1
|
Rezaeian AH, Wei W. Molecular signaling and clinical implications in the human aging-cancer cycle. Semin Cancer Biol 2024; 106-107:28-42. [PMID: 39197809 PMCID: PMC11625621 DOI: 10.1016/j.semcancer.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024]
Abstract
It is well documented that aging is associated with cancer, and likewise, cancer survivors display accelerated aging. As the number of aging individuals and cancer survivors continues to grow, it raises additional concerns across society. Therefore, unraveling the molecular mechanisms of aging in tissues is essential to developing effective therapies to fight the aging and cancer diseases in cancer survivors and cancer patients. Indeed, cellular senescence is a critical response, or a natural barrier to suppress the transition of normal cells into cancer cells, however, hypoxia which is physiologically required to maintain the stem cell niche, is increased by aging and inhibits senescence in tissues. Interestingly, oxygen restriction or hypoxia increases longevity and slows the aging process in humans, but hypoxia can also drive angiogenesis to facilitate cancer progression. In addition, cancer treatment is considered as one of the major reasons that drive cellular senescence, subsequently followed by accelerated aging. Several clinical trials have recently evaluated inhibitors to eliminate senescent cells. However, some mechanisms of aging typically can also retard cancer cell growth and progression, which might require careful strategy for better clinical outcomes. Here we describe the molecular regulation of aging and cancer in crosstalk with DNA damage and hypoxia signaling pathways in cancer patients and cancer survivors. We also update several therapeutic strategies that might be critical in reversing the cancer treatment-associated aging process.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
2
|
Yedla P, Bhamidipati P, Syed R, Amanchy R. Working title: Molecular involvement of p53-MDM2 interactome in gastrointestinal cancers. Cell Biochem Funct 2024; 42:e4075. [PMID: 38924101 DOI: 10.1002/cbf.4075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
The interaction between murine double minute 2 (MDM2) and p53, marked by transcriptional induction and feedback inhibition, orchestrates a functional loop dictating cellular fate. The functional loop comprising p53-MDM2 axis is made up of an interactome consisting of approximately 81 proteins, which are spatio-temporally regulated and involved in DNA repair mechanisms. Biochemical and genetic alterations of the interactome result in dysregulation of the p53-mdm2 axis that leads to gastrointestinal (GI) cancers. A large subset of interactome is well known and it consists of proteins that either stabilize p53 or MDM2 and proteins that target the p53-MDM2 complex for ubiquitin-mediated destruction. Upstream signaling events brought about by growth factors and chemical messengers invoke a wide variety of posttranslational modifications in p53-MDM2 axis. Biochemical changes in the transactivation domain of p53 impact the energy landscape, induce conformational switching, alter interaction potential and could change solubility of p53 to redefine its co-localization, translocation and activity. A diverse set of chemical compounds mimic physiological effectors and simulate biochemical modifications of the p53-MDM2 interactome. p53-MDM2 interactome plays a crucial role in DNA damage and repair process. Genetic aberrations in the interactome, have resulted in cancers of GI tract (pancreas, liver, colorectal, gastric, biliary, and esophageal). We present in this article a review of the overall changes in the p53-MDM2 interactors and the effectors that form an epicenter for the development of next-generation molecules for understanding and targeting GI cancers.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Hyderabad, Telangana, India
| | - Pranav Bhamidipati
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Life Sciences, Imperial College London, London, UK
| | - Riyaz Syed
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| | - Ramars Amanchy
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| |
Collapse
|
3
|
Biegała Ł, Gajek A, Szymczak-Pajor I, Marczak A, Śliwińska A, Rogalska A. Targeted inhibition of the ATR/CHK1 pathway overcomes resistance to olaparib and dysregulates DNA damage response protein expression in BRCA2 MUT ovarian cancer cells. Sci Rep 2023; 13:22659. [PMID: 38114660 PMCID: PMC10730696 DOI: 10.1038/s41598-023-50151-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
Olaparib is a PARP inhibitor (PARPi) approved for targeted treatment of ovarian cancer (OC). However, its efficacy is impeded by the inevitable occurrence of resistance. Here, we investigated whether the cytotoxic activity of olaparib could be synergistically enhanced in olaparib-resistant OC cells with BRCA2 reversion mutation by the addition of inhibitors of the ATR/CHK1 pathway. Moreover, we provide insights into alterations in the DNA damage response (DDR) pathway induced by combination treatments. Antitumor activity of olaparib alone or combined with an ATR inhibitor (ATRi, ceralasertib) or CHK1 inhibitor (CHK1i, MK-8776) was evaluated in OC cell lines sensitive (PEO1, PEO4) and resistant (PEO1-OR) to olaparib. Antibody microarrays were used to explore changes in expression of 27 DDR-related proteins. Olaparib in combination with ATR/CHK1 inhibitors synergistically induced a decrease in viability and clonogenic survival and an increase in apoptosis mediated by caspase-3/7 in all OC cells. Combination treatments induced cumulative alterations in expression of DDR-related proteins mediating distinct DNA repair pathways and cell cycle control. In the presence of ATRi and CHK1i, olaparib-induced upregulation of proteins determining cell fate after DNA damage (PARP1, CHK1, c-Abl, Ku70, Ku80, MDM2, and p21) was abrogated in PEO1-OR cells. Overall, the addition of ATRi or CHK1i to olaparib effectively overcomes resistance to PARPi exerting anti-proliferative effect in BRCA2MUT olaparib-resistant OC cells and alters expression of DDR-related proteins. These new molecular insights into cellular response to olaparib combined with ATR/CHK1 inhibitors might help improve targeted therapies for olaparib-resistant OC.
Collapse
Affiliation(s)
- Łukasz Biegała
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Street, 90-237, Lodz, Poland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland
| | - Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Street, 92-213, Lodz, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Street, 92-213, Lodz, Poland
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland.
| |
Collapse
|
4
|
Son SH, Kim MY, Choi S, Kim JS, Lee YS, Lee S, Lee YJ, Lee JY, Lee SE, Lim YS, Ha DH, Oh E, Won Y, Ji C, Park MA, Kim B, Byun KT, Chung MS, Jeong J, Choi D, Baek EJ, Cho E, Kim S, Je AR, Kweon H, Park HS, Park D, Bae JS, Jang SJ, Yun C, Chae JH, Lee J, Lee S, Kim CG, Kang HC, Uversky VN, Kim CG. A Cell-Penetrant Peptide Disrupting the Transcription Factor CP2c Complexes Induces Cancer-Specific Synthetic Lethality. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305096. [PMID: 37845006 PMCID: PMC10667816 DOI: 10.1002/advs.202305096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Indexed: 10/18/2023]
Abstract
Despite advances in precision oncology, cancer remains a global public health issue. In this report, proof-of-principle evidence is presented that a cell-penetrable peptide (ACP52C) dissociates transcription factor CP2c complexes and induces apoptosis in most CP2c oncogene-addicted cancer cells through transcription activity-independent mechanisms. CP2cs dissociated from complexes directly interact with and degrade YY1, leading to apoptosis via the MDM2-p53 pathway. The liberated CP2cs also inhibit TDP2, causing intrinsic genome-wide DNA strand breaks and subsequent catastrophic DNA damage responses. These two mechanisms are independent of cancer driver mutations but are hindered by high MDM2 p60 expression. However, resistance to ACP52C mediated by MDM2 p60 can be sensitized by CASP2 inhibition. Additionally, derivatives of ACP52C conjugated with fatty acid alone or with a CASP2 inhibiting peptide show improved pharmacokinetics and reduced cancer burden, even in ACP52C-resistant cancers. This study enhances the understanding of ACP52C-induced cancer-specific apoptosis induction and supports the use of ACP52C in anticancer drug development.
Collapse
|
5
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
6
|
Lee SS, Vũ TT, Weiss AS, Yeo GC. Stress-induced senescence in mesenchymal stem cells: Triggers, hallmarks, and current rejuvenation approaches. Eur J Cell Biol 2023; 102:151331. [PMID: 37311287 DOI: 10.1016/j.ejcb.2023.151331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as promising cell-based therapies in the treatment of degenerative and inflammatory conditions. However, despite accumulating evidence of the breadth of MSC functional potency, their broad clinical translation is hampered by inconsistencies in therapeutic efficacy, which is at least partly due to the phenotypic and functional heterogeneity of MSC populations as they progress towards senescence in vitro. MSC senescence, a natural response to aging and stress, gives rise to altered cellular responses and functional decline. This review describes the key regenerative properties of MSCs; summarises the main triggers, mechanisms, and consequences of MSC senescence; and discusses current cellular and extracellular strategies to delay the onset or progression of senescence, or to rejuvenate biological functions lost to senescence.
Collapse
Affiliation(s)
- Sunny Shinchen Lee
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Thu Thuy Vũ
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Viet Nam
| | - Anthony S Weiss
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Giselle C Yeo
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
7
|
Charan K, Giri A, Kar S. Elucidating the Implications of Diverse Dynamical Responses in p53 Protein. Chemphyschem 2023; 24:e202200537. [PMID: 36208026 DOI: 10.1002/cphc.202200537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/06/2022] [Indexed: 11/07/2022]
Abstract
p53 is a well-known tumor suppressor gene that acts as a transcription factor to exhibit a variety of dynamical responses by sensing different types and extent of stress conditions causing DNA damage in Mammalian cells. Mathematical modeling has played a crucial role to correlate cell fate decision-making with some of these dynamic p53 regulations. However, it is extremely challenging to explain the various cell-type and stimulus-specific p53 protein dynamics under different stress conditions by using a single mathematical model. In this article, we propose a simple mathematical model of p53 regulation based on a generic p53 regulatory network that elucidates a range of p53 dynamical responses. By employing bifurcation analysis along with deterministic and stochastic simulations, we explain an array of p53 dynamics by correlating it with the corresponding cell fate regulations in a cell type-specific and stimulus-dependent manner. Moreover, our model makes experimentally testable predictions to fine-tune p53 dynamics under various DNA damage conditions and can be systematically used and improved to analyze complex p53 dynamics in the future.
Collapse
Affiliation(s)
- Kajal Charan
- Department of Chemistry, IIT Bombay, Powai, Mumbai, 400076, India
| | - Amitava Giri
- Department of Chemistry, IIT Bombay, Powai, Mumbai, 400076, India
| | - Sandip Kar
- Department of Chemistry, IIT Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
8
|
Wang P, Wang HY, Gao XJ, Zhu HX, Zhang XP, Liu F, Wang W. Encoding and Decoding of p53 Dynamics in Cellular Response to Stresses. Cells 2023; 12:cells12030490. [PMID: 36766831 PMCID: PMC9914463 DOI: 10.3390/cells12030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
In the cellular response to stresses, the tumor suppressor p53 is activated to maintain genomic integrity and fidelity. As a transcription factor, p53 exhibits rich dynamics to allow for discrimination of the type and intensity of stresses and to direct the selective activation of target genes involved in different processes including cell cycle arrest and apoptosis. In this review, we focused on how stresses are encoded into p53 dynamics and how the dynamics are decoded into cellular outcomes. Theoretical modeling may provide a global view of signaling in the p53 network by coupling the encoding and decoding processes. We discussed the significance of modeling in revealing the mechanisms of the transition between p53 dynamic modes. Moreover, we shed light on the crosstalk between the p53 network and other signaling networks. This review may advance the understanding of operating principles of the p53 signaling network comprehensively and provide insights into p53 dynamics-based cancer therapy.
Collapse
Affiliation(s)
- Ping Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- Key Laboratory of High Performance Scientific Computation, School of Science, Xihua University, Chengdu 610039, China
| | - Hang-Yu Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Xing-Jie Gao
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Hua-Xia Zhu
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Xiao-Peng Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- Institute of Brain Sciences, Nanjing University, Nanjing 210093, China
- Correspondence: (X.-P.Z.); (W.W.)
| | - Feng Liu
- Institute of Brain Sciences, Nanjing University, Nanjing 210093, China
- National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
- Department of Physics, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Institute of Brain Sciences, Nanjing University, Nanjing 210093, China
- National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
- Department of Physics, Nanjing University, Nanjing 210093, China
- Correspondence: (X.-P.Z.); (W.W.)
| |
Collapse
|
9
|
Naked mole-rats resist the accumulation of hypoxia-induced oxidative damage. Comp Biochem Physiol A Mol Integr Physiol 2022; 273:111282. [PMID: 35907588 DOI: 10.1016/j.cbpa.2022.111282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Naked mole-rats are among the few mammals with the ability to endure severe hypoxia. These unique rodents use metabolic rate depression along with various molecular mechanisms to successfully overcome the challenges of oxygen-limitation, which they experience in their underground borrows. While studies have reported that naked mole-rats exhibit inherently higher levels of oxidative damage across their lifespan as compared to mice, it has yet to be determined whether naked mole-rats are vulnerable to oxidative damage during periods of low oxygen exposure. To investigate this phenomenon, we examined cellular oxidative damage markers of macromolecules: DNA oxidation determined as 8-oxo-2'deoxyguanosine (8-OHdG8) levels, RNA oxidation as 8-hydroxyguanosine (8-OHG), protein carbonylation, and lipid peroxidation in normoxic (control), acute (4 h at 7% O2), and chronic (24 h at 7% O2) hypoxia-exposed naked mole-rats. Brain appears to be the most resilient organ to hypoxia-induced oxidative damage, with both brain and heart exhibiting enhanced antioxidant capacity during hypoxia. Levels of DNA and RNA oxidation were minimally changed in all tissues and no changes were observed in protein carbonylation. Most tissues experienced lipid peroxidation, with liver displaying a 9.6-fold increase during hypoxia. Concomitantly, levels of DNA damage repair proteins were dynamically regulated in a tissue-specific manner, with white adipose displaying a significant reduction during hypoxia. Our findings show that naked mole-rats largely avoid hypoxia-induced oxidative damage, possibly due to their high tolerance to redox stress, or to reduced oxidative requirements made possible during their hypometabolic response when oxygen supply is limited.
Collapse
|
10
|
Iksen, Pothongsrisit S, Pongrakhananon V. Targeting the PI3K/AKT/mTOR Signaling Pathway in Lung Cancer: An Update Regarding Potential Drugs and Natural Products. Molecules 2021; 26:4100. [PMID: 34279440 PMCID: PMC8271933 DOI: 10.3390/molecules26134100] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most common cancers and has a high mortality rate. Due to its high incidence, the clinical management of the disease remains a major challenge. Several reports have documented a relationship between the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway and lung cancer. The recognition of this pathway as a notable therapeutic target in lung cancer is mainly due to its central involvement in the initiation and progression of the disease. Interest in using natural and synthetic medications to target these signaling pathways has increased in recent years, with promising results in vitro, in vivo, and in clinical trials. In this review, we focus on the current understanding of PI3K/AKT/mTOR signaling in tumor development. In addition to the signaling pathway, we highlighted the therapeutic potential of recently developed PI3K/AKT/mTOR inhibitors based on preclinical and clinical trials.
Collapse
Affiliation(s)
- Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.); (S.P.)
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Senior Medan, Medan 20131, Indonesia
| | - Sutthaorn Pothongsrisit
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.); (S.P.)
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.); (S.P.)
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Cluster, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
11
|
Activation of DNA damage response signaling in mammalian cells by ionizing radiation. Free Radic Res 2021; 55:581-594. [PMID: 33455476 DOI: 10.1080/10715762.2021.1876853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular responses to DNA damage are fundamental to preserve genomic integrity during various endogenous and exogenous stresses. Following radiation therapy and chemotherapy, this DNA damage response (DDR) also determines development of carcinogenesis and therapeutic outcome. In humans, DNA damage activates a robust network of signal transduction cascades, driven primarily through phosphorylation events. These responses primarily involve two key non-redundant signal transducing proteins of phosphatidylinositol 3-kinase-like (PIKK) family - ATR and ATM, and their downstream kinases (hChk1 and hChk2). They further phosphorylate effectors proteins such as p53, Cdc25A and Cdc25C which function either to activate the DNA damage checkpoints and cell death mechanisms, or DNA repair pathways. Identification of molecular pathways that determine signaling after DNA damage and trigger DNA repair in response to differing types of DNA lesions allows for a far better understanding of the consequences of radiation and chemotherapy on normal and tumor cells. Here we highlight the network of DNA damage response pathways that are activated after treatment with different types of radiation. Further, we discuss regulation of cell cycle checkpoint and DNA repair processes in the context of DDR in response to radiation.
Collapse
|
12
|
Chen PH, Tseng WHS, Chi JT. The Intersection of DNA Damage Response and Ferroptosis-A Rationale for Combination Therapeutics. BIOLOGY 2020; 9:E187. [PMID: 32718025 PMCID: PMC7464484 DOI: 10.3390/biology9080187] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022]
Abstract
Ferroptosis is a novel form of iron-dependent cell death characterized by lipid peroxidation. While the importance and disease relevance of ferroptosis are gaining recognition, much remains unknown about its interaction with other biological processes and pathways. Recently, several studies have identified intricate and complicated interplay between ferroptosis, ionizing radiation (IR), ATM (ataxia-telangiectasia mutated)/ATR (ATM and Rad3-related), and tumor suppressor p53, which signifies the participation of the DNA damage response (DDR) in iron-related cell death. DDR is an evolutionarily conserved response triggered by various DNA insults to attenuate proliferation, enable DNA repairs, and dispose of cells with damaged DNA to maintain genome integrity. Deficiency in proper DDR in many genetic disorders or tumors also highlights the importance of this pathway. In this review, we will focus on the biological crosstalk between DDR and ferroptosis, which is mediated mostly via noncanonical mechanisms. For clinical applications, we also discuss the potential of combining ionizing radiation and ferroptosis-inducers for synergistic effects. At last, various ATM/ATR inhibitors under clinical development may protect ferroptosis and treat many ferroptosis-related diseases to prevent cell death, delay disease progression, and improve clinical outcomes.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; (P.-H.C.); (W.H.-S.T.)
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Watson Hua-Sheng Tseng
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; (P.-H.C.); (W.H.-S.T.)
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; (P.-H.C.); (W.H.-S.T.)
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
13
|
Gunasegaran B, Neilsen PM, Smid SD. P53 activation suppresses irinotecan metabolite SN-38-induced cell damage in non-malignant but not malignant epithelial colonic cells. Toxicol In Vitro 2020; 67:104908. [PMID: 32502622 DOI: 10.1016/j.tiv.2020.104908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022]
Abstract
Nutlin-3a is a p53 activator and potential cyclotherapy approach that may also mitigate side effects of chemotherapeutic drugs in the treatment of colorectal cancer. We investigated cell proliferation in a panel of colorectal cancer (CRC) cell lines with wild-type or mutant p53, as well as a non-tumorigenic fetal intestinal cell line following Nutlin-3a treatment (10 μM). We then assessed apoptosis at 24 and 48 h following administration of the active irinotecan metabolite, SN-38 (0.001 μM - 1 μM), alone or following pre-treatment with Nutlin-3a (10 μM). Nutlin-3a treatment (10 μM) significantly reduced proliferation in wild-type p53 expressing cell lines (FHS 74 and HCT116+/+) at 72 and 96 h, but was without effect in cell lines with mutated or deleted p53 (Caco-2, SW480, and HCT 116-/-). SN-38 treatment induced significant apoptosis in all cell lines after 48 h. Nutlin-3a unexpectedly increased cell death in the p53 wild-type CRC cell line, HCT116+/+, while Nutlin-3a pre-treatment provided protection from SN-38 in the p53 wild-type normal cell line, FHs 74. These results demonstrate Nutlin-3a's selective growth-arresting efficacy in p53 wild-type non-malignant intestinal cell lines, enabling the selective targeting of malignant cells with chemotherapy drugs. These studies highlight the potential of Nutlin-3a to minimise intestinal mucosal damage following chemotherapy.
Collapse
Affiliation(s)
- Bavani Gunasegaran
- Discipline of Pharmacology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia
| | - Paul M Neilsen
- School of Health, Medical and Applied Sciences, Central Queensland University, Queensland, Australia; Centre for Personalized Cancer Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia
| | - Scott D Smid
- Discipline of Pharmacology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
14
|
Lanz MC, Dibitetto D, Smolka MB. DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J 2019; 38:e101801. [PMID: 31393028 PMCID: PMC6745504 DOI: 10.15252/embj.2019101801] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022] Open
Abstract
From bacteria to mammalian cells, damaged DNA is sensed and targeted by DNA repair pathways. In eukaryotes, kinases play a central role in coordinating the DNA damage response. DNA damage signaling kinases were identified over two decades ago and linked to the cell cycle checkpoint concept proposed by Weinert and Hartwell in 1988. Connections between the DNA damage signaling kinases and DNA repair were scant at first, and the initial perception was that the importance of these kinases for genome integrity was largely an indirect effect of their roles in checkpoints, DNA replication, and transcription. As more substrates of DNA damage signaling kinases were identified, it became clear that they directly regulate a wide range of DNA repair factors. Here, we review our current understanding of DNA damage signaling kinases, delineating the key substrates in budding yeast and humans. We trace the progress of the field in the last 30 years and discuss our current understanding of the major substrate regulatory mechanisms involved in checkpoint responses and DNA repair.
Collapse
Affiliation(s)
- Michael Charles Lanz
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Diego Dibitetto
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| |
Collapse
|
15
|
Rada M, Althubiti M, Ekpenyong-Akiba AE, Lee KG, Lam KP, Fedorova O, Barlev NA, Macip S. BTK blocks the inhibitory effects of MDM2 on p53 activity. Oncotarget 2017; 8:106639-106647. [PMID: 29290977 PMCID: PMC5739762 DOI: 10.18632/oncotarget.22543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
p53 is a tumour suppressor that is activated in response to various types of stress. It is regulated by a complex pattern of over 50 different post-translational modifications, including ubiquitination by the E3 ligase MDM2, which leads to its proteasomal degradation. We have previously reported that expression of Bruton’s Tyrosine Kinase (BTK) induces phosphorylation of p53 at the N-terminus, including Serine 15, and increases its protein levels and activity. The mechanisms involved in this process are not completely understood. Here, we show that BTK also increases MDM2 and is necessary for MDM2 upregulation after DNA damage, consistent with what we have shown for other p53 target genes. Moreover, we found that BTK binds to MDM2 on its PH domain and induces its phosphorylation. This suggested a negative regulation of MDM2 functions by BTK, supported by the fact BTK expression rescued the inhibitory effects of MDM2 on p53 transcriptional activity. Indeed, we observed that BTK mediated the loss of the ubiquitination activity of MDM2, a process that was dependent on the phosphorylation functions of BTK. Our data together shows that the kinase activity of BTK plays an important role in disrupting the MDM2-p53 negative feedback loop by acting at different levels, including binding to and inactivation of MDM2. This study provides a potential mechanism to explain how BTK modulates p53 functions.
Collapse
Affiliation(s)
- Miran Rada
- Department of Molecular and Cell Biology, Mechanisms of Cancer and Aging Laboratory, University of Leicester, Leicester, UK
| | - Mohammad Althubiti
- Department of Molecular and Cell Biology, Mechanisms of Cancer and Aging Laboratory, University of Leicester, Leicester, UK.,Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Akang E Ekpenyong-Akiba
- Department of Molecular and Cell Biology, Mechanisms of Cancer and Aging Laboratory, University of Leicester, Leicester, UK
| | - Koon-Guan Lee
- Bioprocessing Technology Institute, ASTAR, Singapore
| | - Kong Peng Lam
- Bioprocessing Technology Institute, ASTAR, Singapore
| | - Olga Fedorova
- Institute of Cytology, RAS, Saint-Petersburg, Russia
| | | | - Salvador Macip
- Department of Molecular and Cell Biology, Mechanisms of Cancer and Aging Laboratory, University of Leicester, Leicester, UK
| |
Collapse
|
16
|
Probing the mechanisms underlying human diseases in making ribosomes. Biochem Soc Trans 2017; 44:1035-44. [PMID: 27528749 DOI: 10.1042/bst20160064] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Indexed: 12/26/2022]
Abstract
Ribosomes are essential, highly complex machines responsible for protein synthesis in all growing cells. Because of their importance, the process of building these machines is intricately regulated. Although the proteins involved in regulating ribosome biogenesis are just beginning to be understood, especially in human cells, the consequences for dysregulating this process have been even less studied. Such interruptions in ribosome synthesis result in a collection of human disorders known as ribosomopathies. Ribosomopathies, which occur due to mutations in proteins involved in the global process of ribosome biogenesis, result in tissue-specific defects. The questions posed by this dichotomy and the steps taken to address these questions are therefore the focus of this review: How can tissue-specific disorders result from alterations in global processes? Could ribosome specialization account for this difference?
Collapse
|
17
|
Molecular signaling cascades involved in nonmelanoma skin carcinogenesis. Biochem J 2017; 473:2973-94. [PMID: 27679857 DOI: 10.1042/bcj20160471] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
Abstract
Nonmelanoma skin cancer (NMSC) is the most common cancer worldwide and the incidence continues to rise, in part due to increasing numbers in high-risk groups such as organ transplant recipients and those taking photosensitizing medications. The most significant risk factor for NMSC is ultraviolet radiation (UVR) from sunlight, specifically UVB, which is the leading cause of DNA damage, photoaging, and malignant transformation in the skin. Activation of apoptosis following UVR exposure allows the elimination of irreversibly damaged cells that may harbor oncogenic mutations. However, UVR also activates signaling cascades that promote the survival of these potentially cancerous cells, resulting in tumor initiation. Thus, the UVR-induced stress response in the skin is multifaceted and requires coordinated activation of numerous pathways controlling DNA damage repair, inflammation, and kinase-mediated signal transduction that lead to either cell survival or cell death. This review focuses on the central signaling mechanisms that respond to UVR and the subsequent cellular changes. Given the prevalence of NMSC and the resulting health care burden, many of these pathways provide promising targets for continued study aimed at both chemoprevention and chemotherapy.
Collapse
|
18
|
Lazo PA. Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression. Cell Signal 2017; 33:49-58. [PMID: 28189587 DOI: 10.1016/j.cellsig.2017.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 11/17/2022]
Abstract
The activation of p53 in response to different types of cellular stress induces several protective reactions including cell cycle arrest, senescence or cell death. These protective effects are a consequence of the activation of p53 by specific phosphorylation performed by several kinases. The reversion of the cell cycle arrest, induced by p53, is a consequence of the phosphorylated and activated p53, which triggers its own downregulation and that of its positive regulators. The different down-regulatory processes have a sequential and temporal order of events. The mechanisms implicated in p53 down-regulation include phosphatases, deacetylases, and protein degradation by the proteasome or autophagy, which also affect different p53 protein targets and functions. The necessary first step is the dephosphorylation of p53 to make it available for interaction with mdm2 ubiquitin-ligase, which requires the activation of phosphatases targeting both p53 and p53-activating kinases. In addition, deacetylation of p53 is required to make lysine residues accessible to ubiquitin ligases. The combined action of these downregulatory mechanisms brings p53 protein back to its basal levels, and cell cycle progression can resume if cells have overcome the stress or damage situation. The specific targeting of these down-regulatory mechanisms can be exploited for therapeutic purposes in cancers harbouring wild-type p53.
Collapse
Affiliation(s)
- Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
19
|
Abstract
The p53 tumor suppressor is highly regulated at the level of protein degradation and transcriptional activity. The key players of the pathway, p53, MDM2, and MDMX are present at multiple conformational states that are responsive to regulation by post-translational modifications and protein-protein interactions. The structures of major functional domains of these proteins have been determined, but the mechanisms of several intrinsically disordered regions remain unclear despite their critical roles in signaling and regulation. Recent studies suggest that these disordered regions function in part by dynamic intra molecular interactions with the structured domains to regulate p53 DNA binding, MDM2 ubiquitin E3 ligase activity, and MDMX-p53 binding. These findings provide new insight on how p53 is controlled by various stress signals, and suggest potential targets for the search of allosteric regulators of the p53 pathway.
Collapse
Affiliation(s)
- Jiandong Chen
- Molecular Oncology Department, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
20
|
Wang H, Cai S, Bailey BJ, Reza Saadatzadeh M, Ding J, Tonsing-Carter E, Georgiadis TM, Zachary Gunter T, Long EC, Minto RE, Gordon KR, Sen SE, Cai W, Eitel JA, Waning DL, Bringman LR, Wells CD, Murray ME, Sarkaria JN, Gelbert LM, Jones DR, Cohen-Gadol AA, Mayo LD, Shannon HE, Pollok KE. Combination therapy in a xenograft model of glioblastoma: enhancement of the antitumor activity of temozolomide by an MDM2 antagonist. J Neurosurg 2016; 126:446-459. [PMID: 27177180 DOI: 10.3171/2016.1.jns152513] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Improvement in treatment outcome for patients with glioblastoma multiforme (GBM) requires a multifaceted approach due to dysregulation of numerous signaling pathways. The murine double minute 2 (MDM2) protein may fulfill this requirement because it is involved in the regulation of growth, survival, and invasion. The objective of this study was to investigate the impact of modulating MDM2 function in combination with front-line temozolomide (TMZ) therapy in GBM. METHODS The combination of TMZ with the MDM2 protein-protein interaction inhibitor nutlin3a was evaluated for effects on cell growth, p53 pathway activation, expression of DNA repair proteins, and invasive properties. In vivo efficacy was assessed in xenograft models of human GBM. RESULTS In combination, TMZ/nutlin3a was additive to synergistic in decreasing growth of wild-type p53 GBM cells. Pharmacodynamic studies demonstrated that inhibition of cell growth following exposure to TMZ/nutlin3a correlated with: 1) activation of the p53 pathway, 2) downregulation of DNA repair proteins, 3) persistence of DNA damage, and 4) decreased invasion. Pharmacokinetic studies indicated that nutlin3a was detected in human intracranial tumor xenografts. To assess therapeutic potential, efficacy studies were conducted in a xenograft model of intracranial GBM by using GBM cells derived from a recurrent wild-type p53 GBM that is highly TMZ resistant (GBM10). Three 5-day cycles of TMZ/nutlin3a resulted in a significant increase in the survival of mice with GBM10 intracranial tumors compared with single-agent therapy. CONCLUSIONS Modulation of MDM2/p53-associated signaling pathways is a novel approach for decreasing TMZ resistance in GBM. To the authors' knowledge, this is the first study in a humanized intracranial patient-derived xenograft model to demonstrate the efficacy of combining front-line TMZ therapy and an inhibitor of MDM2 protein-protein interactions.
Collapse
Affiliation(s)
- Haiyan Wang
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health
| | - Shanbao Cai
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health.,Anhui Provincial Cancer Hospital, Hefei, Anhui, China; and
| | - Barbara J Bailey
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health
| | - M Reza Saadatzadeh
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health.,Goodman Campbell Brain and Spine, Department of Neurosurgery
| | - Jixin Ding
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health.,Goodman Campbell Brain and Spine, Department of Neurosurgery
| | - Eva Tonsing-Carter
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health.,Indiana University Simon Cancer Center.,Department of Pharmacology and Toxicology
| | - Taxiarchis M Georgiadis
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis
| | - T Zachary Gunter
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis
| | - Eric C Long
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis
| | - Robert E Minto
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis
| | - Kevin R Gordon
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis
| | - Stephanie E Sen
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis
| | - Wenjing Cai
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health
| | - Jacob A Eitel
- Department of Radiology and Imaging Science, Indiana University, Indianapolis, Indiana
| | - David L Waning
- Indiana University Simon Cancer Center.,Department of Medicine, Division of Endocrinology
| | - Lauren R Bringman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
| | - Clark D Wells
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
| | - Mary E Murray
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Lawrence M Gelbert
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health
| | | | - Aaron A Cohen-Gadol
- Indiana University Simon Cancer Center.,Goodman Campbell Brain and Spine, Department of Neurosurgery
| | - Lindsey D Mayo
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health.,Indiana University Simon Cancer Center
| | - Harlan E Shannon
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health
| | - Karen E Pollok
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Section of Pediatric Hematology/Oncology, Riley Hospital for Children at Indiana University Health.,Indiana University Simon Cancer Center.,Department of Pharmacology and Toxicology
| |
Collapse
|
21
|
Roszak A, Misztal M, Sowińska A, Jagodziński PP. Murine Double-Minute 2 Homolog Single Nucleotide Polymorphisms 285 and 309 in Cervical Carcinogenesis. Mol Diagn Ther 2016. [PMID: 26224627 PMCID: PMC4529876 DOI: 10.1007/s40291-015-0153-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background and Objective In Caucasians, the MDM2 single nucleotide polymorphism (SNP) 285 G>C (rs117039649) neutralizes the effect of 309 T>G (rs2279744), which increases MDM2 expression and impairs the p53 pathway. In this study, we examined the distribution of these two SNPs in Polish women with squamous cell carcinoma (SCC) (n = 379), adenocarcinoma (n = 59) and other cervical tumor types (n = 18). Methods The polymerase chain reaction-restriction fragment length polymorphism technique and DNA sequencing were employed in our study. Results The P trend value calculated for the MDM2 285 G>C polymorphism was statistically significant (Ptrend = 0.016) for SCC. Using logistical regression analysis adjusted for the effect of age, pregnancy, oral contraceptive use, tobacco smoking, and menopausal status, we observed that the MDM2 285 G>C SNP protected against SCC, with an adjusted odd ratio (OR) for the C carriers versus G/G genotype of 0.536 (P = 0.019). Stratified analyses of MDM2 285 G>C revealed a protective role of the C allele against SCC in women with a positive history of oral contraceptive use (age-adjusted OR 0.413, P = 0.021) and in premenopausal women (age-adjusted OR 0.362, P = 0.022). We also found that the 285GG/309GG vs 285GG/309 TT genotype increased the risk of SCC (adjusted OR 1.890, P = 0.005). However, the 285CC/309GG + 285GC/309GG versus 285GG/309GG genotype reduced the risk of SCC (adjusted OR 0.311, P = 0.004). Conclusion Our results demonstrate that the MDM2 285C gene variant and 285CC/309GG + 285GC/309GG genotypes protect against SCC, most likely by neutralizing the effect of the 309 T>G SNP. The 285GG/309GG genotype increases the risk of SCC possibly due to increased MDM2 expression. Electronic supplementary material The online version of this article (doi:10.1007/s40291-015-0153-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrzej Roszak
- Department of Radiotherapy and Gynecological Oncology, Greater Poland Cancer Center, Poznan, Poland
| | | | | | | |
Collapse
|
22
|
MDM2 oligomers: antagonizers of the guardian of the genome. Oncogene 2016; 35:6157-6165. [PMID: 27041565 DOI: 10.1038/onc.2016.88] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
Over two decades of MDM2 research has resulted in the accumulation of a wealth of knowledge of many aspects of MDM2 regulation and function, particularly with respect to its most prominent target, p53. For example, recent knock-in mouse studies have shown that MDM2 heterooligomer formation with its homolog, MDMX, is necessary and sufficient in utero to suppress p53 but is dispensable during adulthood. However, despite crucial advances such as these, several aspects regarding basic in vivo functions of MDM2 remain unknown. In one such example, although abundant evidence suggests that MDM2 forms homooligomers and heterooligomers with MDMX, the function and regulation of these homo- and heterooligomers in vivo remain incompletely understood. In this review, we discuss the current state of our knowledge of MDM2 oligomerization as well as current efforts to target the MDM2 oligomer as a broad therapeutic option for cancer treatment.
Collapse
|
23
|
Liu Y, Li Y, Lu X. Regulators in the DNA damage response. Arch Biochem Biophys 2016; 594:18-25. [PMID: 26882840 DOI: 10.1016/j.abb.2016.02.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 01/05/2023]
Abstract
Maintenance of genome integrity is essential for the proper function of all cells and organisms. In response to both endogenous and exogenous DNA damaging agents, mammalian cells have evolved a delicate system to sense DNA damage, stop cell cycle progression, modulate cell metabolism, repair damaged DNA, and induce programmed cell death if the damage is too severe. This coordinated global signaling network, namely the DNA damage response (DDR), ensures the genome stability under DNA damaging stress. A variety of regulators have been shown to modulate the activity and levels of key proteins in the DDR, including kinases, phosphatases, ubiquitin ligases, deubiquitinases, and other protein modifying enzymes. Epigenetic regulators, particularly microRNAs and long noncoding RNAs, have been emerging as an important payer of regulation in addition to canonical DNA damage signaling proteins. In this review, we will discuss the functional interaction between the regulators and their targets in the DDR.
Collapse
Affiliation(s)
- Yunhua Liu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Yujing Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Xiongbin Lu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Abstract
p53 has been studied intensively as a major tumour suppressor that detects oncogenic events in cancer cells and eliminates them through senescence (a permanent non-proliferative state) or apoptosis. Consistent with this role, p53 activity is compromised in a high proportion of all cancer types, either through mutation of the TP53 gene (encoding p53) or changes in the status of p53 modulators. p53 has additional roles, which may overlap with its tumour-suppressive capacity, in processes including the DNA damage response, metabolism, aging, stem cell differentiation and fertility. Moreover, many mutant p53 proteins, termed 'gain-of-function' (GOF), acquire new activities that help drive cancer aggression. p53 is regulated mainly through protein turnover and operates within a negative-feedback loop with its transcriptional target, MDM2 (murine double minute 2), an E3 ubiquitin ligase which mediates the ubiquitylation and proteasomal degradation of p53. Induction of p53 is achieved largely through uncoupling the p53-MDM2 interaction, leading to elevated p53 levels. Various stress stimuli acting on p53 (such as hyperproliferation and DNA damage) use different, but overlapping, mechanisms to achieve this. Additionally, p53 activity is regulated through critical context-specific or fine-tuning events, mediated primarily through post-translational mechanisms, particularly multi-site phosphorylation and acetylation. In the present review, I broadly examine these events, highlighting their regulatory contributions, their ability to integrate signals from cellular events towards providing most appropriate response to stress conditions and their importance for tumour suppression. These are fascinating aspects of molecular oncology that hold the key to understanding the molecular pathology of cancer and the routes by which it may be tackled therapeutically.
Collapse
|
25
|
Li J, Kurokawa M. Regulation of MDM2 Stability After DNA Damage. J Cell Physiol 2015; 230:2318-27. [PMID: 25808808 DOI: 10.1002/jcp.24994] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/20/2015] [Indexed: 12/13/2022]
Abstract
Cells in our body are constantly exposed to various stresses and threats to their genomic integrity. The tumor suppressor protein p53 plays a critical role in successful defense against these threats by inducing apoptotic cell death or cell cycle arrest. In unstressed conditions, p53 levels and activity must be kept low to prevent lethal activation of apoptotic and senescence pathways. However, upon DNA damage or other stressors, p53 is released from its inhibitory state to induce an array of apoptosis and cell cycle genes. Conversely, inactivation of p53 could promote unrestrained tumor proliferation and failure to appropriately undergo apoptotic cell death, which could, in turn, lead to carcinogenesis. The ubiquitin E3 ligase MDM2 is the most critical inhibitor of p53 that determines the cellular response to various p53-activating agents, including DNA damage. MDM2 activity is controlled by post-translational modifications, especially phosphorylation. However, accumulating evidence suggests that MDM2 is also regulated at the level of protein stability, which is controlled by the ubiquitin-proteasome pathway. Here, we discuss how MDM2 can be regulated in response to DNA damage with particular focus on the regulation of MDM2 protein stability.
Collapse
Affiliation(s)
- Jiaqi Li
- Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Manabu Kurokawa
- Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Lebanon, New Hampshire
| |
Collapse
|
26
|
Zhou CH, Zhang XP, Liu F, Wang W. Modeling the interplay between the HIF-1 and p53 pathways in hypoxia. Sci Rep 2015; 5:13834. [PMID: 26346319 PMCID: PMC4561886 DOI: 10.1038/srep13834] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022] Open
Abstract
Both the hypoxia-inducible factor-1 (HIF-1) and tumor suppressor p53 are involved in the cellular response to hypoxia. How the two transcription factors interact to determine cell fates is less well understood. Here, we developed a network model to characterize crosstalk between the HIF-1 and p53 pathways, taking into account that HIF-1α and p53 are targeted for proteasomal degradation by Mdm2 and compete for binding to limiting co-activator p300. We reported the network dynamics under various hypoxic conditions and revealed how the stabilization and transcriptional activities of p53 and HIF-1α are modulated to determine the cell fate. We showed that both the transrepression and transactivation activities of p53 promote apoptosis induction. This work provides new insight into the mechanism for the cellular response to hypoxia.
Collapse
Affiliation(s)
- Chun-Hong Zhou
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.,School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiao-Peng Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210093, China
| | - Feng Liu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
27
|
Mendoza M, Mandani G, Momand J. The MDM2 gene family. Biomol Concepts 2015; 5:9-19. [PMID: 25372739 DOI: 10.1515/bmc-2013-0027] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/04/2013] [Indexed: 01/09/2023] Open
Abstract
MDM2 is an oncoprotein that blocks p53 tumor suppressor-mediated transcriptional transactivation, escorts p53 from the cell nucleus to the cytoplasm, and polyubiquitylates p53. Polyubiquitylated p53 is rapidly degraded in the cytoplasm by the 26S proteasome. MDM2 is abnormally upregulated in several types of cancers, especially those of mesenchymal origin. MDM4 is a homolog of MDM2 that also inhibits p53 by blocking p53-mediated transactivation. MDM4 is required for MDM2-mediated polyubiquitylated of p53 and is abnormally upregulated in several cancer types. MDM2 and MDM4 genes have been detected in all vertebrates to date and only a single gene homolog, named MDM, has been detected in some invertebrates. MDM2, MDM4, and MDM have similar gene structures, suggesting that MDM2 and MDM4 arose through a duplication event more than 440 million years ago. All members of this small MDM2 gene family contain a single really interesting new gene (RING) domain (with the possible exception of lancelet MDM) which places them in the RING-domain superfamily. Similar to MDM2, the vast majority of proteins with RING domains are E3 ubiquitin ligases. Other RING domain E3 ubiquitin ligases that target p53 are COP1, Pirh2, and MSL2. In this report, we present evidence that COP1, Pirh2, and MSL2 evolved independently of MDM2 and MDM4. We also show, through structure homology models of invertebrate MDM RING domains, that MDM2 is more evolutionarily conserved than MDM4.
Collapse
|
28
|
Zhang XP, Liu F, Wang W. Interplay between Mdm2 and HIPK2 in the DNA damage response. J R Soc Interface 2014; 11:rsif.2014.0319. [PMID: 24829283 DOI: 10.1098/rsif.2014.0319] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tumour suppressor p53 is activated to induce cell-cycle arrest or apoptosis in the DNA damage response (DDR). p53 phosphorylation at Ser46 by HIPK2 (homeodomain-interacting protein kinase 2) is a critical event in apoptosis induction. Interestingly, HIPK2 is degraded by Mdm2 (a negative regulator of p53), whereas Mdm2 is downregulated by HIPK2 through several mechanisms. Here, we develop a four-module network model for the p53 pathway to clarify the role of interplay between Mdm2 and HIPK2 in the DDR evoked by ultraviolet radiation. By numerical simulations, we reveal that Mdm2-dependent HIPK2 degradation promotes cell survival after mild DNA damage and that inhibition of HIPK2 degradation is sufficient to trigger apoptosis. In response to severe damage, p53 phosphorylation at Ser46 is promoted by the accumulation of HIPK2 due to downregulation of nuclear Mdm2 in the later phase of the response. Meanwhile, the concentration of p53 switches from moderate to high levels, contributing to apoptosis induction. We show that the presence of three mechanisms for Mdm2 downregulation, i.e. repression of mdm2 expression, inhibition of its nuclear entry and HIPK2-induced degradation, guarantees the apoptosis of irreparably damaged cells. Our results agree well with multiple experimental observations, and testable predictions are also made. This work advances our understanding of the regulation of p53 activity in the DDR and suggests that HIPK2 should be a significant target for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Peng Zhang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China Kuang Yaming Honors School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Feng Liu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - Wei Wang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
29
|
Zhao Y, Yu H, Hu W. The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim Biophys Sin (Shanghai) 2014; 46:180-9. [PMID: 24389645 DOI: 10.1093/abbs/gmt147] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tumor suppressor p53 plays a central role in preventing tumor formation. The levels and activity of p53 is under tight regulation to ensure its proper function. Murine double minute 2 (MDM2), a p53 target gene, is an E3 ubiquitin ligase. MDM2 is a key negative regulator of p53 protein, and forms an auto-regulatory feedback loop with p53. MDM2 is an oncogene with both p53-dependent and p53-independent oncogenic activities, and often has increased expression levels in a variety of human cancers. MDM2 is highly regulated; the levels and function of MDM2 are regulated at the transcriptional, translational and post-translational levels. This review provides an overview of the regulation of MDM2. Dysregulation of MDM2 impacts significantly upon the p53 functions, and in turn the tumorigenesis. Considering the key role that MDM2 plays in human cancers, a better understanding of the regulation of MDM2 will help us to develop novel and more effective cancer therapeutic strategies to target MDM2 and activate p53 in cells.
Collapse
Affiliation(s)
- Yuhan Zhao
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903, USA
| | | | | |
Collapse
|
30
|
Coordination between p21 and DDB2 in the cellular response to UV radiation. PLoS One 2013; 8:e80111. [PMID: 24260342 PMCID: PMC3832521 DOI: 10.1371/journal.pone.0080111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 10/07/2013] [Indexed: 12/26/2022] Open
Abstract
The tumor suppressor p53 guides the cellular response to DNA damage mainly by regulating expression of target genes. The cyclin-dependent kinase inhibitor p21, which is induced by p53, can both arrest the cell cycle and inhibit apoptosis. Interestingly, p53-inducible DDB2 (damaged-DNA binding protein 2) promotes apoptosis by mediating p21 degradation after ultraviolet (UV)-induced DNA damage. Here, we developed an integrated model of the p53 network to explore how the UV-irradiated cell makes a decision between survival and death and how the activities of p21 and DDB2 are modulated. By numerical simulations, we found that p53 is activated progressively and the promoter selectivity of p53 depends on its concentration. For minor DNA damage, p53 settles at an intermediate level. p21 is induced by p53 to arrest the cell cycle via inhibiting E2F1 activity, allowing for DNA repair. The proapoptotic genes are expressed at low levels. For severe DNA damage, p53 undergoes a two-phase behavior and accumulates to high levels in the second phase. Consequently, those proapoptotic proteins accumulate remarkably. Bax activates the release of cytochrome c, while DDB2 promotes the degradation of p21, which leads to activation of E2F1 and induction of Apaf-1. Finally, the caspase cascade is activated to trigger apoptosis. We revealed that the downregulation of p21 is necessary for apoptosis induction and PTEN promotes apoptosis by amplifying p53 activation. This work demonstrates that how the dynamics of the p53 network can be finely regulated through feed-forward and feedback loops within the network and emphasizes the importance of p21 regulation in the DNA damage response.
Collapse
|
31
|
Yu Y, Huang H, Li J, Zhang J, Gao J, Lu B, Huang C. GADD45β mediates p53 protein degradation via Src/PP2A/MDM2 pathway upon arsenite treatment. Cell Death Dis 2013; 4:e637. [PMID: 23681232 PMCID: PMC3674369 DOI: 10.1038/cddis.2013.162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Growth arrest and DNA-damage-inducible, beta (GADD45β) has been reported to inhibit apoptosis via attenuating c-Jun N-terminal kinase (JNK) activation. We demonstrated here that GADD45β mediated its anti-apoptotic effect via promoting p53 protein degradation following arsenite treatment. We found that p53 protein expression was upregulated in GADD45β−/− cells upon arsenite exposure as compared with those in GADD45β+/+ cells. Further studies showed that GADD45β attenuated p53 protein expression through Src/protein phosphatase 2A/murine double minute 2-dependent p53 protein-degradation pathway. Moreover, we identified that GADD45β-mediated p53 protein degradation was crucial for its anti-apoptotic effect due to arsenite exposure, whereas increased JNK activation was not involved in the increased cell apoptotic response in GADD45β−/− cells under same experimental conditions. Collectively, our results demonstrate a novel molecular mechanism responsible for GADD45β protection of arsenite-exposed cells from cell death, which provides insight into our understanding of GADD45β function and a unique compound arsenite as both a cancer therapeutic reagent and an environmental carcinogen. Those novel findings may also enable us to design more effective strategies for utilization of arsenite for the treatment of cancers.
Collapse
Affiliation(s)
- Y Yu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Hu W, Feng Z, Levine AJ. The Regulation of Multiple p53 Stress Responses is Mediated through MDM2. Genes Cancer 2012; 3:199-208. [PMID: 23150753 DOI: 10.1177/1947601912454734] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The MDM2 oncogene is a key negative regulator of the p53 tumor suppressor protein. MDM2 and p53 form an autoregulatory feedback loop to tightly control the proper cellular responses to various stress signals in order to prevent mutations and tumor formation. The levels and function of the MDM2 protein, an E3 ubiquitin ligase, are regulated by a wide variety of extracellular and intracellular stress signals through distinct signaling pathways and mechanisms. These signals regulate the E3 ubiquitin ligase activity of MDM2, the ability of MDM2 to interact with p53 and a number of other proteins, and the cellular localization of MDM2, which in turn impact significantly upon p53 function. This review provides an overview of the regulation of MDM2 activities by the signals and factors that regulate the MDM2 protein, including genotoxic stress signals, oncogenic activation, cell cycle transition, ribosomal stress, chronic stress, neurohormones, and microRNAs. Disruption of the proper regulation of the MDM2-p53 negative feedback loop impacts significantly upon the frequency of tumorigenesis in a host. A better understanding of the complex regulation of MDM2 and its impact upon p53 function in cells under different conditions will help to develop novel and more effective strategies for cancer therapy and prevention.
Collapse
Affiliation(s)
- Wenwei Hu
- Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
| | | | | |
Collapse
|
33
|
Chen J. The Roles of MDM2 and MDMX Phosphorylation in Stress Signaling to p53. Genes Cancer 2012; 3:274-82. [PMID: 23150760 DOI: 10.1177/1947601912454733] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The p53 tumor suppressor is highly responsive to different physiological stresses such as abnormal cell proliferation, nutrient deprivation, and DNA damage. Distinct signaling mechanisms have evolved to activate p53, which in turn modulate numerous pathways to enhance fitness and survival of the organism. Elucidating the molecular mechanisms of these signaling events is critical for understanding tumor suppression by p53 and development of novel therapeutics. Studies in the past decade have established that MDM2 and MDMX are important targets of signaling input from different pathways. Here, we focus our discussion on MDM2 and MDMX phosphorylation, which is important for p53 activation by DNA damage. Investigations in this area have generated new insight into the inner workings of MDM2 and MDMX and underscore the importance of allosteric communication between different domains in achieving an efficient response to phosphorylation. It is likely that MDM2 and MDMX regulation by phosphorylation will share mechanistic similarities to other signaling hub molecules. Phosphorylation-independent p53 activators such as ARF and ribosomal proteins ultimately achieve the same outcome as phosphorylation, suggesting that they may induce similar changes in the structure and function of MDM2 and MDMX through protein-protein interactions.
Collapse
Affiliation(s)
- Jiandong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
34
|
Casein kinase 1α regulates an MDMX intramolecular interaction to stimulate p53 binding. Mol Cell Biol 2012; 32:4821-32. [PMID: 23028042 DOI: 10.1128/mcb.00851-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MDMX is an important regulator of p53 during embryonic development and malignant transformation. Previous studies showed that casein kinase 1α (CK1α) stably associates with MDMX, stimulates MDMX-p53 binding, and cooperates with MDMX to inactivate p53. However, the mechanism by which CK1α stimulates MDMX-p53 interaction remains unknown. Here, we present evidence that p53 binding by the MDMX N-terminal domain is inhibited by the central acidic region through an intramolecular interaction that competes for the p53 binding pocket. CK1α binding to the MDMX central domain and phosphorylation of S289 disrupts the intramolecular interaction, allowing the N terminus to bind p53 with increased affinity. After DNA damage, the MDMX-CK1α complex is disrupted by Chk2-mediated phosphorylation of MDMX at S367, leading to reduced MDMX-p53 binding. Therefore, CK1α is an important functional partner of MDMX. DNA damage activates p53 in part by disrupting CK1α-MDMX interaction and reducing MDMX-p53 binding affinity.
Collapse
|
35
|
Induction of robust de novo centrosome amplification, high-grade spindle multipolarity and metaphase catastrophe: a novel chemotherapeutic approach. Cell Death Dis 2012; 3:e346. [PMID: 22785532 PMCID: PMC3406581 DOI: 10.1038/cddis.2012.82] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Centrosome amplification (CA) and resultant chromosomal instability have long been associated with tumorigenesis. However, exacerbation of CA and relentless centrosome declustering engender robust spindle multipolarity (SM) during mitosis and may induce cell death. Recently, we demonstrated that a noscapinoid member, reduced bromonoscapine, (S)-3-(R)-9-bromo-5-(4,5-dimethoxy-1,3-dihydroisobenzofuran-1-yl)-4-methoxy-6-methyl-5,6,7,8-tetrahydro-[1,3]dioxolo-[4,5-g]isoquinoline (Red-Br-nos), induces reactive oxygen species (ROS)-mediated autophagy and caspase-independent death in prostate cancer PC-3 cells. Herein, we show that Red-Br-nos induces ROS-dependent DNA damage that resulted in high-grade CA and SM in PC-3 cells. Unlike doxorubicin, which causes double-stranded DNA breaks and chronic G2 arrest accompanied by ‘templated' CA, Red-Br-nos-mediated DNA damage elicits de novo CA during a transient S/G2 stall, followed by checkpoint abrogation and mitotic entry to form aberrant mitotic figures with supernumerary spindle poles. Attenuation of multipolar phenotype in the presence of tiron, a ROS inhibitor, indicated that ROS-mediated DNA damage was partly responsible for driving CA and SM. Although a few cells (∼5%) yielded to aberrant cytokinesis following an ‘anaphase catastrophe', most mitotically arrested cells (∼70%) succumbed to ‘metaphase catastrophe,' which was caspase-independent. This report is the first documentation of rapid de novo centrosome formation in the presence of parent centrosome by a noscapinoid family member, which triggers death-inducing SM via a unique mechanism that distinguishes it from other ROS-inducers, conventional DNA-damaging agents, as well as other microtubule-binding drugs.
Collapse
|
36
|
Li L, Cui D, Zheng SJ, Lou H, Tang J. Regulation of Actinomycin D induced upregulation of Mdm2 in H1299 cells. DNA Repair (Amst) 2012; 11:112-9. [DOI: 10.1016/j.dnarep.2011.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Abstract
MDM2 is a major regulator of p53 by acting as a ubiquitin E3 ligase. The central acidic domain and C-terminal RING domain of MDM2 are both indispensable for ubiquitination of p53. Our previous study suggested that ATM phosphorylation of MDM2 near the C terminus inhibits RING domain oligomerization, resulting in p53 stabilization after DNA damage. We present here evidence that these modifications allosterically regulate the functions of both acidic domain and RING domain of MDM2. Using chemical cross-linking, we show that the MDM2 RING domain forms oligomers including dimer and higher-order complexes in vivo. RING domain dimerization efficiency is negatively regulated by upstream sequence. ATM-mediated phosphorylation of the upstream sequence further inhibits RING dimerization. Forced oligomerization of MDM2 partially overcomes the inhibitory effect of phosphorylation and stimulates p53 ubiquitination. Furthermore, the ability of MDM2 acidic domain to bind p53 core domain and induce p53 misfolding are also suppressed by the same C-terminal ATM sites after DNA damage. These results suggest that the acidic domain and RING domain of MDM2 are both allosterically coupled to the intervening ATM sites, which enables the same modification to regulate multiple MDM2 functions critical for p53 ubiquitination.
Collapse
|
38
|
Batchelor E, Loewer A, Mock C, Lahav G. Stimulus-dependent dynamics of p53 in single cells. Mol Syst Biol 2011; 7:488. [PMID: 21556066 PMCID: PMC3130553 DOI: 10.1038/msb.2011.20] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 03/07/2011] [Indexed: 12/20/2022] Open
Abstract
p53 exhibits a single non-excitable pulse in response to UV radiation, which contrasts with the excitable series of undamped pulses induced by DNA double-strand breaks. The authors find that these behaviors are conferred by specific regulatory connections in the p53 network. Many biological networks respond to various inputs through a common signaling molecule that triggers distinct cellular outcomes. One potential mechanism for achieving specific input–output relationships is to trigger distinct dynamical patterns in response to different stimuli. Here we focused on the dynamics of p53, a tumor suppressor activated in response to cellular stress. We quantified the dynamics of p53 in individual cells in response to UV and observed a single pulse that increases in amplitude and duration in proportion to the UV dose. This graded response contrasts with the previously described series of fixed pulses in response to γ-radiation. We further found that while γ-triggered p53 pulses are excitable, the p53 response to UV is not excitable and depends on continuous signaling from the input-sensing kinases. Using mathematical modeling and experiments, we identified feedback loops that contribute to specific features of the stimulus-dependent dynamics of p53, including excitability and input-duration dependency. Our study shows that different stresses elicit different temporal profiles of p53, suggesting that modulation of p53 dynamics might be used to achieve specificity in this network.
Collapse
Affiliation(s)
- Eric Batchelor
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
39
|
Cheng Q, Chen J. The phenotype of MDM2 auto-degradation after DNA damage is due to epitope masking by phosphorylation. Cell Cycle 2011; 10:1162-6. [PMID: 21386656 DOI: 10.4161/cc.10.7.15249] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It is widely accepted that DNA damage induces rapid degradation of MDM2 through phosphorylation, resulting in a transient reduction of MDM2 level. Elimination of MDM2 is a logical mechanism that stabilizes p53. This phenomenon has been reproduced by many independent studies and is frequently referenced. Here we present evidence that only phosphorylation-sensitive antibodies SMP14 and 2A10, but not other MDM2 antibodies, can detect robust down-regulation of MDM2 after DNA damage. Therefore, we conclude that DNA damage does not accelerate MDM2 auto-degradation. SMP14 and 2A10 are frequently used to detect human and mouse MDM2, respectively. While it is not clear whether the discrepancy is entirely due to the use of these antibodies, our results suggest that epitope masking by phosphorylation should be an important consideration when interpreting results of MDM2 analysis by SMP14 and 2A10.
Collapse
Affiliation(s)
- Qian Cheng
- Molecular Oncology Department, Moffitt Cancer Center; Tampa, FL USA
| | | |
Collapse
|
40
|
Wang Z, Li B. Mdm2 links genotoxic stress and metabolism to p53. Protein Cell 2011; 1:1063-72. [PMID: 21213101 DOI: 10.1007/s13238-010-0140-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 11/30/2010] [Indexed: 01/06/2023] Open
Abstract
Mouse double minute 2 (Mdm2) gene was isolated from a cDNA library derived from transformed mouse 3T3 cells, and was classified as an oncogene as it confers 3T3 and Rat2 cells tumorigenicity when overexpressed. It encodes a nucleocytoplasmic shuttling ubiquitin E3 ligase, with its main target being tumor suppressor p53, which is mutated in more than 50% of human primary tumors. Mdm2's oncogenic activity is mainly mediated by p53, which is activated by various stresses, especially genotoxic stress, via Atm (ataxia telangiectasia mutated) and Atr (Atm and Rad3-related). Activated p53 inhibits cell proliferation, induces apoptosis or senescence, and maintains genome integrity. Mdm2 is also a target gene of p53 transcription factor. Thus, Mdm2 and p53 form a feedback regulatory loop. External and internal cues, through multiple signaling pathways, can act on Mdm2 to regulate p53 levels and cell proliferation, death, and senescence. This review will focus on how Mdm2 is regulated under genotoxic stress, and by the Akt1-mTOR-S6K1 pathway that is activated by insulin, growth factors, amino acids, or energy status.
Collapse
Affiliation(s)
- Zhongfeng Wang
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | | |
Collapse
|
41
|
Freeman AK, Monteiro AN. Phosphatases in the cellular response to DNA damage. Cell Commun Signal 2010; 8:27. [PMID: 20860841 PMCID: PMC2954851 DOI: 10.1186/1478-811x-8-27] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/22/2010] [Indexed: 12/11/2022] Open
Abstract
In the last fifteen years, rapid progress has been made in delineating the cellular response to DNA damage. The DNA damage response network is composed of a large number of proteins with different functions that detect and signal the presence of DNA damage in order to coordinate DNA repair with a variety of cellular processes, notably cell cycle progression. This signal, which radiates from the chromatin template, is driven primarily by phosphorylation events, mainly on serine and threonine residues. While we have accumulated detailed information about kinases and their substrates our understanding of the role of phosphatases in the DNA damage response is still preliminary. Identifying the phosphatases and their regulation will be instrumental to obtain a complete picture of the dynamics of the DNA damage response. Here we give an overview of the DNA damage response in mammalian cells and then review the data on the role of different phosphatases and discuss their biological relevance.
Collapse
Affiliation(s)
- Alyson K Freeman
- Risk Assessment, Detection, and Intervention Program, H, Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, 33612, USA.
| | | |
Collapse
|
42
|
Lai KP, Leong WF, Chau JFL, Jia D, Zeng L, Liu H, He L, Hao A, Zhang H, Meek D, Velagapudi C, Habib SL, Li B. S6K1 is a multifaceted regulator of Mdm2 that connects nutrient status and DNA damage response. EMBO J 2010; 29:2994-3006. [PMID: 20657550 DOI: 10.1038/emboj.2010.166] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 06/30/2010] [Indexed: 12/28/2022] Open
Abstract
p53 mediates DNA damage-induced cell-cycle arrest, apoptosis, or senescence, and it is controlled by Mdm2, which mainly ubiquitinates p53 in the nucleus and promotes p53 nuclear export and degradation. By searching for the kinases responsible for Mdm2 S163 phosphorylation under genotoxic stress, we identified S6K1 as a multifaceted regulator of Mdm2. DNA damage activates mTOR-S6K1 through p38alpha MAPK. The activated S6K1 forms a tighter complex with Mdm2, inhibits Mdm2-mediated p53 ubiquitination, and promotes p53 induction, in addition to phosphorylating Mdm2 on S163. Deactivation of mTOR-S6K1 signalling leads to Mdm2 nuclear translocation, which is facilitated by S163 phosphorylation, a reduction in p53 induction, and an alteration in p53-dependent cell death. These findings thus establish mTOR-S6K1 as a novel regulator of p53 in DNA damage response and likely in tumorigenesis. S6K1-Mdm2 interaction presents a route for cells to incorporate the metabolic/energy cues into DNA damage response and links the aging-controlling Mdm2-p53 and mTOR-S6K pathways.
Collapse
Affiliation(s)
- Keng Po Lai
- Division of Cancer and Developmental Biology, Institute of Molecular and Cell Biology, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Waning DL, Lehman JA, Batuello CN, Mayo LD. Controlling the Mdm2-Mdmx-p53 Circuit. Pharmaceuticals (Basel) 2010; 3:1576-1593. [PMID: 20651945 PMCID: PMC2907906 DOI: 10.3390/ph3051576] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 04/26/2010] [Accepted: 05/11/2010] [Indexed: 02/07/2023] Open
Abstract
The p53 tumor suppressor is a key protein in maintaining the integrity of the genome by inducing either cell cycle arrest or apoptosis following cellular stress signals. Two human family members, Mdm2 and Mdmx, are primarily responsible for inactivating p53 transcription and targeting p53 protein for ubiquitin-mediated degradation. In response to genotoxic stress, post-translational modifications to p53, Mdm2 and Mdmx stabilize and activate p53. The role that phosphorylation of these molecules plays in the cellular response to genotoxic agents has been extensively studied with respect to cancer biology. In this review, we discuss the main phosphorylation events of p53, Mdm2 and Mdmx in response to DNA damage that are important for p53 stability and activity. In tumors that harbor wild-type p53, reactivation of p53 by modulating both Mdm2 and Mdmx signaling is well suited as a therapeutic strategy. However, the rationale for development of kinase inhibitors that target the Mdm2-Mdmx-p53 axis must be carefully considered since modulation of certain kinase signaling pathways has the potential to destabilize and inactivate p53.
Collapse
Affiliation(s)
- David L. Waning
- Herman B Wells Center for Pediatric Research, 980 West Walnut, Walther Hall R3-C548, Indianapolis, IN 46202, USA
| | - Jason A. Lehman
- Herman B Wells Center for Pediatric Research, 980 West Walnut, Walther Hall R3-C548, Indianapolis, IN 46202, USA
| | - Christopher N. Batuello
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 4053, Indianapolis, IN 46202, USA
| | - Lindsey D. Mayo
- Herman B Wells Center for Pediatric Research, 980 West Walnut, Walther Hall R3-C548, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 4053, Indianapolis, IN 46202, USA
| |
Collapse
|
44
|
Cheng Q, Chen J. Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle 2010; 9:472-8. [PMID: 20081365 DOI: 10.4161/cc.9.3.10556] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
p53 suppresses tumor development by responding to unauthorized cell proliferation, growth factor or nutrient deprivation, and DNA damage. Distinct pathways have been identified that cause p53 activation, including ARF-dependent response to oncogene activation, ribosomal protein-mediated response to abnormal rRNA synthesis, and ATM-dependent response to DNA damage. Elucidating the mechanisms of these signaling events are critical for understanding tumor suppression by p53 and development of novel cancer therapeutics. More than a decade of research has established the ATM kinase as a key molecule that activates p53 after DNA damage. Our recent study revealed that ATM phosphorylation of MDM2 is likely to be the key step in causing p53 stabilization. Upon activation by ionizing irradiation, ATM phosphorylates MDM2 on multiple sites near its RING domain. These modifications inhibit the ability of MDM2 to poly-ubiquitinate p53, thus leading to its stabilization. MDM2 phosphorylation does not inactivate its E3 ligase activity per se, since MDM2 self-ubiquitination and MDMX ubiquitination functions are retained. The selective inhibition of p53 poly-ubiquitination is accomplished through disrupting MDM2 oligomerization that may provide a scaffold for processive elongation of poly ubiquitin chains. These findings suggest a novel model of p53 activation and a general mechanism of E3 ligase regulation by phosphorylation.
Collapse
Affiliation(s)
- Qian Cheng
- Molecular Oncology Department, Mofftt Cancer Center, Tampa, FL, USA
| | | |
Collapse
|
45
|
ATM activates p53 by regulating MDM2 oligomerization and E3 processivity. EMBO J 2010; 28:3857-67. [PMID: 19816404 DOI: 10.1038/emboj.2009.294] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Accepted: 09/09/2009] [Indexed: 11/09/2022] Open
Abstract
Rapid activation of p53 by ionizing irradiation is a classic DNA damage response mediated by the ATM kinase. However, the major signalling target and mechanism that lead to p53 stabilization are unknown. We show in this report that ATM induces p53 accumulation by phosphorylating the ubiquitin E3 ligase MDM2. Multiple ATM target sites near the MDM2 RING domain function in a redundant manner to provide robust DNA damage signalling. In the absence of DNA damage, the MDM2 RING domain forms oligomers that mediate p53 poly ubiquitination and proteasomal degradation. Phosphorylation by ATM inhibits RING domain oligomerization, specifically suppressing p53 poly ubiquitination. Blocking MDM2 phosphorylation by alanine substitution of all six phosphorylation sites results in constitutive degradation of p53 after DNA damage. These observations show that ATM controls p53 stability by regulating MDM2 RING domain oligomerization and E3 ligase processivity. Promoting or disrupting E3 oligomerization may be a general mechanism by which signalling kinases regulate ubiquitination reactions, and a potential target for therapeutic intervention.
Collapse
|
46
|
Abstract
The p53 protein is one of the most important tumor suppressor proteins. Normally, the p53 protein is in a latent state. However, when its activity is required, e.g. upon DNA damage, nucleotide depletion or hypoxia, p53 becomes rapidly activated and initiates transcription of pro-apoptotic and cell cycle arrest-inducing target genes. The activity of p53 is regulated both by protein abundance and by post-translational modifications of pre-existing p53 molecules. In the 30 years of p53 research, a plethora of modifications and interaction partners that modulate p53's abundance and activity have been identified and new ones are continuously discovered. This review will summarize our current knowledge on the regulation of p53 abundance and activity.
Collapse
Affiliation(s)
- Karen A Boehme
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | | |
Collapse
|
47
|
The regulation of MDM2 by multisite phosphorylation--opportunities for molecular-based intervention to target tumours? Semin Cancer Biol 2009; 20:19-28. [PMID: 19897041 DOI: 10.1016/j.semcancer.2009.10.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 10/29/2009] [Indexed: 02/04/2023]
Abstract
The p53 tumour suppressor is a tightly controlled transcription factor that coordinates a broad programme of gene expression in response to various cellular stresses leading to the outcomes of growth arrest, senescence, or apoptosis. MDM2 is an E3 ubiquitin ligase that plays a key role in maintaining p53 at critical physiological levels by targeting it for proteasome-mediated degradation. Expression of the MDM2 gene is p53-dependent and thus p53 and MDM2 operate within a negative feedback loop in which p53 controls the levels of its own regulator. Induction and activation of p53 involves mainly the uncoupling of p53 from its negative regulators, principally MDM2 and MDMX, an MDM2-related and -interacting protein that inhibits p53 transactivation function. MDM2 is tightly regulated through various mechanisms including gene expression, protein turnover (mediated by auto-ubiquitylation), protein-protein interaction with key regulators, and post-translational modification, mainly, but not exclusively, by multisite phosphorylation. The purpose of the present article is to review our current knowledge of the signalling mechanisms that focus on MDM2, and indeed MDMX, through both phosphorylation mechanisms and peptide-docking events and to consider the wider implications of these regulatory events in the context of coordinated regulation of the p53 response. This analysis also provides an opportunity to consider the signalling pathways regulating MDM2 as potential targets for non-genotoxic therapies aimed at restoring p53 function in tumour cells.
Collapse
|
48
|
Ohtsubo C, Shiokawa D, Kodama M, Gaiddon C, Nakagama H, Jochemsen AG, Taya Y, Okamoto K. Cytoplasmic tethering is involved in synergistic inhibition of p53 by Mdmx and Mdm2. Cancer Sci 2009; 100:1291-9. [PMID: 19432880 PMCID: PMC11159218 DOI: 10.1111/j.1349-7006.2009.01180.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 01/28/2023] Open
Abstract
The mdm2 and mdmx oncogenes play essential yet nonredundant roles in synergistic inactivatiosn of p53. However, the biochemical mechanism by which Mdmx synergizes with Mdm2 to inhibit p53 function remains obscure. Here we demonstrate that, using nonphosphorylatable mutants of Mdmx, the cooperative inhibition of p53 by Mdmx and Mdm2 was associated with cytoplasmic localization of p53, and with an increase of the interaction of Mdmx to p53 and Mdm2 in the cytoplasm. In addition, the Mdmx mutant cooperates with Mdm2 to induce ubiquitination of p53 at C-terminal lysine residues, and the integrity of the C-terminal lysines was partly required for the cooperative inhibition. The expression of subcellular localization mutants of Mdmx revealed that subcellular localization of Mdmx dictated p53 localization, and that cytoplasmic Mdmx tethered p53 in the cytoplasm and efficiently inhibited p53 activity. RNAi-mediated inhibition of Mdmx or introduction of the nuclear localization mutant of Mdmx reduced cytoplasmic retention of p53 in neuroblastoma cells, in which cytoplasmic sequestration of p53 is involved in its inactivation. Our data indicate that cytoplasmic tethering of p53 mediated by Mdmx contributes to p53 inactivation in some types of cancer cells.
Collapse
Affiliation(s)
- Chihiro Ohtsubo
- Radiobiology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
DNA damage response of A549 cells treated with particulate matter (PM 10 ) of urban air pollutants. Cancer Lett 2009; 278:192-200. [DOI: 10.1016/j.canlet.2009.01.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/06/2009] [Accepted: 01/06/2009] [Indexed: 11/22/2022]
|
50
|
Bhattacharya S, Ray RM, Johnson LR. Role of polyamines in p53-dependent apoptosis of intestinal epithelial cells. Cell Signal 2009; 21:509-22. [DOI: 10.1016/j.cellsig.2008.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/05/2008] [Accepted: 12/08/2008] [Indexed: 01/18/2023]
|