1
|
Chaudhuri A. Regulation of Macrophage Polarization by RON Receptor Tyrosine Kinase Signaling. Front Immunol 2014; 5:546. [PMID: 25400637 PMCID: PMC4215628 DOI: 10.3389/fimmu.2014.00546] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/13/2014] [Indexed: 12/13/2022] Open
Abstract
The M1 and M2 states of macrophage polarization are the two extremes of a physiologic/phenotypic continuum that is dynamically influenced by environmental signals. The M1/M2 paradigm is an excellent framework to understand and appreciate some of the diverse functions that macrophages perform. Molecular analysis of mouse and human macrophages indicated that they gain M1 and M2-related functions after encountering specific ligands in the tissue environment. In this perspective, I discuss the function of recepteur d’origine nantais (RON) receptor tyrosine kinase in regulating the M2-like state of macrophage activation Besides decreasing pro-inflammatory cytokine production in response to toll-like receptor-4 activation, macrophage-stimulating protein strongly suppresses nitric oxide synthase and at the same time upregulates arginase, which is the rate limiting enzyme in the ornithine biosynthesis pathway. Interestingly, RON signaling preserved some of the characteristics of the M1 state, while still promoting the hallmarks of M2 polarization. Therefore, therapeutic modulation of RON activity can shift the activation state of macrophages between acute and chronic inflammatory states.
Collapse
|
2
|
Chaudhuri A, Wilson NS, Yang B, Paler Martinez A, Liu J, Zhu C, Bricker N, Couto S, Modrusan Z, French D, Cupp J, Ashkenazi A. Host genetic background impacts modulation of the TLR4 pathway by RON in tissue-associated macrophages. Immunol Cell Biol 2013; 91:451-60. [PMID: 23817579 PMCID: PMC3736205 DOI: 10.1038/icb.2013.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/04/2013] [Accepted: 05/20/2013] [Indexed: 12/27/2022]
Abstract
Toll-like receptors (TLRs) enable metazoans to mount effective innate immune responses to microbial and viral pathogens, as well as to endogenous host-derived ligands. It is understood that genetic background of the host can influence TLR responsiveness, altering susceptibility to pathogen infection, autoimmunity and cancer. Macrophage stimulatory protein (MSP), which activates the receptor tyrosine kinase recepteur d'origine nantais (RON), promotes key macrophage functions such as motility and phagocytic activity. MSP also acts via RON to modulate signaling by TLR4, which recognizes a range of pathogen or endogenous host-derived molecules. Here, we show that RON exerts divergent control over TLR4 activity in macrophages from different mouse genetic backgrounds. RON potently modulated the TLR4 response in macrophages from M2-prone FVB mice, as compared with M1-skewed C57Bl6 mice. Moreover, global expression analysis revealed that RON suppresses the TLR4-dependent type-I interferon gene signature only in FVB macrophages. This leads to attenuated production of the potent inflammatory mediator, tumor necrosis factor-α. Eliminating RON kinase activity markedly decreased carcinogen-mediated tumorigenesis in M2/Th2-biased FVB mice. We propose that host genetic background influences RON function, thereby contributing to the variability in TLR4 responsiveness in rodents and, potentially, in humans. These findings provide novel insight into the complex interplay between genetic context and immune function.
Collapse
Affiliation(s)
- Amitabha Chaudhuri
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Nicholas S Wilson
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Becky Yang
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | | | - Jinfeng Liu
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, USA
| | - Catherine Zhu
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Nicole Bricker
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Suzana Couto
- Departments of Pathology and Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA, USA
| | - Dorothy French
- Departments of Pathology and Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - James Cupp
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA, USA
| | - Avi Ashkenazi
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| |
Collapse
|
3
|
Abstract
Since the discovery of MSP (macrophage-stimulating protein; also known as MST1 and hepatocyte growth factor-like (HGFL)) as the ligand for the receptor tyrosine kinase RON (also known as MST1R) in the early 1990s, the roles of this signalling axis in cancer pathogenesis has been extensively studied in various model systems. Both in vitro and in vivo evidence has revealed that MSP-RON signalling is important for the invasive growth of different types of cancers. Currently, small-molecule inhibitors and antibodies blocking RON signalling are under investigation. Substantial responses have been achieved in human tumour xenograft models, laying the foundation for clinical validation. In this Review, we discuss recent advances that demonstrate the importance of MSP-RON signalling in cancer and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hang-Ping Yao
- Viral Oncogenesis Section in State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P. R. China
| | | | | | | |
Collapse
|
4
|
Ron tyrosine kinase receptor synergises with EGFR to confer adverse features in head and neck squamous cell carcinoma. Br J Cancer 2013; 109:482-92. [PMID: 23799848 PMCID: PMC3721396 DOI: 10.1038/bjc.2013.321] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/30/2013] [Accepted: 06/04/2013] [Indexed: 02/04/2023] Open
Abstract
Background: Although EGFR inhibitors have shown some success in the treatment of head and neck squamous cell carcinomas (HNSCCs), the results are not dramatic. Additional molecular targets are urgently needed. We previously showed that the loss of Ron receptor activity significantly slowed squamous tumour growth and progression in a murine model. Based on these data, we hypothesised that Ron expression confers an aggressive phenotype in HNSCCs. Methods: We prospectively collected and evaluated 154 snap-frozen, primary HNSCCs for Ron and EGFR expression/phosphorylation. Biomarker correlation with clinical, pathological and outcome data was performed. The biological responses of HNSCC cell lines to Ron knockdown, its activation and the biochemical interaction between Ron and EGFR were examined. Results: We discovered that 64.3% (99 out of 154) HNSCCs expressed Ron. The carcinomas expressed exclusively mature functional Ron, whereas the adjacent nonmalignant epithelium expressed predominantly nonfunctional Ron precursor. There was no significant association between Ron and sex, tumour differentiation, perineural/vascular invasion or staging. However, patients with Ron+HNSCC were significantly older and more likely to have oropharyngeal tumours. Ron+HNSCC also had significantly higher EGFR expression and correlated strongly with phosphorylated EGFR (pEGFR). Newly diagnosed HNSCC with either Ron/pEGFR or both had lower disease-free survival than those without Ron and pEGFR. Knocking down Ron in SCC9 cells significantly blunted their migratory response to not only the Ron ligand, MSP, but also EGF. Stimulation of Ron in SCC9 cells significantly augmented the growth effect of EGF; the synergistic effect of both growth factors in SCC9 cells was dependent on Ron expression. Activated Ron also interacted with and transactivated EGFR. Conclusion: Ron synergises with EGFR to confer certain adverse features in HNSCCs.
Collapse
|
5
|
Chaudhuri A, Xie MH, Yang B, Mahapatra K, Liu J, Marsters S, Bodepudi S, Ashkenazi A. Distinct involvement of the Gab1 and Grb2 adaptor proteins in signal transduction by the related receptor tyrosine kinases RON and MET. J Biol Chem 2011; 286:32762-74. [PMID: 21784853 DOI: 10.1074/jbc.m111.239384] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although the signal transduction mechanisms of the receptor tyrosine kinase MET are well defined, less is known about its close relative RON. MET initiates intracellular signaling by autophosphorylation on specific cytoplasmic tyrosines that form docking sites for the adaptor proteins Grb2 and Gab1. Grb2 binds directly and is essential for all of the biological activities of MET. Gab1 docks either directly or indirectly via Grb2 and controls only a subset of MET functions. Because MET and RON possess similar adaptor binding sites, it was anticipated that their adaptor interactions would be conserved. Here we show that in contrast to MET, RON relies primarily on Gab1 for signal transmission. Surprisingly, disruption of the Grb2 docking site of RON or Grb2 depletion augments activity, whereas enhancement of Grb2 binding attenuates Gab1 recruitment and signaling. Hence, RON and MET differ in their adaptor interactions; furthermore, Grb2 performs a novel antagonistic role in the context of RON signaling.
Collapse
Affiliation(s)
- Amitabha Chaudhuri
- Department of Molecular Oncology, Genentech, Inc, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The Ron receptor tyrosine kinase is overexpressed in many cancers, including prostate cancer. In order to examine the significance of Ron in prostate cancer in vivo, we utilized a genetically engineered mouse model, referred to as TRAMP mice, that is predisposed to develop prostate tumors. In this model, we demonstrate that prostate tumors from 30-week-old TRAMP mice have increased Ron expression compared to age-matched wild-type prostates. Based on the upregulation of Ron in human prostate cancers and in this murine model of prostate tumorigenesis, we hypothesized that this receptor plays a functional role in the development of prostate tumors. To test this hypothesis, we crossed TRAMP mice with mice that are deficient in Ron signaling (TK−/−). Interestingly, TK−/− TRAMP+ mice show a significant decrease in prostate tumor mass relative to TRAMP mice containing functional Ron. Moreover, TK−/− TRAMP+ prostate tumors exhibited decreased tumor vascularization relative to TK+/+ TRAMP+ prostate tumors, which correlated with reduced levels of the angiogenic molecules VEGF and CXCL2. While Ron loss did not alter tumor cell proliferation, a significant decrease in cell survival was observed. Similarly, murine prostate cancer cell lines containing a Ron deficiency exhibited decreased levels of active NF-kappaB suggesting that Ron may be important in regulating prostate cell survival at least partly through this pathway. In total, our data show for the first time that Ron promotes prostate tumor growth, prostate tumor angiogenesis, and prostate cancer cell survival in vivo.
Collapse
|
7
|
Benvenuti S, Lazzari L, Arnesano A, Li Chiavi G, Gentile A, Comoglio PM. Ron kinase transphosphorylation sustains MET oncogene addiction. Cancer Res 2011; 71:1945-55. [PMID: 21212418 DOI: 10.1158/0008-5472.can-10-2100] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Receptors for the scatter factors HGF and MSP that are encoded by the MET and RON oncogenes are key players in invasive growth. Receptor cross-talk between Met and Ron occurs. Amplification of the MET oncogene results in kinase activation, deregulated expression of an invasive growth phenotype, and addiction to MET oncogene signaling (i.e., dependency on sustained Met signaling for survival and proliferation). Here we show that cancer cells addicted to MET also display constitutive activation of the Ron kinase. In human cancer cell lines coexpressing the 2 oncogenes, Ron is specifically transphosphorylated by activated Met. In contrast, Ron phosphorylation is not triggered in cells harboring constitutively active kinase receptors other than Met, including Egfr or Her2. Furthermore, Ron phosphorylation is suppressed by Met-specific kinase inhibitors (PHA-665752 or JNJ-38877605). Last, Ron phosphorylation is quenched by reducing cell surface expression of Met proteins by antibody-induced shedding. In MET-addicted cancer cells, short hairpin RNA-mediated silencing of RON expression resulted in decreased proliferation and clonogenic activity in vitro and tumorigenicity in vivo. Our findings establish that oncogene addiction to MET involves Ron transactivation, pointing to Ron kinase as a target for combinatorial cancer therapy.
Collapse
Affiliation(s)
- Silvia Benvenuti
- Exploratory Research Laboratory, Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Turin, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Rho O, Kim DJ, Kiguchi K, Digiovanni J. Growth factor signaling pathways as targets for prevention of epithelial carcinogenesis. Mol Carcinog 2010; 50:264-79. [PMID: 20648549 DOI: 10.1002/mc.20665] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 10/24/2022]
Abstract
Growth factor receptor (GFR) signaling controls epithelial cell growth by responding to various endogenous or exogenous stimuli and subsequently activating downstream signaling pathways including Stat3, PI3K/Akt/mTOR, MAPK, and c-Src. Environmental chemical toxicants and UVB irradiation cause enhanced and prolonged activation of GFR signaling and downstream pathways that contributes to epithelial cancer development including skin cancer. Recent studies, especially those with tissue-specific transgenic mouse models, have demonstrated that GFRs and their downstream signaling pathways contribute to all three stages of epithelial carcinogenesis by regulating a wide variety of biological functions including proliferation, apoptosis, angiogenesis, cell adhesion, and migration. Inhibiting these signaling pathways early in the carcinogenic process results in reduced cell proliferation and survival, leading to decreased tumor formation. Collectively, these studies suggest that GFR signaling and subsequent downstream signaling pathways are potential targets for the prevention of epithelial cancers including skin cancer.
Collapse
Affiliation(s)
- Okkyung Rho
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78723-3092, USA
| | | | | | | |
Collapse
|
9
|
Meyer SE, Waltz SE, Goss KH. The Ron receptor tyrosine kinase is not required for adenoma formation in Apc(Min/+) mice. Mol Carcinog 2009; 48:995-1004. [PMID: 19452510 DOI: 10.1002/mc.20551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Ron receptor tyrosine kinase is overexpressed in approximately half of all human colon cancers. Increased Ron expression positively correlates with tumor progression, and reduction of Ron levels in human colon adenocarcinoma cells reverses their tumorigenic properties. Nearly all colon tumors demonstrate loss of the adenomatous polyposis coli (APC) tumor suppressor, an early initiating event, subsequently leading to beta-catenin stabilization. To understand the role of Ron in early stage intestinal tumorigenesis, we generated Apc-mutant (Apc(Min/+)) mice with and without Ron signaling. Interestingly, we report here that significantly more Apc(Min/+) Ron-deficient mice developed higher tumor burden than Apc(Min/+) mice with wild-type Ron. Even though baseline levels of intestinal crypt proliferation were increased in the Apc(Min/+) Ron-deficient mice, loss of Ron did not influence tumor size or histological appearance of the Apc(Min/+) adenomas, nor was beta-catenin localization changed compared to Apc(Min/+) mice with Ron. Together, these data suggest that Ron may be important in normal intestinal tissue homeostasis, but that the expression of this receptor is not required for the formation and growth of adenomas in Apc(Min/+) mice.
Collapse
Affiliation(s)
- Sara E Meyer
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
10
|
Zhou D, Pan G, Zheng C, Zheng J, Yian L, Teng X. Expression of the RON receptor tyrosine kinase and its association with gastric carcinoma versus normal gastric tissues. BMC Cancer 2008; 8:353. [PMID: 19040718 PMCID: PMC2629483 DOI: 10.1186/1471-2407-8-353] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 11/28/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recepteur d'origine nantais (RON) is a receptor tyrosine kinase that is activated by a serum-derived, macrophage stimulating protein (MSP) growth factor and is expressed in many malignant tumors. The aim of the present study was to reveal the protein expression profile of RON and its relationship with clinicopathological characteristics of gastric carcinoma and prognosis. METHODS Gastric carcinoma tissue from 98 patients, along with 29 specimens of paraneoplastic tissue and 10 specimens of normal gastric mucosa, were examined by immunohistochemistry (IHC). Western blot analysis of 19 samples of gastric carcinoma tissue and corresponding paraneoplastic tissue, 8 specimens of normal gastric mucosa, and 2 specimens of normal lymph node samples also detected expression of a splice variant of RON, RONDelta165. All samples obtained were accompanied by patient follow-up data that ranged from 3 to 89 months (median time: 22 months). RESULTS The rate of positive RON expression differed significantly between gastric carcinoma tissues [56.1%, (55/98)] and paraneoplastic tissues [25.6%, (8/29)] (p = 0.007). In contrast, RON expression was absent in normal gastric mucosa samples. RON expression positively correlated with the invasive depth of the tumor (p = 0.019), perigastric lymph nodes metastasis (p = 0.019), and TNM stage (p = 0.001). However, RON expression was independent of tumor growth pattern according to Bormann criteria (p = 0.209), histopathological grade (p = 0.196), and incidence of distant metastasis (p = 0.400). RON expression was not related to a patient's survival rate (p = 0.195). RONDelta165 was strongly expressed in fresh gastric carcinoma tissue, corresponding paraneoplastic tissue, and perigastric lymph nodes with metastatic carcinoma. In contrast, expression of RONDelta165 was not observed in normal gastric mucosa and normal lymph node tissue samples. CONCLUSION RON expression is significant in gastric carcinoma tissue and corresponding paraneoplastic tissue, but is not expressed in normal gastric mucosa. Expression of RONDelta165 was similarly observed in gastric carcinoma tissue and in metastases present in lymph node tissues. We hypothesize that RON and its splice variant play an important role in the occurrence, progression, and metastasis of gastric carcinoma, and therefore may represent a useful marker to evaluate the biological activity of gastric carcinoma.
Collapse
Affiliation(s)
- Donghui Zhou
- Department of oncology, The First Affiliated Hospital of College of Medicine of Zhejiang University, Hangzhou, PR China.
| | | | | | | | | | | |
Collapse
|
11
|
Wagh PK, Peace BE, Waltz SE. Met-related receptor tyrosine kinase Ron in tumor growth and metastasis. Adv Cancer Res 2008; 100:1-33. [PMID: 18620091 DOI: 10.1016/s0065-230x(08)00001-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Ron receptor is a member of the Met family of cell surface receptor tyrosine kinases and is primarily expressed on epithelial cells and macrophages. The biological response of Ron is mediated by binding of its ligand, hepatocyte growth factor-like protein/macrophage stimulating-protein (HGFL). HGFL is primarily synthesized and secreted from hepatocytes as an inactive precursor and is activated at the cell surface. Binding of HGFL to Ron activates Ron and leads to the induction of a variety of intracellular signaling cascades that leads to cellular growth, motility and invasion. Recent studies have documented Ron overexpression in a variety of human cancers including breast, colon, liver, pancreas, and bladder. Moreover, clinical studies have also shown that Ron overexpression is associated with both worse patient outcomes as well as metastasis. Forced overexpression of Ron in transgenic mice leads to tumorigenesis in both the lung and the mammary gland and is associated with metastatic dissemination. While Ron overexpression appears to be a hallmark of many human cancers, the mechanisms by which Ron induces tumorigenesis and metastasis are still unclear. Several strategies are currently being undertaken to inhibit Ron as a potential therapeutic target; current strategies include the use of Ron blocking proteins, small interfering RNA (siRNA), monoclonal antibodies, and small molecule inhibitors. In total, these data suggest that Ron is a critical factor in tumorigenesis and that inhibition of this protein, alone or in combination with current therapies, may prove beneficial in the treatment of cancer patients.
Collapse
Affiliation(s)
- Purnima K Wagh
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0558, USA
| | | | | |
Collapse
|
12
|
Leonis MA, Thobe MN, Waltz SE. Ron-receptor tyrosine kinase in tumorigenesis and metastasis. Future Oncol 2008; 3:441-8. [PMID: 17661719 PMCID: PMC4082960 DOI: 10.2217/14796694.3.4.441] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Ron-receptor tyrosine kinase has been increasingly recognized for its tumorigenic potential in the last decade. Ron-receptor activation leads to the activation of common receptor tyrosine kinase downstream-signaling pathways, and most prominently in tumor models, activation of MAPK, PI3K and beta-catenin. Numerous experimental models of mammalian tumorigenesis have demonstrated that increased Ron-receptor activity correlates with increased tumorigenesis in a variety of organs of epithelial origin. The evidence for Ron as an oncogene in human tumor biology is growing. The Ron receptor is overexpressed and over activated in a large number of human tumors, and overexpression of Ron correlates with a worse clinical outcome for patients in at least two human cancer states, namely breast and bladder cancer. Several experimental approaches have been demonstrated to successfully block Ron activity and function, and given these convincing data, approaches to block Ron-receptor activity in targeted human cancers should prove to be fruitful in the setting of future clinical research trials.
Collapse
Affiliation(s)
- Mike A. Leonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0558
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Megan N. Thobe
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0558
| | - Susan E. Waltz
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0558
- Department of Research, Shriner’s Hospital for Children, Cincinnati, OH 45267-0558
| |
Collapse
|
13
|
Côté M, Miller AD, Liu SL. Human RON receptor tyrosine kinase induces complete epithelial-to-mesenchymal transition but causes cellular senescence. Biochem Biophys Res Commun 2007; 360:219-25. [PMID: 17588532 PMCID: PMC4296733 DOI: 10.1016/j.bbrc.2007.06.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 12/23/2022]
Abstract
The RON receptor tyrosine kinase is a member of the MET proto-oncogene family and is important for cell proliferation, differentiation, and cancer development. Here, we created a series of Madin-Darby canine kidney (MDCK) epithelial cell clones that express different levels of RON, and have investigated their biological properties. While low levels of RON correlated with little morphological change in MDCK cells, high levels of RON expression constitutively led to morphological scattering or complete and stabilized epithelial-to-mesenchymal transition (EMT). Unexpectedly, MDCK clones expressing higher levels of RON exhibited retarded proliferation and senescence, despite increased motility and invasiveness. RON was constitutively tyrosine-phosphorylated in MDCK cells expressing high levels of RON and undergoing EMT, and the MAPK signaling pathway was activated. This study reveals for the first time that RON alone is sufficient to induce complete and stabilized EMT in MDCK cells, and overexpression of RON does not cause cell transformation but rather induces cell cycle arrest and senescence, leading to impaired cell proliferation.
Collapse
Affiliation(s)
- Marceline Côté
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - A. Dusty Miller
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Shan-Lu Liu
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- Corresponding author: Dr. Shan-Lu Liu, Department of Microbiology and Immunology, McGill University, Montreal, Canada,
| |
Collapse
|
14
|
Chan EL, Peace BE, Toney K, Kader SA, Pathrose P, Collins MH, Waltz SE. Homozygous K5Cre transgenic mice have wavy hair and accelerated malignant progression in a murine model of skin carcinogenesis. Mol Carcinog 2007; 46:49-59. [PMID: 17013830 DOI: 10.1002/mc.20192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mice with conditional gene deletions have been extremely valuable in allowing investigators to study the genes of interest in a tissue-specific manner. The Cre-loxP recombination system provides a powerful tool to produce targeted rearrangements of particular genes. The keratin 5-Cre recombinase (K5Cre) transgenic mouse line has been used to generate skin specific gene deletions. We found that the K5Cre mice display a unique phenotype when bred to homozygosity. The K5Cre(+/+) mice have a wavy hair coat and curly whiskers. Histologically, the hair follicles appear disoriented. Over time, the K5Cre(+/+) mice develop patches of alopecia. These mice are also runted when compared to wild-type controls. Fostering the K5Cre(+/+) pups to wild-type mothers results in normal weight gain, suggesting a maternal defect in milk production. When the K5Cre(+/+) mammary glands were examined, we not only found a significant decrease in the number of mammary branches in the virgin females, but also a greater number of quiescent alveoli units in the lactating glands. When the K5Cre(+/+) mice were bred to v-Ha-ras (Tg . AC) transgenic mice, the resulting Tg . AC(+/-) K5Cre(+/+) offspring were utilized in a chemically induced skin carcinogenesis model. The mice were treated with 2.5 microg of 12-O-tetradecanoylphorbol-13-acetate (TPA) weekly for 10 wk. No difference was observed in the time to onset of papilloma formation, the number of papillomas and the average papilloma volume between the Tg . AC(+/-) K5Cre(+/+) mice and their corresponding controls. Surprisingly, however, the K5Cre(+/+) papillomas displayed an accelerated tendency to malignant progression; in addition, the frequency of malignant transformation of the papillomas is significantly enhanced. Although the K5Cre(+/+) mice resemble waved-1 and -2 mutants, the molecular basis for the K5Cre(+/+) phenotype is probably different. In conclusion, we discovered a unique phenotype associated with the K5Cre(+/+) transgenic line.
Collapse
Affiliation(s)
- Edward L Chan
- Division of Pediatric Hematology/Oncology, State University of New York at Stony Brook, Stony Brook, New York, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Various cytokines and soluble growth factors upon interaction with their membrane receptors are responsible for inducing cellular proliferation, differentiation, movement, and protection from anoikis (a planned suicide activated by normal cells in absence of attachment to neighboring cells or extracellular matrix (EMC)). Among those soluble factors a major position is exerted by hepatocyte growth factor (HGF) together with its receptor MET and macrophage-stimulating protein (MSP) in cooperation with its receptor RON.
Collapse
Affiliation(s)
- Silvia Benvenuti
- Division of Molecular Oncology, Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, Candiolo (Torino), Italy
| | | |
Collapse
|
16
|
O'Toole JM, Rabenau KE, Burns K, Lu D, Mangalampalli V, Balderes P, Covino N, Bassi R, Prewett M, Gottfredsen KJ, Thobe MN, Cheng Y, Li Y, Hicklin DJ, Zhu Z, Waltz SE, Hayman MJ, Ludwig DL, Pereira DS. Therapeutic implications of a human neutralizing antibody to the macrophage-stimulating protein receptor tyrosine kinase (RON), a c-MET family member. Cancer Res 2006; 66:9162-70. [PMID: 16982759 DOI: 10.1158/0008-5472.can-06-0283] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RON is a member of the c-MET receptor tyrosine kinase family. Like c-MET, RON is expressed by a variety of epithelial-derived tumors and cancer cell lines and it is thought to play a functional role in tumorigenesis. To date, antagonists of RON activity have not been tested in vivo to validate RON as a potential cancer target. In this report, we used an antibody phage display library to generate IMC-41A10, a human immunoglobulin G1 (IgG1) antibody that binds with high affinity (ED50 = 0.15 nmol/L) to RON and effectively blocks interaction with its ligand, macrophage-stimulating protein (MSP; IC50 = 2 nmol/L). We found IMC-41A10 to be a potent inhibitor of receptor and downstream signaling, cell migration, and tumorigenesis. It antagonized MSP-induced phosphorylation of RON, mitogen-activated protein kinase (MAPK), and AKT in several cancer cell lines. In HT-29 colon, NCI-H292 lung, and BXPC-3 pancreatic cancer xenograft tumor models, IMC-41A10 inhibited tumor growth by 50% to 60% as a single agent, and in BXPC-3 xenografts, it led to tumor regressions when combined with Erbitux. Western blot analyses of HT-29 and NCI-H292 xenograft tumors treated with IMC-41A10 revealed a decrease in MAPK phosphorylation compared with control IgG-treated tumors, suggesting that inhibition of MAPK activity may be required for the antitumor activity of IMC-41A10. To our knowledge, this is the first demonstration that a RON antagonist and specifically an inhibitory antibody of RON negatively affects tumorigenesis. Another major contribution of this report is an extensive analysis of RON expression in approximately 100 cancer cell lines and approximately 300 patient tumor samples representing 10 major cancer types. Taken together, our results highlight the potential therapeutic usefulness of RON activity inhibition in human cancers.
Collapse
Affiliation(s)
- Jennifer M O'Toole
- Department of Tumor Biology, ImClone Systems, Inc, New York, NY 10014, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Humble MC, Trempus CS, Spalding JW, Cannon RE, Tennant RW. Biological, cellular, and molecular characteristics of an inducible transgenic skin tumor model: a review. Oncogene 2006; 24:8217-28. [PMID: 16355251 DOI: 10.1038/sj.onc.1209000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetically initiated Tg.AC transgenic mouse carries a transgene consisting of an oncogenic v-Ha-ras coding region flanked 5' by a mouse zeta-globin promoter and 3' by an SV-40 polyadenylation sequence. Located on chromosome 11, the transgene is transcriptionally silent until activated by chemical carcinogens, UV light, or full-thickness wounding. Expression of the transgene is an early event that drives cellular proliferation resulting in clonal expansion and tumor formation, the unique characteristics now associated with the Tg.AC mouse. This ras-dependent phenotype has resulted in the widespread interest and use of the Tg.AC mouse in experimental skin carcinogenesis and as an alternative carcinogenesis assay. This review examines the general biology of the tumorigenic responses observed in Tg.AC mice, the genetic interactions of the ras transgene, and explores the cellular and molecular regulation of zeta-globin promoted transgene expression. As a prototype alternative model to the current long-term rodent bioassays, the Tg.AC has generated a healthy discussion on the future of transgenic bioassays, and opened the doors for subsequent models for toxicity testing. The further exploration and elucidation of the molecular controls of transgene expression will enhance the usefulness of this mouse and enable a better understanding of the Tg.AC's discriminate response to chemical carcinogens.
Collapse
Affiliation(s)
- Michael C Humble
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | | | | | | | | |
Collapse
|
18
|
Wei X, Ni S, Correll PH. Uncoupling Ligand-dependent and -independent Mechanisms for Mitogen-activated Protein Kinase Activation by the Murine Ron Receptor Tyrosine Kinase. J Biol Chem 2005; 280:35098-107. [PMID: 16103119 DOI: 10.1074/jbc.m505737200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) activate downstream signaling through cognate growth factor receptor-induced dimerization and autophosphorylation. Overexpression of RTKs can lead to constitutive activation due to increased dimerization in the absence of ligand, and downstream signals are presumed to be the same as the ligand-induced signals. We have shown that the murine Ron (mRon) receptor tyrosine kinase exhibits constitutive activation of the MAP kinase pathway that is independent of the two docking site tyrosines, whereas activation of this pathway in response to ligand (macrophage-stimulating protein) is abolished in the absence of these tyrosines. Furthermore, we identified three tyrosines (Tyr-1175, Tyr-1265, and Tyr-1294) within the kinase domain that play critical but overlapping roles in controlling constitutive Erk activation by mRon. Phenylalanine mutations at these three tyrosines results in a receptor that fails to constitutively activate the Erk pathway but retains the ability to induce Erk phosphorylation in response to ligand stimulation. The ability of mRon to activate the MAP kinase pathway is dependent on c-Src activity, and we have shown that c-Src co-immunoprecipitates with mRon. c-Src fails to interact with mRon when the three tyrosines required for MAP kinase activation are mutated, whereas the presence of any one of these tyrosines alone restores Erk phosphorylation and recruitment of c-Src. Thus, the ligand-dependent and -independent activity of mRon can be uncoupled through the alteration of selective sets of tyrosines.
Collapse
Affiliation(s)
- Xin Wei
- Graduate Program in Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-3500, USA
| | | | | |
Collapse
|
19
|
Wei X, Hao L, Ni S, Liu Q, Xu J, Correll PH. Altered exon usage in the juxtamembrane domain of mouse and human RON regulates receptor activity and signaling specificity. J Biol Chem 2005; 280:40241-51. [PMID: 16166096 DOI: 10.1074/jbc.m506806200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative splicing of signaling proteins can contribute to the complexity of signaling networks. We find that expression of mouse RON, but not human RON, results in constitutive receptor autophosphorylation, ligand-independent activation of the mitogen-activated protein kinase pathway, and association of the receptor with c-Src. Using chimeric receptors, we mapped the region for this difference in signaling capacity of mouse and human RON to the juxtamembrane domain. Expression of these receptors in primary erythroid progenitor cells also demonstrated a functional difference in the ability of mouse and human RON to support erythropoietin-independent colony formation that mapped to the juxtamembrane domain. Splicing of the mouse RON receptor tyrosine kinase transcript results in the constitutive deletion of an exon used by all other known RON orthologs that encodes part of the juxtamembrane domain of the receptor. Mutational analysis indicated that the two tyrosines present in this region in human RON, one of which has been previously shown to be a c-Cbl binding site, are not responsible for this difference. However, deletion of this region in the context of human RON enhanced receptor phosphorylation, activation of mitogen-activated protein kinase, and association of c-Src at levels comparable with those observed with mouse RON. These data provide direct evidence that the divergence of exon usage among different species can generate a protein with novel activity and subsequently add to the complexity of cellular signaling regulation.
Collapse
Affiliation(s)
- Xin Wei
- Department of Veterinary Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
20
|
|