1
|
Rahmé R, Braun T. Venetoclax Combined with Intensive Chemotherapy: A New Hope for Refractory and/or Relapsed Acute Myeloid Leukemia? J Clin Med 2024; 13:549. [PMID: 38256681 PMCID: PMC10816428 DOI: 10.3390/jcm13020549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Background. Primary resistance of acute myeloid leukemia (AML) to the conventional 3 + 7 intensive chemotherapy and relapses after first-line chemotherapy are two highly challenging clinical scenarios. In these cases, when allogeneic stem cell transplantation is feasible, patients are usually retreated with other chemotherapeutic regimens, as transplantation is still considered, nowadays, the only curative option. Methods. We discuss the mechanisms behind resistance to chemotherapy and offer a comprehensive review on current treatments of refractory/relapsed AML with a focus on novel approaches incorporating the BCL-2 inhibitor venetoclax. Results. Alas, complete remission rates after salvage chemotherapy remain relatively low, between 30 and 60% at best. More recently, the BCL-2 inhibitor venetoclax was combined either with hypomethylating agents or chemotherapy in refractory/relapsed patients. In particular, its combination with chemotherapy offered promising results by achieving higher rates of remission and bridging a substantial number of patients to transplantation. Conclusions. Venetoclax-based approaches might become, in the near future, the new standard of care for refractory/relapsed AML.
Collapse
Affiliation(s)
- Ramy Rahmé
- Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, 93000 Bobigny, France
- Faculty of Medicine, Université Sorbonne Paris Nord, 93017 Bobigny, France;
| | - Thorsten Braun
- Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, 93000 Bobigny, France
- Faculty of Medicine, Université Sorbonne Paris Nord, 93017 Bobigny, France;
| |
Collapse
|
2
|
Wu Y, Paila U, Genet G, Hirschi KK. MicroRNA-223 limits murine hemogenic endothelial cell specification and myelopoiesis. Dev Cell 2023; 58:1237-1249.e5. [PMID: 37295435 PMCID: PMC10424725 DOI: 10.1016/j.devcel.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 01/04/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Embryonic definitive hematopoiesis generates hematopoietic stem and progenitor cells (HSPCs) that are essential for the establishment and maintenance of the adult blood system. This process requires the specification of a subset of vascular endothelial cells (ECs) to become hemogenic ECs and to have subsequent endothelial-to-hematopoietic transition (EHT), and the underlying mechanisms are largely undefined. We identified microRNA (miR)-223 as a negative regulator of murine hemogenic EC specification and EHT. Loss of miR-223 leads to increased formation of hemogenic ECs and HSPCs, which is associated with increased retinoic acid signaling, which we previously showed as promoting hemogenic EC specification. Additionally, loss of miR-223 leads to the generation of myeloid-biased hemogenic ECs and HSPCs, which results in an increased proportion of myeloid cells throughout embryonic and postnatal life. Our findings identify a negative regulator of hemogenic EC specification and highlight the importance of this process for the establishment of the adult blood system.
Collapse
Affiliation(s)
- Yinyu Wu
- Departments of Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Umadevi Paila
- Department of Cell Biology, Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Gael Genet
- Department of Cell Biology, Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Karen K Hirschi
- Departments of Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
3
|
Saultz JN, Tyner JW. Chasing leukemia differentiation through induction therapy, relapse and transplantation. Blood Rev 2023; 57:101000. [PMID: 36041918 DOI: 10.1016/j.blre.2022.101000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 01/28/2023]
Abstract
Despite rapid advances in our understanding of acute myeloid leukemia (AML), the disease remains challenging to treat with 5-year survival for adult patients 20 years or older estimated to be 26% (Cancer 2021). The use of new targeted therapies including BCL2, IDH1/IDH2, and FLT3 inhibitors has revolutionized treatment approaches but also changed the disease trajectory with unique modes of resistance. Recent studies have shown that stem cell maturation state drives expression level and/or dependence on various pathways, critical to determining drug response. Instead of anticipating these changes, we remain behind the curve chasing the next expanded clone. This review will focus on current approaches to treatment in AML, including defining the significance of blast differentiation state on chemotherapeutic response, signaling pathway dependence, metabolism, immune response, and phenotypic changes. We conclude that multimodal treatment approaches are necessary to target both the immature and mature clones, thereby, sustaining drug response.
Collapse
Affiliation(s)
- Jennifer N Saultz
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States of America; Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, United States of America.
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States of America; Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, United States of America; Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States of America
| |
Collapse
|
4
|
Doxorubicin-Loaded Polymeric Micelles Conjugated with CKR- and EVQ-FLT3 Peptides for Cytotoxicity in Leukemic Stem Cells. Pharmaceutics 2022; 14:pharmaceutics14102115. [PMID: 36297550 PMCID: PMC9610626 DOI: 10.3390/pharmaceutics14102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Doxorubicin (Dox) is the standard chemotherapeutic agent for acute myeloblastic leukemia (AML) treatment. However, 40% of Dox-treated AML cases relapsed due to the presence of leukemic stem cells (LSCs). Thus, poloxamer 407 and CKR- and EVQ-FLT3 peptides were used to formulate Dox-micelles (DMs) and DM conjugated with peptides (CKR and EVQ) for improving AML-LSC treatment. Results indicated that DMs with a weight ratio of Dox to P407 of 1:200 had a particle size of 23.3 ± 1.3 nm with a high percentage of Dox entrapment. They were able to prolong drug release and maintain physicochemical stability. Following effective DM preparation, P407 was modified and conjugated with FLT3 peptides, CKR and EVQ to formulate DM-CKR, DM-EVQ, and DM-CKR+DM-EVQ. Freshly synthesized DMs displaying FLT3 peptides showed particle sizes smaller than 50 nm and a high drug entrapment level, comparable with DMs. DM-CKR+DM-EVQ was considerably more toxic to KG-1a (AML LSC-like cell model) than Dox-HCl. These FLT3-targeted DMs could increase drug uptake and induce apoptosis induction. Due to an increase in micelle-LSC binding and uptake, DMs displaying both peptides tended to improve the potency of Dox compared to a single peptide-coupled micelle.
Collapse
|
5
|
Barreto IV, Pessoa FMCDP, Machado CB, Pantoja LDC, Ribeiro RM, Lopes GS, Amaral de Moraes ME, de Moraes Filho MO, de Souza LEB, Burbano RMR, Khayat AS, Moreira-Nunes CA. Leukemic Stem Cell: A Mini-Review on Clinical Perspectives. Front Oncol 2022; 12:931050. [PMID: 35814466 PMCID: PMC9270022 DOI: 10.3389/fonc.2022.931050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are known for their ability to proliferate and self-renew, thus being responsible for sustaining the hematopoietic system and residing in the bone marrow (BM). Leukemic stem cells (LSCs) are recognized by their stemness features such as drug resistance, self-renewal, and undifferentiated state. LSCs are also present in BM, being found in only 0.1%, approximately. This makes their identification and even their differentiation difficult since, despite the mutations, they are cells that still have many similarities with HSCs. Although the common characteristics, LSCs are heterogeneous cells and have different phenotypic characteristics, genetic mutations, and metabolic alterations. This whole set of alterations enables the cell to initiate the process of carcinogenesis, in addition to conferring drug resistance and providing relapses. The study of LSCs has been evolving and its application can help patients, where through its count as a biomarker, it can indicate a prognostic factor and reveal treatment results. The selection of a target to LSC therapy is fundamental. Ideally, the target chosen should be highly expressed by LSCs, highly selective, absence of expression on other cells, in particular HSC, and preferentially expressed by high numbers of patients. In view of the large number of similarities between LSCs and HSCs, it is not surprising that current treatment approaches are limited. In this mini review we seek to describe the immunophenotypic characteristics and mechanisms of resistance presented by LSCs, also approaching possible alternatives for the treatment of patients.
Collapse
Affiliation(s)
- Igor Valentim Barreto
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Flávia Melo Cunha de Pinho Pessoa
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Caio Bezerra Machado
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Laudreísa da Costa Pantoja
- Department of Pediatrics, Octávio Lobo Children’s Hospital, Belém, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
| | | | | | - Maria Elisabete Amaral de Moraes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Manoel Odorico de Moraes Filho
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | | | | | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
| | - Caroline Aquino Moreira-Nunes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
- Ceará State University, Northeast Biotechnology Network (RENORBIO), Fortaleza, Brazil
- *Correspondence: Caroline Aquino Moreira-Nunes,
| |
Collapse
|
6
|
Ju X, Miao T, Chen H, Ni J, Han L. Overcoming Mfsd2a-Mediated Low Transcytosis to Boost Nanoparticle Delivery to Brain for Chemotherapy of Brain Metastases. Adv Healthc Mater 2021; 10:e2001997. [PMID: 33738958 DOI: 10.1002/adhm.202001997] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Indexed: 12/27/2022]
Abstract
Microvessels of the blood-brain barrier (BBB) exclusively express the major facilitator superfamily domain-containing protein 2a (Mfsd2a), which is the key transporter for docosahexaenoic acid uptake into the brain. Mfsd2a suppresses caveolae-mediated transcytosis to regulate BBB transcellular permeability via controlling lipid composition of BBB endothelial cells. It is speculated that Mfsd2a can restrain BBB crossing efficiency and brain accumulation efficiency of brain-targeting drug delivery systems, which penetrate the BBB often through the receptor-mediated transcytosis pathway. Transcytosis across the BBB is a crucial bottleneck for targeted chemotherapy of brain metastases. To overcome this issue, a pair of priming nanoparticles (NPs) and following drug-loaded NPs are designed. Tunicamycin-(TM)-loaded transcytosis-targeting-peptide-(TTP)-decorated NPs (TM@TTP) are used to boost BBB transcytosis via inhibiting Mfsd2a. Doxorubicin (DOX)-loaded TTP and CD44-specific hyaluronic acid (HA)-comodified NPs (DOX@TTP-HA) are designed as following drug-loaded NPs. The brain accumulation efficacy of following DOX@TTP-HA with priming is 4.30-fold higher than that without priming through the enhanced transcytosis pathway rather than the tight junction opening. Effective BBB crossing and brain accumulation, selective tumor uptake, excellent antitumor efficacy, and low hepatotoxicity are achieved by TM@TTP and DOX@TTP-HA, suggesting this tactic as a significant therapeutic strategy against breast cancer brain metastases.
Collapse
Affiliation(s)
- Xiufeng Ju
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Tongtong Miao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Haiyan Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Jiang Ni
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences Soochow University 199 Ren'ai Road Suzhou 215123 China
- Stake Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| |
Collapse
|
7
|
Lei KF, Ho YC, Huang CH, Huang CH, Pai PC. Characterization of stem cell-like property in cancer cells based on single-cell impedance measurement in a microfluidic platform. Talanta 2021; 229:122259. [PMID: 33838770 DOI: 10.1016/j.talanta.2021.122259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 11/20/2022]
Abstract
Investigation of stem cell-like property in cancer cells is important for the development of new therapeutic drugs targeting at malignant tumors. Currently, the standard approach for identifying cancer stem cell-like cells relies on the recognition of stem cell surface markers. However, the reliability remains controversial among biologists. In the current work, a dielectrophoretic and impedimetric hybrid microfluidic platform was developed for capturing single cells and characterizing their stem cell-like property. Single cells were captured in 20 μm trapping wells by dielectrophoretic force and their impedance spectra were measured by an impedance analyzer. The result showed that different cancer cell lines could be differentiated by impedance magnitude ranging between 2 and 20 kHz. Moreover, cancer cells and cancer stem cell-like cells could be categorized by a 2-dimensional graph of the impedance magnitudes at 2 and 20 kHz. The stem cell-like property in cancer cells was verified by stem cell surface markers and single-cell derived colony assay. Comparing with bio-chemical approach, i.e., surface markers, bio-physical approach, i.e., cell impedance, is a label-free technique to identify cancer stem cell-like cells.
Collapse
Affiliation(s)
- Kin Fong Lei
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Yu-Chen Ho
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Hao Huang
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Hao Huang
- PhD Program in Biomedical Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Ping Ching Pai
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
8
|
Duy C, Li M, Teater M, Meydan C, Garrett-Bakelman FE, Lee TC, Chin CR, Durmaz C, Kawabata KC, Dhimolea E, Mitsiades CS, Doehner H, D'Andrea RJ, Becker MW, Paietta EM, Mason CE, Carroll M, Melnick AM. Chemotherapy Induces Senescence-Like Resilient Cells Capable of Initiating AML Recurrence. Cancer Discov 2021; 11:1542-1561. [PMID: 33500244 DOI: 10.1158/2159-8290.cd-20-1375] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Patients with acute myeloid leukemia (AML) frequently relapse after chemotherapy, yet the mechanism by which AML reemerges is not fully understood. Herein, we show that primary AML cells enter a senescence-like phenotype following chemotherapy in vitro and in vivo. This is accompanied by induction of senescence/inflammatory and embryonic diapause transcriptional programs, with downregulation of MYC and leukemia stem cell genes. Single-cell RNA sequencing suggested depletion of leukemia stem cells in vitro and in vivo, and enrichment for subpopulations with distinct senescence-like cells. This senescence effect was transient and conferred superior colony-forming and engraftment potential. Entry into this senescence-like phenotype was dependent on ATR, and persistence of AML cells was severely impaired by ATR inhibitors. Altogether, we propose that AML relapse is facilitated by a senescence-like resilience phenotype that occurs regardless of their stem cell status. Upon recovery, these post-senescence AML cells give rise to relapsed AMLs with increased stem cell potential. SIGNIFICANCE: Despite entering complete remission after chemotherapy, relapse occurs in many patients with AML. Thus, there is an urgent need to understand the relapse mechanism in AML and the development of targeted treatments to improve outcome. Here, we identified a senescence-like resilience phenotype through which AML cells can survive and repopulate leukemia.This article is highlighted in the In This Issue feature, p. 1307.
Collapse
Affiliation(s)
- Cihangir Duy
- Cancer Signaling and Epigenetics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania. .,Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York
| | - Meng Li
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York
| | - Matt Teater
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Francine E Garrett-Bakelman
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York.,Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Tak C Lee
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York
| | - Christopher R Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Ceyda Durmaz
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Kimihito C Kawabata
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York
| | - Eugen Dhimolea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | | | | | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | | | - Ari M Melnick
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
9
|
Fathi E, Farahzadi R, Sheervalilou R, Sanaat Z, Vietor I. A general view of CD33 + leukemic stem cells and CAR-T cells as interesting targets in acute myeloblatsic leukemia therapy. Blood Res 2020; 55:10-16. [PMID: 32269970 PMCID: PMC7106116 DOI: 10.5045/br.2020.55.1.10] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Acute myeloblastic leukemia (AML) is the most frequent acute leukemia in adulthood with very poor overall survival rates. In the past few decades, significant progresses had led to the findings of new therapeutic approaches and the better understanding of the molecular complexity of this hematologic malignancy. Leukemic stem cells (LSCs) play a key role in the initiation, progression, regression, and drug resistance of different types of leukemia. The cellular and molecular characteristics of LSCs and their mechanism in the development of leukemia had not yet been specified. Therefore, determining their cellular and molecular characteristics and creating new approaches for targeted therapy of LSCs is crucial for the future of leukemia research. For this reason, the recognition of surface maker targets on the cell surface of LSCs has attracted much attention. CD33 has been detected on blasts in most AML patients, making them an interesting target for AML therapy. Genetic engineering of T cells with chimeric antigen receptor (CAR-T cell therapy) is a novel therapeutic strategy. It extends the range of antigens available for use in adoptive T-cell immunotherapy. This review will focus on CAR-T cell approaches as well as monoclonal antibody (mAB)-based therapy, the two antibody-based therapies utilized in AML treatment.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ilja Vietor
- Division of Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Osteopontin plays a unique role in resistance of CD34+/CD123+ human leukemia cell lines KG1a to parthenolide. Life Sci 2017; 189:89-95. [PMID: 28935249 DOI: 10.1016/j.lfs.2017.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/16/2017] [Accepted: 09/17/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To determine if parthenolide (PTL) is cytotoxic for leukemia-like KG1a cells and if it involves in certain molecular-mediated resistance, especially osteopontin (OPN). METHODS PTL/daunorubicin (DNR)-treated KG1a cells were examined for viability using MTT and colony-formation assay, and stained for apoptosis using AV/PI. The gene and protein expression were evaluated by qReal-time PCR and Western blotting analysis, respectively. OPN gene was inhibited by OPN siRNA. The cells were stained for various fractions using PE anti-CD34, FITC anti-CD38 and PerCP anti-CD123. RESULTS Cell viability and proliferation assay exhibited KG1a cells are relatively refractory to used concentrations of PTL. OPN mRNA and protein levels increased in response to PTL. Suppression of OPN with siRNA increased the cytotoxic effects of PTL on KG1a cells. PTL treatment and OPN siRNA suppression in KG1a cells resulted in a decrease of mRNA expression of AKT, mTOR, β-catenin, and Phosphatase and tensin homolog (PTEN). The sub-population cells of CD34+ and CD123+ from KG1a cells are enriched by PTL treatment. CONCLUSION Parthenolide in spite of the reduction in gene expression of AKT, mTOR or beta-catenin, stimulates the OPN expression in KG1a cells. The OPN expression pattern in KG1a cells could be compatible with CD34+/CD123+ subtype enrichment by PTL which in turn implies OPN's unique role in resistance of cell populations characterized by CD34+/CD123+ phenotype.
Collapse
|
11
|
Siveen KS, Uddin S, Mohammad RM. Targeting acute myeloid leukemia stem cell signaling by natural products. Mol Cancer 2017; 16:13. [PMID: 28137265 PMCID: PMC5282735 DOI: 10.1186/s12943-016-0571-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most commonly diagnosed leukemia in adults (25%) and comprises 15-20% in children. It is a genetically heterogeneous aggressive disease characterized by the accumulation of somatically acquired genetic changes, altering self-renewal, proliferation, and differentiation of hematopoietic progenitor cells, resulting in uncontrolled clonal proliferation of malignant progenitor myeloid cells in the bone marrow, peripheral blood, and occasionally in other body tissues. Treatment with modern chemotherapy regimen (cytarabine and daunorubicin) usually achieves high remission rates, still majority of patients are found to relapse, resulting in only 40-45% overall 5 year survival in young patients and less than 10% in the elderly AML patients. The leukemia stem cells (LSCs) are characterized by their unlimited self-renewal, repopulating potential and long residence in a quiescent state of G0/G1 phase. LSCs are considered to have a pivotal role in the relapse and refractory of AML. Therefore, new therapeutic strategies to target LSCs with limited toxicity towards the normal hematopoietic population is critical for the ultimate curing of AML. Ongoing research works with natural products like parthenolide (a natural plant extract derived compound) and its derivatives, that have the ability to target multiple pathways that regulate the self-renewal, growth and survival of LSCs point to ways for a possible complete remission in AML. In this review article, we will update and discuss various natural products that can target LSCs in AML.
Collapse
Affiliation(s)
- Kodappully Sivaraman Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Ramzi M Mohammad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| |
Collapse
|
12
|
ABT-888 and quinacrine induced apoptosis in metastatic breast cancer stem cells by inhibiting base excision repair via adenomatous polyposis coli. DNA Repair (Amst) 2016; 45:44-55. [DOI: 10.1016/j.dnarep.2016.05.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 01/21/2023]
|
13
|
Zhi L, Gao Y, Yu C, Zhang Y, Zhang B, Yang J, Yao Z. N-Cadherin Aided in Maintaining the Characteristics of Leukemic Stem Cells. Anat Rec (Hoboken) 2016; 299:990-8. [PMID: 27064800 DOI: 10.1002/ar.23345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/27/2016] [Accepted: 02/17/2016] [Indexed: 12/12/2022]
Abstract
In our previous study, it has been revealed that N-cadherin(+) and leukemic stem cells (LSCs, CD34(+) /CD38(-) /CD123(+) ) could be enriched by chemotherapy because of their resistance to chemotherapy. In this study, we found that N-cadherin mRNA was highly expressed in the bone marrow mononuclear cells (BMMNCs) of patients with t(8;21) translocation. To determine the role of N-cadherin in maintaining LSCs self-renewal and stationary properties, colony-forming assay, cell cycle analysis, and engraftment in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice were used to compare N-cadherin(+) and N-cadherin(-) cells. Both leukemic cell lines KG1a and CD34(+) /CD38(-) BMMNCs derived from acute myeloid leukemia patients were used, and cells were divided into N-cadherin(+) and N-cadherin(-) fraction after sorting by FACS. The results showed that N-cadherin(+) cells had remarkable increased numbers of colonies with cytokines stimulation when compared with the negative control, suggesting a higher proliferative capacity of N-cadherin(+) cells with cytokines stimulation. The results also showed that most cells in N-cadherin(+) fraction stayed in the G0 -G1 stage, indicating the involvement of N-cadherin in maintaining the quiescent state of LSCs in niche. The results of engraftment showed that there was a higher proportion of hCD45(+) cells in mice transplanted with N-cadherin(+) cells than N-cadherin(-) cells. In addition, it was obvious that NOD/SCID mice transplanted with N-cadherin(+) cells had a shorter lifetime than the negative control, suggesting that LSCs self-renewal capacity resides predominantly in N-cadherin(+) fraction. In summary, N-cadherin might play an important role in maintaining the self-renewal and stationary properties of LSCs. Anat Rec, 299:990-998, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lei Zhi
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry, Tianjin Medical University, Tianjin, P.R. China
| | - Ying Gao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry, Tianjin Medical University, Tianjin, P.R. China
| | - Chunyan Yu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry, Tianjin Medical University, Tianjin, P.R. China
| | - Yi Zhang
- Department of Medical Chemistry, Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), College of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Bo Zhang
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry, Tianjin Medical University, Tianjin, P.R. China
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, Laboratory of Molecular Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Tianjin Medical University, Tianjin, China.,Department of Immunology, Laboratory of Molecular Immunology, Research Center of Basic Medical Sciences, Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Zhi Yao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry, Tianjin Medical University, Tianjin, P.R. China
| |
Collapse
|
14
|
Peng W, Wang K, Zheng R, Derwahl M. 1,25 dihydroxyvitamin D3 inhibits the proliferation of thyroid cancer stem-like cells via cell cycle arrest. Endocr Res 2016; 41:71-80. [PMID: 27030645 DOI: 10.3109/07435800.2015.1037048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND An anti-proliferative effect of vitamin D has been reported in different carcinomas, including thyroid cancer. Cancer stem cells (CSCs), a very small fraction of cancer cells, are widely believed to be responsible for cancer initiation, relapse and metastasis. OBJECTIVES We addressed the question as to whether CSCs derived from the anaplastic thyroid carcinoma cell lines SW1736, C643, HTh74 and its doxorubicin- resistant subline HTh74R are also a target of vitamin D action. METHODS The effect of calcitriol on growth of HTh74, HTh74R, SW1736 and C643 cell lines was investigated by cell viability assays. In stem-enriched cells derived from thyro-spheres cell cycle analysis and apoptotic assays were performed. Furthermore, the role of calcitriol in the formation of cancer thyro-spheres and its putative differentiation-inducing effect were analysed. RESULTS CSCs isolated as thyro-spheres from all the four anaplastic thyroid carcinoma cells expressed vitamin D receptors as did their parental cells. Calcitriol inhibited proliferation of anaplastic thyroid carcinoma cells with a more pronounced effect on doxorubicin-resistant HTh74R cells, and it significantly reduced the capacity to form stem cell-derived spheres and decreased the size of these spheres that consist of CSCs and their progenitor cells. As revealed by cell cycle analysis, calcitriol induced G2/M phase arrest in thyro-sphere cells derived cells from HTh74, HTh74R and C643 but did not affect apoptosis. Finally, calcitriol altered morphology of CSCs. CONCLUSION Calcitriol inhibited the growth of CSCs derived from anaplastic thyroid cancer cells. It may also exert a pro-differentiation effect in thyroid CSCs.
Collapse
Affiliation(s)
- Wen Peng
- a Division of Endocrinology, Department of Medicine, St. Hedwig Hospital and Charite , University Medicine , Berlin , Germany
| | - Kun Wang
- a Division of Endocrinology, Department of Medicine, St. Hedwig Hospital and Charite , University Medicine , Berlin , Germany
| | - Rendong Zheng
- a Division of Endocrinology, Department of Medicine, St. Hedwig Hospital and Charite , University Medicine , Berlin , Germany
| | - Michael Derwahl
- a Division of Endocrinology, Department of Medicine, St. Hedwig Hospital and Charite , University Medicine , Berlin , Germany
| |
Collapse
|
15
|
Stem Cell Modeling of Core Binding Factor Acute Myeloid Leukemia. Stem Cells Int 2016; 2016:7625827. [PMID: 26880987 PMCID: PMC4737463 DOI: 10.1155/2016/7625827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022] Open
Abstract
Even though clonally originated from a single cell, acute leukemia loses its homogeneity soon and presents at clinical diagnosis as a hierarchy of cells endowed with different functions, of which only a minority possesses the ability to recapitulate the disease. Due to their analogy to hematopoietic stem cells, these cells have been named “leukemia stem cells,” and are thought to be chiefly responsible for disease relapse and ultimate survival after chemotherapy. Core Binding Factor (CBF) Acute Myeloid Leukemia (AML) is cytogenetically characterized by either the t(8;21) or the inv(16)/t(16;16) chromosomal abnormalities, which, although being pathognomonic, are not sufficient per se to induce overt leukemia but rather determine a preclinical phase of disease when preleukemic subclones compete until the acquisition of clonal dominance by one of them. In this review we summarize the concepts regarding the application of the “leukemia stem cell” theory to the development of CBF AML; we will analyze the studies investigating the leukemogenetic role of t(8;21) and inv(16)/t(16;16), the proposed theories of its clonal evolution, and the role played by the hematopoietic niches in preserving the disease. Finally, we will discuss the clinical implications of stem cell modeling of CBF AML for the therapy of the disease.
Collapse
|
16
|
Abstract
Dismal outcomes of acute myeloid leukemia (AML), especially in the elderly, are mainly associated with leukemia relapse and primary no response to initial therapy. This review will focus on AML relapse, and how a better understanding of the evolutionary stages that lead to relapse might help us improve disease outcome. The fact that the relapse rate for some AMLs is so high indicates that we do not truly understand the biology of relapse or possibly that we are not implementing our current understanding into, clinical practice. Therefore, this review will also aim to explore some of the current understanding of AML relapse biology in order to identify the gaps in our knowledge and translation. Accumulating evidence suggests that the root of relapse evolves even before the time of diagnosis, meaning that the complex clonal structure of AML is created before patients present to the clinic. Some of the clones that exist at diagnosis can survive chemotherapy and give rise to relapse. Accordingly, in order to better understand the mechanisms of relapse, we must consider both early and late steps in AML evolution.
Collapse
|
17
|
Satapathy SR, Siddharth S, Das D, Nayak A, Kundu CN. Enhancement of Cytotoxicity and Inhibition of Angiogenesis in Oral Cancer Stem Cells by a Hybrid Nanoparticle of Bioactive Quinacrine and Silver: Implication of Base Excision Repair Cascade. Mol Pharm 2015; 12:4011-25. [PMID: 26448277 DOI: 10.1021/acs.molpharmaceut.5b00461] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A poly(lactic-co-glycolic acid) (PLGA)-based uniform (50-100 nm) hybrid nanoparticle (QAgNP) with positive zeta potential (0.52 ± 0.09 mV) was prepared by single emulsion solvent evaporation method with bioactive small molecule quinacrine (QC) in organic phase and silver (Ag) in aqueous phase. Physiochemical properties established it as a true hybrid nanoparticle and not a mixture of QC and Ag. Antitumor activity of QAgNP was evaluated by using various cancer cell lines including H-357 oral cancer cells and OSCC-cancer stem cell in an in vitro model system. QAgNP caused more cytotoxicity in cancer cells than normal epithelial cells by increasing BAX/BCL-XL, cleaved product PARP-1, and arresting the cells at S phase along with DNA damage. In addition, QAgNPs offered greater ability to kill the OSCC-CSCs compared to NQC and AgNPs. QAgNP offered anticancer action in OSCC-CSCs by inhibiting the base excision repair (BER) within the cells. Interestingly, alteration of BER components (Fen-1 and DNA polymerases (β, δ, and ε) and unalteration of NHEJ (DNA-PKC) or HR (Rad-51) components was noted in QAgNP treated OSCC-CSC cells. Furthermore, QAgNP significantly reduced angiogenesis in comparison to physical mixture of NQC and AgNP in fertilized eggs. Thus, these hybrid nanoparticles caused apoptosis in OSCC-CSCs by inhibiting the angiogenesis and BER in cells.
Collapse
Affiliation(s)
- Shakti Ranjan Satapathy
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University , Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Sumit Siddharth
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University , Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Dipon Das
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University , Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Anmada Nayak
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University , Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, KIIT University , Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| |
Collapse
|
18
|
Overexpression and knockout of miR-126 both promote leukemogenesis. Blood 2015; 126:2005-15. [PMID: 26361793 DOI: 10.1182/blood-2015-04-639062] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 09/04/2015] [Indexed: 12/16/2022] Open
Abstract
It is generally assumed that gain- and loss-of-function manipulations of a functionally important gene should lead to the opposite phenotypes. We show in this study that both overexpression and knockout of microRNA (miR)-126 surprisingly result in enhanced leukemogenesis in cooperation with the t(8;21) fusion genes AML1-ETO/RUNX1-RUNX1T1 and AML1-ETO9a (a potent oncogenic isoform of AML1-ETO). In accordance with our observation that increased expression of miR-126 is associated with unfavorable survival in patients with t(8;21) acute myeloid leukemia (AML), we show that miR-126 overexpression exhibits a stronger effect on long-term survival and progression of AML1-ETO9a-mediated leukemia stem cells/leukemia initiating cells (LSCs/LICs) in mice than does miR-126 knockout. Furthermore, miR-126 knockout substantially enhances responsiveness of leukemia cells to standard chemotherapy. Mechanistically, miR-126 overexpression activates genes that are highly expressed in LSCs/LICs and/or primitive hematopoietic stem/progenitor cells, likely through targeting ERRFI1 and SPRED1, whereas miR-126 knockout activates genes that are highly expressed in committed, more differentiated hematopoietic progenitor cells, presumably through inducing FZD7 expression. Our data demonstrate that miR-126 plays a critical but 2-faceted role in leukemia and thereby uncover a new layer of miRNA regulation in cancer. Moreover, because miR-126 depletion can sensitize AML cells to standard chemotherapy, our data also suggest that miR-126 represents a promising therapeutic target.
Collapse
|
19
|
Impedimetric quantification of the formation process and the chemosensitivity of cancer cell colonies suspended in 3D environment. Biosens Bioelectron 2015; 74:878-85. [PMID: 26241736 DOI: 10.1016/j.bios.2015.07.060] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/21/2015] [Accepted: 07/25/2015] [Indexed: 01/27/2023]
Abstract
In cancer research, colony formation assay is a gold standard for the investigation of the development of early tumors and the effects of cytotoxic agents on tumors in vitro. Quantification of cancer cell colonies suspended in hydrogel is currently achieved by manual counting under microscope. It is challenging to microscopically quantify the colony number and size without subjective bias. In this work, impedimetric quantification of cancer cell colonies suspended in hydrogel was successfully developed and provides a quantitative and objective method to describe the colony formation process and the development of colony size during the culture course. A biosensor embedded with a pair of parallel plate electrodes was fabricated for the impedimetric quantification. Cancer cell (cell line: Huh-7) were encapsulated in methyl cellulose hydrogel and cultured to gradually form cancer cell colonies suspended in 3D environment. At pre-set schedule during the culture course, small volume (50 μL) of colonies/MC hydrogel was collected, mixed with measurement hydrogel, and loaded to the biosensor for measurement. Hence, the colony formation process could be quantitatively represented by a colony index and a colony size index calculated from electrical impedance. Based on these developments, chemosensitivity of cancer cell colonies under different concentrations of anti-cancer drug, i.e., doxorubicin, was quantitatively investigated to study the efficacy of anti-cancer drug. Also, dose-response curve was constructed to calculate the IC50 value, which is an important indicator for chemosensitivity assay. These results showed the impedimetric quantification is a promising technique for the colony formation assay.
Collapse
|
20
|
Lashkor M, Rawson FJ, Stephenson-Brown A, Preece JA, Mendes PM. Electrically-driven modulation of surface-grafted RGD peptides for manipulation of cell adhesion. Chem Commun (Camb) 2014; 50:15589-92. [PMID: 25360452 PMCID: PMC4230383 DOI: 10.1039/c4cc06649a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reported herein is a switchable surface that relies on electrically-induced conformational changes within surface-grafted arginine–glycine–aspartate (RGD) oligopeptides as the means of modulating cell adhesion.
Reported herein is a switchable surface that relies on electrically-induced conformational changes within surface-grafted arginine–glycine–aspartate (RGD) oligopeptides as the means of modulating cell adhesion.
Collapse
Affiliation(s)
- Minhaj Lashkor
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | | | | | |
Collapse
|
21
|
Didier C, Demur C, Grimal F, Jullien D, Manenti S, Ducommun B. Evaluation of checkpoint kinase targeting therapy in Acute Myeloid Leukemia with complex karyotype. Cancer Biol Ther 2014; 13:307-13. [DOI: 10.4161/cbt.19074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
22
|
Annesley CE, Brown P. The Biology and Targeting of FLT3 in Pediatric Leukemia. Front Oncol 2014; 4:263. [PMID: 25295230 PMCID: PMC4172015 DOI: 10.3389/fonc.2014.00263] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022] Open
Abstract
Despite remarkable improvement in treatment outcomes in pediatric leukemia over the past several decades, the prognosis for high-risk groups of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), as well as for relapsed leukemia, remains poor. Intensification of chemotherapy regimens for those at highest risk has improved success rates, but at the cost of significantly increased morbidity and long-term adverse effects. With the success of imatinib in Philadelphia-chromosome-positive leukemia and all-trans retinoic acid in acute promyelocytic leukemia, the quest to find additional molecularly targeted therapies has generated much excitement over recent years. Another such possible target in pediatric acute leukemia is FMS-like tyrosine kinase 3 (FLT3). FLT3 aberrations are among the most frequently identified transforming events in AML, and have significant clinical implications in both high-risk pediatric AML and in certain high-risk groups of pediatric ALL. Therefore, the successful targeting of FLT3 has tremendous potential to improve outcomes in these subsets of patients. This article will give an overview of the molecular function and signaling of the FLT3 receptor, as well as its pathogenic role in leukemia. We review the discovery of targeting FLT3, discuss currently available FLT3 inhibitors in pediatric leukemia and results of clinical trials to date, and finally, consider the future promise and challenges of FLT3 inhibitor therapy.
Collapse
Affiliation(s)
- Colleen E. Annesley
- Oncology and Pediatrics, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick Brown
- Oncology and Pediatrics, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Li J, Yang XF, Ren XH, Meng XJ, Huang HY, Zhao QH, Yuan JH, Hong WX, Xia B, Huang XF, Zhou L, Liu JJ, Zou F. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion. Biochem Biophys Res Commun 2014; 453:7-12. [PMID: 25234598 DOI: 10.1016/j.bbrc.2014.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 11/19/2022]
Abstract
Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jie Li
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China; Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xi-fei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiao-hu Ren
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China; Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiao-jing Meng
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Hai-yan Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qiong-hui Zhao
- Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Jian-hui Yuan
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Wen-xu Hong
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Bo Xia
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xin-feng Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Li Zhou
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jian-jun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Wohrer S, Knapp DJHF, Copley MR, Benz C, Kent DG, Rowe K, Babovic S, Mader H, Oostendorp RAJ, Eaves CJ. Distinct stromal cell factor combinations can separately control hematopoietic stem cell survival, proliferation, and self-renewal. Cell Rep 2014; 7:1956-67. [PMID: 24910437 PMCID: PMC4074342 DOI: 10.1016/j.celrep.2014.05.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/02/2014] [Accepted: 05/06/2014] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are identified by their ability to sustain prolonged blood cell production in vivo, although recent evidence suggests that durable self-renewal (DSR) is shared by HSC subtypes with distinct self-perpetuating differentiation programs. Net expansions of DSR-HSCs occur in vivo, but molecularly defined conditions that support similar responses in vitro are lacking. We hypothesized that this might require a combination of factors that differentially promote HSC viability, proliferation, and self-renewal. We now demonstrate that HSC survival and maintenance of DSR potential are variably supported by different Steel factor (SF)-containing cocktails with similar HSC-mitogenic activities. In addition, stromal cells produce other factors, including nerve growth factor and collagen 1, that can antagonize the apoptosis of initially quiescent adult HSCs and, in combination with SF and interleukin-11, produce >15-fold net expansions of DSR-HSCs ex vivo within 7 days. These findings point to the molecular basis of HSC control and expansion. HSC viability, mitogenesis, and self-renewal are differentially controlled Stromal cells produce nonmitogenic factors that directly sustain HSC viability More adult bone marrow cells can produce HSCs than display HSC activity directly Nerve growth factor and collagen 1 promote serially transplantable HSCs
Collapse
Affiliation(s)
- Stefan Wohrer
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Landesklinikum Wr. Neustadt, Internal Medicine 1, Wr. Neustadt 2700, Austria
| | - David J H F Knapp
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Michael R Copley
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Claudia Benz
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - David G Kent
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Keegan Rowe
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Sonja Babovic
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Heidi Mader
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Robert A J Oostendorp
- 3(rd) Department of Internal Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
25
|
Bu Y, Jia QA, Ren ZG, Zhang JB, Jiang XM, Liang L, Xue TC, Zhang QB, Wang YH, Zhang L, Xie XY, Tang ZY. Maintenance of stemness in oxaliplatin-resistant hepatocellular carcinoma is associated with increased autocrine of IGF1. PLoS One 2014; 9:e89686. [PMID: 24632571 PMCID: PMC3954560 DOI: 10.1371/journal.pone.0089686] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 01/23/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Evidence suggests that many types of cancers are composed of different cell types, including cancer stem cells (CSCs). We have previously shown that the chemotherapeutic agent oxaliplatin induced epithelial-mesenchymal transition, which is thought to be an important mechanism for generating CSCs. In the present study, we investigate whether oxaliplatin-treated cancer tissues possess characteristics of CSCs, and explore oxaliplatin resistance in these tissues. METHODS Hepatocellular carcinoma cells (MHCC97H cells) were subcutaneously injected into mice to form tumors, and the mice were intravenously treated with either oxaliplatin or glucose. Five weeks later, the tumors were orthotopically xenografted into livers of other mice, and these mice were treated with either oxaliplatin or glucose. Metastatic potential, sensitivity to oxaliplatin, and expression of CSC-related markers in the xenografted tumor tissues were evaluated. DNA microarrays were used to measure changes in gene expression as a result of oxaliplatin treatment. Additionally, an oxaliplatin-resistant cell line (MHCC97H-OXA) was established to assess insulin-like growth factor 1 secretion, cell invasion, cell colony formation, oxaliplatin sensitivity, and expression of CSC-related markers. The effects of an insulin-like growth factor 1 receptor inhibitor were also assessed. RESULTS Oxaliplatin treatment inhibited subcutaneous tumor growth. Tumors from oxaliplatin-treated mice that were subsequently xenografted into livers of other mice exhibited that decreasing sensitivity to oxaliplatin and increasing pulmonary metastatic potential. Among the expression of CSC-related proteins, the gene for insulin-like growth factor 1, was up-regulated expecially in these tumor tissues. Additionally, MHCC97H-OXA cells demonstrated that increasing cell invasion, colony formation, and expression of insulin-like growth factor 1 and CSC-related markers, whereas treatment with an inhibitor of the insulin-like growth factor 1 receptor suppressed these effects. CONCLUSION Maintenance of stemness in oxaliplatin-resistant hepatocellular carcinoma cells is associated with increased autocrine of IGF1.
Collapse
Affiliation(s)
- Yang Bu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Qing-An Jia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Hepatobiliary Surgery, Shanxi Provincial People's Hospital, Xi'an, China
| | - Zheng-Gang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Ju-Bo Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xue-Mei Jiang
- Department of Gastroenterology, Haikou People's Hospital, Haikou, China
| | - Lei Liang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Tong-Chun Xue
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Quan-Bao Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yan-Hong Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Lan Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xiao-Ying Xie
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zhao-You Tang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- * E-mail:
| |
Collapse
|
26
|
Mittapalli RK, Liu X, Adkins CE, Nounou MI, Bohn KA, Terrell TB, Qhattal HS, Geldenhuys WJ, Palmieri D, Steeg PS, Smith QR, Lockman PR. Paclitaxel-hyaluronic nanoconjugates prolong overall survival in a preclinical brain metastases of breast cancer model. Mol Cancer Ther 2013; 12:2389-99. [PMID: 24002934 DOI: 10.1158/1535-7163.mct-13-0132] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Brain (central nervous system; CNS) metastases pose a life-threatening problem for women with advanced metastatic breast cancer. It has recently been shown that the vasculature within preclinical brain metastasis model markedly restricts paclitaxel delivery in approximately 90% of CNS lesions. Therefore to improve efficacy, we have developed an ultra-small hyaluronic acid (HA) paclitaxel nanoconjugate (∼5 kDa) that can passively diffuse across the leaky blood-tumor barrier and then be taken up into cancer cells (MDA-MB-231Br) via CD44 receptor-mediated endocytocis. Using CD44 receptor-mediated endocytosis as an uptake mechanism, HA-paclitaxel was able to bypass p-glycoprotein-mediated efflux on the surface of the cancer cells. In vitro cytoxicity of the conjugate and free paclitaxel were similar in that they (i) both caused cell-cycle arrest in the G2-M phase, (ii) showed similar degrees of apoptosis induction (cleaved caspase), and (iii) had similar IC50 values when compared with paclitaxel in MTT assay. A preclinical model of brain metastases of breast cancer using intracardiac injections of Luc-2 transfected MDA-MB-231Br cells was used to evaluate in vivo efficacy of the nanoconjugate. The animals administered with HA-paclitaxel nanoconjugate had significantly longer overall survival compared with the control and the paclitaxel-treated group (P < 0.05). This study suggests that the small molecular weight HA-paclitaxel nanoconjugates can improve standard chemotherapeutic drug efficacy in a preclinical model of brain metastases of breast cancer.
Collapse
Affiliation(s)
- Rajendar K Mittapalli
- Corresponding Author: Paul R. Lockman, Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter Dr., Amarillo, TX, 79106-1712;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang SP, Niu YN, Yuan N, Zhang AH, Chao D, Xu QP, Wang LJ, Zhang XG, Zhao WL, Zhao Y, Wang JR. Role of autophagy in acute myeloid leukemia therapy. CHINESE JOURNAL OF CANCER 2013; 32:130-5. [PMID: 22854065 PMCID: PMC3845596 DOI: 10.5732/cjc.012.10073] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/17/2012] [Accepted: 06/29/2012] [Indexed: 01/05/2023]
Abstract
Despite its dual role in determining cell fate in a wide array of solid cancer cell lines, autophagy has been robustly shown to suppress or kill acute myeloid leukemia cells via degradation of the oncogenic fusion protein that drives leukemogenesis. However, autophagy also induces the demise of acute leukemia cells that do not express the known fusion protein, though the molecular mechanism remains elusive. Nevertheless, since it can induce cooperation with apoptosis and differentiation in response to autophagic signals, autophagy can be manipulated for a better therapy on acute myeloid leukemia.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Apoptosis
- Apoptosis Regulatory Proteins/metabolism
- Autophagy/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Molecular Targeted Therapy
- Oncogene Proteins, Fusion/metabolism
- Tretinoin/therapeutic use
Collapse
Affiliation(s)
| | | | - Na Yuan
- The Cyrus Tang Hematology Center,
| | | | - Dan Chao
- The Cyrus Tang Hematology Center,
| | | | | | | | - Wen-Li Zhao
- Children's Hospital, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Yun Zhao
- The Cyrus Tang Hematology Center,
| | | |
Collapse
|
28
|
Han YK, Lee JH, Park GY, Chun SH, Han JY, Kim SD, Lee J, Lee CW, Yang K, Lee CG. A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy. Biochem Biophys Res Commun 2013; 430:1329-33. [DOI: 10.1016/j.bbrc.2012.10.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 10/27/2012] [Indexed: 12/11/2022]
|
29
|
Abstract
Many tissues of the body cannot only repair themselves, but also self-renew, a property mainly due to stem cells and the various mechanisms that regulate their behavior. Stem cell biology is a relatively new field. While advances are slowly being realized, stem cells possess huge potential to ameliorate disease and counteract the aging process, causing its speculation as the next panacea. Amidst public pressure to advance rapidly to clinical trials, there is a need to understand the biology of stem cells and to support basic research programs. Without a proper comprehension of how cells and tissues are maintained during the adult life span, clinical trials are bound to fail. This review will cover the basic biology of stem cells, the various types of stem cells, their potential function, and the advantages and disadvantages to their use in medicine. We will next cover the role of G protein-coupled receptors in the regulation of stem cells and their potential in future clinical applications.
Collapse
Affiliation(s)
- VAN A. DOZE
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA (V.A.D.), and Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA (D.M.P.)
| | - DIANNE M. PEREZ
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA (V.A.D.), and Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA (D.M.P.)
| |
Collapse
|
30
|
Herbal Compound "Songyou Yin" Renders Hepatocellular Carcinoma Sensitive to Oxaliplatin through Inhibition of Stemness. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:908601. [PMID: 23326293 PMCID: PMC3541605 DOI: 10.1155/2012/908601] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/12/2012] [Indexed: 12/14/2022]
Abstract
We investigated the effect of Chinese herbal compound Song-you Yin on HCC stemness. MHCC97H and Hep3B cell lines were pretreated with SYY for 4 weeks, and their chemosensitivity to oxaliplatin was evaluated. The expression of CSC-related markers, cell invasion and migration, and colony formation were also examined. SYY-treated orthotopic nude mouse models of human HCC were developed to explore the effect of oxaliplatin on tumor growth, metastasis, and survival. The CSC-related molecular changes in vivo were also evaluated. The result showed that MHCC97H and Hep3B cells pretreated with SYY showed significantly increased chemosensitivity to oxaliplatin and the downregulation of CSC-related markers CD90, CD24, and EPCAM. SYY also attenuated cell motility, invasion, and colony formation in MHCC97H and Hep3B cell lines. The reduced tumorigenicity and pulmonary metastasis were observed in SYY-pretreated cell lines. Combination treatment with oxaliplatin and SYY significantly reduced tumor volume and pulmonary metastasis and prolonged survival compared with oxaliplatin treatment alone. Immunohistochemical analysis showed reduced expression of CD90, ABCG2, ALDH, CD44, EPCAM, vimentin, and MMP-9 and increased the expression of E-cadherin, in HCC cells following combination treatment. These data clearly demonstrate that SYY renders hepatocellular carcinoma sensitive to oxaliplatin through the inhibition of stemness.
Collapse
|
31
|
Jao SW, Chen SF, Lin YS, Chang YC, Lee TY, Wu CC, Jin JS, Nieh S. Cytoplasmic CD133 expression is a reliable prognostic indicator of tumor regression after neoadjuvant concurrent chemoradiotherapy in patients with rectal cancer. Ann Surg Oncol 2012; 19:3432-40. [PMID: 22739652 DOI: 10.1245/s10434-012-2394-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND Despite development in therapeutic strategies, such as neoadjuvant concurrent chemoradiotherapy (CCRT), the prognosis of colorectal cancer remains relatively poor. Cancer stem cells (CSC) with several characteristics can lead to therapeutic resistance. CD133 has been identified as a putative CSC marker in colorectal cancer; however, its functional role still needs elucidation. We verified the role of CD133 with emphasis on expression location and correlated the results of CD133 with clinical outcome in colorectal cancer. METHODS We used immunohistochemistry to investigate the expression of CD133 in samples from 157 patients with colonic adenocarcinoma and from 76 patients with rectal adenocarcinoma who received neoadjuvant CCRT. We also correlated the expression location of CD133 with the clinicopathological parameters and prognosis. RESULTS CD133 protein was variably overexpressed in colorectal cancer tissues and was present in three locations: apical and/or endoluminal surfaces, cytoplasm, and lumen. Cytoplasmic CD133 expression level correlated significantly with tumor local recurrence (P = 0.025) and survival of patients with colorectal cancer (P = 0.002), and correlated inversely with tumor regression grading (P = 0.021) after CCRT in patients with rectal cancer. CONCLUSIONS The expression of CD133 in the cytoplasm is closely associated with local recurrence and patient survival, and may provide a reliable prognostic indicator of tumor regression grading in patients with rectal cancer after CCRT. Cytoplasmic CD133 expression may also help identify the surviving cancer cells in areas with nearly total regression after CCRT.
Collapse
Affiliation(s)
- Shu-Wen Jao
- Division of Colon and Rectal Surgery, National Defense Medical Centre and Tri-Service General Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Didier C, Demur C, Grimal F, Jullien D, Manenti S, Ducommun B. Evaluation of checkpoint kinase targeting therapy in acute myeloid leukemia with complex karyotype. Cancer Biol Ther 2012; 13:307-313. [PMID: 22258035 PMCID: PMC3367716 DOI: 10.4161/cbt.13.5.19074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/08/2011] [Accepted: 12/15/2011] [Indexed: 07/12/2024] Open
Abstract
There has been considerable interest in targeting cell cycle checkpoints particularly in emerging and alternative anticancer strategies. Here, we show that checkpoint abrogation by AZD7762, a potent and selective CHK1/2 kinase inhibitor enhances genotoxic treatment efficacy in immature KG1a leukemic cell line and in AML patient samples, particularly those with a complex karyotype, which display major genomic instability and chemoresistance. Furthermore, these data suggest that constitutive DNA-damage level might be useful markers to select AML patients susceptible to receive checkpoint inhibitor in combination with conventional chemotherapy. Moreover, this study demonstrates for the first time that AZD7762 inhibitor targets the CD34(+)CD38(-)CD123(+) primitive leukemic progenitors, which are responsible for the majority of AML patients relapse. Finally, CHK1 inhibition does not seem to affect clonogenic potential of normal hematopoietic progenitors.
Collapse
Affiliation(s)
- Christine Didier
- INSERM, U1037, Cancer Research Center of Toulouse, CNRS ERL 5294, Toulouse, France.
| | | | | | | | | | | |
Collapse
|
33
|
Chen SF, Chang YC, Nieh S, Liu CL, Yang CY, Lin YS. Nonadhesive culture system as a model of rapid sphere formation with cancer stem cell properties. PLoS One 2012; 7:e31864. [PMID: 22359637 PMCID: PMC3281010 DOI: 10.1371/journal.pone.0031864] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/14/2012] [Indexed: 11/19/2022] Open
Abstract
Background Cancer stem cells (CSCs) play an important role in tumor initiation, progression, and metastasis and are responsible for high therapeutic failure rates. Identification and characterization of CSC are crucial for facilitating the monitoring, therapy, or prevention of cancer. Great efforts have been paid to develop a more effective methodology. Nevertheless, the ideal model for CSC research is still evolving. In this study, we created a nonadhesive culture system to enrich CSCs from human oral squamous cell carcinoma cell lines with sphere formation and to characterize their CSC properties further. Methods A nonadhesive culture system was designed to generate spheres from the SAS and OECM-1 cell lines. A subsequent investigation of their CSC properties, including stemness, self-renewal, and chemo- and radioresistance in vitro, as well as tumor initiation capacity in vivo, was also performed. Results Spheres were formed cost-effectively and time-efficiently within 5 to 7 days. Moreover, we proved that these spheres expressed putative stem cell markers and exhibited chemoradiotherapeutic resistance, in addition to tumor-initiating and self-renewal capabilities. Conclusions Using this nonadhesive culture system, we successfully established a rapid and cost-effective model that exhibits the characteristics of CSCs and can be used in cancer research.
Collapse
Affiliation(s)
- Su-Feng Chen
- Department of Dental Hygiene, China Medical University, Taichung, Taiwan
| | - Yun-Ching Chang
- Graduate Institute of Life Sciences, National Defense Medical Centre, Taipei, Taiwan
- Department of Pathology, National Defense Medical Centre and Tri-Service General Hospital, Taipei, Taiwan
| | - Shin Nieh
- Department of Pathology, National Defense Medical Centre and Tri-Service General Hospital, Taipei, Taiwan
| | - Chia-Lin Liu
- Graduate Institute of Life Sciences, National Defense Medical Centre, Taipei, Taiwan
| | - Chin-Yuh Yang
- Department of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Yaoh-Shiang Lin
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Centre and Tri-Service General Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
34
|
Abstract
C/EBPα (CEBPA) is mutated in approximately 8 % of AML in both familial and sporadic AML and, with FLT3 and NPM1, has received most attention as a predictive marker of outcome in patients with normal karyotype disease. Mutations clustering to either the N- or C-terminal (N-and C-ter) portions of the protein have different consequences on the protein function. In familial cases the N-ter form is inherited with patients exhibiting long latency period before the onset of overt disease, typically with the acquisition of a C-ter mutation. Despite the essential insights murine models provide the functional consequences of wild-type C/EBPα in human hematopoiesis and how different mutations are involved in AML development have received less attention. Our data underline the critical role of C/EBPα in human hematopoiesis and demonstrate that C/EBPα mutations (alone or in combination) are insufficient to convert normal human hematopoietic stem/progenitors (HSC/HPCs) into leukemic initiating cells, although individually each altered normal hematopoiesis. It provides the first insight into the effects of N- and C-terminal mutations acting alone and to the combined effects of N/C double mutants. Our results mimicked closely what happens in CEBPA mutated patients.
Collapse
|
35
|
|
36
|
Abstract
Although the identification of cancer stem cells as therapeutic targets is now actively being pursued in many human malignancies, the leukemic stem cells in acute myeloid leukemia (AML) are a paradigm of such a strategy. Heterogeneity of these cells was suggested by clonal analyses indicating the existence of both leukemias resulting from transformed multipotent CD33(-) stem cells as well others arising from, or predominantly involving, committed CD33(+) myeloid precursors. The latter leukemias, which may be associated with an intrinsically better prognosis, offer a particularly attractive target for stem cell-directed therapies. Targeting the CD33 differentiation antigen with gemtuzumab ozogamicin was the first attempt of such an approach. Emerging clinical data indicate that gemtuzumab ozogamicin is efficacious not only for acute promyelocytic leukemia but, in combination with conventional chemotherapy, also for other favorable- and intermediate-risk AMLs, providing the first proof-of-principle evidence for the validity of this strategy. Herein, we review studies on the nature of stem cells in AML, discuss clinical data on the effectiveness of CD33-directed therapy, and consider the mechanistic basis for success and failure in various AML subsets.
Collapse
|
37
|
Cheng L, Alexander R, Zhang S, Pan CX, MacLennan GT, Lopez-Beltran A, Montironi R. The clinical and therapeutic implications of cancer stem cell biology. Expert Rev Anticancer Ther 2012; 11:1131-43. [PMID: 21806335 DOI: 10.1586/era.11.82] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSCs) have provided new insights into the tumorigenesis and metastatic potential of cancer. The discovery of CSCs has provided many new insights into the complexities of cancer therapy: tumor initiation, treatment resistance, metastasis, recurrence, assessment of prognosis and prediction of clinical course. Recent rapid advances in molecular analysis have contributed to the better understanding of the molecular attributes and pathways that give CSCs their unique attributes. Use of these molecular techniques has facilitated elucidation of specific surface markers and pathways that favor propagation of CSCs - allowing for targeted therapy. Furthermore, it has been discovered that a specific microenvironment, or niche, is essential for the genesis of tumors from CSCs. Therapeutic strategies that alter these microenvironments compromise CSC proliferation and constitute another method of targeted cancer therapy. We review the clinical and therapeutic implications of CSCs, with a focus on treatment resistance and metastasis, and the emerging approaches to target CSCs and their microenvironments in order to attain improved outcomes in cancer. It is noteworthy that CSCs are the only cells capable of sustaining tumorigenesis; however, the cell of origin of cancer, in which tumorigenesis is initiated, may be distinct from CSCs that propagate the tumor.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Pathology, Indiana University School of Medicine, 350 West 11th Street, Room 4010, Indianapolis, IN 4620, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Rahman M, Deleyrolle L, Vedam-Mai V, Azari H, Abd-El-Barr M, Reynolds BA. The cancer stem cell hypothesis: failures and pitfalls. Neurosurgery 2011; 68:531-45; discussion 545. [PMID: 21135745 DOI: 10.1227/neu.0b013e3181ff9eb5] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Based on the clonal evolution model and the assumption that the vast majority of tumor cells are able to propagate and drive tumor growth, the goal of cancer treatment has traditionally been to kill all cancerous cells. This theory has been challenged recently by the cancer stem cell (CSC) hypothesis, that a rare population of tumor cells, with stem cell characteristics, is responsible for tumor growth, resistance, and recurrence. Evidence for putative CSCs has been described in blood, breast, lung, prostate, colon, liver, pancreas, and brain. This new hypothesis would propose that indiscriminate killing of cancer cells would not be as effective as selective targeting of the cells that are driving long-term growth (ie, the CSCs) and that treatment failure is often the result of CSCs escaping traditional therapies.The CSC hypothesis has gained a great deal of attention because of the identification of a new target that may be responsible for poor outcomes of many aggressive cancers, including malignant glioma. As attractive as this hypothesis sounds, especially when applied to tumors that respond poorly to current treatments, we will argue in this article that the proposal of a stemlike cell that initiates and drives solid tissue cancer growth and is responsible for therapeutic failure is far from proven. We will present the point of view that for most advanced solid tissue cancers such as glioblastoma multiforme, targeting a putative rare CSC population will have little effect on patient outcomes. This review will cover problems with the CSC hypothesis, including applicability of the hierarchical model, inconsistencies with xenotransplantation data, and nonspecificity of CSC markers.
Collapse
Affiliation(s)
- Maryam Rahman
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Most adult patients with acute myeloid leukemia (AML) die from their disease. Relapses are frequent even after aggressive multiagent chemotherapy and allogeneic stem cell transplantation. AML is a biologically heterogeneous disease, characterized by frequent cytogenetic abnormalities and an increasing spectrum of genetic mutations and molecular aberrations. Laboratory data suggest that AML originates from a rare population of cells, termed leukemic stem cells (LSCs) or leukemia-initiating cells, which are capable of self-renewal, proliferation and differentiation. These cells may persist after treatment and are probably responsible for disease relapse. This review will describe bench and translational research in LSCs and discuss how the data should be used to change the direction of developmental therapeutics and clinical trials in AML.
Collapse
Affiliation(s)
- Gail J Roboz
- Weill Medical College of Cornell University, The New York Presbyterian Hospital, 520 East 70th Street, New York, NY 10021, USA.
| | | |
Collapse
|
41
|
Schwarz K, Romanski A, Puccetti E, Wietbrauk S, Vogel A, Keller M, Scott JW, Serve H, Bug G. The deacetylase inhibitor LAQ824 induces notch signalling in haematopoietic progenitor cells. Leuk Res 2011; 35:119-25. [DOI: 10.1016/j.leukres.2010.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/08/2010] [Accepted: 06/28/2010] [Indexed: 01/31/2023]
|
42
|
Li H, Lu Y, Piao L, Wu J, Liu S, Marcucci G, Ratnam M, Lee RJ. Targeting human clonogenic acute myelogenous leukemia cells via folate conjugated liposomes combined with receptor modulation by all-trans retinoic acid. Int J Pharm 2010; 402:57-63. [PMID: 20883757 PMCID: PMC2982872 DOI: 10.1016/j.ijpharm.2010.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/15/2010] [Accepted: 09/22/2010] [Indexed: 01/22/2023]
Abstract
Our previous data demonstrated that folate receptor β (FR-β) targeted liposomal doxorubicin (FT-L-DOX) showed enhanced cytotoxicity relative to non-targeted liposomal doxorubicin (CON-L-DOX), and the effect was enhanced by selective FR-β upregulation by all-trans retinoic acid (ATRA) in AML blast cells. In this study, the enhanced cytotoxicity was investigated in the proliferating human AML clonogenic cells by combining FT-L-DOX with ATRA. Also, pharmacokinetic properties by pretreatment of ATRA were evaluated using FR-targeted liposomal calcein (FT-L-Calcein). Pharmacokinetic study showed that the area under the concentration curve (AUC) of FT-L-Calcein was decreased and total clearance was increased by pretreatment with ATRA. Meanwhile, the volume of distribution was significantly increased by pretreatment of ATRA. Moreover, calcein level in the liver, spleen and kidney was increased following intravenous administration of FT-L-Calcein by pretreatment of ATRA. In vitro cytotoxicity of FT-L-DOX was higher than that of CON-L-DOX and was increased by pretreatment with ATRA. Colony formation in AML cells was lower due to treatment with FT-L-DOX compared with CON-L-DOX and colony formation further decreased upon pretreatment with ATRA. Moreover, FT-L-DOX was more toxic to AML clonogenic cells than to AML blast cells. The results demonstrate that the efficiency of FR-mediated targeting of FT-L-DOX was preferentially enhanced by ATRA induced FR-β upregulation in AML clonogenic cells.
Collapse
Affiliation(s)
- Hong Li
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus OH43210, USA
| | - Yanhui Lu
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus OH43210, USA
| | - Longzhu Piao
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus OH43210, USA
| | - Jun Wu
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus OH43210, USA
| | - Shujun Liu
- Department of Internal Medicine, Division of Hematology and Oncology, The Ohio State University, Columbus, OH43210, USA
| | - Guido Marcucci
- Department of Internal Medicine, Division of Hematology and Oncology, The Ohio State University, Columbus, OH43210, USA
- Comprehensive Cancer Center (CCC), The Ohio State University, Columbus, OH43210, USA
| | - Manohar Ratnam
- Department of Biochemistry and Cancer Biology, University Medical Center, Toledo, OH, USA
| | - Robert J. Lee
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus OH43210, USA
- Comprehensive Cancer Center (CCC), The Ohio State University, Columbus, OH43210, USA
- NSF Nanoscale Science and Engineering Center (NSEC), The Ohio State University, Columbus, OH43210, USA
| |
Collapse
|
43
|
Kim YR, Eom JI, Kim SJ, Jeung HK, Cheong JW, Kim JS, Min YH. Myeloperoxidase expression as a potential determinant of parthenolide-induced apoptosis in leukemia bulk and leukemia stem cells. J Pharmacol Exp Ther 2010; 335:389-400. [PMID: 20699435 DOI: 10.1124/jpet.110.169367] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Given that parthenolide (PTL) is an effective antileukemic agent, identifying molecular markers that predict response to PTL is important. We evaluated the role of myeloperoxidase (MPO) in determining the sensitivity of leukemia cells to PTL-induced apoptosis. In this study, the level of PTL-induced generation of reactive oxygen species (ROS) and apoptosis was significantly higher in the MPO-high leukemia cell lines compared with the MPO-low leukemia cell lines. Pretreatment of MPO-high leukemia cells with a MPO-specific inhibitor, 4-aminobenzoic acid hydrazide, or a MPO-specific small interfering RNA (siRNA) abrogated the PTL-induced ROS generation and apoptosis, indicating that MPO plays a crucial role in PTL-induced apoptosis in leukemia cells. PTL-induced apoptosis was accompanied by down-regulation of nuclear factor-κB, Bcl-xL, Mcl-1, X-linked inhibitor of apoptosis protein, and survivin and selectively observed in primary acute myeloid leukemia (AML) cells expressing higher levels of MPO (≥50%) while sparing both AML cells with lower MPO and normal CD34-positive (CD34+) normal bone marrow cells. The extent of PTL-induced apoptosis of the CD34+CD38- cell fraction was significantly greater in the MPO-high AML cases, compared with the MPO-low AML (P < 0.01) and normal CD34+ marrow cells (P < 0.01). Nonobese diabetic/severe combined immunodeficient human leukemia mouse model also revealed that PTL preferentially targets the MPO-high AML cells. Our data suggest that MPO plays a crucial role in determining the susceptibility of leukemia cells to PTL-induced apoptosis. PTL can be considered a promising leukemic stem cell-targeted therapy for AML expressing high levels of MPO.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Apoptosis/drug effects
- Blotting, Western
- Cell Line, Tumor
- Flow Cytometry
- Glutathione/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/pathology
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Mice, Inbred Strains
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Peroxidase/antagonists & inhibitors
- Peroxidase/biosynthesis
- RNA, Small Interfering/genetics
- Reactive Oxygen Species/metabolism
- Sesquiterpenes/pharmacology
- Sesquiterpenes/therapeutic use
- Transfection
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yu Ri Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Korea.
| | | | | | | | | | | | | |
Collapse
|
44
|
Chemical genomic screening reveals synergism between parthenolide and inhibitors of the PI-3 kinase and mTOR pathways. Blood 2010; 116:5983-90. [PMID: 20889920 DOI: 10.1182/blood-2010-04-278044] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have previously shown that the plant-derived compound parthenolide (PTL) can impair the survival and leukemogenic activity of primary human acute myeloid leukemia (AML) stem cells. However, despite the activity of this agent, PTL also induces cellular protective responses that likely function to reduce its overall cytotoxicity. Thus, we sought to identify pharmacologic agents that enhance the antileukemic potential of PTL. Toward this goal, we used the gene expression signature of PTL to identify compounds that inhibit cytoprotective responses by performing chemical genomic screening of the Connectivity Map database. This screen identified compounds acting along the phosphatidylinositol 3-kinase and mammalian target of rapamycin pathways. Compared with single agent treatment, exposure of AML cells to the combination of PTL and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitors significantly decreased viability of AML cells and reduced tumor burden in vitro and in murine xenotransplantation models. Taken together, our data show that rational drug combinations can be identified using chemical genomic screening strategies and that inhibition of cytoprotective functions can enhance the eradication of primary human AML cells.
Collapse
|
45
|
Chen SY, Huang YC, Liu SP, Tsai FJ, Shyu WC, Lin SZ. An overview of concepts for cancer stem cells. Cell Transplant 2010; 20:113-20. [PMID: 20887682 DOI: 10.3727/096368910x532837] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For many years, cancer research has focused on the adult stem cells present in malignant tumors. It is believed that current cancer treatments sometimes fail because they do not target these cells. According to classic models of carcinogenesis, these events can occur in any cell. In contrast, the cancer stem cell (CSC) hypothesis states that the preferential targets of oncogenic transformation are tissue stem cells or early progenitor cells that have acquired the potential for self-renewal. These tumor-initiating cells, or CSCs, in turn, are characterized by their ability to undergo self-renewal, a process that drives tumorigenesis and differentiation, which contributes to the cellular heterogeneity of tumors. Herein, we discuss the definitions and properties of CSCs in the major human cancers.
Collapse
Affiliation(s)
- Shih-Yin Chen
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
46
|
Bhat-Nakshatri P, Appaiah H, Ballas C, Pick-Franke P, Goulet R, Badve S, Srour EF, Nakshatri H. SLUG/SNAI2 and tumor necrosis factor generate breast cells with CD44+/CD24- phenotype. BMC Cancer 2010; 10:411. [PMID: 20691079 PMCID: PMC3087321 DOI: 10.1186/1471-2407-10-411] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 08/06/2010] [Indexed: 12/17/2022] Open
Abstract
Background Breast cancer cells with CD44+/CD24- cell surface marker expression profile are proposed as cancer stem cells (CSCs). Normal breast epithelial cells that are CD44+/CD24- express higher levels of stem/progenitor cell associated genes. We, amongst others, have shown that cancer cells that have undergone epithelial to mesenchymal transition (EMT) display the CD44+/CD24- phenotype. However, whether all genes that induce EMT confer the CD44+/CD24- phenotype is unknown. We hypothesized that only a subset of genes associated with EMT generates CD44+/CD24- cells. Methods MCF-10A breast epithelial cells, a subpopulation of which spontaneously acquire the CD44+/CD24- phenotype, were used to identify genes that are differentially expressed in CD44+/CD24- and CD44-/CD24+ cells. Ingenuity pathway analysis was performed to identify signaling networks that linked differentially expressed genes. Two EMT-associated genes elevated in CD44+/CD24- cells, SLUG and Gli-2, were overexpressed in the CD44-/CD24+ subpopulation of MCF-10A cells and MCF-7 cells, which are CD44-/CD24+. Flow cytometry and mammosphere assays were used to assess cell surface markers and stem cell-like properties, respectively. Results Two thousand thirty five genes were differentially expressed (p < 0.001, fold change ≥ 2) between the CD44+/CD24- and CD44-/CD24+ subpopulations of MCF-10A. Thirty-two EMT-associated genes including SLUG, Gli-2, ZEB-1, and ZEB-2 were expressed at higher levels in CD44+/CD24- cells. These EMT-associated genes participate in signaling networks comprising TGFβ, NF-κB, and human chorionic gonadotropin. Treatment with tumor necrosis factor (TNF), which induces NF-κB and represses E-cadherin, or overexpression of SLUG in CD44-/CD24+ MCF-10A cells, gave rise to a subpopulation of CD44+/CD24- cells. Overexpression of constitutively active p65 subunit of NF-κB in MCF-10A resulted in a dramatic shift to the CD44+/CD24+ phenotype. SLUG overexpression in MCF-7 cells generated CD44+/CD24+ cells with enhanced mammosphere forming ability. In contrast, Gli-2 failed to alter CD44 and CD24 expression. Conclusions EMT-mediated generation of CD44+/CD24- or CD44+/CD24+ cells depends on the genes that induce or are associated with EMT. Our studies reveal a role for TNF in altering the phenotype of breast CSC. Additionally, the CD44+/CD24+ phenotype, in the context of SLUG overexpression, can be associated with breast CSC "stemness" behavior based on mammosphere forming ability.
Collapse
Affiliation(s)
- Poornima Bhat-Nakshatri
- Department of Surgery, Indiana University School of Medicine, West Walnut Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhao Z, Zuber J, Diaz-Flores E, Lintault L, Kogan SC, Shannon K, Lowe SW. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev 2010; 24:1389-402. [PMID: 20595231 DOI: 10.1101/gad.1940710] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The p53 tumor suppressor limits proliferation in response to cellular stress through several mechanisms. Here, we test whether the recently described ability of p53 to limit stem cell self-renewal suppresses tumorigenesis in acute myeloid leukemia (AML), an aggressive cancer in which p53 mutations are associated with drug resistance and adverse outcome. Our approach combined mosaic mouse models, Cre-lox technology, and in vivo RNAi to disable p53 and simultaneously activate endogenous Kras(G12D)-a common AML lesion that promotes proliferation but not self-renewal. We show that p53 inactivation strongly cooperates with oncogenic Kras(G12D) to induce aggressive AML, while both lesions on their own induce T-cell malignancies with long latency. This synergy is based on a pivotal role of p53 in limiting aberrant self-renewal of myeloid progenitor cells, such that loss of p53 counters the deleterious effects of oncogenic Kras on these cells and enables them to self-renew indefinitely. Consequently, myeloid progenitor cells expressing oncogenic Kras and lacking p53 become leukemia-initiating cells, resembling cancer stem cells capable of maintaining AML in vivo. Our results establish an efficient new strategy for interrogating oncogene cooperation, and provide strong evidence that the ability of p53 to limit aberrant self-renewal contributes to its tumor suppressor activity.
Collapse
Affiliation(s)
- Zhen Zhao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Targeting integrin linked kinase and FMS-like tyrosine kinase-3 is cytotoxic to acute myeloid leukemia stem cells but spares normal progenitors. Leuk Res 2010; 34:1358-65. [PMID: 20193963 DOI: 10.1016/j.leukres.2010.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/21/2009] [Accepted: 01/08/2010] [Indexed: 01/18/2023]
Abstract
Acute myeloid leukemia (AML) is maintained by rare leukemia-initiating cells (L-ICs). FLT3 and/or PI3K pathways are often dysregulated in AML and may be important for L-IC survival. The presence of PI3K pathway intermediate integrin linked kinase (ILK), and FLT3 was confirmed in five L-IC-enriched AML patient samples. Treatment of AML cells with QLT0267, an inhibitor of ILK and FLT3, decreased survival of long-term suspension culture-initiating cells and NOD/SCID mouse L-IC. In contrast, little toxicity toward normal bone marrow progenitors was observed, demonstrating that candidate leukemic stem cells can be eliminated by inhibition of these targets while normal hematopoietic counterparts are spared.
Collapse
|
49
|
Moserle L, Ghisi M, Amadori A, Indraccolo S. Side population and cancer stem cells: Therapeutic implications. Cancer Lett 2010; 288:1-9. [DOI: 10.1016/j.canlet.2009.05.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 02/06/2023]
|
50
|
Liu Y, Elf SE, Asai T, Miyata Y, Liu Y, Sashida G, Huang G, Di Giandomenico S, Koff A, Nimer SD. The p53 tumor suppressor protein is a critical regulator of hematopoietic stem cell behavior. Cell Cycle 2010; 8:3120-4. [PMID: 19755852 DOI: 10.4161/cc.8.19.9627] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In response to diverse stresses, the tumor suppressor p53 differentially regulates its target genes, variably inducing cell-cycle arrest, apoptosis or senescence. Emerging evidence indicates that p53 plays an important role in regulating hematopoietic stem cell (HSC) quiescence, self-renewal, apoptosis and aging. The p53 pathway is activated by DNA damage, defects in ribosome biogenesis, oxidative stress and oncogene induced p19 ARF upregulation. We present an overview of the current state of knowledge about p53 (and its target genes) in regulating HSC behavior, with the hope that understanding the molecular mechanisms that control p53 activity in HSCs and how p53 mutations affect its role in these events may facilitate the development of therapeutic strategies for eliminating leukemia (and cancer) propagating cells.
Collapse
Affiliation(s)
- Yan Liu
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|