1
|
Ashraf R, Adel M, Serya RAT, Ibrahim E, Haffez H, Soror S, Abouzid KAM. Design and synthesis of novel Hydroxamate and non-Hydroxamate HDAC inhibitors based on Chromone and Quinazolone scaffolds. Bioorg Chem 2025; 161:108514. [PMID: 40319810 DOI: 10.1016/j.bioorg.2025.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
The development of selective histone deacetylase (HDAC) inhibitors represents an encouraging approach for cancer therapy. In this study, we report design, synthesis, and biological evaluation of hydroxamate, amidoxime, and carboxylic acid-based derivatives as novel HDAC inhibitors. The synthesized compounds were assessed for their inhibitory activity against multiple HDAC isoforms, particularly HDAC6, 7, and 8. Compounds 13, 16, 20, and 26 exhibited potent and selective inhibition of HDAC6. Compound 26 exhibited the most potent inhibitory activity against HDAC6, with an IC50 value of 70 nM. Additionally, compounds 17 and 23 demonstrated significant broad-spectrum antiproliferative activity across various cancer cell lines compared to other tested derivatives. Furthermore, compounds 17 and 23 showed promising total pan-HDAC inhibitory activity. Subsequent biological studies revealed that compounds 13, 16, 17, 20, 23, and 26 induced a combination of early and late apoptosis along with necrosis. In silico studies, including molecular docking and ADME predictions, were also conducted. Collectively, these findings highlight the potential of these compounds as promising candidates for the development of a novel class of selective HDAC6 inhibitors in the future.
Collapse
Affiliation(s)
- Rosaline Ashraf
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Mai Adel
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Esraa Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt; Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, 11795 Cairo, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt; Center of Scientific Excellence "Helwan Structural Biology Research, (HSBR)", Helwan University, 11795 Cairo, Egypt
| | - Sameh Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt.
| |
Collapse
|
2
|
Jang JH, Kim H, Jun H, Park CY, Kim JY, Yeo M, Kim H, Shin Y, Kang S, Kim E, Lee TJ. Targeting RBM39 with Tasisulam enhances TRAIL-induced apoptosis through DR5 upregulation and Bcl-2 downregulation in renal cell carcinoma. Biochem Pharmacol 2025; 236:116877. [PMID: 40112928 DOI: 10.1016/j.bcp.2025.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in tumor cells but faces limitations due to resistance mechanisms involving anti-apoptotic regulators such as Bcl-2. This study investigates Tasisulam, a molecular glue degrader, that degrades RNA-binding motif protein 39 (RBM39), as a sensitizer for TRAIL-mediated apoptosis in renal cell carcinoma (RCC). Tasisulam enhances TRAIL-induced apoptosis by activating both extrinsic and intrinsic apoptotic pathways, achieved through upregulation of death receptor 5 (DR5) and downregulation of B-cell lymphoma 2 (Bcl-2). Importantly, Tasisulam selectively sensitizes RCC cells to TRAIL-induced apoptosis without affecting normal cells.RBM39 knockdown mimicked the effects of Tasisulam by upregulating DR5, downregulating Bcl-2, and enhancing TRAIL-induced apoptosis, suggesting RBM39 as a critical regulator of these pathways. To address TRAIL instability in vivo, AaLS/TRAIL nanoparticles were employed in combination with Tasisulam in a Caki-1 xenograft model. This combination significantly reduced tumor volume and weight compared to single treatments, without observed toxicity. These findings demonstrate that Tasisulam sensitizes RCC cells to TRAIL-induced apoptosis through RBM39-dependent DR5 upregulation and Bcl-2 downregulation. This combination strategy holds significant promise as a potential solution to overcoming TRAIL resistance and advancing more effective treatment outcomes for RCC.
Collapse
Affiliation(s)
- Ji Hoon Jang
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Haein Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Heejin Jun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Cho-Young Park
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Joo-Young Kim
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Mirae Yeo
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hunmin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yerim Shin
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eunhee Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-Gu, Daegu 42415, Republic of Korea.
| |
Collapse
|
3
|
Zhang W, Ge L, Zhang Y, Zhang Z, Zhang W, Song F, Huang P, Xu T. Targeted intervention of tumor microenvironment with HDAC inhibitors and their combination therapy strategies. Eur J Med Res 2025; 30:69. [PMID: 39905506 PMCID: PMC11792708 DOI: 10.1186/s40001-025-02326-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
Histone deacetylation represents a significant epigenetic mechanism that involves the removal of acetyl groups from histones, subsequently influencing gene transcription. Overexpression of histone deacetylases (HDACs) is prevalent across various cancer types, positioning HDAC inhibitors as broadly applicable therapeutic agents. These inhibitors are known to enhance tumor immune antigenicity, potentially slowing tumor progression. Furthermore, the tumor microenvironment, which is intricately linked to cancer development, acts as a mediator in the proliferation of numerous cancers and presents a viable target for oncological therapies. This paper primarily explores how HDAC inhibitors can regulate cancer progression via the tumor microenvironment and suppress tumor growth through multiple pathways, in addition to examining the synergistic effects of combined drug therapies involving HDAC inhibitors.
Collapse
Affiliation(s)
- Wanli Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Luqi Ge
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China
| | - Zhentao Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China.
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| |
Collapse
|
4
|
Li J, Arnold J, Sima M, Al Faruque H, Galang J, Hu-Lieskovan S, Kopeček J, Yang J. Combination of multivalent DR5 receptor clustering agonists and histone deacetylase inhibitors for treatment of colon cancer. J Control Release 2024; 376:1014-1024. [PMID: 39489464 DOI: 10.1016/j.jconrel.2024.10.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Death Receptor 5 (DR5) targeted therapies offer significant promise due to their pivotal role in mediating the extrinsic pathway of apoptosis. Despite DR5 overexpression in various malignancies and the potential of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), clinical applications of anti-DR5 monoclonal antibodies (mAbs) have been hampered by suboptimal outcomes potentially due to lack of receptor clustering. To address the limitation, we developed N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-based conjugates integrating multiple copies of DR5-targeting peptide (cyclic WDCLDNRIGRRQCVKL; cDR5) to enhance receptor clustering and apoptosis. Three conjugates with variable number of cDR5 were prepared and denoted as PH-cDR5 (high valence), PM-cDR5 (medium valence) and PL-cDR5 (low valence). Our studies in TRAIL-sensitive and resistant cancer cell lines demonstrated that the HPMA copolymer-peptide conjugates (P-cDR5) significantly improved DR5 receptor clustering and induced apoptosis effectively. In TRAIL-sensitive colon cancer cells (COLO205, HCT-116), P-cDR5 showed efficacy comparable to anti-DR5 mAb Drozitumab (DRO), but P-cDR5 outperformed DRO in TRAIL-resistant cells (HT-29), highlighting the importance of efficient receptor clustering. In COLO205 cells PM-cDR5 exhibited an IC50 of 94 pM, while PH-cDR5 had an even lower IC50 of 15 pM (based on cDR5 equivalent concentration), indicating enhanced potency of the multivalent HPMA copolymer-based system with a flexible polymer backbone in comparison with the IC50 for TRAIL at 0.12 nM. Combining P-cDR5 with valproic acid, a histone deacetylase inhibitor, resulted in further enhancement of apoptosis inducing efficacy, along with destabilizing mitochondrial membranes and increased sensitivity of TRAIL-resistant cells. These findings suggest that attaching multiple cDR5 peptides to a flexible water-soluble polymer carrier not only overcomes the limitations of previous designs but also offers a promising avenue for treating resistant cancers, pointing toward the need for further preclinical exploration and validation of this innovative strategy.
Collapse
Affiliation(s)
- Jiahui Li
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jaden Arnold
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Monika Sima
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Hasan Al Faruque
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jacob Galang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Sophia Hu-Lieskovan
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Kim SL, Shin M, Jin BC, Seo S, Ha GW, Kim SW. Acquired Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Resistance of Human Colorectal Cancer Cells Is Linked to Histone Acetylation and Is Synergistically Ameliorated by Combination with HDAC Inhibitors. Dig Dis Sci 2024; 69:3305-3317. [PMID: 39090444 DOI: 10.1007/s10620-024-08569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an attractive target for the treatment of various malignancies; however, its therapeutic potential is limited because of the frequent occurrence of tumor cell resistance. In this study, we determined whether TRAIL resistance acquired by repeated administration could be overcome by HDAC inhibition in human colorectal cancer cells. METHODS TRAIL-resistant HCT116 human colorectal cancer cells (HCT116-TR) were generated by repeated treatment with 10 and 25 ng/mL TRAIL twice weekly for 28 days. RESULTS The resulting TRAIL-resistant cells were noncross-resistant to other chemotherapeutic agents. The levels of histone acetylation-related proteins, such as ac-histone H4 and HDAC1, were altered in HCT116-TR cells compared with the parental HCT116 cell line. The combined treatment with TRAIL and HDAC inhibitors significantly increased apoptosis in HCT116-TR cells and indicated a synergistic effect. The mechanism by which HDAC inhibition sensitizes HCT116-TR cells to TRAIL is dependent on the intrinsic pathway. In addition, we found that HDAC inhibition enhanced the sensitivity of cells to TRAIL through mitogen-activated protein kinases/CCAAT/enhancer-binding protein homologs of protein-dependent upregulation of death receptor 5. CONCLUSION These results suggest that histone acetylation is responsible for acquired TRAIL resistance after repeated exposure and acquired resistance to TRAIL may be overcome by combination therapies with HDAC inhibitors.
Collapse
Affiliation(s)
- Se Lim Kim
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, 20, Geonji-Ro, Deokjin-Gu, Jeonju, Jeonbuk, 54907, Republic of Korea
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - MinWoo Shin
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, 20, Geonji-Ro, Deokjin-Gu, Jeonju, Jeonbuk, 54907, Republic of Korea
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Byung Chul Jin
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - SeungYoung Seo
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, 20, Geonji-Ro, Deokjin-Gu, Jeonju, Jeonbuk, 54907, Republic of Korea
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Gi Won Ha
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
- Department of Surgery, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, 20, Geonji-Ro, Deokjin-Gu, Jeonju, Jeonbuk, 54907, Republic of Korea
| | - Sang Wook Kim
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University, 20, Geonji-Ro, Deokjin-Gu, Jeonju, Jeonbuk, 54907, Republic of Korea.
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea.
| |
Collapse
|
6
|
Kawakatsu R, Tadagaki K, Yamasaki K, Yoshida T. Venetoclax efficacy on acute myeloid leukemia is enhanced by the combination with butyrate. Sci Rep 2024; 14:4975. [PMID: 38424468 PMCID: PMC10904797 DOI: 10.1038/s41598-024-55286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Venetoclax has been approved recently for treatment of Acute myeloid leukemia (AML). Venetoclax is a BH3-mimetic and induces apoptosis via Bcl-2 inhibition. However, venetoclax's effect is still restrictive and a novel strategy is needed. In the present study, we demonstrate that sodium butyrate (NaB) facilitates the venetoclax's efficacy of cell death in AML cells. As a single agent, NaB or venetoclax exerted just a weak effect on cell death induction for AML cell line KG-1. The combination with NaB and venetoclax drastically induced cell death. NaB upregulated pro-apoptotic factors, Bax and Bak, indicating the synergistic effect by the collaboration with Bcl-2 inhibition by venetoclax. The combined treatment with NaB and venetoclax strongly cleaved a caspase substrate poly (ADP-ribose) polymerase (PARP) and a potent pan-caspase inhibitor Q-VD-OPh almost completely blocked the cell death induced by the combination, meaning that the combination mainly induced apoptosis. The combination with NaB and venetoclax also strongly induced cell death in another AML cell line SKNO-1 but did not affect chronic myeloid leukemia (CML) cell line K562, indicating that the effect was specific for AML cells. Our results provide a novel strategy to strengthen the effect of venetoclax for AML treatment.
Collapse
Affiliation(s)
- Renshi Kawakatsu
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kenjiro Tadagaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kenta Yamasaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tatsushi Yoshida
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
7
|
Lomovskaya YV, Kobyakova MI, Senotov AS, Fadeeva IS, Lomovsky AI, Krasnov KS, Shtatnova DY, Akatov VS, Fadeev RS. Myeloid Differentiation Increases Resistance of Leukemic Cells to TRAIL-Induced Death by Reducing the Expression of DR4 and DR5 Receptors. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2023. [DOI: 10.1134/s1990747822060101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
8
|
Xiao X, Wang Y, Zou Z, Yang Y, Wang X, Xin X, Tu S, Li Y. Combination strategies to optimize the efficacy of chimeric antigen receptor T cell therapy in haematological malignancies. Front Immunol 2022; 13:954235. [PMID: 36091028 PMCID: PMC9460961 DOI: 10.3389/fimmu.2022.954235] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the therapeutic landscape of haematological malignancies. However, resistance and relapse remain prominent limitations, and they are related to the limited persistence and efficacy of CAR T cells, downregulation or loss of tumour antigens, intrinsic resistance of tumours to death signalling, and immune suppressive microenvironment. Rational combined modality treatments are regarded as a promising strategy to further unlock the antitumor potential of CAR T cell therapy, which can be applied before CAR T cell infusion as a conditioning regimen or in ex vivo culture settings as well as concomitant with or after CAR T cell infusion. In this review, we summarize the combinatorial strategies, including chemotherapy, radiotherapy, haematopoietic stem cell transplantation, targeted therapies and other immunotherapies, in an effort to further enhance the effectiveness of this impressive therapy and benefit more patients.
Collapse
Affiliation(s)
- Xinyi Xiao
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yazhuo Wang
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Zhengbang Zou
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yufei Yang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyu Wang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Xin
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sanfang Tu
- Department of Haematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Sanfang Tu, ; Yuhua Li,
| | - Yuhua Li
- Department of Haematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China,*Correspondence: Sanfang Tu, ; Yuhua Li,
| |
Collapse
|
9
|
“RB-reactivator screening” as a novel cell-based assay for discoveries of molecular targeting agents including the first-in-class MEK inhibitor trametinib (trade name: Mekinist). Pharmacol Ther 2022; 236:108234. [DOI: 10.1016/j.pharmthera.2022.108234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 01/10/2023]
|
10
|
Li Z, Han Z, Stenzel MH, Chapman R. A High Throughput Approach for Designing Polymers That Mimic the TRAIL Protein. NANO LETTERS 2022; 22:2660-2666. [PMID: 35312327 DOI: 10.1021/acs.nanolett.1c04469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We have leveraged a high throughput approach to design a fully synthetic polymer mimic of the chemotherapeutic protein "TRAIL". Our design enables the synthesis of libraries of star-shaped polymers presenting exactly one receptor binding peptide at the end of each arm with no purification steps. Clear structure-activity relationships in screening for receptor binding and the apoptotic activity on colon cancer lines (COLO205) led us to identify trivalent structures, ∼1.5 nm in hydrodynamic radius as the best mimics. These showed IC50 values ∼2 μM and resulted in the elevated levels of caspase-8 expected from this mechanism of cell death. Our results demonstrate the potential for HTP screening methods to be used in the design of polymers that can mimic a whole range of complex therapeutic proteins.
Collapse
Affiliation(s)
- Zihao Li
- Centre for Advanced Macromolecular Design, School of Chemistry, Univeristy of New South Wales Sydney, Kensington, New South Wales 2052, Australia
| | - Zifei Han
- Centre for Advanced Macromolecular Design, School of Chemistry, Univeristy of New South Wales Sydney, Kensington, New South Wales 2052, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, Univeristy of New South Wales Sydney, Kensington, New South Wales 2052, Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design, School of Chemistry, Univeristy of New South Wales Sydney, Kensington, New South Wales 2052, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
11
|
Yoshida T, Yamasaki K, Tadagaki K, Kuwahara Y, Matsumoto A, Sofovic AE, Kondo N, Sakai T, Okuda T. Tumor necrosis factor‑related apoptosis‑inducing ligand is a novel transcriptional target of runt‑related transcription factor 1. Int J Oncol 2021; 60:6. [PMID: 34958111 PMCID: PMC8727134 DOI: 10.3892/ijo.2021.5296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/23/2021] [Indexed: 11/26/2022] Open
Abstract
Runt-related transcription factor 1 (RUNX1), which is also known as acute myeloid leukemia 1 (AML1), has been frequently found with genomic aberrations in human leukemia. RUNX1 encodes a transcription factor that can regulate the expression of hematopoietic genes. In addition, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) performs an important function for malignant tumors in immune surveillance. However, the regulatory mechanism of TRAIL expression remain to be fully elucidated. In the present study, tetradecanoylphorbol 13-acetate-treated megakaryocytic differentiated K562 cells was used to examine the effect of RUNX1 on TRAIL expression. Luciferase assay series of TRAIL promoters for the cells co-transfected with RUNX1 and core-binding factor β (CBFβ) expression vectors were performed to evaluate the nature of TRAIL transcriptional regulation. Electrophoresis mobility shift assay of the RUNX1 consensus sequence of the TRAIL promoter with recombinant RUNX1 and CBFβ proteins was also performed. BloodSpot database analysis for TRAIL expression in patients with acute myeloid leukemia were performed. The expression of TRAIL, its receptor Death receptor 4 and 5 and RUNX1 in K562 cells transfected with the RUNX1 expression vector and RUNX1 siRNA were evaluated by reverse transcription-quantitative PCR (RT-qPCR). TRAIL and RUNX1-ETO expression was also measured in Kasumi-1 cells transfected with RUNX1-ETO siRNA and in KG-1 cells transfected with RUNX1-ETO expression plasmid, both by RT-qPCR. Cell counting, lactate dehydrogenase assay and cell cycle analysis by flow cytometry were performed on Kasumi-1, KG-1, SKNO-1 and K562 cells treated with TRAIL and HDAC inhibitors sodium butyrate or valproic acid. The present study demonstrated that RUNX1 is a transcriptional regulator of TRAIL. It was initially found that the induction of TRAIL expression following the megakaryocytic differentiation of human leukemia cells was RUNX1-dependent. Subsequently, overexpression of RUNX1 was found to increase TRAIL mRNA expression by activating its promoter activity. Additional analyses revealed that RUNX1 regulated the expression of TRAIL in an indirect manner, because RUNX1 retained its ability to activate this promoter following the mutation of all possible RUNX1 consensus sites. Furthermore, TRAIL expression was reduced in leukemia cells carrying the t(8;21) translocation, where the RUNX1-ETO chimeric protein interfere with normal RUNX1 function. Exogenous treatment of recombinant TRAIL proteins was found to induce leukemia cell death. To conclude, the present study provided a novel mechanism, whereby TRAIL is a target gene of RUNX1 and TRAIL expression was inhibited by RUNX1-ETO. These results suggest that TRAIL is a promising agent for the clinical treatment of t(8;21) AML.
Collapse
Affiliation(s)
- Tatsushi Yoshida
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Kenta Yamasaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Kenjiro Tadagaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Akifumi Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Adèm Ejub Sofovic
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Noriko Kondo
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Tsukasa Okuda
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| |
Collapse
|
12
|
Chiaino E, Micucci M, Budriesi R, Mattioli LB, Marzetti C, Corsini M, Frosini M. Hibiscus Flower and Olive Leaf Extracts Activate Apoptosis in SH-SY5Y Cells. Antioxidants (Basel) 2021; 10:antiox10121962. [PMID: 34943065 PMCID: PMC8750347 DOI: 10.3390/antiox10121962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/15/2023] Open
Abstract
Compounds of natural origin may constitute an interesting tool for the treatment of neuroblastoma, the most prevalent extracranial solid tumor in children. PRES is a commercially available food supplement, composed of a 13:2 (w/w) extracts mix of Olea europaea L. leaves (OE) and Hibiscus sabdariffa L. flowers (HS). Its potential towards neuroblastoma is still unexplored and was thus investigated in human neuroblastoma SH-SY5Y cells. PRES decreased the viability of cells in a concentration-dependent fashion (24 h IC50 247.2 ± 31.8 µg/mL). Cytotoxicity was accompanied by an increase in early and late apoptotic cells (AV-PI assay) and sub G0/G1 cells (cell cycle analysis), ROS formation, reduction in mitochondrial membrane potential, and caspases activities. The ROS scavenger N-acetyl-L-cysteine reverted the cytotoxic effects of PRES, suggesting a key role played by ROS in PRES-mediated SH-SY5Y cell death. Finally, the effects of OE and HS extracts were singularly tested and compared to those of the corresponding mixture. OE- or HS-mediated cytotoxicity was always significantly lower than that caused by PRES, suggesting a synergic effect. In conclusion, the present findings highlight the potential of PRES for the treatment of neuroblastoma and offers the basis for a further characterization of the mechanisms underlying its effects.
Collapse
Affiliation(s)
- Elda Chiaino
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Matteo Micucci
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-Università di Bologna, Via Belmeloro, 40126 Bologna, Italy; (M.M.); (R.B.); (L.B.M.)
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro, 800131 Rome, Italy
| | - Roberta Budriesi
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-Università di Bologna, Via Belmeloro, 40126 Bologna, Italy; (M.M.); (R.B.); (L.B.M.)
| | - Laura Beatrice Mattioli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-Università di Bologna, Via Belmeloro, 40126 Bologna, Italy; (M.M.); (R.B.); (L.B.M.)
| | | | - Maddalena Corsini
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Maria Frosini
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy;
- Correspondence: ; Tel.: +390577-235-355
| |
Collapse
|
13
|
Chang HG, Choi YH, Hong J, Choi JW, Yoon AR, Yun CO. GM101 in Combination with Histone Deacetylase Inhibitor Enhances Anti-Tumor Effects in Desmoplastic Microenvironment. Cells 2021; 10:2811. [PMID: 34831034 PMCID: PMC8616263 DOI: 10.3390/cells10112811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022] Open
Abstract
Oncolytic adenoviruses (oAds) have been evaluated in numerous clinical trials due to their promising attributes as cancer therapeutics. However, the therapeutic efficacy of oAds was limited due to variable coxsackie and adenovirus receptor (CAR) expression levels and the dense extracellular matrix (ECM) of heterogenic clinical tumors. To overcome these limitations, our present report investigated the therapeutic efficacy of combining GM101, an oAd with excellent tumor ECM degrading properties, and histone deacetylase inhibitor (HDACi). Four different HDACi (suberohydroxamic acid (SBHA), MS-275, trichostatin A (TSA), and valproic acid) candidates in combination with replication-incompetent and GFP-expressing Ad (dAd/GFP) revealed that SBHA and MS-275 exerted more potent enhancement in Ad transduction efficacy than TSA or valproic acid. Further characterization revealed that SBHA and MS-275 effectively upregulated CAR expression in cancer cells, improved the binding of Ad with cancer cell membranes, and led to dynamin 2- and clathrin-mediated endocytosis of Ad. The combination of GM101 with HDACi induced superior cancer cell killing effects compared to any of the monotherapies, without any additional cytotoxicity in normal cell lines. Further, GM101+SBHA and GM101+MS-275 induced more potent antitumor efficacy than any monotherapy in U343 xenograft tumor model. Potent antitumor efficacy was achieved via the combination of GM101 with HDACi, inducing necrotic and apoptotic cancer cell death, inhibiting cancer cell proliferation, degrading ECM in tumor tissue, and thus exerting the highest level of virus dispersion and accumulation. Collectively, these data demonstrate that the combination of GM101 and HDACi can enhance intratumoral dispersion and accumulation of oAd through multifaced mechanisms, making it a promising strategy to address the challenges toward successful clinical development of oAd.
Collapse
Affiliation(s)
- Han-Gyu Chang
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (H.-G.C.); (J.-W.C.)
| | - Yong-Hyeon Choi
- GeneMedicine CO., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (Y.-H.C.); (J.H.)
| | - JinWoo Hong
- GeneMedicine CO., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (Y.-H.C.); (J.H.)
| | - Joung-Woo Choi
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (H.-G.C.); (J.-W.C.)
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (H.-G.C.); (J.-W.C.)
- Institute of Nano Science and Technology (INST), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (H.-G.C.); (J.-W.C.)
- GeneMedicine CO., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (Y.-H.C.); (J.H.)
- Institute of Nano Science and Technology (INST), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
14
|
Gogoi M, Hati Boruah JL, Bora PK, Das DJ, Famhawite V, Biswas A, Puro N, Kalita J, Haldar S, Baishya R. Citrus macroptera induces apoptosis via death receptor and mitochondrial mediated pathway as prooxidant in human non-small cell lung cancer cells. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Sanceau J, Gougelet A. Epigenetic mechanisms of liver tumor resistance to immunotherapy. World J Hepatol 2021; 13:979-1002. [PMID: 34630870 PMCID: PMC8473495 DOI: 10.4254/wjh.v13.i9.979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/04/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor, which stands fourth in rank of cancer-related deaths worldwide. The incidence of HCC is constantly increasing in correlation with the epidemic in diabetes and obesity, arguing for an urgent need for new treatments for this lethal cancer refractory to conventional treatments. HCC is the paradigm of inflammation-associated cancer, since more than 80% of HCC emerge consecutively to cirrhosis associated with a vast remodeling of liver microenvironment. In the recent decade, immunomodulatory drugs have been developed and have given impressive results in melanoma and later in several other cancers. In the present review, we will discuss the recent advancements concerning the use of immunotherapies in HCC, in particular those targeting immune checkpoints, used alone or in combination with other anti-cancers agents. We will address why these drugs demonstrate unsatisfactory results in a high proportion of liver cancers and the mechanisms of resistance developed by HCC to evade immune response with a focus on the epigenetic-related mechanisms.
Collapse
Affiliation(s)
- Julie Sanceau
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris 75006, France
| | - Angélique Gougelet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris 75006, France.
| |
Collapse
|
16
|
89Zr and 177Lu labeling of anti-DR5 monoclonal antibody for colorectal cancer targeting PET-imaging and radiotherapy. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07979-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Akbari B, Ghahri-Saremi N, Soltantoyeh T, Hadjati J, Ghassemi S, Mirzaei HR. Epigenetic strategies to boost CAR T cell therapy. Mol Ther 2021; 29:2640-2659. [PMID: 34365035 DOI: 10.1016/j.ymthe.2021.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 02/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has led to a paradigm shift in cancer immunotherapy, but still several obstacles limit CAR T cell efficacy in cancers. Advances in high-throughput technologies revealed new insights into the role that epigenetic reprogramming plays in T cells. Mechanistic studies as well as comprehensive epigenome maps revealed an important role for epigenetic remodeling in T cell differentiation. These modifications shape the overall immune response through alterations in T cell phenotype and function. Here, we outline how epigenetic modifications in CAR T cells can overcome barriers limiting CAR T cell effectiveness, particularly in immunosuppressive tumor microenvironments. We also offer our perspective on how selected epigenetic modifications can boost CAR T cells to ultimately improve the efficacy of CAR T cell therapy.
Collapse
Affiliation(s)
- Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Navid Ghahri-Saremi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran.
| |
Collapse
|
18
|
Cingöz A, Ozyerli-Goknar E, Morova T, Seker-Polat F, Esai Selvan M, Gümüş ZH, Bhere D, Shah K, Solaroglu I, Bagci-Onder T. Generation of TRAIL-resistant cell line models reveals distinct adaptive mechanisms for acquired resistance and re-sensitization. Oncogene 2021; 40:3201-3216. [PMID: 33767436 DOI: 10.1038/s41388-021-01697-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/21/2021] [Accepted: 02/04/2021] [Indexed: 02/01/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces tumor cell-specific apoptosis, making it a prime therapeutic candidate. However, many tumor cells are either innately TRAIL-resistant, or they acquire resistance with adaptive mechanisms that remain poorly understood. In this study, we generated acquired TRAIL resistance models using multiple glioblastoma (GBM) cell lines to assess the molecular alterations in the TRAIL-resistant state. We selected TRAIL-resistant cells through chronic and long-term TRAIL exposure and noted that they showed persistent resistance both in vitro and in vivo. Among known TRAIL-sensitizers, proteosome inhibitor Bortezomib, but not HDAC inhibitor MS-275, was effective in overcoming resistance in all cell models. This was partly achieved through upregulating death receptors and pro-apoptotic proteins, and downregulating major anti-apoptotic members, Bcl-2 and Bcl-xL. We showed that CRISPR/Cas9 mediated silencing of DR5 could block Bortezomib-mediated re-sensitization, demonstrating its critical role. While overexpression of Bcl-2 or Bcl-xL was sufficient to confer resistance to TRAIL-sensitive cells, it failed to override Bortezomib-mediated re-sensitization. With RNA sequencing in multiple paired TRAIL-sensitive and TRAIL-resistant cells, we identified major alterations in inflammatory signaling, particularly in the NF-κB pathway. Inhibiting NF-κB substantially sensitized the most resistant cells to TRAIL, however, the sensitization effect was not as great as what was observed with Bortezomib. Together, our findings provide new models of acquired TRAIL resistance, which will provide essential tools to gain further insight into the heterogeneous therapy responses within GBM tumors. Additionally, these findings emphasize the critical importance of combining proteasome inhibitors and pro-apoptotic ligands to overcome acquired resistance.
Collapse
Affiliation(s)
- Ahmet Cingöz
- Brain Cancer Research and Therapy Laboratory, Koç University Research Center for Translational Medicine, Istanbul, 34450, Turkey
- Koç University School of Medicine, Istanbul, 34450, Turkey
| | - Ezgi Ozyerli-Goknar
- Brain Cancer Research and Therapy Laboratory, Koç University Research Center for Translational Medicine, Istanbul, 34450, Turkey
- Koç University School of Medicine, Istanbul, 34450, Turkey
| | - Tunc Morova
- Koç University School of Medicine, Istanbul, 34450, Turkey
| | - Fidan Seker-Polat
- Brain Cancer Research and Therapy Laboratory, Koç University Research Center for Translational Medicine, Istanbul, 34450, Turkey
- Koç University School of Medicine, Istanbul, 34450, Turkey
| | - Myvizhi Esai Selvan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zeynep Hülya Gümüş
- Koç University School of Medicine, Istanbul, 34450, Turkey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Deepak Bhere
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ihsan Solaroglu
- Koç University School of Medicine, Istanbul, 34450, Turkey
- Department of Neurosurgery, Koç University School of Medicine, Istanbul, 34010, Turkey
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University Research Center for Translational Medicine, Istanbul, 34450, Turkey.
- Koç University School of Medicine, Istanbul, 34450, Turkey.
| |
Collapse
|
19
|
Toffoli EC, Sheikhi A, Höppner YD, de Kok P, Yazdanpanah-Samani M, Spanholtz J, Verheul HMW, van der Vliet HJ, de Gruijl TD. Natural Killer Cells and Anti-Cancer Therapies: Reciprocal Effects on Immune Function and Therapeutic Response. Cancers (Basel) 2021; 13:cancers13040711. [PMID: 33572396 PMCID: PMC7916216 DOI: 10.3390/cancers13040711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Natural Killer (NK) cells are innate lymphocytes that play an important role in the immune response against cancer. Their activity is controlled by a balance of inhibitory and activating receptors, which in cancer can be skewed to favor their suppression in support of immune escape. It is therefore imperative to find ways to optimize their antitumor functionality. In this review, we explore and discuss how their activity influences, or even mediates, the efficacy of various anti-cancer therapies and, vice versa, how their activity can be affected by these therapies. Knowledge of the mechanisms underlying these observations could provide rationales for combining anti-cancer treatments with strategies enhancing NK cell function in order to improve their therapeutic efficacy. Abstract Natural Killer (NK) cells are innate immune cells with the unique ability to recognize and kill virus-infected and cancer cells without prior immune sensitization. Due to their expression of the Fc receptor CD16, effector NK cells can kill tumor cells through antibody-dependent cytotoxicity, making them relevant players in antibody-based cancer therapies. The role of NK cells in other approved and experimental anti-cancer therapies is more elusive. Here, we review the possible role of NK cells in the efficacy of various anti-tumor therapies, including radiotherapy, chemotherapy, and immunotherapy, as well as the impact of these therapies on NK cell function.
Collapse
Affiliation(s)
- Elisa C. Toffoli
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
| | - Abdolkarim Sheikhi
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful 64616-43993, Iran
| | - Yannick D. Höppner
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
| | - Pita de Kok
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
| | - Mahsa Yazdanpanah-Samani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran;
| | - Jan Spanholtz
- Glycostem, Kloosterstraat 9, 5349 AB Oss, The Netherlands;
| | - Henk M. W. Verheul
- Department of Medical Oncology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
| | - Hans J. van der Vliet
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
- Lava Therapeutics, Yalelaan 60, 3584 CM Utrecht, The Netherlands
| | - Tanja D. de Gruijl
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
- Correspondence: ; Tel.: +31-20-4444063
| |
Collapse
|
20
|
N. Adham A, F. Hegazy ME, Naqishbandi AM, Efferth T. Induction of Apoptosis, Autophagy and Ferroptosis by Thymus vulgaris and Arctium lappa Extract in Leukemia and Multiple Myeloma Cell Lines. Molecules 2020; 25:molecules25215016. [PMID: 33138135 PMCID: PMC7663330 DOI: 10.3390/molecules25215016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Thymus vulgaris and Arctium lappa have been used as a folk remedy in the Iraqi Kurdistan region to deal with different health problems. The aim of the current study is to investigate the cytotoxicity of T. vulgaris and A. lappa in leukemia and multiple myeloma (MM) cell lines and determine the mode of cell death triggered by the most potent cytotoxic fractions of both plants in MM. Resazurin assay was used to evaluate cytotoxic and ferroptosis activity, apoptosis, and modulation in the cell cycle phase were investigated via Annexin V-FITC/PI dual stain and cell-cycle arrest assays. Furthermore, we used western blotting assay for the determination of autophagy cell death. n-Hexane, chloroform, ethyl acetate, and butanol fractions of T. vulgaris and A. lappa exhibited cytotoxicity in CCRF-CEM and CEM/ADR 5000 cell lines at concentration range 0.001–100 μg/mL with potential activity revealed by chloroform and ethyl acetate fractions. NCI-H929 displayed pronounced sensitivity towards T. vulgaris (TCF) and A. lappa (ACF) chloroform fractions with IC50 values of 6.49 ± 1.48 and 21.9 ± 0.69 μg/mL, respectively. TCF induced apoptosis in NCI-H929 cells with a higher ratio (71%), compared to ACF (50%) at 4 × IC50. ACF demonstrated more potent autophagy activity than TCF. TCF and ACF induced cell cycle arrest and ferroptosis. Apigenin and nobiletin were identified in TCF, while nobiletin, ursolic acid, and lupeol were the main compounds identified in ACF. T. vulgaris and A. lappa could be considered as potential herbal drug candidates, which arrest cancer cell proliferation by induction of apoptosis, autophagic, and ferroptosis.
Collapse
Affiliation(s)
- Aveen N. Adham
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Kurdistan Region, Iraq;
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Mohamed Elamir F. Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Alaadin M. Naqishbandi
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Kurdistan Region, Iraq;
- Correspondence: (A.M.N.); (T.E.); Tel.: +964-75-0448-2788 (A.M.N.); +49-6131-3925751 (T.E.)
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
- Correspondence: (A.M.N.); (T.E.); Tel.: +964-75-0448-2788 (A.M.N.); +49-6131-3925751 (T.E.)
| |
Collapse
|
21
|
Wang X, Waschke BC, Woolaver RA, Chen SMY, Chen Z, Wang JH. HDAC inhibitors overcome immunotherapy resistance in B-cell lymphoma. Protein Cell 2020; 11:472-482. [PMID: 32162275 PMCID: PMC7305292 DOI: 10.1007/s13238-020-00694-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has been applied successfully to treat B-cell lymphomas in preclinical models or clinical settings. However, immunotherapy resistance is a major challenge for B-cell lymphoma treatment. To overcome this issue, combinatorial therapeutic strategies have been pursued to achieve a better efficacy for treating B-cell lymphomas. One of such strategies is to combine immunotherapy with histone deacetylase (HDAC) inhibitors. HDAC inhibitors can potentially increase tumor immunogenicity, promote anti-tumor immune responses, or reverse immunosuppressive tumor environments. Thus, the combination of HDAC inhibitors and immunotherapy has drawn much attention in current cancer treatment. However, not all HDAC inhibitors are created equal and their net effects are highly dependent on the specific inhibitors used and the HDACs they target. Hence, we suggest that optimal treatment efficacy requires personalized design and rational combination based on prognostic biomarkers and unique profiles of HDAC inhibitors. Here, we discuss the possible mechanisms by which B-cell lymphomas acquire immunotherapy resistance and the effects of HDAC inhibitors on tumor cells and immune cells that could help overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Xiaoguang Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Brittany C Waschke
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Samantha M Y Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA.
| |
Collapse
|
22
|
You D, Richardson JR, Aleksunes LM. Epigenetic Regulation of Multidrug Resistance Protein 1 and Breast Cancer Resistance Protein Transporters by Histone Deacetylase Inhibition. Drug Metab Dispos 2020; 48:459-480. [PMID: 32193359 PMCID: PMC7250367 DOI: 10.1124/dmd.119.089953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Multidrug resistance protein 1 (MDR1, ABCB1, P-glycoprotein) and breast cancer resistance protein (BCRP, ABCG2) are key efflux transporters that mediate the extrusion of drugs and toxicants in cancer cells and healthy tissues, including the liver, kidneys, and the brain. Altering the expression and activity of MDR1 and BCRP influences the disposition, pharmacodynamics, and toxicity of chemicals, including a number of commonly prescribed medications. Histone acetylation is an epigenetic modification that can regulate gene expression by changing the accessibility of the genome to transcriptional regulators and transcriptional machinery. Recently, studies have suggested that pharmacological inhibition of histone deacetylases (HDACs) modulates the expression and function of MDR1 and BCRP transporters as a result of enhanced histone acetylation. This review addresses the ability of HDAC inhibitors to modulate the expression and the function of MDR1 and BCRP transporters and explores the molecular mechanisms by which HDAC inhibition regulates these transporters. While the majority of studies have focused on histone regulation of MDR1 and BCRP in drug-resistant and drug-sensitive cancer cells, emerging data point to similar responses in nonmalignant cells and tissues. Elucidating epigenetic mechanisms regulating MDR1 and BCRP is important to expand our understanding of the basic biology of these two key transporters and subsequent consequences on chemoresistance as well as tissue exposure and responses to drugs and toxicants. SIGNIFICANCE STATEMENT: Histone deacetylase inhibitors alter the expression of key efflux transporters multidrug resistance protein 1 and breast cancer resistance protein in healthy and malignant cells.
Collapse
Affiliation(s)
- Dahea You
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey (D.Y.); Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida (J.R.R.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (J.R.R., L.M.A.); and Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey (L.M.A.)
| | - Jason R Richardson
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey (D.Y.); Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida (J.R.R.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (J.R.R., L.M.A.); and Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey (L.M.A.)
| | - Lauren M Aleksunes
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey (D.Y.); Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida (J.R.R.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (J.R.R., L.M.A.); and Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey (L.M.A.)
| |
Collapse
|
23
|
Nie Y, Lu W, Chen D, Tu H, Guo Z, Zhou X, Li M, Tu S, Li Y. Mechanisms underlying CD19-positive ALL relapse after anti-CD19 CAR T cell therapy and associated strategies. Biomark Res 2020; 8:18. [PMID: 32514351 PMCID: PMC7254656 DOI: 10.1186/s40364-020-00197-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, especially anti-CD19 CAR T cell therapy, has shown remarkable anticancer activity in patients with relapsed/refractory acute lymphoblastic leukemia, demonstrating an inspiring complete remission rate. However, with extension of the follow-up period, the limitations of this therapy have gradually emerged. Patients are at a high risk of early relapse after achieving complete remission. Although there are many studies with a primary focus on the mechanisms underlying CD19- relapse related to immune escape, early CD19+ relapse owing to poor in vivo persistence and impaired efficacy accounts for a larger proportion of the high relapse rate. However, the mechanisms underlying CD19+ relapse are still poorly understood. Herein, we discuss factors that could become obstacles to improved persistence and efficacy of CAR T cells during production, preinfusion processing, and in vivo interactions in detail. Furthermore, we propose potential strategies to overcome these barriers to achieve a reduced CD19+ relapse rate and produce prolonged survival in patients after CAR T cell therapy.
Collapse
Affiliation(s)
- Yuru Nie
- Second Clinical Medical College, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Weiqing Lu
- Second Clinical Medical College, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Daiyu Chen
- Second Clinical Medical College, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Huilin Tu
- Second Clinical Medical College, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Zhenling Guo
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Xuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, Guangdong Province China
| |
Collapse
|
24
|
Bonavida B. Sensitizing activities of nitric oxide donors for cancer resistance to anticancer therapeutic drugs. Biochem Pharmacol 2020; 176:113913. [PMID: 32173364 DOI: 10.1016/j.bcp.2020.113913] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/10/2020] [Indexed: 02/08/2023]
Abstract
Cancer is not a single disease but it constitutes a large variety of different types that are also different from each other phenotypically and molecularly. Although the standard treatments have resulted in clinical responses in a subset of patients, though, many patients relapse and no longer respond to further treatments. Hence, both the innate and adaptive resistance to treatments are the main challenges in today's treatment strategies. Noteworthy, several novel treatment strategies, particularly immunotherapies, used alone or in combination, have been developed and that have significantly improved the therapeutic response of many unresponsive cancer patients. Nevertheless, even with the latest new developments of therapeutics that were effective in a larger subset of patients, there is still an urgent need to treat the remaining unresponsive subset of patients. This requires the development of new targeting agents of superior antitumor activities that will lead to overcoming the unaffected resistance by current treatments. There has been accumulating evidence suggesting nitric oxide donors as such targeting agents and considering their pleiotropic antitumor activities, including both the reversal of chemo and immuno-resistance of various unresponsive resistant cancers. The in vitro and in vivo preclinical findings corroborate the sensitizing antitumor activities of nitric oxide donors. In addition, a few clinical findings with NO donors that have been applied in patients have corroborated their antitumor and sensitizing activities in combination with standard therapies. In this review, the role and underlying mechanisms by which nitric oxide donors sensitize cancer resistant cells to both chemotherapy and immunotherapy are briefly described.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
25
|
Surapally S, Jayaprakasam M, Verma RS. Curcumin augments therapeutic efficacy of TRAIL-based immunotoxins in leukemia. Pharmacol Rep 2020; 72:1032-1046. [PMID: 32141025 DOI: 10.1007/s43440-020-00073-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) has been perceived as a promising anti-cancer agent because of its unique ability to kill cancer cells while sparing normal cells. However, translation of TRAIL to clinical studies was less successful as a large number of cancer cells acquire resistance to TRAIL-based monotherapies. An ideal strategy to overcome TRAIL resistance is to combine it with potential sensitizing agents. OBJECTIVE To investigate the TRAIL-sensitizing effect of curcumin in leukemia. METHODS The mechanism underlying TRAIL sensitization by curcumin was studied by flow cytometric analysis of TRAIL receptors in leukemic cell lines and patient samples, and immunoblot detection of TRAIL-apoptosis signaling proteins. RESULTS Curcumin augments TRAIL-apoptotic signaling in leukemic cells by upregulating the expression of DR4 and DR5 along with suppression of cFLIP and anti-apoptotic proteins Mcl-1, Bcl-xl, and XIAP. Curcumin pre-treatment significantly (p < 0.01) enhanced the sensitivity of leukemic cell lines to TRAIL recombinant proteins. IL2-TRAIL peptide in the presence of curcumin induced potent apoptosis (p < 0.001) as compared to TRAIL and IL2-TRAIL protein in leukemic cell lines with IC50 < 0.1 μΜ. Additionally, the combination of IL2-TRAIL peptide and curcumin showed significant cytotoxicity in patient peripheral blood mononuclear cells (PBMCs) with an efficacy of 90% in acute myeloid leukemia (AML), but 100% in acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL) and chronic myelomonocytic leukemia (CMML). CONCLUSION Overall, our results suggest that curcumin potentiates TRAIL-induced apoptosis through modulation of death receptors and anti-apoptotic proteins which significantly enhances the therapeutic efficacy.
Collapse
Affiliation(s)
- Sridevi Surapally
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Madhumathi Jayaprakasam
- Division of Epidemiology and Communicable Diseases, Indian Council for Medical Research (ICMR), New Delhi, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
26
|
Sultana F, Manasa KL, Shaik SP, Bonam SR, Kamal A. Zinc Dependent Histone Deacetylase Inhibitors in Cancer Therapeutics: Recent Update. Curr Med Chem 2020; 26:7212-7280. [PMID: 29852860 DOI: 10.2174/0929867325666180530094120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Histone deacetylases (HDAC) are an important class of enzymes that play a pivotal role in epigenetic regulation of gene expression that modifies the terminal of core histones leading to remodelling of chromatin topology and thereby controlling gene expression. HDAC inhibitors (HDACi) counter this action and can result in hyperacetylation of histones, thereby inducing an array of cellular consequences such as activation of apoptotic pathways, generation of reactive oxygen species (ROS), cell cycle arrest and autophagy. Hence, there is a growing interest in the potential clinical use of HDAC inhibitors as a new class of targeted cancer therapeutics. Methodology and Result: Several research articles spanning between 2016 and 2017 were reviewed in this article and presently offer critical insights into the important strategies such as structure-based rational drug design, multi-parameter lead optimization methodologies, relevant SAR studies and biology of various class of HDAC inhibitors, such as hydroxamic acids, benzamides, cyclic peptides, aliphatic acids, summarising the clinical trials and results of various combination drug therapy till date. CONCLUSION This review will provide a platform to the synthetic chemists and biologists to cater the needs of both molecular targeted therapy and combination drug therapy to design and synthesize safe and selective HDAC inhibitors in cancer therapeutics.
Collapse
Affiliation(s)
- Faria Sultana
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India
| | - Kesari Lakshmi Manasa
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Siddiq Pasha Shaik
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India
| | - Srinivasa Reddy Bonam
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Ahmed Kamal
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India.,School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi, 110062, India
| |
Collapse
|
27
|
Elmallah MIY, Micheau O. Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11060850. [PMID: 31248188 PMCID: PMC6627638 DOI: 10.3390/cancers11060850] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
One of the main characteristics of carcinogenesis relies on genetic alterations in DNA and epigenetic changes in histone and non-histone proteins. At the chromatin level, gene expression is tightly controlled by DNA methyl transferases, histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyl-binding proteins. In particular, the expression level and function of several tumor suppressor genes, or oncogenes such as c-Myc, p53 or TRAIL, have been found to be regulated by acetylation. For example, HATs are a group of enzymes, which are responsible for the acetylation of histone proteins, resulting in chromatin relaxation and transcriptional activation, whereas HDACs by deacetylating histones lead to chromatin compaction and the subsequent transcriptional repression of tumor suppressor genes. Direct acetylation of suppressor genes or oncogenes can affect their stability or function. Histone deacetylase inhibitors (HDACi) have thus been developed as a promising therapeutic target in oncology. While these inhibitors display anticancer properties in preclinical models, and despite the fact that some of them have been approved by the FDA, HDACi still have limited therapeutic efficacy in clinical terms. Nonetheless, combined with a wide range of structurally and functionally diverse chemical compounds or immune therapies, HDACi have been reported to work in synergy to induce tumor regression. In this review, the role of HDACs in cancer etiology and recent advances in the development of HDACi will be presented and put into perspective as potential drugs synergizing with TRAIL's pro-apoptotic potential.
Collapse
Affiliation(s)
- Mohammed I Y Elmallah
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France.
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan 11795 Cairo, Egypt.
| | - Olivier Micheau
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France.
| |
Collapse
|
28
|
Jo EB, Lee YS, Lee H, Park JB, Park H, Choi YL, Hong D, Kim SJ. Combination therapy with c-met inhibitor and TRAIL enhances apoptosis in dedifferentiated liposarcoma patient-derived cells. BMC Cancer 2019; 19:496. [PMID: 31126284 PMCID: PMC6534902 DOI: 10.1186/s12885-019-5713-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background Liposarcoma (LPS) is a tumor derived from adipose tissue, and has the highest incidence among soft tissue sarcomas. Dedifferentiated liposarcoma (DDLPS) is a malignant tumor with poor prognosis. Recurrence and metastasis rates in LPS remain high even after chemotherapy and radiotherapy following complete resection. Therefore, the development of advanced treatment strategies for LPS is required. In the present study, we investigated the effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment, and of combination treatment using TRAIL and a c-Met inhibitor on cell viability and apoptosis in LPS and DDLPS cell lines of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment, and of combination treatment using TRAIL and a c-Met inhibitor. Methods We analyzed cell viability after treatment with TRAIL and a c-Met inhibitor by measuring CCK8 and death receptor 5 (DR5) expression levels via fluorescence activated cell sorting (FACS) in both sarcoma cell lines and DDLPS patient-derived cells (PDCs). Moreover, we validated the effects of TRAIL alone and in combination with c-Met inhibitor on apoptosis in LPS cell lines and DDLPS PDCs via FACS. Results Our results revealed that combination treatment with a c-Met inhibitor and human recombinant TRAIL (rhTRAIL) suppressed cell viability and induced cell death in both sarcoma cell lines and DDLPS PDCs, which showed varying sensitivities to rhTRAIL alone. Also, we confirmed that treatment with a c-Met inhibitor upregulated DR5 levels in sarcoma cell lines and DDLPS PDCs. In both TRAIL-susceptible and TRAIL-resistant cells subjected to combination treatment, promotion of apoptosis was dependent on DR5 upregulation. Conclusion From these results, our findings validated that DR5 up-regulation caused by combination therapy with a c-Met inhibitor and rhTRAIL enhanced TRAIL sensitization and promoted apoptosis. We propose the use of this approach to overcome TRAIL resistance and serve as a novel treatment strategy for clinical trials. Electronic supplementary material The online version of this article (10.1186/s12885-019-5713-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eun Byeol Jo
- Sarcoma Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.,Samsung Advanced Institute for Health Sciences and Technology, SKKU, Seoul, Republic of Korea
| | - Young Sang Lee
- Sarcoma Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.,Samsung Advanced Institute for Health Sciences and Technology, SKKU, Seoul, Republic of Korea
| | - Hyunjoo Lee
- Personalized Medicine, Children's Cancer Institute Australia, Sydney, NSW, Australia
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, SungKyunKwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Hyojun Park
- Department of Surgery, Samsung Medical Center, SungKyunKwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Yoon-La Choi
- Sarcoma Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.,Department of Pathology, Samsung Medical Center, Seoul, Republic of Korea
| | - Doopyo Hong
- Sarcoma Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| | - Sung Joo Kim
- Sarcoma Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea. .,Samsung Advanced Institute for Health Sciences and Technology, SKKU, Seoul, Republic of Korea. .,Department of Surgery, Samsung Medical Center, SungKyunKwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
29
|
p53 at the Crossroads between Different Types of HDAC Inhibitor-Mediated Cancer Cell Death. Int J Mol Sci 2019; 20:ijms20102415. [PMID: 31096697 PMCID: PMC6567317 DOI: 10.3390/ijms20102415] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer is a complex genetic and epigenetic-based disease that has developed an armada of mechanisms to escape cell death. The deregulation of apoptosis and autophagy, which are basic processes essential for normal cellular activity, are commonly encountered during the development of human tumors. In order to assist the cancer cell in defeating the imbalance between cell growth and cell death, histone deacetylase inhibitors (HDACi) have been employed to reverse epigenetically deregulated gene expression caused by aberrant post-translational protein modifications. These interfere with histone acetyltransferase- and deacetylase-mediated acetylation of both histone and non-histone proteins, and thereby exert a wide array of HDACi-stimulated cytotoxic effects. Key determinants of HDACi lethality that interfere with cellular growth in a multitude of tumor cells are apoptosis and autophagy, which are either mutually exclusive or activated in combination. Here, we compile known molecular signals and pathways involved in the HDACi-triggered induction of apoptosis and autophagy. Currently, the factors that determine the mode of HDACi-elicited cell death are mostly unclear. Correspondingly, we also summarized as yet established intertwined mechanisms, in particular with respect to the oncogenic tumor suppressor protein p53, that drive the interplay between apoptosis and autophagy in response to HDACi. In this context, we also note the significance to determine the presence of functional p53 protein levels in the cancer cell. The confirmation of the context-dependent function of autophagy will pave the way to improve the benefit from HDACi-mediated cancer treatment.
Collapse
|
30
|
Fox CR, Parks GD. Histone Deacetylase Inhibitors Enhance Cell Killing and Block Interferon-Beta Synthesis Elicited by Infection with an Oncolytic Parainfluenza Virus. Viruses 2019; 11:E431. [PMID: 31083335 PMCID: PMC6563284 DOI: 10.3390/v11050431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
Previous results have shown that infection with the cytoplasmic-replicating parainfluenza virus 5 mutant P/V-CPI- sensitizes cells to DNA damaging agents, resulting in the enhanced killing of airway cancer cells. Here, we have tested the hypothesis that histone deacetylase (HDAC) inhibitors can also act with P/V-CPI- infection to enhance cancer cell killing. Using human small cell lung cancer and laryngeal cancer cell lines, 10 HDAC inhibitors were tested for their effect on viability of P/V-CPI- infected cells. HDAC inhibitors such as scriptaid enhanced caspase-3/7, -8 and -9 activity induced by P/V-CPI- and overall cell toxicity. Scriptaid-mediated enhanced killing was eliminated in lung cancer cells that were engineered to express a protein which sequesters double stranded RNA. Scriptaid also enhanced cancer cell killing by two other negative strand RNA viruses - the La Crosse virus and vesicular stomatitis virus. Scriptaid treatment enhanced the spread of the P/V-CPI- virus through a population of cancer cells, and suppressed interferon-beta induction through blocking phosphorylation and nuclear translocation of Interferon Regulatory Factor 3 (IRF-3). Taken together, these data support a role for combinations of a cytoplasmic-replicating RNA virus such as the P/V-CPI- mutant along with chemotherapeutic agents.
Collapse
Affiliation(s)
- Candace R Fox
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| | - Griffith D Parks
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
| |
Collapse
|
31
|
Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy. Int J Mol Sci 2019; 20:ijms20092241. [PMID: 31067680 PMCID: PMC6539010 DOI: 10.3390/ijms20092241] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/23/2019] [Accepted: 04/28/2019] [Indexed: 12/26/2022] Open
Abstract
Long-standing efforts to identify the multifaceted roles of histone deacetylase inhibitors (HDACis) have positioned these agents as promising drug candidates in combatting cancer, autoimmune, neurodegenerative, and infectious diseases. The same has also encouraged the evaluation of multiple HDACi candidates in preclinical studies in cancer and other diseases as well as the FDA-approval towards clinical use for specific agents. In this review, we have discussed how the efficacy of immunotherapy can be leveraged by combining it with HDACis. We have also included a brief overview of the classification of HDACis as well as their various roles in physiological and pathophysiological scenarios to target key cellular processes promoting the initiation, establishment, and progression of cancer. Given the critical role of the tumor microenvironment (TME) towards the outcome of anticancer therapies, we have also discussed the effect of HDACis on different components of the TME. We then have gradually progressed into examples of specific pan-HDACis, class I HDACi, and selective HDACis that either have been incorporated into clinical trials or show promising preclinical effects for future consideration. Finally, we have included examples of ongoing trials for each of the above categories of HDACis as standalone agents or in combination with immunotherapeutic approaches.
Collapse
|
32
|
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can initiate the apoptosis pathway by binding to its associated death receptors DR4 and DR5. The activation of the TRAIL pathway in inducing tumor-selective apoptosis leads to the development of TRAIL-based cancer therapies, which include recombinant forms of TRAIL, TRAIL receptor agonists, and other therapeutic agents. Importantly, TRAIL, DR4, and DR5 can all be induced by synthetic and natural agents that activate the TRAIL apoptosis pathway in cancer cells. Thus, understanding the regulation of the TRAIL apoptosis pathway can aid in the development of TRAIL-based therapies for the treatment of human cancer.
Collapse
|
33
|
Chuang CH, Chan ST, Chen CH, Yeh SL. Quercetin enhances the antitumor activity of trichostatin A through up-regulation of p300 protein expression in p53 null cancer cells. Chem Biol Interact 2019; 306:54-61. [PMID: 30958996 DOI: 10.1016/j.cbi.2019.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022]
Abstract
In the present study, we investigated the p53-independent mechanism by which quercetin (Q) increased apoptosis in human lung cancer H1299 cells exposed to trichostatin A (TSA), a histone deacetylase inhibitor. We also investigated the role of Q in increasing the acetylation of histones H3 and H4 and the possible mechanism. Q at 5 μM significantly increased apoptosis by 88% in H1299 cells induced by TSA at 72 h. Q also significantly increased TSA-induced death receptor 5 (DR5) mRNA and protein expression as well as caspase-10/3 activities in H1299 cells. Transfection of DR5 siRNA into H1299 cells significantly diminished the enhancing effects of Q on TSA-induced apoptosis. Furthermore, TSA in combination with Q rather than TSA alone significantly increased p300 expression. Transfection of p300 siRNA in H1299 cells significantly diminished the increase of histone H3/H4 acetylation, DR5 protein expression, caspase-10/3 activity and apoptosis induced by Q. In addition, similar effects of Q were observed when Q was combined with vorinostat, another FDA-approved histone deacetylase inhibitor. These data suggest that the up-regulation of p300 expression, which in turn increases histone acetylation and DR5 expression, plays an important role in the enhancing effect of Q on TSA/vorinostat- induced apoptosis in H1299 cells.
Collapse
Affiliation(s)
- Cheng-Hung Chuang
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, 1018, Sec. 6 Taiwan Boulevard, Taichung, Taiwan
| | - Shu-Ting Chan
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chao-Hsiang Chen
- Ko Da Pharmaceutical Co. Ltd, No. 20-1, Gongye 3rd Rd., Taoyuan county, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Shu-Lan Yeh
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
34
|
Kartikasari AER, Prakash MD, Cox M, Wilson K, Boer JC, Cauchi JA, Plebanski M. Therapeutic Cancer Vaccines-T Cell Responses and Epigenetic Modulation. Front Immunol 2019; 9:3109. [PMID: 30740111 PMCID: PMC6357987 DOI: 10.3389/fimmu.2018.03109] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
There is great interest in developing efficient therapeutic cancer vaccines, as this type of therapy allows targeted killing of tumor cells as well as long-lasting immune protection. High levels of tumor-infiltrating CD8+ T cells are associated with better prognosis in many cancers, and it is expected that new generation vaccines will induce effective production of these cells. Epigenetic mechanisms can promote changes in host immune responses, as well as mediate immune evasion by cancer cells. Here, we focus on epigenetic modifications involved in both vaccine-adjuvant-generated T cell immunity and cancer immune escape mechanisms. We propose that vaccine-adjuvant systems may be utilized to induce beneficial epigenetic modifications and discuss how epigenetic interventions could improve vaccine-based therapies. Additionally, we speculate on how, given the unique nature of individual epigenetic landscapes, epigenetic mapping of cancer progression and specific subsequent immune responses, could be harnessed to tailor therapeutic vaccines to each patient.
Collapse
Affiliation(s)
- Apriliana E R Kartikasari
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Monica D Prakash
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Momodou Cox
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Kirsty Wilson
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Jennifer C Boer
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Jennifer A Cauchi
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
35
|
Elucidation for modulation of death receptor (DR) 5 to strengthen apoptotic signals in cancer cells. Arch Pharm Res 2019; 42:88-100. [DOI: 10.1007/s12272-018-01103-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
|
36
|
Epigenetic Targeting of Autophagy via HDAC Inhibition in Tumor Cells: Role of p53. Int J Mol Sci 2018; 19:ijms19123952. [PMID: 30544838 PMCID: PMC6321134 DOI: 10.3390/ijms19123952] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor development and progression is the consequence of genetic as well as epigenetic alterations of the cell. As part of the epigenetic regulatory system, histone acetyltransferases (HATs) and deacetylases (HDACs) drive the modification of histone as well as non-histone proteins. Derailed acetylation-mediated gene expression in cancer due to a delicate imbalance in HDAC expression can be reversed by histone deacetylase inhibitors (HDACi). Histone deacetylase inhibitors have far-reaching anticancer activities that include the induction of cell cycle arrest, the inhibition of angiogenesis, immunomodulatory responses, the inhibition of stress responses, increased generation of oxidative stress, activation of apoptosis, autophagy eliciting cell death, and even the regulation of non-coding RNA expression in malignant tumor cells. However, it remains an ongoing issue how tumor cells determine to respond to HDACi treatment by preferentially undergoing apoptosis or autophagy. In this review, we summarize HDACi-mediated mechanisms of action, particularly with respect to the induction of cell death. There is a keen interest in assessing suitable molecular factors allowing a prognosis of HDACi-mediated treatment. Addressing the results of our recent study, we highlight the role of p53 as a molecular switch driving HDACi-mediated cellular responses towards one of both types of cell death. These findings underline the importance to determine the mutational status of p53 for an effective outcome in HDACi-mediated tumor therapy.
Collapse
|
37
|
Overcoming Resistance of Human Non-Hodgkin's Lymphoma to CD19-CAR CTL Therapy by Celecoxib and Histone Deacetylase Inhibitors. Cancers (Basel) 2018; 10:cancers10060200. [PMID: 29904021 PMCID: PMC6025421 DOI: 10.3390/cancers10060200] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/14/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Abstract
Patients with B-cell non-Hodgkin’s lymphoma (B-NHL) who fail to respond to first-line treatment regimens or develop resistance, exhibit poor prognosis. This signifies the need to develop alternative treatment strategies. CD19-chimeric antigen receptor (CAR) T cell-redirected immunotherapy is an attractive and novel option, which has shown encouraging outcomes in phase I clinical trials of relapsed/refractory NHL. However, the underlying mechanisms of, and approaches to overcome, acquired anti-CD19CAR CD8+ T cells (CTL)-resistance in NHL remain elusive. CD19CAR transduced primary human CTLs kill CD19+ human NHLs in a CD19- and caspase-dependent manner, mainly via the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) apoptotic pathway. To understand the dynamics of the development of resistance, we analyzed several anti-CD19CAR CTL-resistant NHL sublines (R-NHL) derived by serial exposure of sensitive parental lines to excessive numbers of anti-CD19CAR CTLs followed by a limiting dilution analysis. The R-NHLs retained surface CD19 expression and were efficiently recognized by CD19CAR CTLs. However, R-NHLs developed cross-resistance to CD19CAR transduced human primary CTLs and the Jurkat human T cell line, activated Jurkat, and lymphokine activated killer (LAK) cells, suggesting the acquisition of resistance is independent of CD19-loss and might be due to aberrant apoptotic machinery. We hypothesize that the R-NHL refractoriness to CD19CAR CTL killing could be partially rescued by small molecule sensitizers with apoptotic-gene regulatory effects. Chromatin modifiers and Celecoxib partially reversed the resistance of R-NHL cells to the cytotoxic effects of anti-CD19CAR CTLs and rhTRAIL. These in vitro results, though they require further examination, may provide a rational biological basis for combination treatment in the management of CD19CAR CTL-based therapy of NHL.
Collapse
|
38
|
Singh AK, Bishayee A, Pandey AK. Targeting Histone Deacetylases with Natural and Synthetic Agents: An Emerging Anticancer Strategy. Nutrients 2018; 10:E731. [PMID: 29882797 PMCID: PMC6024317 DOI: 10.3390/nu10060731] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer initiation and progression are the result of genetic and/or epigenetic alterations. Acetylation-mediated histone/non-histone protein modification plays an important role in the epigenetic regulation of gene expression. Histone modification is controlled by the balance between histone acetyltransferase and (HAT) and histone deacetylase (HDAC) enzymes. Imbalance between the activities of these two enzymes is associated with various forms of cancer. Histone deacetylase inhibitors (HDACi) regulate the activity of HDACs and are being used in cancer treatment either alone or in combination with other chemotherapeutic drugs/radiotherapy. The Food and Drug Administration (FDA) has already approved four compounds, namely vorinostat, romidepsin, belinostat, and panobinostat, as HDACi for the treatment of cancer. Several other HDACi of natural and synthetic origin are under clinical trial for the evaluation of efficiency and side-effects. Natural compounds of plant, fungus, and actinomycetes origin, such as phenolics, polyketides, tetrapeptide, terpenoids, alkaloids, and hydoxamic acid, have been reported to show potential HDAC-inhibitory activity. Several HDACi of natural and dietary origin are butein, protocatechuic aldehyde, kaempferol (grapes, green tea, tomatoes, potatoes, and onions), resveratrol (grapes, red wine, blueberries and peanuts), sinapinic acid (wine and vinegar), diallyl disulfide (garlic), and zerumbone (ginger). HDACi exhibit their antitumor effect by the activation of cell cycle arrest, induction of apoptosis and autophagy, angiogenesis inhibition, increased reactive oxygen species generation causing oxidative stress, and mitotic cell death in cancer cells. This review summarizes the HDACs classification, their aberrant expression in cancerous tissue, structures, sources, and the anticancer mechanisms of HDACi, as well as HDACi that are either FDA-approved or under clinical trials.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA.
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| |
Collapse
|
39
|
Naimi A, Movassaghpour AA, Hagh MF, Talebi M, Entezari A, Jadidi-Niaragh F, Solali S. TNF-related apoptosis-inducing ligand (TRAIL) as the potential therapeutic target in hematological malignancies. Biomed Pharmacother 2018; 98:566-576. [DOI: 10.1016/j.biopha.2017.12.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/27/2017] [Accepted: 12/18/2017] [Indexed: 02/08/2023] Open
|
40
|
Fulda S. Therapeutic opportunities based on caspase modulation. Semin Cell Dev Biol 2017; 82:150-157. [PMID: 29247787 DOI: 10.1016/j.semcdb.2017.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Caspases are a family of proteolytic enzymes that play a critical role in the regulation of programmed cell death via apoptosis. Activation of caspases is frequently impaired in human cancers, contributing to cancer formation, progression and therapy resistance. A better understanding of the molecular mechanisms regulating caspase activation in cancer cells is therefore highly important. Thus, targeted modulation of caspase activation and apoptosis represents a promising approach for the development of new therapeutic options to elucidate cancer cell death.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
41
|
Zingoni A, Fionda C, Borrelli C, Cippitelli M, Santoni A, Soriani A. Natural Killer Cell Response to Chemotherapy-Stressed Cancer Cells: Role in Tumor Immunosurveillance. Front Immunol 2017; 8:1194. [PMID: 28993779 PMCID: PMC5622151 DOI: 10.3389/fimmu.2017.01194] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic lymphoid cells that actively prevent neoplastic development, growth, and metastatic dissemination in a process called cancer immunosurveillance. An equilibrium between immune control and tumor growth is maintained as long as cancer cells evade immunosurveillance. Therapies designed to kill cancer cells and to simultaneously sustain host antitumor immunity are an appealing strategy to control tumor growth. Several chemotherapeutic agents, depending on which drugs and doses are used, give rise to DNA damage and cancer cell death by means of apoptosis, immunogenic cell death, or other forms of non-apoptotic death (i.e., mitotic catastrophe, senescence, and autophagy). However, it is becoming increasingly clear that they can trigger additional stress responses. Indeed, relevant immunostimulating effects of different therapeutic programs include also the activation of pathways able to promote their recognition by immune effector cells. Among stress-inducible immunostimulating proteins, changes in the expression levels of NK cell-activating and inhibitory ligands, as well as of death receptors on tumor cells, play a critical role in their detection and elimination by innate immune effectors, including NK cells. Here, we will review recent advances in chemotherapy-mediated cellular stress pathways able to stimulate NK cell effector functions. In particular, we will address how these cytotoxic lymphocytes sense and respond to different types of drug-induced stresses contributing to anticancer activity.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Cristiana Borrelli
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,Neuromed I.R.C.C.S. - Istituto Neurologico Mediterraneo, Pozzilli, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
42
|
Histone Deacetylase Inhibitor-Induced Autophagy in Tumor Cells: Implications for p53. Int J Mol Sci 2017; 18:ijms18091883. [PMID: 30563957 PMCID: PMC5618532 DOI: 10.3390/ijms18091883] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/20/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an essential process of the eukaryotic cell allowing degradation and recycling of dysfunctional cellular components in response to either physiological or pathological changes. Inhibition of autophagy in combination with chemotherapeutic treatment has emerged as a novel approach in cancer treatment leading to cell cycle arrest, differentiation, and apoptosis. Suberoyl hydroxamic acid (SAHA) is a broad-spectrum histone deacetylase inhibitor (HDACi) suppressing family members in multiple HDAC classes. Increasing evidence indicates that SAHA and other HDACi can, in addition to mitochondria-mediated apoptosis, also promote caspase-independent autophagy. SAHA-induced mTOR inactivation as a major regulator of autophagy activating the remaining autophagic core machinery is by far the most reported pathway in several tumor models. However, the question of which upstream mechanisms regulate SAHA-induced mTOR inactivation that consequently initiate autophagy has been mainly left unexplored. To elucidate this issue, we recently initiated a study clarifying different modes of SAHA-induced cell death in two human uterine sarcoma cell lines which led to the conclusion that the tumor suppressor protein p53 could act as a molecular switch between SAHA-triggered autophagic or apoptotic cell death. In this review, we present current research evidence about HDACi-mediated apoptotic and autophagic pathways, in particular with regard to p53 and its therapeutic implications.
Collapse
|
43
|
Can Z, Lele S, Zhirui Z, Qiong P, Yuzhong C, Lingling L, Surong Z, Yiming S, Pei Z, Chenchen J, Liu H. 3-Bromopyruvate enhances TRAIL-induced apoptosis in human nasopharyngeal carcinoma cells through CHOP-dependent upregulation of TRAIL-R2. Anticancer Drugs 2017; 28:739-749. [PMID: 28471808 DOI: 10.1097/cad.0000000000000502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Past reports have shown that the sensitivity of cancer cells to TRAIL-induced apoptosis is related to their expression of TRAIL-death receptors on the cell surface. However, the level of TRAIL-death receptors expression on cancer cells is always low. Our previous research showed that nasopharyngeal carcinoma (NPC) cells have a poor sensitivity to low doses of TRAIL. Here, we evaluated combined treatment with the energy inhibitor 3-bromopyruvate (3BP) and TRAIL as a method to produce an increased apoptotic response in NPC cells. The results showed that 3BP and TRAIL together produced higher cytotoxicity and increased TRAIL-R2 expression in NPC cells compared with the effects of either 3BP or TRAIL alone. These findings led us to hypothesize that 3BP may sensitize NPC cells to TRAIL. 3BP is a metabolic blocker that inhibits hexokinase II activity, suppresses ATP production, and induces endoplasmic reticulum (ER) stress. Our results showed that 3BP also activated AMP-activated protein kinase, which we found to play an important role in the induction of ER stress by 3BP. Furthermore, the induction of TRAIL-R2 expression and the sensitization of the NPC cells to TRAIL by 3BP were reduced when we inhibited the expression of CHOP. Taken together, our results showed that a low dose of 3BP sensitized NPC cells to TRAIL-induced apoptosis by the upregulation of CHOP, which was mediated by the activation of AMP-activated protein kinase and ER stress. The results showed that 3BP is a promising candidate agent for enhancing the therapeutic response to TRAIL in NPC.
Collapse
Affiliation(s)
- Zhou Can
- aFaculty of Pharmacy, Bengbu Medical College bDepartment of Pharmacy cDepartment of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College dDepartment of Pharmacy, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China eSchool of Medicine and Public Health, Faculty of Health, Newcastle University, Newcastle, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
This study shows the design, synthesis and antitumoral potential evaluation of a novel chalcone-like compound, (E)-3- (3, 5-di-ter-butyl-4-hydroxyphenyl)-1- (4-hydroxy-3-methoxyphenyl) prop-2-en-1-one [LQFM064) (4)], against human breast adenocarcinoma MCF7 cells. Some toxicological parameters were also investigated. LQFM064) (4) exhibited cytotoxic activity against MCF7 cells (IC50=21μM), in a concentration dependent-manner, and triggered significant changes in cell morphology and biochemical/molecular parameters, which are suggestive of an apoptosis inductor. LQFM064) (4) (21μM) induced cell cycle arrest at G0/G1 phase with increased p53 and p21 expressions. It was also shown that the compound (4) did not interfere directly in p53/MDM2 complexation of MCF7 cells. In these cells, externalization of phosphatidylserine, cytochrome c release, increased expression of caspases-7, -8 and -9, reduced mitochondrial membrane potential and ROS overgeneration were also detected following LQFM064 (4) treatment. Further analysis revealed the activation of both apoptotic pathways via modulation of the proteins involved in the extrinsic and intrinsic pathways with an increase in TNF-R1, Fas-L and Bax levels and a reduction in Bcl-2 expression. Furthermore, KIT proto-oncogene receptor tyrosine kinase, insulin-like growth factor (IGF1) and platelet-derived growth factor receptor A (PDGFRA) were downregulated, while glutathione S-transferase P1 (GSTP1) and interferon regulatory factor 5 (IRF5) expressions were increased by LQFM064 (4)-triggered cytotoxic effects in MCF7 cells. Moreover, it can be inferred that compound (4) has a moderate acute oral systemic toxicity hazard, since its estimated LD50 was 452.50mg/kg, which classifies it as UN GHS Category 4 (300mg/kg>LD50<2000mg/kg). Furthermore, LQFM064 (4) showed a reduced potential myelotoxicity (IC50=150μM for mouse bone marrow hematopoietic progenitors). In conclusion, LQFM064 (4) was capable of inducing breast cancer cells death via different cytotoxic pathways. Thus, it is a promising alternative for the treatment of neoplasias, especially in terms of the drug resistance development.
Collapse
|
45
|
SLC transporters as a novel class of tumour suppressors: identity, function and molecular mechanisms. Biochem J 2017; 473:1113-24. [PMID: 27118869 DOI: 10.1042/bj20150751] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 02/15/2016] [Indexed: 12/20/2022]
Abstract
The role of plasma membrane transporters in cancer is receiving increasing attention in recent years. Several transporters for essential nutrients are up-regulated in cancer and serve as tumour promoters. Transporters could also function as tumour suppressors. To date, four transporters belonging to the SLC gene family have been identified as tumour suppressors. SLC5A8 is a Na(+)-coupled transporter for monocarboxylates. Among its substrates are the bacterial fermentation products butyrate and propionate and the ubiquitous metabolite pyruvate. The tumour-suppressive function of this transporter relates to the ability of butyrate, propionate and pyruvate to inhibit histone deacetylases (HDAC). SLC5A8 functions as a tumour suppressor in most tissues studied thus far, and provides a molecular link to Warburg effect, a characteristic feature in most cancers. It also links colonic bacteria and dietary fibre to the host. SLC26A3 as a tumour suppressor is restricted to colon; it is a Cl(-)/HCO(-) 3 exchanger, facilitating the efflux of HCO(-) 3 The likely mechanism for the tumour-suppressive function of SLC26A3 is related to intracellular pH regulation. SLC39A1 is a Zn(2+) transporter and its role in tumour suppression has been shown in prostate. Zn(2+) is present at high concentrations in normal prostate where it elicits its tumour-suppressive function. SLC22A18 is possibly an organic cation transporter, but the identity of its physiological substrates is unknown. As such, there is no information on molecular pathways responsible for the tumour-suppressive function of this transporter. It is likely that additional SLC transporters will be discovered as tumour suppressors in the future.
Collapse
|
46
|
Nebbioso A, Carafa V, Conte M, Tambaro FP, Abbondanza C, Martens J, Nees M, Benedetti R, Pallavicini I, Minucci S, Garcia-Manero G, Iovino F, Lania G, Ingenito C, Belsito Petrizzi V, Stunnenberg HG, Altucci L. c-Myc Modulation and Acetylation Is a Key HDAC Inhibitor Target in Cancer. Clin Cancer Res 2017; 23:2542-2555. [PMID: 27358484 DOI: 10.1158/1078-0432.ccr-15-2388] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 05/03/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Histone deacetylase inhibitors (HDACi) are promising anticancer drugs. Although some HDACi have entered the clinic, the mechanism(s) underlying their tumor selectivity are poorly understood.Experimental Design and Results: Using gene expression analysis, we define a core set of six genes commonly regulated in acute myeloid leukemia (AML) blasts and cell lines. MYC, the most prominently modulated, is preferentially altered in leukemia. Upon HDACi treatment, c-Myc is acetylated at lysine 323 and its expression decreases, leading to TRAIL activation and apoptosis. c-Myc binds to the TRAIL promoter on the proximal GC box through SP1 or MIZ1, impairing TRAIL activation. HDACi exposure triggers TRAIL expression, altering c-Myc-TRAIL binding. These events do not occur in normal cells. Excitingly, this inverse correlation between TRAIL and c-Myc is supported by HDACi treatment ex vivo of AML blasts and primary human breast cancer cells. The predictive value of c-Myc to HDACi responsiveness is confirmed in vivo in AML patients undergoing HDACi-based clinical trials.Conclusions: Collectively, our findings identify a key role for c-Myc in TRAIL deregulation and as a biomarker of the anticancer action of HDACi in AML. The potential improved patient stratification could pave the way toward personalized therapies. Clin Cancer Res; 23(10); 2542-55. ©2016 AACR.
Collapse
Affiliation(s)
- Angela Nebbioso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania 'L. Vanvitelli', Naples, Italy.
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud University, Nijmegen Center for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Vincenzo Carafa
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania 'L. Vanvitelli', Naples, Italy
| | | | - Francesco Paolo Tambaro
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania 'L. Vanvitelli', Naples, Italy
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Ciro Abbondanza
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania 'L. Vanvitelli', Naples, Italy
| | - Joost Martens
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania 'L. Vanvitelli', Naples, Italy
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud University, Nijmegen Center for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Matthias Nees
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Rosaria Benedetti
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania 'L. Vanvitelli', Naples, Italy
| | - Isabella Pallavicini
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | | - Francesco Iovino
- Dipartimento Scienze Anestesiologiche, Chirurgiche e dell'Emergenza, Università degli Studi della Campania 'L. Vanvitelli', Naples, Italy
| | - Gabriella Lania
- Institute of Genetics and Biophysics (IGB) 'Adriano Buzzati Traverso', Naples, Italy
| | | | | | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud University, Nijmegen Center for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Lucia Altucci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania 'L. Vanvitelli', Naples, Italy.
- Institute of Genetics and Biophysics (IGB) 'Adriano Buzzati Traverso', Naples, Italy
| |
Collapse
|
47
|
Dunn J, Rao S. Epigenetics and immunotherapy: The current state of play. Mol Immunol 2017; 87:227-239. [PMID: 28511092 DOI: 10.1016/j.molimm.2017.04.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/14/2017] [Accepted: 04/22/2017] [Indexed: 12/14/2022]
Abstract
Cancer cells employ a number of mechanisms to escape immunosurveillance and facilitate tumour progression. The recent explosion of interest in immunotherapy, especially immune checkpoint blockade, is a result of discoveries about the fundamental ligand-receptor interactions that occur between immune and cancer cells within the tumour microenvironment. Distinct ligands expressed by cancer cells engage with cell surface receptors on immune cells, triggering inhibitory pathways (such as PD-1/PD-L1) that render immune cells immunologically tolerant. Importantly, recent studies on the role of epigenetics in immune evasion have exposed a key role for epigenetic modulators in augmenting the tumour microenvironment and restoring immune recognition and immunogenicity. Epigenetic drugs such as DNA methyltransferase and histone deacetylase inhibitors can reverse immune suppression via several mechanisms such as enhancing expression of tumour-associated antigens, components of the antigen processing and presenting machinery pathways, immune checkpoint inhibitors, chemokines, and other immune-related genes. These discoveries have established a highly promising basis for studies using combined epigenetic and immunotherapeutic agents as anti-cancer therapies. In this review, we discuss the exciting role of epigenetic immunomodulation in tumour immune escape, emphasising its significance in priming and sensitising the host immune system to immunotherapies through mechanisms such as the activation of the viral defence pathway. With this background in mind, we highlight the promise of combined epigenetic therapy and immunotherapy, focusing on immune checkpoint blockade, to improve outcomes for patients with many different cancer types.
Collapse
Affiliation(s)
- Jennifer Dunn
- Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Bruce, ACT, 2601, Australia.
| | - Sudha Rao
- Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Bruce, ACT, 2601, Australia.
| |
Collapse
|
48
|
Sakai T, Sowa Y. Molecular-targeting therapies against quantitative abnormalities in gene expression with malignant tumors. Cancer Sci 2017; 108:570-573. [PMID: 28178388 PMCID: PMC5406604 DOI: 10.1111/cas.13188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/31/2017] [Accepted: 02/04/2017] [Indexed: 01/15/2023] Open
Abstract
Genetic mutations in exons of oncogenes and tumor-suppressor genes causing qualitative abnormalities result in activation of the oncogenes and inactivation of the tumor-suppressor genes, thereby causing cancer. In contrast, we have previously demonstrated that decreases in the RB promoter activity by genetic or epigenetic abnormalities can also cause carcinogenesis. In addition, activation and inactivation of a variety of oncogenes and tumor-suppressor genes finally cause quantitative abnormalities in gene expression. Interestingly, we discovered effective molecular-targeting agents, such as a novel MEK inhibitor, trametinib, by screening for agents upregulating the expression of cyclin-dependent kinase inhibitors. In the present review, we focused on the quantitative abnormalities in gene expression with carcinogenesis, and discuss the importance of normalizing the quantitative abnormalities in gene expression with several molecular-targeting agents.
Collapse
Affiliation(s)
- Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshihiro Sowa
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
49
|
Sortase A-aided Escherichia coli expression system for functional osteoprotegerin cysteine-rich domain. Appl Microbiol Biotechnol 2017; 101:4923-4933. [PMID: 28303296 DOI: 10.1007/s00253-017-8188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/23/2017] [Accepted: 02/04/2017] [Indexed: 10/20/2022]
Abstract
As a natural inhibitor of the receptor activator of nuclear factor-кB ligand (RANKL), osteprotegerin (OPG) is considered a promising treatment for metabolic bone diseases. Typical approaches for preparing recombinant OPG or its derivatives employ eukaryotic expression systems. Due to the advantages of a prokaryotic expression system, which include its convenience, low cost, and abundant production, in this study, we establish a strategy for preparing functional OPG using the Escherichia coli expression system. After initial failures in preparation of OPG and its truncation, OPG cysteine-rich domain (OPG-CRD/OPGT) by using pET and pGEX vectors, we constructed a sortase A (SrtA)-aided E. coli expression system, in which the expressed protein was a self-cleaving SrtA fusion protein. Using this system, we successfully prepared the recombinant OPGT protein. The BIAcore analyses indicated that the prepared OPGT had high affinities in binding with RANKL and TRAIL. Cell experiments confirmed the inhibitory effects of the prepared OPGT on RANKL-induced osteoclast differentiation and TRAIL-induced tumor cell apoptosis. The sortase A-aided E. coli expression system for OPGT established in this study may contribute to further studies and commercial applications of OPG.
Collapse
|
50
|
Cousin FJ, Jouan-Lanhouet S, Théret N, Brenner C, Jouan E, Le Moigne-Muller G, Dimanche-Boitrel MT, Jan G. The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer. Oncotarget 2016; 7:7161-78. [PMID: 26771233 PMCID: PMC4872776 DOI: 10.18632/oncotarget.6881] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/03/2016] [Indexed: 12/31/2022] Open
Abstract
TNF-Related Apoptosis-Inducing Ligand (TRAIL) is a well-known apoptosis inducer, which activates the extrinsic death pathway. TRAIL is pro-apoptotic on colon cancer cells, while not cytotoxic towards normal healthy cells. However, its clinical use is limited by cell resistance to cell death which occurs in approximately 50% of cancer cells. Short Chain Fatty Acids (SCFA) are also known to specifically induce apoptosis of cancer cells. In accordance, we have shown that food grade dairy propionibacteria induce intrinsic apoptosis of colon cancer cells, via the production and release of SCFA (propionate and acetate) acting on mitochondria. Here, we investigated possible synergistic effect between Propionibacterium freudenreichii and TRAIL. Indeed, we hypothesized that acting on both extrinsic and intrinsic death pathways may exert a synergistic pro-apoptotic effect. Whole transcriptomic analysis demonstrated that propionibacterial supernatant or propionibacterial metabolites (propionate and acetate), in combination with TRAIL, increased pro-apoptotic gene expression (TRAIL-R2/DR5) and decreased anti-apoptotic gene expression (FLIP, XIAP) in HT29 human colon cancer cells. The revealed synergistic pro-apoptotic effect, depending on both death receptors (TRAIL-R1/DR4, TRAIL-R2/DR5) and caspases (caspase-8, -9 and -3) activation, was lethal on cancer cells but not on normal human intestinal epithelial cells (HIEC), and was inhibited by Bcl-2 expression. Finally, milk fermented by P. freudenreichii induced HT29 cells apoptosis and enhanced TRAIL cytotoxic activity, as did P. freudenreichii DMEM culture supernatants or its SCFA metabolites. These results open new perspectives for food grade P. freudenreichii-containing products in order to potentiate TRAIL-based cancer therapy in colorectal cancer.
Collapse
Affiliation(s)
- Fabien J Cousin
- INRA, UMR1253 STLO, Science et Technologie du Lait et de l'Œuf, Rennes F-35042, France.,AGROCAMPUS OUEST, UMR1253 STLO, Rennes F-35042, France.,CNIEL/Syndifrais, Paris 09 F-75314, France.,Current address: Research Unit Aliments Bioprocédés Toxicologie Environnements (UR ABTE) EA 4651, Université de Caen Normandie, Caen F-14032, France
| | - Sandrine Jouan-Lanhouet
- INSERM, UMR1085, Institut de Recherche sur la Santé, l'Environnement et le Travail, Rennes F-35043, France.,Biosit UMS3080, Université de Rennes 1, Rennes F-35043, France.,Current address: Department for Biomedical Molecular Biology, University of Ghent, VIB Inflammation Research Center, Ghent B-9052, Belgium
| | - Nathalie Théret
- INSERM, UMR1085, Institut de Recherche sur la Santé, l'Environnement et le Travail, Rennes F-35043, France.,Biosit UMS3080, Université de Rennes 1, Rennes F-35043, France.,INRIA, UMR6074 IRISA, Rennes F-35042, France
| | - Catherine Brenner
- INSERM, UMRS1180, LabEx LERMIT, Châtenay-Malabry F-92290, France.,Université de Paris Sud, Faculté de Pharmacie, Châtenay-Malabry F-92290, France
| | - Elodie Jouan
- INSERM, UMR1085, Institut de Recherche sur la Santé, l'Environnement et le Travail, Rennes F-35043, France.,Biosit UMS3080, Université de Rennes 1, Rennes F-35043, France
| | - Gwénaëlle Le Moigne-Muller
- INSERM, UMR1085, Institut de Recherche sur la Santé, l'Environnement et le Travail, Rennes F-35043, France.,Biosit UMS3080, Université de Rennes 1, Rennes F-35043, France
| | - Marie-Thérèse Dimanche-Boitrel
- INSERM, UMR1085, Institut de Recherche sur la Santé, l'Environnement et le Travail, Rennes F-35043, France.,Biosit UMS3080, Université de Rennes 1, Rennes F-35043, France
| | - Gwénaël Jan
- INRA, UMR1253 STLO, Science et Technologie du Lait et de l'Œuf, Rennes F-35042, France.,AGROCAMPUS OUEST, UMR1253 STLO, Rennes F-35042, France
| |
Collapse
|