
- Correspondence: ; Tel./Fax: +55-16-3301-6998
| |
Collapse
|
45
|
Egal ESA, Scarini JF, de Lima-Souza RA, Lavareze L, Fernandes PM, Emerick C, Gonçalves MT, Helms MN, Altemani A, Mariano FV. Tumor microenvironment in salivary gland carcinomas: An orchestrated state of chaos. Oral Oncol 2022; 127:105777. [DOI: 10.1016/j.oraloncology.2022.105777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 12/14/2022]
|
46
|
Botticelli A, Pomati G, Marchetti P. Target therapy in cancer treatment. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
47
|
Gao Y, Kabotyanski EB, Shepherd JH, Villegas E, Acosta D, Hamor C, Sun T, Montmeyor-Garcia C, He X, Dobrolecki LE, Westbrook TF, Lewis MT, Hilsenbeck SG, Zhang XHF, Perou CM, Rosen JM. Tumor suppressor PLK2 may serve as a biomarker in triple-negative breast cancer for improved response to PLK1 therapeutics. CANCER RESEARCH COMMUNICATIONS 2021; 1:178-193. [PMID: 35156101 PMCID: PMC8827906 DOI: 10.1158/2767-9764.crc-21-0106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Polo-like kinase (PLK) family members play important roles in cell cycle regulation. The founding member PLK1 is oncogenic and preclinically validated as a cancer therapeutic target. Paradoxically, frequent loss of chromosome 5q11-35 which includes PLK2 is observed in basal-like breast cancer. In this study, we found that PLK2 was tumor suppressive in breast cancer, preferentially in basal-like and triple-negative breast cancer (TNBC) subtypes. Knockdown of PLK1 rescued phenotypes induced by PLK2-loss both in vitro and in vivo. We also demonstrated that PLK2 directly interacted with PLK1 at prometaphase through the kinase but not the polo-box domains of PLK2, suggesting PLK2 functioned at least partially through the interaction with PLK1. Furthermore, an improved treatment response was seen in both Plk2-deleted/low mouse preclinical and PDX TNBC models using the PLK1 inhibitor volasertib alone or in combination with carboplatin. Re-expression of PLK2 in an inducible PLK2-null mouse model reduced the therapeutic efficacy of volasertib. In summary, this study delineates the effects of chromosome 5q loss in TNBC that includes PLK2, the relationship between PLK2 and PLK1, and how this may render PLK2-deleted/low tumors more sensitive to PLK1 inhibition in combination with chemotherapy.
Collapse
Affiliation(s)
- Yang Gao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Elena B. Kabotyanski
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | | | | | - Deanna Acosta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Clark Hamor
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Tingting Sun
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | | | - Xiaping He
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lacey E. Dobrolecki
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Thomas F. Westbrook
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Michael T. Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Susan G. Hilsenbeck
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Xiang H.-F. Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- McNair Medical Institute, Baylor College of Medicine, Houston, Texas
| | - Charles M. Perou
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeffrey M. Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Corresponding Author: Jeffrey M. Rosen, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030. Phone: 832-215-9503; E-mail:
| |
Collapse
|
48
|
Stoup N, Liberelle M, Schulz C, Cavdarli S, Vasseur R, Magnez R, Lahdaoui F, Skrypek N, Peretti F, Frénois F, Thuru X, Melnyk P, Renault N, Jonckheere N, Lebègue N, Van Seuningen I. The EGF Domains of MUC4 Oncomucin Mediate HER2 Binding Affinity and Promote Pancreatic Cancer Cell Tumorigenesis. Cancers (Basel) 2021; 13:cancers13225746. [PMID: 34830899 PMCID: PMC8616066 DOI: 10.3390/cancers13225746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary A feature of pancreatic cancer (PC) is the frequent overexpression of tyrosine kinase membrane receptor HER2 along with its membrane partner the MUC4 oncomucin in the early stages of the pancreatic carcinogenesis. However, therapeutic approaches targeting HER2 in PC are not efficient. MUC4 could indeed represent an alternative therapeutic strategy to target HER2 signaling pathway, but this approach needs to characterize MUC4/HER2 interaction at the molecular level. In this study, we successfully showed the impact of the EGF domains of MUC4 on HER2 binding affinity and demonstrated their “growth factor-like” biological activities in PC cells. Moreover, homology models of the MUC4EGF/HER2 complexes allowed identification of binding hotspots mediating binding affinity with HER2 and PC cell proliferation. These results allow a better understanding of the mechanisms involved in the MUC4/HER2 complex formation and may lead to the design of potential MUC4/HER2 inhibitors. Abstract The HER2 receptor and its MUC4 mucin partner form an oncogenic complex via an extracellular region of MUC4 encompassing three EGF domains that promotes tumor progression of pancreatic cancer (PC) cells. However, the molecular mechanism of interaction remains poorly understood. Herein, we decipher at the molecular level the role and impact of the MUC4EGF domains in the mediation of the binding affinities with HER2 and the PC cell tumorigenicity. We used an integrative approach combining in vitro bioinformatic, biophysical, biochemical, and biological approaches, as well as an in vivo study on a xenograft model of PC. In this study, we specified the binding mode of MUC4EGF domains with HER2 and demonstrate their “growth factor-like” biological activities in PC cells leading to stimulation of several signaling proteins (mTOR pathway, Akt, and β-catenin) contributing to PC progression. Molecular dynamics simulations of the MUC4EGF/HER2 complexes led to 3D homology models and identification of binding hotspots mediating binding affinity with HER2 and PC cell proliferation. These results will pave the way to the design of potential MUC4/HER2 inhibitors targeting the EGF domains of MUC4. This strategy will represent a new efficient alternative to treat cancers associated with MUC4/HER2 overexpression and HER2-targeted therapy failure as a new adapted treatment to patients.
Collapse
Affiliation(s)
- Nicolas Stoup
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Maxime Liberelle
- Univ. Lille, Inserm, CHU Lille, U1172—LilNCog—Lille Neurosciences & Cognition, F-59000 Lille, France; (M.L.); (P.M.)
| | - Céline Schulz
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Sumeyye Cavdarli
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Romain Vasseur
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Romain Magnez
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Fatima Lahdaoui
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Nicolas Skrypek
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Fabien Peretti
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Frédéric Frénois
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Xavier Thuru
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Patricia Melnyk
- Univ. Lille, Inserm, CHU Lille, U1172—LilNCog—Lille Neurosciences & Cognition, F-59000 Lille, France; (M.L.); (P.M.)
| | - Nicolas Renault
- Univ. Lille, Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France;
| | - Nicolas Jonckheere
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Nicolas Lebègue
- Univ. Lille, Inserm, CHU Lille, U1172—LilNCog—Lille Neurosciences & Cognition, F-59000 Lille, France; (M.L.); (P.M.)
- Correspondence: (N.L.); (I.V.S.); Tel.: +33-32096-4977 (N.L.)
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
- Correspondence: (N.L.); (I.V.S.); Tel.: +33-32096-4977 (N.L.)
| |
Collapse
|
49
|
Azar I, Alkassis S, Fukui J, Alsawah F, Fedak K, Al Hallak MN, Sukari A, Nagasaka M. Spotlight on Trastuzumab Deruxtecan (DS-8201,T-DXd) for HER2 Mutation Positive Non-Small Cell Lung Cancer. LUNG CANCER-TARGETS AND THERAPY 2021; 12:103-114. [PMID: 34675733 PMCID: PMC8507417 DOI: 10.2147/lctt.s307324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/17/2021] [Indexed: 12/04/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a proto-oncogene that, when mutated or overexpressed, plays an important role in oncogenesis. The landscape of HER2-positive breast cancer has changed dramatically over the past 2 decades with the FDA approval of a growing number of agents (antibodies, tyrosine kinase inhibitors, and antibody-drug conjugates) targeting the HER2 receptor. HER2 inhibition has also been approved for HER2-positive gastric cancer. HER2 is amplified in 9% and mutated in 3% of lung cancer. Historically, HER2-targeted therapy for lung cancer with trastuzumab, pertuzumab, and trastuzumab emtansine has failed to demonstrate a survival benefit. Trastuzumab deruxtecan (T-DXd) is a novel antibody–drug conjugate with a tetrapeptide linker, which delivers a topoisomerase I inhibitor with a drug-to-antibody ratio of 7~8. The potency of the active payload, as well as its significant bystander effect, resulted in significant anti-tumor activity. The DESTINY-Lung01 trial evaluated T-DXd in HER2-positive non-squamous non-small cell lung cancer (NSCLC) and reported a progression-free survival of 14 months in HER2-mutated NSCLC, earning its breakthrough designation by the FDA. In this review, we will discuss the structural characteristics, pharmacodynamics, and pharmacokinetics of T-DXd. We will also shed light on the preclinical and ongoing clinical trials of T-DXd along with future directions in the management of HER2 positive lung cancer.
Collapse
Affiliation(s)
- Ibrahim Azar
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | - Samer Alkassis
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jami Fukui
- University of Hawaii Manoa Cancer Center, John A. Burns School of Medicine, Honolulu, HI, USA
| | - Fares Alsawah
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | - Kalub Fedak
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | - Mohammed Najeeb Al Hallak
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | - Ammar Sukari
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | - Misako Nagasaka
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA.,Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| |
Collapse
|
50
|
Wang Z, Li W, Wei Y, An L, Su S, Xi C, Wang K, Hong D, Shi Y. A HER2-mutant patient with late-stage duodenal adenocarcinoma benefited from anti-HER2 therapy and PD-1 inhibition: a case report. J Gastrointest Oncol 2021; 12:1939-1943. [PMID: 34532140 DOI: 10.21037/jgo-21-311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/22/2021] [Indexed: 01/21/2023] Open
Abstract
Duodenal adenocarcinoma (DA) is a subtype of small bowel adenocarcinoma (SBA). Compared with gastrointestinal cancers such as colorectal cancer and gastric cancer, SBA is less common. For patients with advanced and metastatic DA, chemotherapies are usually extrapolated from colorectal cancer and gastric cancer but the therapeutic effects remain undefined. Herein, we reported a 50-year-old female patient whom was diagnosed as stage IV DA with metastasis to both lungs and retroperitoneal lymph nodes. The next generation sequencing (NGS) using a panel consisting of 168 cancer related genes revealed amplification of the HER2/ERBB2 gene which has been a well-recognized therapeutic target among various tumor types. The anti-HER2 targeted therapy trastuzumab was used in combination with XELOX (oxaliplatin and capecitabine) as the first line treatment. The patient achieved partial response (PR) and had progression-free survival (PFS) of six months. After progressive disease (PD), the patient started the second line treatment with trastuzumab and PD1 inhibitors and remained stable disease (SD) with PFS for three months. The use of trastuzumab in neoadjuvant and adjuvant settings have been reported in sporadic cases. To the best of our knowledge, it is the first report to use anti-HER2 therapy and PD-1 inhibition as systemic therapy for advanced DA patients.
Collapse
Affiliation(s)
- Zhiyu Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Wenwen Li
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yaning Wei
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Lin An
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Shenyong Su
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Chenglin Xi
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Kunjie Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Dan Hong
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yan Shi
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|