1
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
2
|
Schmitt BM, Ampofo E, Stumpf H, Montenarh M, Götz C. The stability of CREB3/Luman is regulated by protein kinase CK2 phosphorylation. Biochem Biophys Res Commun 2020; 523:639-644. [PMID: 31941600 DOI: 10.1016/j.bbrc.2019.12.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/22/2019] [Indexed: 01/11/2023]
Abstract
CREB3 (Luman) is a family member of ER resident transcription factors, which are cleaved upon the induction of ER stress. Their N-terminal fragments shuttle into the nucleus where they regulate the transcription of target genes. Here, we found that human CREB3 is phosphorylated within its transcription activation domain on serine 46 by protein kinase CK2. Further analyses revealed that the phosphorylation of this site does neither affect the cleavage by S1P/S2P proteases, nor the nuclear localisation nor the transcriptional activity of CREB3. However, phosphorylation at serine 46 reduced the stability of CREB3.
Collapse
Affiliation(s)
- Beate Maria Schmitt
- Institute for Clinical and Experimental Surgery, Saarland University, Building 65, 66424, Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Building 65, 66424, Homburg, Germany
| | - Heike Stumpf
- Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66424, Homburg, Germany
| | - Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66424, Homburg, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66424, Homburg, Germany.
| |
Collapse
|
3
|
Crncec A, Hochegger H. Triggering mitosis. FEBS Lett 2019; 593:2868-2888. [PMID: 31602636 DOI: 10.1002/1873-3468.13635] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/28/2022]
Abstract
Entry into mitosis is triggered by the activation of cyclin-dependent kinase 1 (Cdk1). This simple reaction rapidly and irreversibly sets the cell up for division. Even though the core step in triggering mitosis is so simple, the regulation of this cellular switch is highly complex, involving a large number of interconnected signalling cascades. We do have a detailed knowledge of most of the components of this network, but only a poor understanding of how they work together to create a precise and robust system that ensures that mitosis is triggered at the right time and in an orderly fashion. In this review, we will give an overview of the literature that describes the Cdk1 activation network and then address questions relating to the systems biology of this switch. How is the timing of the trigger controlled? How is mitosis insulated from interphase? What determines the sequence of events, following the initial trigger of Cdk1 activation? Which elements ensure robustness in the timing and execution of the switch? How has this system been adapted to the high levels of replication stress in cancer cells?
Collapse
Affiliation(s)
- Adrijana Crncec
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
4
|
Chen F, Jin X, Zhao J, Gou S. DN604: A platinum(II) drug candidate with classic SAR can induce apoptosis via suppressing CK2-mediated p-cdc25C subcellular localization in cancer cells. Exp Cell Res 2018; 364:68-83. [DOI: 10.1016/j.yexcr.2018.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 01/09/2023]
|
5
|
de Gooijer MC, van den Top A, Bockaj I, Beijnen JH, Würdinger T, van Tellingen O. The G2 checkpoint-a node-based molecular switch. FEBS Open Bio 2017; 7:439-455. [PMID: 28396830 PMCID: PMC5377395 DOI: 10.1002/2211-5463.12206] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/09/2017] [Accepted: 01/18/2017] [Indexed: 12/20/2022] Open
Abstract
Tight regulation of the eukaryotic cell cycle is paramount to ensure genomic integrity throughout life. Cell cycle checkpoints are present in each phase of the cell cycle and prevent cell cycle progression when genomic integrity is compromised. The G2 checkpoint is an intricate signaling network that regulates the progression of G2 to mitosis (M). We propose here a node-based model of G2 checkpoint regulation, in which the action of the central CDK1-cyclin B1 node is determined by the concerted but opposing activities of the Wee1 and cell division control protein 25C (CDC25C) nodes. Phosphorylation of both Wee1 and CDC25C at specific sites determines their subcellular localization, driving them either toward activity within the nucleus or to the cytoplasm and subsequent ubiquitin-mediated proteasomal degradation. In turn, this subcellular balance of the Wee1 and CDC25C nodes is directed by the action of the PLK1 and CHK1 nodes via what we have termed the 'nuclear and cytoplasmic decision states' of Wee1 and CDC25C. The proposed node-based model provides an intelligible structure of the complex interactions that govern the decision to delay or continue G2/M progression. The model may also aid in predicting the effects of agents that target these G2 checkpoint nodes.
Collapse
Affiliation(s)
- Mark C. de Gooijer
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Arnout van den Top
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Irena Bockaj
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy and PharmacologyThe Netherlands Cancer Institute/Slotervaart HospitalAmsterdamThe Netherlands
- Division of Drug ToxicologyFaculty of PharmacyUtrecht UniversityThe Netherlands
- Division of Biomedical AnalysisFaculty of ScienceUtrecht UniversityThe Netherlands
| | - Thomas Würdinger
- Neuro‐oncology Research GroupDepartments of Neurosurgery and Pediatric Oncology/HematologyCancer Center AmsterdamVU University Medical CenterThe Netherlands
- Molecular Neurogenetics UnitDepartments of Neurology and RadiologyMassachusetts General HospitalBostonMAUSA
- Neuroscience ProgramHarvard Medical SchoolBostonMAUSA
| | - Olaf van Tellingen
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
6
|
Casein kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm. Oncogene 2014; 34:4702-12. [PMID: 25486430 PMCID: PMC4459945 DOI: 10.1038/onc.2014.395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 08/04/2014] [Accepted: 09/05/2014] [Indexed: 02/07/2023]
Abstract
Nuclear Foxc2 is a transcriptional regulator of mesenchymal transformation during developmental epithelial-mesenchymal transition (EMT) and has been associated with EMT in malignant epithelia. Our laboratory has shown that in normal epithelial cells Foxc2 is maintained in the cytoplasm where it promotes an epithelial phenotype. The Foxc2 amino terminus has a consensus casein kinase 2 (CK2) phosphorylation site at serine 124, and we now show that CK2 associates with Foxc2 and phosphorylates this site in vitro. Knockdown or inhibition of the CK2α/α' kinase subunit in epithelial cells causes de novo accumulation of Foxc2 in the nucleus. Mutation of serine 124 to leucine promotes constitutive nuclear localization of Foxc2 and expression of mesenchymal genes, whereas an S124D phosphomimetic leads to constitutive cytoplasmic localization and epithelial maintenance. In malignant breast cancer cells, the CK2β regulatory subunit is downregulated and FOXC2 is found in the nucleus, correlating with an increase in α-smooth muscle actin (SMA) expression. Restoration of CK2β expression in these cells results in cytoplasmic localization of Foxc2, decreased α-SMA expression and reduced cell migration and invasion. In contrast, knockdown of CK2β in normal breast epithelial cells leads to FOXC2 nuclear localization, decreased E-cadherin expression, increased α-SMA and vimentin expression, and enhanced cell migration and invasion. Based on these findings, we propose that Foxc2 is functionally maintained in the cytoplasm of normal epithelial cells by CK2α/α'-mediated phosphorylation at serine 124, which is dependent on proper targeting of the holoenzyme via the CK2β regulatory subunit.
Collapse
|
7
|
Ampofo E, Welker S, Jung M, Müller L, Greiner M, Zimmermann R, Montenarh M. CK2 phosphorylation of human Sec63 regulates its interaction with Sec62. Biochim Biophys Acta Gen Subj 2012; 1830:2938-45. [PMID: 23287549 DOI: 10.1016/j.bbagen.2012.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Protein kinase CK2 is a pleiotropic enzyme which is ubiquitously expressed in eukaryotic cells. Several years ago CK2 was found to be associated with the mammalian endoplasmic reticulum. So far nothing is known about the function of CK2 at the ER. METHODS CK2 phosphorylation sites in the polypeptide chain of Sec63 were mapped using deletion mutants and a peptide library. Binding of Sec63 to CK2 and to Sec62 was analyzed by pull-down assays and by co-immunoprecipitation RESULTS Sec63 was identified as a novel substrate and binding partner of protein kinase CK2. We identified serine 574, serine 576 and serine 748 as CK2 phosphorylation sites. Phosphorylation of Sec63 by CK2 enhanced its binding to Sec62. CONCLUSIONS Protein kinase CK2 phosphorylation of Sec63 leads to an enhanced binding of Sec63 to Sec62. This complex formation is a prerequisite for a functional ER protein translocon. GENERAL SIGNIFICANCE Thus, our present data indicate a regulatory role of CK2 in the ER protein translocation.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Medizinische Biochemie und Molekularbiologie und Kompetenzzentrum Molekulare Medizin, Universität des Saarlandes, Gebäude 44, 66424 Homburg, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
St-Denis NA, Bailey ML, Parker EL, Vilk G, Litchfield DW. Localization of phosphorylated CK2α to the mitotic spindle requires the peptidyl-prolyl isomerase Pin1. J Cell Sci 2011; 124:2341-8. [DOI: 10.1242/jcs.077446] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CK2 is a serine/threonine kinase with many substrates, largely unknown modes of regulation and essential roles in mitotic progression. CK2α, a catalytic subunit of CK2, is phosphorylated in mitosis, and here we examine the effect of phosphorylation on CK2α localization. Using phosphospecific antibodies, we show that CK2α localizes to the mitotic spindle in a phosphorylation-dependent manner. Mitotic spindle localization requires the unique C-terminus of CK2α, and involves a novel regulatory mechanism in which phosphorylation of CK2α facilitates binding to the peptidyl-prolyl isomerase Pin1, which is required for CK2α mitotic spindle localization. This could explain how the constitutive activity of CK2α might be targeted towards mitotic substrates. Furthermore, because Pin1 has many important spindle substrates, this might represent a general mechanism for localization of mitotic signalling proteins.
Collapse
Affiliation(s)
- Nicole A. St-Denis
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Melanie L. Bailey
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Erin L. Parker
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Greg Vilk
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - David W. Litchfield
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
9
|
Schneider CC, Götz C, Hessenauer A, Günther J, Kartarius S, Montenarh M. Down-regulation of CK2 activity results in a decrease in the level of cdc25C phosphatase in different prostate cancer cell lines. Mol Cell Biochem 2011; 356:177-84. [DOI: 10.1007/s11010-011-0946-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
|
10
|
Zwicker F, Ebert M, Huber PE, Debus J, Weber KJ. A specific inhibitor of protein kinase CK2 delays gamma-H2Ax foci removal and reduces clonogenic survival of irradiated mammalian cells. Radiat Oncol 2011; 6:15. [PMID: 21310046 PMCID: PMC3045342 DOI: 10.1186/1748-717x-6-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 02/10/2011] [Indexed: 11/18/2022] Open
Abstract
Background The protein kinase CK2 sustains multiple pro-survival functions in cellular DNA damage response and its level is tightly regulated in normal cells but elevated in cancers. Because CK2 is thus considered as potential therapeutic target, DNA double-strand break (DSB) formation and rejoining, apoptosis induction and clonogenic survival was assessed in irradiated mammalian cells upon chemical inhibition of CK2. Methods MRC5 human fibroblasts and WIDR human colon carcinoma cells were incubated with highly specific CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB), or mock-treated, 2 hours prior to irradiation. DSB was measured by pulsed-field electrophoresis (PFGE) as well as gamma-H2AX foci formation and removal. Apoptosis induction was tested by DAPI staining and sub-G1 flow cytometry, survival was quantified by clonogenic assay. Results TBB treatment did not affect initial DNA fragmention (PFGE; up to 80 Gy) or foci formation (1 Gy). While DNA fragment rejoining (PFGE) was not inhibited by the drug, TBB clearly delayed gamma-H2AX foci disappearence during postirradiation incubation. No apoptosis induction could be detected for up to 38 hours for both cell lines and exposure conditions (monotherapies or combination), but TBB treatment at this moderately toxic concentration of 20 μM (about 40% survival) enhanced radiation-induced cell killing in the clonogenic assay. Conclusions The data imply a role of CK2 in gamma-H2AX dephosporylation, most likely through its known ability to stimulate PP2A phosphatase, rather than DSB rejoining. The slight but definite clonogenic radiosensitization by TBB does apparently not result from interference with an apoptosis suppression function of CK2 in these cells but could reflect inhibitor-induced uncoupling of DNA damage response decay from break ligation.
Collapse
Affiliation(s)
- Felix Zwicker
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
11
|
Götz C, Müller A, Montenarh M, Zimmermann R, Dudek J. The ER-membrane-resident Hsp40 ERj1 is a novel substrate for protein kinase CK2. Biochem Biophys Res Commun 2009; 388:637-42. [DOI: 10.1016/j.bbrc.2009.07.146] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 07/29/2009] [Indexed: 11/25/2022]
|
12
|
Carneiro ACD, Fragel-Madeira L, Silva-Neto MA, Linden R. A role for CK2 upon interkinetic nuclear migration in the cell cycle of retinal progenitor cells. Dev Neurobiol 2008; 68:620-31. [PMID: 18278803 DOI: 10.1002/dneu.20613] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In developing retina, the nucleus of the elongated neuroepithelial cells undergoes interkinetic nuclear migration (INM), that is it migrates back and forth across the proliferative layer during the cell cycle. S-phase occurs at the basal side, while M-phase occurs at the apical margin of the retinal progenitors. G1 and G2-phases occur along the nuclear migration pathway. We tested whether this feature of the retinal cell cycle is controlled by CK2, which, among its many substrates, phosphorylates both molecular motors and cytoskeletal components. Double immunolabeling showed that CK2 is contained in BrdU-labeled retinal progenitors. INM was examined after pulse labeling the retina of newborn rats with BrdU, by plotting nuclear movement from basal to apical sides of the retinal progenitors during G2. The CK2 specific inhibitor 4,5,6,7-tetrabromobenzotriazole inhibited the activity of rat retinal CK2, and blocked nuclear movement proper in a dose-dependent way. No apoptosis was detected, and total numbers of BrdU-labeled nuclei remained constant following treatment. Immunohistochemistry showed that, following inhibition of CK2, the tubulin cytoskeleton is disorganized, with reduced acetylated and increased tyrosinated tubulin. This indicates a reduction in stable microtubules, with accumulation of free tubulin dimers. The results show that CK2 activity is required for INM in retinal progenitor cells.
Collapse
|
13
|
Bouché JP, Froment C, Dozier C, Esmenjaud-Mailhat C, Lemaire M, Monsarrat B, Burlet-Schiltz O, Ducommun B. NanoLC-MS/MS analysis provides new insights into the phosphorylation pattern of Cdc25B in vivo: full overlap with sites of phosphorylation by Chk1 and Cdk1/cycB kinases in vitro. J Proteome Res 2008; 7:1264-73. [PMID: 18237113 DOI: 10.1021/pr700623p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NanoLC-MS/MS analysis was used to characterize the phosphorylation pattern in vivo of CDC25B3 (phosphatase splice variant 1) expressed in a human cell line and to compare it to the phosphorylation of CDC25B3 by Cdk1/cyclin B and Chk1 in vitro. Cellular CDC25B3 was purified from U2OS cells conditionally overexpressing the phosphatase. Eighteen sites were detectably phosphorylated in vivo. Nearly all existing (S/T)P sites were phosphorylated in vivo and in vitro. Eight non(S/T)P sites were phosphorylated in vivo. All these sites could be phosphorylated by kinase Chk1, which phosphorylated a total of 11 sites in vitro, with consensus sequence (R/K) X(2-3) (S/P)-non P. Nearly half of the sites identified in this study were not previously described and were not homologous to sites reported to be phosphorylated in other CDC25 species. We also show that in vivo a significant part of CDC25B molecules can be hyperphosphorylated, with up to 13 phosphates per phosphatase molecule.
Collapse
Affiliation(s)
- Jean-Pierre Bouché
- LBCMCP-CNRS-IFR109, Institut d'Exploration Fonctionnelle des Génomes, University of Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Esmenjaud-Mailhat C, Lobjois V, Froment C, Golsteyn RM, Monsarrat B, Ducommun B. Phosphorylation of CDC25C at S263 controls its intracellular localisation. FEBS Lett 2007; 581:3979-85. [PMID: 17662724 DOI: 10.1016/j.febslet.2007.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Revised: 07/06/2007] [Accepted: 07/11/2007] [Indexed: 11/26/2022]
Abstract
CDC25C phosphatase is a key actor in cell cycle progression that controls the activation of CDK1-cyclin B at mitosis. Its activity is known to be highly regulated by a number of signalling pathway-activated kinases resulting in its phosphorylation on multiple residues. In this study, we have purified CDC25C from cells and have used a proteomic approach to identify new regulatory phosphorylations. Here, we report the identification by mass spectrometry of a peptide monophosphorylated on serine 263. We demonstrate by cell imaging that mutation of S263 to alanine leads to a nuclear accumulation of CDC25C that is further reinforced by leptomycin-B. We propose that phosphorylation at S263 is part of the regulatory mechanism that modulates nuclear import of CDC25C, thus preventing cytoplasm to nucleus shuttling.
Collapse
Affiliation(s)
- Charlotte Esmenjaud-Mailhat
- LBCMCP-CNRS, IFR109 Institut d'Exploration Fonctionnelle des Génomes, University of Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | | | | | | | | | | |
Collapse
|
15
|
Mahalakshmi RN, Nagashima K, Ng MY, Inagaki N, Hunziker W, Béguin P. Nuclear Transport of Kir/Gem Requires Specific Signals and Importin α5 and Is Regulated by Calmodulin and Predicted Serine Phosphorylations. Traffic 2007; 8:1150-63. [PMID: 17605761 DOI: 10.1111/j.1600-0854.2007.00598.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kir/Gem, together with Rad, Rem and Rem2, is a member of the RGK small GTP-binding protein family. These multifunctional proteins regulate voltage-gated calcium channel (VGCC) activity and cell-shape remodeling. Calmodulin and 14-3-3 binding modulate the functions of RGK proteins. Intriguingly, abolishing the binding of calmodulin or calmodulin and 14-3-3 results in nuclear accumulation of RGK proteins. Under certain conditions, the Ca(v)beta3-subunit of VGCCs can be translocated into the nucleus along with the RGK proteins, resulting in channel inactivation. The mechanism by which nuclear localization of RGK proteins is accomplished and regulated, however, is unknown. Here, we identify specific nuclear localization signals (NLS) in Kir/Gem that are both required and sufficient for nuclear transport. Importin alpha5 binds to Kir/Gem, and its depletion using RNA interference impairs nuclear translocation of this RGK protein. Calmodulin and predicted phosphorylations on serine residues within or in the vicinity of a C-terminal bipartite NLS regulate nuclear translocation by interfering with the association between importinalpha5 and Kir/Gem. These predicted phosphorylations, however, do not affect Kir/Gem-mediated calcium channel downregulation but rather, as shown in the accompanying paper (Mahalakshmi RN, Ng MY, Guo K, Qi Z, Hunziker W, Béguin P. Nuclear localization of endogenous RGK proteins and modulation of cell shape remodeling by regulated nuclear transport. Traffic 2007; doi:10.1111/j.1600-0854.2007.00599.x), interfere with cell-shape remodeling.
Collapse
Affiliation(s)
- Ramasubbu N Mahalakshmi
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | | | | | | | | | | |
Collapse
|
16
|
Busch C, Barton O, Morgenstern E, Götz C, Günther J, Noll A, Montenarh M. The G2/M checkpoint phosphatase cdc25C is located within centrosomes. Int J Biochem Cell Biol 2007; 39:1707-13. [PMID: 17548228 DOI: 10.1016/j.biocel.2007.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 04/19/2007] [Accepted: 04/19/2007] [Indexed: 11/18/2022]
Abstract
cdc25C is a phosphatase which regulates the activity of the mitosis promoting factor cyclin B/cdk1 by dephosphorylation, thus triggering G(2)/M transition. The activity and the sub-cellular localisation of cdc25C are regulated by phosphorylation. It is well accepted that cdc25C has to enter the nucleus to activate the cyclin B/cdk1 complex at G(2)/M transition. Here, we will show that cdc25C is located in the cytoplasm at defined dense structures, which according to immunofluorescence analysis, electron microscopy as well as biochemical subfractionation, are proven to be the centrosomes. Since cyclin B and cdk1 are also located at the centrosomes, this subfraction of cdc25C might participate in the control of the onset of mitosis suggesting a further role for cdc25C at the centrosomes.
Collapse
Affiliation(s)
- Corinna Busch
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Gebäude 44, 66424 Homburg, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Noll A, Ruppenthal SL, Montenarh M. The mitotic phosphatase cdc25C at the Golgi apparatus. Biochem Biophys Res Commun 2006; 351:825-30. [PMID: 17097061 DOI: 10.1016/j.bbrc.2006.10.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 10/18/2006] [Indexed: 10/23/2022]
Abstract
cdc25C is a phosphatase which regulates the activity of the mitosis promoting factor cyclin B/cdk1 by dephosphorylation, thus triggering G(2)/M transition. The activity of cdc25C is regulated by phosphorylation which by itself is implicated in regulating the subcellular localization. It is well accepted that cdc25C has to enter the nucleus to activate the cyclin B/cdk1 complex at G(2)/M transition. Here, we will show that cdc25C is located in the cytoplasm at defined dense structures which by immunofluorescence analysis as well as by biochemical subfractionation turned out to be the Golgi apparatus. It will be further shown that cdc25C at the Golgi fraction is an active phosphatase suggesting an additional and new role of cdc25C at the Golgi apparatus.
Collapse
Affiliation(s)
- Andreas Noll
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Gebäude 44, 66424 Homburg, Germany
| | | | | |
Collapse
|
18
|
Lo HW, Ali-Seyed M, Wu Y, Bartholomeusz G, Hsu SC, Hung MC. Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1. J Cell Biochem 2006; 98:1570-83. [PMID: 16552725 DOI: 10.1002/jcb.20876] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many receptor tyrosine kinases (RTKs) can be detected in the cell nucleus, such as EGFR, HER-2, HER-3, HER-4, and fibroblast growth factor receptor. EGFR, HER-2 and HER-4 contain transactivational activity and function as transcription co-factors to activate gene promoters. High EGFR in tumor nuclei correlates with increased tumor proliferation and poor survival in cancer patients. However, the mechanism by which cell-surface EGFR translocates into the cell nucleus remains largely unknown. Here, we found that EGFR co-localizes and interacts with importins alpha1/beta1, carriers that are critical for macromolecules nuclear import. EGFR variant mutated at the nuclear localization signal (NLS) is defective in associating with importins and in entering the nuclei indicating that EGFR's NLS is critical for EGFR/importins interaction and EGFR nuclear import. Moreover, disruption of receptor internalization process using chemicals and forced expression of dominant-negative Dynamin II mutant suppressed nuclear entry of EGFR. Additional evidences suggest an involvement of endosomal sorting machinery in EGFR nuclear translocalization. Finally, we found that nuclear export of EGFR may involve CRM1 exportin as we detected EGFR/CRM1 interaction and markedly increased nuclear EGFR following exposure to leptomycin B, a CRM1 inhibitor. Collectively, these data suggest the importance of receptor endocytosis, endosomal sorting machinery, interaction with importins alpha1/beta1, and exportin CRM1 in EGFR nuclear-cytoplasmic trafficking. Together, our work sheds light into the nature and regulation of the nuclear EGFR pathway and provides a plausible mechanism by which cells shuttle cell-surface EGFR and potentially other RTKs through the nuclear pore complex and into the nuclear compartment.
Collapse
Affiliation(s)
- Hui-Wen Lo
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
19
|
Kim D, Tucker PW. A regulated nucleocytoplasmic shuttle contributes to Bright's function as a transcriptional activator of immunoglobulin genes. Mol Cell Biol 2006; 26:2187-201. [PMID: 16507996 PMCID: PMC1430300 DOI: 10.1128/mcb.26.6.2187-2201.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 12/08/2005] [Accepted: 12/21/2005] [Indexed: 11/20/2022] Open
Abstract
Bright/ARID3a has been implicated in mitogen- and growth factor-induced up-regulation of immunoglobulin heavy-chain (IgH) genes and in E2F1-dependent G1/S cell cycle progression. For IgH transactivation, Bright binds to nuclear matrix association regions upstream of certain variable region promoters and flanking the IgH intronic enhancer. While Bright protein was previously shown to reside within the nuclear matrix, we show here that a significant amount of Bright resides in the cytoplasm of normal and transformed B cells. Leptomycin B, chromosome region maintenance 1 (CRM1) overexpression, and heterokaryon experiments indicate that Bright actively shuttles between the nucleus and the cytoplasm in a CRM1-dependent manner. We mapped the functional nuclear localization signal to the N-terminal region of REKLES, a domain conserved within ARID3 paralogues. Residues within the C terminus of REKLES contain its nuclear export signal, whose regulation is primarily responsible for Bright shuttling. Growth factor depletion and cell synchronization experiments indicated that Bright shuttling during S phase of the cell cycle leads to an increase in its nuclear abundance. Finally, we show that shuttle-incompetent Bright point mutants, even if sequestered within the nucleus, are incapable of transactivating an IgH reporter gene. Therefore, regulation of Bright's cellular localization appears to be required for its function.
Collapse
Affiliation(s)
- Dongkyoon Kim
- University of Texas at Austin, Molecular Genetics and Microbiology, 1 University Station A5000, Room ESB-532, Austin, TX 78712-0162, USA
| | | |
Collapse
|
20
|
Bjørling-Poulsen M, Siehler S, Wiesmüller L, Meek D, Niefind K, Issinger OG. The 'regulatory' beta-subunit of protein kinase CK2 negatively influences p53-mediated allosteric effects on Chk2 activation. Oncogene 2005; 24:6194-200. [PMID: 15940255 DOI: 10.1038/sj.onc.1208762] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The 'regulatory' beta-subunit of protein kinase CK2 has previously been shown to interact with protein kinases such as A-Raf, c-Mos, Lyn and Chk1 in addition to the catalytic subunit of CK2. Sequence alignments suggest that these interactions have a structural basis, and hence other protein kinases harboring corresponding sequences may be potential interaction partners for CK2beta. We show here that Chk2 specifically interacts with CK2beta in vitro and in cultured cells, and that activation of Chk2 leads to a reduction of this interaction. Additionally, we show that the presence of the CK2beta-subunit significantly reduces the Chk2-catalysed phosphorylation of p53 in vitro. These findings support the notion that CK2beta can act as a general modulator of remote docking sites in protein kinase--substrate interactions.
Collapse
|
21
|
Hussain A, Cao D, Cheng H, Wen Z, Peng J. Identification of the conserved serine/threonine residues important for gibberellin-sensitivity of Arabidopsis RGL2 protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:88-99. [PMID: 16167898 DOI: 10.1111/j.1365-313x.2005.02512.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The DELLA proteins GAI, RGA, RGL1 and RGL2 in Arabidopsis are plant growth repressors, repressing diverse developmental processes. Studies have shown that gibberellin (GA) attenuates the repressive function of DELLA proteins by triggering their degradation via the proteasome pathway. However, it is not known if GA-induced protein degradation is the only pathway for regulating the bioactivity of DELLA proteins. We show here that tobacco BY2 cells represent a suitable system for studying GA signaling. RGL2 exists in a phosphorylated form in BY2 cells. RGL2 undergoes GA-induced degradation, and this process is blocked by proteasome inhibitors and serine/threonine phosphatase inhibitors; however, serine/threonine kinase inhibitors had no detectable effect, suggesting that dephosphorylation of serine/threonine is probably a prerequisite for degradation of RGL2 via the proteasome pathway. Site-directed substitution of all 17 conserved serine and threonine residues showed that six mutants (RGL2(S441D, RGL2(S542D), RGL2(T271E), RGL2(T319E), RGL2(T411E) and RGL2(T535E)) mimicking the status of constitutive phosphorylation are resistant to GA-induced degradation. This suggests that these sites are potential phosphorylation sites. A functional assay based on the expression of GA 20-oxidase revealed that RGL2(T271E) is probably a null mutant, RGL2(S441D), RGL2(S542D), RGL2(T319E) and RGL2(T411E) only retained about 4-17% of the activity of the wild type RGL2, whereas RGL2(T535E) retained about 66% of the activity of the wild type RGL2. However, expression of GA 20-oxidase in BY2 cells expressing these mutant proteins is still responsive to GA, suggesting that the stabilization of RGL2 protein is not the only pathway for regulating its bioactivity.
Collapse
Affiliation(s)
- Alamgir Hussain
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | | | | | | | | |
Collapse
|