1
|
Hamzah M, Meitinger F, Ohta M. PLK4: Master Regulator of Centriole Duplication and Its Therapeutic Potential. Cytoskeleton (Hoboken) 2025. [PMID: 40257113 DOI: 10.1002/cm.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Centrosomes catalyze the assembly of a microtubule-based bipolar spindle, essential for the precise chromosome segregation during cell division. At the center of this process lies Polo-Like Kinase 4 (PLK4), the master regulator that controls the duplication of the centriolar core to ensure the correct balance of two centrosomes per dividing cell. Disruptions in centrosome number or function can lead to genetic disorders such as primary microcephaly or drive tumorigenesis via centrosome amplification. In this context, several chemical inhibitors of PLK4 have emerged as promising therapeutic candidates. The inhibition of PLK4 results in the emergence of acentrosomal cells, which undergo prolonged and error-prone mitosis. This aberrant mitotic duration triggers a "mitotic stopwatch" mechanism that activates the tumor suppressor p53, halting cellular proliferation. However, in a multitude of cancers, the efficacy of this mitotic surveillance mechanism is compromised by mutations that incapacitate p53. Recent investigations have unveiled p53-independent vulnerabilities in cancers characterized by chromosomal gain or amplification of 17q23, which encodes for the ubiquitin ligase TRIM37, in response to PLK4 inhibition, particularly in neuroblastoma and breast cancer. This review encapsulates the latest advancements in our understanding of centriole duplication and acentrosomal cell division in the context of TRIM37 amplification, positioning PLK4 as a compelling target for innovative cancer therapeutics.
Collapse
Affiliation(s)
- Muhammad Hamzah
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Franz Meitinger
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Midori Ohta
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
2
|
Wang B, Yu RZ, Zhang XY, Ren Y, Zhen YW, Han L. Polo-like kinase 4 accelerates glioma malignant progression and vasculogenic mimicry by phosphorylating EphA2. Cancer Lett 2024; 611:217397. [PMID: 39694224 DOI: 10.1016/j.canlet.2024.217397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Vasculogenic mimicry (VM), which involved the formation of vascular-like structures by highly invasive tumor cells, had been identified as one of the mechanisms contributing to resistance against anti-angiogenic therapy in patients with glioblastoma (GBM). Therefore, inhibition of VM formation may serve as an effective therapeutic strategy against angiogenesis resistance. Polo-like kinase 4 (PLK4), a protein kinase, had been linked to the progression of glioblastoma and was associated with an unfavorable prognosis. The integration of proteomics and phosphoproteomics revealed that PLK4 directly activated the PI3K-Akt and MAPK signaling cascades by phosphorylating the Ser901 and Ser897 of EphA2. In addition, EphA2 Ser901 phosphorylating catalyzed by PLK4 significantly enhanced the phosphorylation of its own Ser897 site, which is a hallmark of EphA2 activation. The PI3K-Akt signaling was intricately associated with the progression of VM. Thus, PLK4 influenced malignant progression and VM formation via stimulation of the EphA2 signal transduction. Moreover, the expression level of PLK4 protein positively correlated with the level of EphA2 phosphorylation in glioma tissues. These results highlighted the crucial significance of PLK4 phosphorylating EphA2 in the malignant progression and VM formation in GBM.
Collapse
Affiliation(s)
- Bo Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Run-Ze Yu
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiao-Yang Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yu Ren
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Ying-Wei Zhen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
3
|
Lee HH, Chow KL, Wong HS, Chong TY, Wong AS, Cheng GH, Ko JM, Siu HC, Yeung MC, Huen MS, Tse KY, Bray MR, Mak TW, Leung SY, Ip PP. Inhibition of Aberrantly Overexpressed Polo-like Kinase 4 Is a Potential Effective Treatment for DNA Damage Repair-Deficient Uterine Leiomyosarcoma. Clin Cancer Res 2024; 30:3904-3918. [PMID: 38848043 PMCID: PMC11369621 DOI: 10.1158/1078-0432.ccr-23-3720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Uterine leiomyosarcoma (LMS) is an aggressive sarcoma and a subset of which exhibits DNA repair defects. Polo-like kinase 4 (PLK4) precisely modulates mitosis, and its inhibition causes chromosome missegregation and increased DNA damage. We hypothesize that PLK4 inhibition is an effective LMS treatment. EXPERIMENTAL DESIGN Genomic profiling of clinical uterine LMS samples was performed, and homologous recombination (HR) deficiency scores were calculated. A PLK4 inhibitor (CFI-400945) with and without an ataxia telangiectasia mutated (ATM) inhibitor (AZD0156) was tested in vitro on gynecologic sarcoma cell lines SK-UT-1, SKN, and SK-LMS-1. Findings were validated in vivo using the SK-UT-1 xenograft model in the Balb/c nude mouse model. The effects of CFI-400945 were also evaluated in a BRCA2-knockout SK-UT-1 cell line. The mechanisms of DNA repair were analyzed using a DNA damage reporter assay. RESULTS Uterine LMS had a high HR deficiency score, overexpressed PLK4 mRNA, and displayed mutations in genes responsible for DNA repair. CFI-400945 demonstrated effective antitumor activity in vitro and in vivo. The addition of AZD0156 resulted in drug synergism, largely due to a preference for nonhomologous end-joining DNA repair. Compared with wild-type cells, BRCA2 knockouts were more sensitive to PLK4 inhibition when both HR and nonhomologous end-joining repairs were impaired. CONCLUSIONS Uterine LMS with DNA repair defects is sensitive to PLK4 inhibition because of the effects of chromosome missegregation and increased DNA damage. Loss-of-function BRCA2 alterations or pharmacologic inhibition of ATM enhanced the efficacy of the PLK4 inhibitor. Genomic profiling of an advanced-stage or recurrent uterine LMS may guide therapy.
Collapse
Affiliation(s)
- Horace H.Y. Lee
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Kin Long Chow
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Ho Shing Wong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Tsz Yan Chong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Alice S.T. Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Grace H.W. Cheng
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Jasmine M.K. Ko
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Hoi Cheong Siu
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Maximus C.F. Yeung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Michael S.Y. Huen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Ka Yu Tse
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | | | - Tak Wah Mak
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
| | - Suet Yi Leung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- The Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Centre for PanorOmic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Philip P.C. Ip
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
4
|
Wang B, Zhang X, Li ZS, Wei C, Yu RZ, Du XZ, He YJ, Ren Y, Zhen YW, Han L. Polo-like kinase 4 promotes tumorigenesis and glucose metabolism in glioma by activating AKT1 signaling. Cancer Lett 2024; 585:216665. [PMID: 38290657 DOI: 10.1016/j.canlet.2024.216665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Glioblastoma (GBM) is an extremely aggressive tumor associated with a poor prognosis that impacts the central nervous system. Increasing evidence suggests an inherent association between glucose metabolism dysregulation and the aggression of GBM. Polo-like kinase 4 (PLK4), a highly conserved serine/threonine protein kinase, was found to relate to glioma progression and unfavorable prognosis. As revealed by the integration of proteomics and phosphoproteomics, PLK4 was found to be involved in governing metabolic processes and the PI3K/AKT/mTOR pathway. For the first time, this study supports evidence demonstrating that PLK4 activated PI3K/AKT/mTOR signaling through direct binding to AKT1 and subsequent phosphorylating AKT1 at S124, T308, and S473 to promote tumorigenesis and glucose metabolism in glioma. In addition, PLK4-mediated phosphorylation of AKT1 S124 significantly augmented the phosphorylation of AKT1 S473. Therefore, PLK4 exerted an influence on glucose metabolism by stimulating PI3K/AKT/mTOR signaling. Additionally, the expression of PLK4 protein exhibited a positive correlation with AKT1 phosphorylation in glioma patient tissues. These findings highlight the pivotal role of PLK4-mediated phosphorylation of AKT1 in glioma tumorigenesis and dysregulation of glucose metabolism.
Collapse
Affiliation(s)
- Bo Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaoyang Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ze-Sheng Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cheng Wei
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Run-Ze Yu
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xue-Zhi Du
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ying-Jie He
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yu Ren
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Ying-Wei Zhen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
5
|
Lei Q, Yu Q, Yang N, Xiao Z, Song C, Zhang R, Yang S, Liu Z, Deng H. Therapeutic potential of targeting polo-like kinase 4. Eur J Med Chem 2024; 265:116115. [PMID: 38199166 DOI: 10.1016/j.ejmech.2023.116115] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Polo-like kinase 4 (PLK4), a highly conserved serine/threonine kinase, masterfully regulates centriole duplication in a spatiotemporal manner to ensure the fidelity of centrosome duplication and proper mitosis. Abnormal expression of PLK4 contributes to genomic instability and associates with a poor prognosis in cancer. Inhibition of PLK4 is demonstrated to exhibit significant efficacy against various types of human cancers, further highlighting its potential as a promising therapeutic target for cancer treatment. As such, numerous small-molecule inhibitors with distinct chemical scaffolds targeting PLK4 have been extensively investigated for the treatment of different human cancers, with several undergoing clinical evaluation (e.g., CFI-400945). Here, we review the structure, distribution, and biological functions of PLK4, encapsulate its intricate regulatory mechanisms of expression, and highlighting its multifaceted roles in cancer development and metastasis. Moreover, the recent advancements of PLK4 inhibitors in patent or literature are summarized, and their therapeutic potential as monotherapies or combination therapies with other anticancer agents are also discussed.
Collapse
Affiliation(s)
- Qian Lei
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Quanwei Yu
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Na Yang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhaolin Xiao
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chao Song
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rui Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guizhou, Guiyang, 550002, China
| | - Shuxin Yang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhihao Liu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Hui Deng
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
6
|
Singh CK, Denu RA, Nihal M, Shabbir M, Garvey DR, Huang W, Iczkowski KA, Ahmad N. PLK4 is upregulated in prostate cancer and its inhibition reduces centrosome amplification and causes senescence. Prostate 2022; 82:957-969. [PMID: 35333404 PMCID: PMC9090996 DOI: 10.1002/pros.24342] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Identification of novel molecular target(s) is important for designing newer mechanistically driven approaches for the treatment of prostate cancer (PCa), which is one of the main causes of morbidity and mortality in men. In this study, we determined the role of polo-like kinase 4 (PLK4), which regulates centriole duplication and centrosome amplification (CA), in PCa. MATERIALS AND METHODS Employing human PCa tissue microarrays, we assessed the prevalence of CA, correlated with Gleason score, and estimated major causes of CA in PCa (cell doubling vs. centriole overduplication) by staining for mother/mature centrioles. We also assessed PLK4 expression and correlated it with CA in human PCa tissues and cell lines. Further, we determined the effects of PLK4 inhibition in human PCa cells. RESULTS Compared to benign prostate, human PCa demonstrated significantly higher CA, which was also positively correlated with the Gleason score. Further, most cases of CA were found to arise by centriole overduplication rather than cell doubling events (e.g., cytokinesis failure) in PCa. In addition, PLK4 was overexpressed in human PCa cell lines and tumors. Moreover, PLK4 inhibitors CFI-400945 and centrinone-B inhibited cell growth, viability, and colony formation of both androgen-responsive and androgen-independent PCa cell lines. PLK4 inhibition also induced cell cycle arrest and senescence in human PCa cells. CONCLUSIONS CA is prevalent in PCa and arises predominantly by centriole overduplication as opposed to cell doubling events. Loss of centrioles is cellular stress that can promote senescence and suggests that PLK4 inhibition may be a viable therapeutic strategy in PCa.
Collapse
Affiliation(s)
- Chandra K Singh
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Ryan A Denu
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medicine, Division of Hematology/Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Minakshi Nihal
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Maria Shabbir
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Debra R Garvey
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Kenneth A Iczkowski
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nihal Ahmad
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
- William S. Middleton VA Medical Center, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Hoffmann I. Role of Polo-like Kinases Plk1 and Plk4 in the Initiation of Centriole Duplication-Impact on Cancer. Cells 2022; 11:786. [PMID: 35269408 PMCID: PMC8908989 DOI: 10.3390/cells11050786] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Centrosomes nucleate and anchor microtubules and therefore play major roles in spindle formation and chromosome segregation during mitosis. Duplication of the centrosome occurs, similar to DNA, only once during the cell cycle. Aberration of the centrosome number is common in human tumors. At the core of centriole duplication is the conserved polo-like kinase 4, Plk4, and two structural proteins, STIL and Sas-6. In this review, I summarize and discuss developments in our understanding of the first steps of centriole duplication and their regulation.
Collapse
Affiliation(s)
- Ingrid Hoffmann
- F045, Cell Cycle Control and Carcinogenesis, Im Neuenheimer Feld 242, 69115 Heidelberg, Germany
| |
Collapse
|
8
|
Tian Y, Yan Y, Fu J. Nine-fold symmetry of centriole: The joint efforts of its core proteins. Bioessays 2022; 44:e2100262. [PMID: 34997615 DOI: 10.1002/bies.202100262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022]
Abstract
The centriole is a widely conserved organelle required for the assembly of centrosomes, cilia, and flagella. Its striking feature - the nine-fold symmetrical structure, was discovered over 70 years ago by transmission electron microscopy, and since elaborated mostly by cryo-electron microscopy and super-resolution microscopy. Here, we review the discoveries that led to the current understanding of how the nine-fold symmetrical structure is built. We focus on the recent findings of the centriole structure in high resolution, its assembly pathways, and its nine-fold distributed components. We propose a model that the assembly of the nine-fold symmetrical centriole depends on the concerted efforts of its core proteins.
Collapse
Affiliation(s)
- Yuan Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuxuan Yan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingyan Fu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Yang Z, Sun H, Ma W, Wu K, Peng G, Ou T, Wu S. Down-regulation of Polo-like kinase 4 (PLK4) induces G1 arrest via activation of the p38/p53/p21 signalling pathway in bladder cancer. FEBS Open Bio 2021; 11:2631-2646. [PMID: 34342940 PMCID: PMC8409300 DOI: 10.1002/2211-5463.13262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/22/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Polo-like kinase 4 (PLK4) has been reported to contribute to tumor growth, invasion, and metastasis. However, the role of PLK4 in human bladder cancer (BC) remains unclear. Here, we demonstrate the regulatory function of PLK4 in human BC progression. PLK4 is overexpressed in BC cell lines and tissues, and its overexpression correlated with poor prognosis. Our transcriptome analysis combined with subsequent functional assays indicated that PLK4 inhibition can suppress BC cell growth and induce cell cycle arrest at G1 phase via activation of the p38/p53/p21 pathway in vitro and in vivo. Overall, our data suggest that PLK4 is a critical regulator of BC cell proliferation, and thus it may have potential as a novel molecular target for BC treatment.
Collapse
Affiliation(s)
- Ziyi Yang
- Shenzhen University Health Science Center, Shenzhen, Guangdong province, China.,Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| | - Haiyan Sun
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| | - Wenlong Ma
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| | - Kai Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| | - Guoyu Peng
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| | - Tong Ou
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| | - Song Wu
- Shenzhen University Health Science Center, Shenzhen, Guangdong province, China.,Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, Guangdong province, China
| |
Collapse
|
10
|
Moghbeli M. Molecular interactions of miR-338 during tumor progression and metastasis. Cell Mol Biol Lett 2021; 26:13. [PMID: 33827418 PMCID: PMC8028791 DOI: 10.1186/s11658-021-00257-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cancer, as one of the main causes of human deaths, is currently a significant global health challenge. Since the majority of cancer-related deaths are associated with late diagnosis, it is necessary to develop minimally invasive early detection markers to manage and reduce mortality rates. MicroRNAs (miRNAs), as highly conserved non-coding RNAs, target the specific mRNAs which are involved in regulation of various fundamental cellular processes such as cell proliferation, death, and signaling pathways. MiRNAs can also be regulated by long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). They are highly stable in body fluids and have tumor-specific expression profiles, which suggest their suitability as efficient non-invasive diagnostic and prognostic tumor markers. Aberrant expression of miR-338 has been widely reported in different cancers. It regulates cell proliferation, migration, angiogenesis, and apoptosis in tumor cells. Main body In the present review, we have summarized all miR-338 interactions with other non-coding RNAs (ncRNAs) and associated signaling pathways to clarify the role of miR-338 during tumor progression. Conclusions It was concluded that miR-338 mainly functions as a tumor suppressor in different cancers. There were also significant associations between miR-338 and other ncRNAs in tumor cells. Moreover, miR-338 has a pivotal role during tumor progression using the regulation of WNT, MAPK, and PI3K/AKT signaling pathways. This review highlights miR-338 as a pivotal ncRNA in biology of tumor cells.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Zhang X, Wei C, Liang H, Han L. Polo-Like Kinase 4's Critical Role in Cancer Development and Strategies for Plk4-Targeted Therapy. Front Oncol 2021; 11:587554. [PMID: 33777739 PMCID: PMC7994899 DOI: 10.3389/fonc.2021.587554] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (Plks) are critical regulatory molecules during the cell cycle process. This family has five members: Plk1, 2, 3, 4, and 5. Plk4 has been identified as a master regulator of centriole replication, and its aberrant expression is closely associated with cancer development. In this review, we depict the DNA, mRNA, and protein structure of Plk4, and the regulation of Plk4 at a molecular level. Then we list the downstream targets of Plk4 and the hallmarks of cancer associated with these targets. The role of Plk4 in different cancers is also summarized. Finally, we review the inhibitors that target Plk4 in the hope of discovering effective anticancer drugs. From authors' perspective, Plk4 might represent a valuable tumor biomarker and critical target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
12
|
Centrosome dysfunction in human diseases. Semin Cell Dev Biol 2021; 110:113-122. [DOI: 10.1016/j.semcdb.2020.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
|
13
|
Raab CA, Raab M, Becker S, Strebhardt K. Non-mitotic functions of polo-like kinases in cancer cells. Biochim Biophys Acta Rev Cancer 2021; 1875:188467. [PMID: 33171265 DOI: 10.1016/j.bbcan.2020.188467] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Inhibitors of mitotic protein kinases are currently being developed as non-neurotoxic alternatives of microtubule-targeting agents (taxanes, vinca alkaloids) which provide a substantial survival benefit for patients afflicted with different types of solid tumors. Among the mitotic kinases, the cyclin-dependent kinases, the Aurora kinases, the kinesin spindle protein and Polo-like kinases (PLKs) have emerged as attractive targets of cancer therapeutics. The functions of mammalian PLK1-5 are traditionally linked to the regulation of the cell cycle and to the stress response. Especially the key role of PLK1 and PLK4 in cellular growth and proliferation, their overexpression in multiple types of human cancer and their druggability, make them appealing targets for cancer therapy. Inhibitors for PLK1 and PLK4 are currently being tested in multiple cancer trials. The clinical success of microtubule-targeting agents is attributed not solely to the induction of a mitotic arrest in cancer cells, but also to non-mitotic effects like targeting intracellular trafficking on microtubules. This raises the question whether new cancer targets like PLK1 and PLK4 regulate critical non-mitotic functions in tumor cells. In this article we summarize the important roles of PLK1-5 for the regulation of non-mitotic signaling. Due to these functions it is conceivable that inhibitors for PLK1 or PLK4 can target interphase cells, which underscores their attractive potential as cancer drug targets. Moreover, we also describe the contribution of the tumor-suppressors PLK2, PLK3 and PLK5 to cancer cell signaling outside of mitosis. These observations highlight the urgent need to develop highly specific ATP-competitive inhibitors for PLK4 and for PLK1 like the 3rd generation PLK-inhibitor Onvansertib to prevent the inhibition of tumor-suppressor PLKs in- and outside of mitosis. The remarkable feature of PLKs to encompass a unique druggable domain, the polo-box-domain (PBD) that can be found only in PLKs offers the opportunity for the development of inhibitors that target PLKs exclusively. Beyond the development of mono-specific ATP-competitive PLK inhibitors, the PBD as drug target will support the design of new drugs that eradicate cancer cells based on the mitotic and non-mitotic function of PLK1 and PLK4.
Collapse
Affiliation(s)
| | - Monika Raab
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Sven Becker
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, Frankfurt, Germany.
| |
Collapse
|
14
|
Meng L, Zhou Y, Ju S, Han J, Song C, Kong J, Wu Y, Lu S, Xu J, Yuan W, Zhang E, Wang C, Hu Z, Gu Y, Luo R, Wang X. A cis-eQTL genetic variant in PLK4 confers high risk of hepatocellular carcinoma. Cancer Med 2019; 8:6476-6484. [PMID: 31489978 PMCID: PMC6797585 DOI: 10.1002/cam4.2487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose The overexpression and knockdown of PLK4 were both reported to generate aneuploidy. Thus, we aimed to investigate whether genetic variants in PLK4 contribute to the development of hepatocellular carcinoma (HCC). Methods We evaluated associations of common variants in PLK4 and its promoter for the risk of HCC in our association study (1300 cases and 1344 controls). The genotype‐tissue expression (GTEx) and The cancer genome atlas (TCGA) databases were used to quantify the expression of PLK4. Cell proliferation and migration affected by PLK4 in HCC were assessed in vitro. Drug susceptibility testing (DST) model was used to assess the sensibility of PLK4‐activated HCC to CFI‐400945, a small molecule inhibitor of PLK4. Results Herein, we found a significant association between rs3811741, located in the PLK4 intron, and liver cancer risk (OR = 1.26, P = 9.81 × 10−5). Although PLK4 expressed at lower levels in somatic tissues compared to the testis, the risk allele A of rs3811741 was associated with increased PLK4 expression in liver cancer tissues. Additionally, PLK4 high expression was remarkably associated with shortened survival of HCC (HR = 1.97, P = .001). Furthermore, overexpression of PLK4 promoted, while knockdown of PLK4 suppressed cancer cell proliferation, migration, and invasion. DST model demonstrated that CFI‐400945 can effectively suppress rampant proliferation of HCC with highly expressed PLK4. Conclusion Taken together, our study demonstrated that PLK4 is a susceptibility gene and plays an oncogenic role in HCC. Furthermore, we identified that PLK4 sensitives HCC to CFI‐400945, which may be an ideal therapy target for HCC.
Collapse
Affiliation(s)
- Lijuan Meng
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yan Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Sihan Ju
- Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jing Han
- Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ci Song
- Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jing Kong
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yifei Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Shuai Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jiani Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wenwen Yuan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Erbao Zhang
- Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Bioinformatics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Rongcheng Luo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xuehao Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Liver Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Abstract
Centrosome amplification is a feature of multiple tumour types and has been postulated to contribute to both tumour initiation and tumour progression. This chapter focuses on the mechanisms by which an increase in centrosome number might lead to an increase or decrease in tumour progression and the role of proteins that regulate centrosome number in driving tumorigenesis.
Collapse
Affiliation(s)
- Arunabha Bose
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sorab N Dalal
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India.
- Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| |
Collapse
|
16
|
Czudor Z, Balogh M, Bánhegyi P, Boros S, Breza N, Dobos J, Fábián M, Horváth Z, Illyés E, Markó P, Sipos A, Szántai-Kis C, Szokol B, Őrfi L. Novel compounds with potent CDK9 inhibitory activity for the treatment of myeloma. Bioorg Med Chem Lett 2018; 28:769-773. [PMID: 29329658 DOI: 10.1016/j.bmcl.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/14/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022]
Abstract
Cyclin-dependent kinases (CDKs) and Polo-like kinases (PLKs) play key role in the regulation of the cell cycle. The aim of our study was originally the further development of our recently discovered polo-like kinase 1 (PLK1) inhibitors. A series of new 2,4-disubstituted pyrimidine derivatives were synthesized around the original hit, but their PLK1 inhibitory activity was very poor. However the novel compounds showed nanomolar CDK9 inhibitory activity and very good antiproliferative effect on multiple myeloma cell lines (RPMI-8226).
Collapse
Affiliation(s)
- Zsófia Czudor
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre u. 9, 1092 Budapest, Hungary
| | - Mária Balogh
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Péter Bánhegyi
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Sándor Boros
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Nóra Breza
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Judit Dobos
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Márk Fábián
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre u. 9, 1092 Budapest, Hungary
| | - Zoltán Horváth
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Eszter Illyés
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Péter Markó
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Anna Sipos
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Csaba Szántai-Kis
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - Bálint Szokol
- Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary
| | - László Őrfi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre u. 9, 1092 Budapest, Hungary; Vichem Chemie Research Ltd., Herman Ottó u. 15., 1022 Budapest, Hungary.
| |
Collapse
|
17
|
Polo-like kinase 4 mediates epithelial-mesenchymal transition in neuroblastoma via PI3K/Akt signaling pathway. Cell Death Dis 2018; 9:54. [PMID: 29352113 PMCID: PMC5833556 DOI: 10.1038/s41419-017-0088-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/03/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022]
Abstract
Neuroblastoma (NB) is the most common malignant tumor in infancy and most common extracranial solid tumor in childhood. With the improvement of diagnosis and treatment, the survival rate of patients with low-risk and intermediate-risk NB can reach up to 90%. In contrast, for high-risk NBs, the long-term survival rate is still <40% because of heterogeneity of this tumor. The pathogenesis of NB is still not explicit, therefore it is of great significance to explore the mechanism of NB tumorigenesis and discover new therapeutic targets for NB. Polo-like kinase 4 (PLK4), one of the polo-like kinase family members, is an important regulator of centriole replication. The aberrant expression of PLK4 was found in several cancers and a recent study has unraveled a novel function of PLK4 as a mediator of invasion and metastasis in Hela and U2OS cells. However, the function of PLK4 in NB development and progression remains to be elucidated. The study showed the expression level of PLK4 in NB tissues was remarkably upregulated and high expression of PLK4 was negatively correlated with clinical features and survival, which suggested that PLK4 could be a potential tumor-promoting factor of NB. Functional studies indicated downregulation of PLK4 suppressed migration and invasion and promoted apoptosis in NB cells. Further experiments showed that downregulation of PLK4 in NB cells inhibited EMT through the PI3K/Akt signaling pathway. Animal experiments demonstrated that the downregulation of PLK4 in SK-N-BE(2) cells dramatically suppressed tumorigenesis and metastasis. PLK4 may be a promising therapeutic target for NB.
Collapse
|
18
|
Maniswami RR, Prashanth S, Karanth AV, Koushik S, Govindaraj H, Mullangi R, Rajagopal S, Jegatheesan SK. PLK4: a link between centriole biogenesis and cancer. Expert Opin Ther Targets 2017; 22:59-73. [PMID: 29171762 DOI: 10.1080/14728222.2018.1410140] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Polo like kinase (PLK) is known to play a pivotal role in various cell cycle processes to perpetuate proper division and growth of the cells. Polo like kinase-4 (PLK4) is one such kinase that appears in low abundance and plays a well-characterized role in centriole duplication. PLK4 deregulation (i.e. both overexpression and depletion of PLK4), leads to altered mitotic fidelity and thereby triggers tumorigenesis. Hence, over the last few years PLK4 has emerged as a potential therapeutic target for the treatment of various advanced cancers. Areas covered: In this review, we discuss the basic structure, expression, localization and functions of PLK4 along with its regulation by various proteins. We also discuss the role of altered PLK4 activity in the onset of cancer and the current pre-clinical and clinical inhibitors to regulate PLK4. Expert opinion: PLK4 mediated centriole duplication has a crucial role in maintaining mitotic correctness in normal cells, while its deregulation has a greater impact on genesis of cancer. Henceforth, a deep knowledge of the PLK4 levels, its role and interactions with various proteins in cancer is required to design effective inhibitors for clinical use.
Collapse
Affiliation(s)
| | | | | | - Sindhu Koushik
- a Jubilant Biosys Ltd, Bioinformatics , Bangalore , India
| | | | | | | | | |
Collapse
|
19
|
Analysis of centrosome and DNA damage response in PLK4 associated Seckel syndrome. Eur J Hum Genet 2017; 25:1118-1125. [PMID: 28832566 DOI: 10.1038/ejhg.2017.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 05/18/2017] [Accepted: 06/27/2017] [Indexed: 11/08/2022] Open
Abstract
Microcephalic primordial dwarfism (MPD) is a group of autosomal recessive inherited single-gene disorders with intrauterine and postnatal global growth failure. Seckel syndrome is the most common form of the MPD. Ten genes are known with Seckel syndrome. Using genome-wide SNP genotyping and homozygosity mapping we mapped a Seckel syndrome gene to chromosomal region 4q28.1-q28.3 in a Turkish family. Direct sequencing of PLK4 (polo-like kinase 4) revealed a homozygous splicing acceptor site transition (c.31-3 A>G) that results in a premature translation termination (p.[=,Asp11Profs*14]) causing deletion of all known functional domains of the protein. PLK4 is a master regulator of centriole biogenesis and its deficiency has recently been associated with Seckel syndrome. However, the role of PLK4 in genomic stability and the DNA damage response is unclear. Evaluation of the PLK4-Seckel fibroblasts obtained from patient revealed the expected impaired centriole biogenesis, disrupted mitotic morphology, G2/M delay, and extended cell doubling time. Analysis of the PLK4-Seckel cells indicated that PLK4 is also essential for genomic stability and DNA damage response. These findings provide mechanistic insight into the pathogenesis of the severe growth failure associated with PLK4-deficiency.
Collapse
|
20
|
The PLK4-STIL-SAS-6 module at the core of centriole duplication. Biochem Soc Trans 2017; 44:1253-1263. [PMID: 27911707 PMCID: PMC5095913 DOI: 10.1042/bst20160116] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/09/2016] [Accepted: 06/24/2016] [Indexed: 11/17/2022]
Abstract
Centrioles are microtubule-based core components of centrosomes and cilia. They are duplicated exactly once during S-phase progression. Central to formation of each new (daughter) centriole is the formation of a nine-fold symmetrical cartwheel structure onto which microtubule triplets are deposited. In recent years, a module comprising the protein kinase polo-like kinase 4 (PLK4) and the two proteins STIL and SAS-6 have been shown to stay at the core of centriole duplication. Depletion of any one of these three proteins blocks centriole duplication and, conversely, overexpression causes centriole amplification. In this short review article, we summarize recent insights into how PLK4, STIL and SAS-6 co-operate in space and time to form a new centriole. These advances begin to shed light on the very first steps of centriole biogenesis.
Collapse
|
21
|
Lee M, Seo MY, Chang J, Hwang DS, Rhee K. PLK4 phosphorylation of CP110 is required for efficient centriole assembly. Cell Cycle 2017; 16:1225-1234. [PMID: 28562169 DOI: 10.1080/15384101.2017.1325555] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Centrioles are assembled during S phase and segregated into 2 daughter cells at the end of mitosis. The initiation of centriole assembly is regulated by polo-like kinase 4 (PLK4), the major serine/threonine kinase in centrioles. Despite its importance in centriole duplication, only a few substrates have been identified, and the detailed mechanism of PLK4 has not been fully elucidated. CP110 is a coiled-coil protein that plays roles in centriolar length control and ciliogenesis in mammals. Here, we revealed that PLK4 specifically phosphorylates CP110 at the S98 position. The phospho-resistant CP110 mutant inhibited centriole assembly, whereas the phospho-mimetic CP110 mutant induced centriole assembly, even in PLK4-limited conditions. This finding implies that PLK4 phosphorylation of CP110 is an essential step for centriole assembly. The phospho-mimetic form of CP110 augmented the centrosomal SAS6 level. Based on these results, we propose that the phosphorylated CP110 may be involved in the stabilization of cartwheel SAS6 during centriole assembly.
Collapse
Affiliation(s)
- Miseon Lee
- a Department of Biological Sciences , Seoul National University , Seoul , Korea
| | - Mi Young Seo
- a Department of Biological Sciences , Seoul National University , Seoul , Korea
| | - Jaerak Chang
- b Department of Brain Science , Ajou University School of Medicine , Suwon , Korea
| | - Deog Su Hwang
- a Department of Biological Sciences , Seoul National University , Seoul , Korea
| | - Kunsoo Rhee
- a Department of Biological Sciences , Seoul National University , Seoul , Korea
| |
Collapse
|
22
|
Miyamoto T, Minase G, Shin T, Ueda H, Okada H, Sengoku K. Human male infertility and its genetic causes. Reprod Med Biol 2017; 16:81-88. [PMID: 29259455 PMCID: PMC5661822 DOI: 10.1002/rmb2.12017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 01/11/2023] Open
Abstract
Background Infertility affects about 15% of couples who wish to have children and half of these cases are associated with male factors. Genetic causes of azoospermia include chromosomal abnormalities, Y chromosome microdeletions, and specific mutations/deletions of several Y chromosome genes. Many researchers have analyzed genes in the AZF region on the Y chromosome; however, in 2003 the SYCP3 gene on chromosome 12 (12q23) was identified as causing azoospermia by meiotic arrest through a point mutation. Methods We mainly describe the SYCP3 and PLK4 genes that we have studied in our laboratory, and add comments on other genes associated with human male infertility. Results Up to now, The 17 genes causing male infertility by their mutation have been reported in human. Conclusions Infertility caused by nonobstructive azoospermia (NOA) is very important in the field of assisted reproductive technology. Even with the aid of chromosomal analysis, ultrasonography of the testis, and detailed endocrinology, only MD‐TESE can confirm the presence of immature spermatozoa in the testes. We strongly hope that these studies help clinics avoid ineffective MD‐TESE procedures.
Collapse
Affiliation(s)
- Toshinobu Miyamoto
- Department of Obstetrics and Gynecology Asahikawa Medical University Asahikawa Japan
| | - Gaku Minase
- Department of Obstetrics and Gynecology Asahikawa Medical University Asahikawa Japan
| | - Takeshi Shin
- Department of Urology Dokkyo Medical University Koshigaya Hospital Koshigaya City Japan
| | - Hiroto Ueda
- Department of Obstetrics and Gynecology Asahikawa Medical University Asahikawa Japan
| | - Hiroshi Okada
- Department of Urology Dokkyo Medical University Koshigaya Hospital Koshigaya City Japan
| | - Kazuo Sengoku
- Department of Obstetrics and Gynecology Asahikawa Medical University Asahikawa Japan
| |
Collapse
|
23
|
Lohse I, Mason J, Cao PM, Pintilie M, Bray M, Hedley DW. Activity of the novel polo-like kinase 4 inhibitor CFI-400945 in pancreatic cancer patient-derived xenografts. Oncotarget 2017; 8:3064-3071. [PMID: 27902970 PMCID: PMC5356865 DOI: 10.18632/oncotarget.13619] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Polo-like kinase 4 (PLK4) plays a key role in centriole replication. Hence PLK4 inhibition disrupts mitosis, and offers a novel approach to treating chromosomally unstable cancers, including pancreatic cancer. CFI-400945 is a first in class small molecule PLK4 inhibitor, currently undergoing early phase clinical trials. RESULTS Treatment with CFI-400945 significantly reduced tumor growth and increased survival in four out of the six models tested. Consistent with PLK4 inhibition, we observed reduced expression of the proliferation marker Ki-67 associated with an increase in nuclear diameter during treatment with CFI-400945. Additionally, treatment with CFI-400945 resulted in a significant reduction of tumor-initiating cells. DISCUSSION These results support the further investigation of PLK4 as a drug target in pancreatic cancer. METHODS Sensitivity to CFI-400945 was tested in a series of six patient-derived pancreatic cancer xenografts, selected to represent the range of growth characteristics, genetic features, and hypoxia found in pancreatic cancer patients.
Collapse
Affiliation(s)
- Ines Lohse
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jacqueline Mason
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pinjiang Mary Cao
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Melania Pintilie
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mark Bray
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David W Hedley
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Teng YC, Shen ZQ, Kao CH, Tsai TF. Hepatocellular carcinoma mouse models: Hepatitis B virus-associated hepatocarcinogenesis and haploinsufficient tumor suppressor genes. World J Gastroenterol 2016; 22:300-325. [PMID: 26755878 PMCID: PMC4698494 DOI: 10.3748/wjg.v22.i1.300] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
The multifactorial and multistage pathogenesis of hepatocellular carcinoma (HCC) has fascinated a wide spectrum of scientists for decades. While a number of major risk factors have been identified, their mechanistic roles in hepatocarcinogenesis still need to be elucidated. Many tumor suppressor genes (TSGs) have been identified as being involved in HCC. These TSGs can be classified into two groups depending on the situation with respect to allelic mutation/loss in the tumors: the recessive TSGs with two required mutated alleles and the haploinsufficient TSGs with one required mutated allele. Hepatitis B virus (HBV) is one of the most important risk factors associated with HCC. Although mice cannot be infected with HBV due to the narrow host range of HBV and the lack of a proper receptor, one advantage of mouse models for HBV/HCC research is the numerous and powerful genetic tools that help investigate the phenotypic effects of viral proteins and allow the dissection of the dose-dependent action of TSGs. Here, we mainly focus on the application of mouse models in relation to HBV-associated HCC and on TSGs that act either in a recessive or in a haploinsufficient manner. Discoveries obtained using mouse models will have a great impact on HCC translational medicine.
Collapse
|
25
|
Liang S, Zhao MH, Guo J, Choi JW, Kim NH, Cui XS. Polo-like kinase 4 regulates spindle and actin assembly in meiosis and influence of early embryonic development in bovine oocytes. Theriogenology 2015; 85:754-61.e1. [PMID: 26549124 DOI: 10.1016/j.theriogenology.2015.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/08/2015] [Accepted: 10/11/2015] [Indexed: 01/21/2023]
Abstract
PLK4, a polo-like kinase (PLK) family member that accumulates in the cytoplasm, has been identified as a crucial regulator of centriole formation. PLK4 also controls several essential cellular functions, including cytokinesis and gene expression. In this study, we investigated the expression and function of PLK4 during bovine oocyte meiotic maturation and subsequent embryo development. The PLK4 mRNA was detected in bovine oocytes at all developmental stages during meiotic maturation. Immunofluorescence staining showed that PLK4 protein exhibited a dynamic localization pattern in the oocyte cytoplasm during meiotic maturation, and fluorescence immunostaining markedly increased in metaphase II. When an interfering double-stranded RNA targeting PLK4 was injected into germinal vesicle-stage oocytes, PLK4 transcript levels decreased significantly in metaphase II oocytes (P < 0.05). The PLK4 knockdown caused spindle defects and chromosome misalignment and considerably reduced the amount of cortical and cytoplasmic actin. PLK4 was localized in the cytoplasm of early embryos, and PLK4 knockdown in germinal vesicle-stage oocytes led to failure in the early development of in vitro fertilized embryos (P < 0.05). Taken together, these results indicated that PLK4 plays crucial roles in bovine oocyte meiotic maturation and subsequent early embryo development.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ming-Hui Zhao
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jing Guo
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jeong-woo Choi
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
26
|
Miyamoto T, Bando Y, Koh E, Tsujimura A, Miyagawa Y, Iijima M, Namiki M, Shiina M, Ogata K, Matsumoto N, Sengoku K. A PLK4 mutation causing azoospermia in a man with Sertoli cell-only syndrome. Andrology 2015; 4:75-81. [PMID: 26452337 DOI: 10.1111/andr.12113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 01/31/2023]
Abstract
About 15% of couples wishing to have children are infertile; approximately half these cases involve a male factor. Polo-like kinase 4 (PLK-4) is a member of the polo protein family and a key regulator of centriole duplication. Male mice with a point mutation in the Plk4 gene show azoospermia associated with germ cell loss. Mutational analysis of 81 patients with azoospermia and Sertoli cell-only syndrome (SCOS) identified one man with a heterozygous 13-bp deletion in the Ser/Thr kinase domain of PLK4. Division of centrioles occurred in wild-type PLK4-transfected cells, but was hampered in PLK-4-mutant transfectants, which also showed abnormal nuclei. Thus, this PLK4 mutation might be a cause of human SCOS and nonobstructive azoospermia.
Collapse
Affiliation(s)
- T Miyamoto
- Departments of Obstetrics and Gynecology, Asahikawa Medical University, Asahikawa, Japan
| | - Y Bando
- Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Japan
| | - E Koh
- Department of Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - A Tsujimura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Y Miyagawa
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - M Iijima
- Department of Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - M Namiki
- Department of Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - M Shiina
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - K Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - N Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - K Sengoku
- Departments of Obstetrics and Gynecology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
27
|
Fan G, Sun L, Shan P, Zhang X, Huan J, Zhang X, Li D, Wang T, Wei T, Zhang X, Gu X, Yao L, Xuan Y, Hou Z, Cui Y, Cao L, Li X, Zhang S, Wang C. Loss of KLF14 triggers centrosome amplification and tumorigenesis. Nat Commun 2015; 6:8450. [PMID: 26439168 PMCID: PMC4600754 DOI: 10.1038/ncomms9450] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/21/2015] [Indexed: 12/19/2022] Open
Abstract
Centrosome amplification is frequent in cancer, but the underlying mechanisms remain unclear. Here we report that disruption of the Kruppel-like factor 14 (KLF14) gene in mice causes centrosome amplification, aneuploidy and spontaneous tumorigenesis. Molecularly, KLF14 functions as a transcriptional repressor of Plk4, a polo-like kinase whose overexpression induces centrosome overduplication. Transient knockdown of KLF14 is sufficient to induce Plk4-directed centrosome amplification. Clinically, KLF14 transcription is significantly downregulated, whereas Plk4 transcription is upregulated in multiple types of cancers, and there exists an inverse correlation between KLF14 and Plk4 protein expression in human breast and colon cancers. Moreover, KLF14 depletion promotes AOM/DSS-induced colon tumorigenesis. Our findings reveal that KLF14 reduction serves as a mechanism leading to centrosome amplification and tumorigenesis. On the other hand, forced expression of KLF14 leads to mitotic catastrophe. Collectively, our findings identify KLF14 as a tumour suppressor and highlight its potential as biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Guangjian Fan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Lianhui Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Peipei Shan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Xianying Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Jinliang Huan
- Department of General Surgery, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Xiaohong Zhang
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, USA
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Tingting Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Tingting Wei
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaohong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoyang Gu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Liangfang Yao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Yang Xuan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaoyuan Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongping Cui
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Shanxi 030001, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, Shenyang 110000, China
| | - Xiaotao Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Shengping Zhang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China
| | - Chuangui Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201620, China.,Key Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, Shenyang 110000, China
| |
Collapse
|
28
|
Moyer TC, Clutario KM, Lambrus BG, Daggubati V, Holland AJ. Binding of STIL to Plk4 activates kinase activity to promote centriole assembly. J Cell Biol 2015; 209:863-78. [PMID: 26101219 PMCID: PMC4477857 DOI: 10.1083/jcb.201502088] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Binding of STIL activates Plk4, and the subsequent phosphorylation of STIL by Plk4 primes the binding of STIL to SAS6 to promote centriole assembly. Centriole duplication occurs once per cell cycle in order to maintain control of centrosome number and ensure genome integrity. Polo-like kinase 4 (Plk4) is a master regulator of centriole biogenesis, but how its activity is regulated to control centriole assembly is unclear. Here we used gene editing in human cells to create a chemical genetic system in which endogenous Plk4 can be specifically inhibited using a cell-permeable ATP analogue. Using this system, we demonstrate that STIL localization to the centriole requires continued Plk4 activity. Most importantly, we show that direct binding of STIL activates Plk4 by promoting self-phosphorylation of the activation loop of the kinase. Plk4 subsequently phosphorylates STIL to promote centriole assembly in two steps. First, Plk4 activity promotes the recruitment of STIL to the centriole. Second, Plk4 primes the direct binding of STIL to the C terminus of SAS6. Our findings uncover a molecular basis for the timing of Plk4 activation through the cell cycle–regulated accumulation of STIL.
Collapse
Affiliation(s)
- Tyler C Moyer
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kevin M Clutario
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Bramwell G Lambrus
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Vikas Daggubati
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
29
|
Rapchak CE, Patel N, Hudson J, Crawford M. Developmental role of plk4 in Xenopus laevis and Danio rerio: implications for Seckel Syndrome. Biochem Cell Biol 2015; 93:396-404. [PMID: 26150138 DOI: 10.1139/bcb-2015-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The polo-like kinases are a family of conserved serine/threonine kinases that play multiple roles in regulation of the cell cycle. Unlike its four other family members, the role of Plk4 in embryonic development has not been well characterized. In mice, Plk4(-)(/)(-) embryos arrest at E7.5, just prior to the initiation of somitogenesis. This has led to the hypothesis that Plk4 expression may be essential to somitogenesis. Recently characterized human mutations lead to Seckel Syndrome. Riboprobe in situ hybridization revealed that plk4 is ubiquitously expressed during early stages of development of Xenopus and Danio; in later stages, expression in frogs restricts to somites as well as eye, otic vesicle, and branchial arch, and brain. Expression patterns in fish remain ubiquitous. Both somite and eye development require planar cell polarity, and disruption of plk4 function in frog by means of morpholino-mediated translational knockdown yields orientational disorganization of both these structures. These results provide the first steps in defining a new role for plk4 in organogenesis and implies a role in planar cell polarity, segmentation, and in recently described PLK4 mutations in human.
Collapse
Affiliation(s)
- Candace Elaine Rapchak
- a Dept. Biological Sciences, University of Windsor, 401 Sunset Ave, Windsor Ontario N9B 3P4, Canada
| | - Neeraj Patel
- b Western Centre for Public Health and Family Medicine, The University of Western Ontario, London, ON N6A 2B7, Canada
| | - John Hudson
- a Dept. Biological Sciences, University of Windsor, 401 Sunset Ave, Windsor Ontario N9B 3P4, Canada
| | - Michael Crawford
- a Dept. Biological Sciences, University of Windsor, 401 Sunset Ave, Windsor Ontario N9B 3P4, Canada
| |
Collapse
|
30
|
Rosario CO, Kazazian K, Zih FSW, Brashavitskaya O, Haffani Y, Xu RSZ, George A, Dennis JW, Swallow CJ. A novel role for Plk4 in regulating cell spreading and motility. Oncogene 2014; 34:3441-51. [PMID: 25174401 DOI: 10.1038/onc.2014.275] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 07/01/2014] [Accepted: 07/19/2014] [Indexed: 12/18/2022]
Abstract
Polo family kinase 4 (Plk4) is required for mitotic progression, and is haploinsufficient for tumor suppression and timely hepatocyte polarization in regenerating liver. At the same time, recent evidence suggests that Plk4 expression may have a role in clinical cancer progression, although the mechanisms are not clear. Here we identify a gene expression pattern predictive of reduced motility in Plk4(+/-) murine embryonic fibroblasts (MEFs) and validate this prediction with functional assays of cell spreading, migration and invasion. Increased Plk4 expression enhances cell spreading in Plk4(+/-) MEFs and migration in human embryonic kidney 293T cells, and increases invasion by DLD-1 colon cancer cells. Plk4 depletion impairs invasion of wild-type MEFs and suppresses invasion by MDA-MB231 breast cancer cells. Cytoskeletal reorganization and development of polarity are impaired in Plk4-deficient cells that have been stimulated to migrate. Endogenous Plk4 phosphorylated at the autophosphorylation site S305 localizes to the protrusions of motile cells, coincident with the RhoA GEF Ect2, GTP-bound RhoA and the RhoA effector mDia. Taken together, our findings reveal an unexpected activity of Plk4 that promotes cell migration and may underlie an association between increased Plk4 expression, cancer progression and death from metastasis in solid tumor patients.
Collapse
Affiliation(s)
- C O Rosario
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada [2] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - K Kazazian
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada [2] Department of Surgery, University of Toronto, Toronto, ON, Canada [3] Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - F S W Zih
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada [2] Department of Surgery, University of Toronto, Toronto, ON, Canada [3] Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - O Brashavitskaya
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada [2] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Y Haffani
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - R S Z Xu
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada [2] Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - A George
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - J W Dennis
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada [2] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada [3] Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - C J Swallow
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada [2] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada [3] Department of Surgery, University of Toronto, Toronto, ON, Canada [4] Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Shimanovskaya E, Viscardi V, Lesigang J, Lettman MM, Qiao R, Svergun DI, Round A, Oegema K, Dong G. Structure of the C. elegans ZYG-1 cryptic polo box suggests a conserved mechanism for centriolar docking of Plk4 kinases. Structure 2014; 22:1090-1104. [PMID: 24980795 PMCID: PMC4126857 DOI: 10.1016/j.str.2014.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 01/10/2023]
Abstract
Plk4 family kinases control centriole assembly. Plk4s target mother centrioles through an interaction between their cryptic polo box (CPB) and acidic regions in the centriolar receptors SPD-2/Cep192 and/or Asterless/Cep152. Here, we report a crystal structure for the CPB of C. elegans ZYG-1, which forms a Z-shaped dimer containing an intermolecular β sheet with an extended basic surface patch. Biochemical and in vivo analysis revealed that electrostatic interactions dock the ZYG-1 CPB basic patch onto the SPD-2-derived acidic region to promote ZYG-1 targeting and new centriole assembly. Analysis of a different crystal form of the Drosophila Plk4 (DmPlk4) CPB suggests that it also forms a Z-shaped dimer. Comparison of the ZYG-1 and DmPlk4 CPBs revealed structural changes in the ZYG-1 CPB that confer selectivity for binding SPD-2 over Asterless-derived acidic regions. Overall, our findings suggest a conserved mechanism for centriolar docking of Plk4 homologs that initiate daughter centriole assembly.
Collapse
Affiliation(s)
| | - Valeria Viscardi
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Johannes Lesigang
- Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Molly M Lettman
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Renping Qiao
- Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | - Adam Round
- European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France; Unit for Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Karen Oegema
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Gang Dong
- Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria.
| |
Collapse
|
32
|
Craig SN, Wyatt MD, McInnes C. Current assessment of polo-like kinases as anti-tumor drug targets. Expert Opin Drug Discov 2014; 9:773-89. [PMID: 24819909 DOI: 10.1517/17460441.2014.918100] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Polo-like kinase (PLK)1 is the most studied of the PLK family and is a serine/threonine kinase that plays pivotal roles in many aspects of mitosis and hence its deregulation is prevalent in various malignant tumor types. AREAS COVERED In this review, the authors discuss the relevancy of PLK1 and other PLK members as oncology targets in light of known roles of these kinases and the observed phenotypic consequence of downregulating their activity, depending on how they are targeted. Furthermore, they also discuss the pathways mutated in cancer that have been shown to enhance sensitivity toward PLK1 inhibitors in the context of tumor types that possess these molecular defects. They also summarize preclinical and clinical investigations that have been undertaken for both ATP and non-ATP competitive inhibitors. EXPERT OPINION PLKs 2, 3 and 5 are primarily linked with tumor suppressor functions and as PLK1 is the most validated anticancer drug target, selective inhibitors for its activities are most likely to result in effective therapeutics with reduced side effects. In this regard, the polo box domain can be targeted to generate selective inhibitors of PLK1 while preventing inhibition of kinases outside of this family. Recent studies confirming the synthetic lethality of other molecular defects with PLK1 can be exploited to obtain tumor selective apoptosis in p53, KRAS and PTEN mutant cancers.
Collapse
Affiliation(s)
- Sandra N Craig
- University of South Carolina, South Carolina College of Pharmacy, Drug Discovery and Biomedical Sciences , Columbia, SC, 29208 , USA +1 803 576 5684 ;
| | | | | |
Collapse
|
33
|
Ward A, Hudson JW. p53-Dependent and cell specific epigenetic regulation of the polo-like kinases under oxidative stress. PLoS One 2014; 9:e87918. [PMID: 24498222 PMCID: PMC3909268 DOI: 10.1371/journal.pone.0087918] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/01/2014] [Indexed: 12/27/2022] Open
Abstract
The polo-like kinase (PLKs) family, consisting of five known members, are key regulators of important cell cycle processes, which include mitotic entry, centrosome duplication, spindle assembly, and cytokinesis. The PLKs have been implicated in a variety of cancers, such as hepatocellular carcinoma (HCC), with PLK1 typically overexpressed and PLKs 2-5 often downregulated. Altered expression of the PLKs in malignancy is often correlated with aberrant promoter methylation. Epigenetic marks are dynamic and can be modified in response to external environmental stimuli. The aim of our study was to determine if oxidative stress, a common feature of solid tumours, would induce changes to the promoter methylation of the PLKs resulting in changes in expression. We examined the promoter methylation status via MSP and subsequent expression levels of the PLK family members under exposure to hypoxic conditions or reactive oxygen species (ROS). Interestingly, murine embryonic fibroblasts exposed to hypoxia and ROS displayed significant hypermethylation of Plk1 and Plk4 promoter regions post treatment. Corresponding proteins were also depleted by 40% after treatment. We also examined the HCC-derived cell lines HepG2 and Hep3B and found that for PLK1 and PLK4, the increase in hypermethylation was correlated with the presence of functional p53. In p53 wild-type cells, HepG2, both PLK1 and PLK4 were repressed with treatment, while in the p53 null cell line, Hep3B, PLK4 protein was elevated in the presence of hypoxia and ROS. This was also the case for ROS-treated, p53 null, osteosarcoma cells, Saos-2, where the PLK4 promoter became hypomethylated and protein levels were elevated. Our data supports a model in which the PLKs are susceptible to epigenetic changes induced by microenvironmental cues and these modifications may be p53-dependent. This has important implications in HCC and other cancers, where epigenetic alterations of the PLKs could contribute to tumourigenesis and disease progression.
Collapse
Affiliation(s)
- Alejandra Ward
- Department of Biology, University of Windsor, Windsor, Ontario, Canada
| | - John W. Hudson
- Department of Biology, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
34
|
Wang G, Jiang Q, Zhang C. The role of mitotic kinases in coupling the centrosome cycle with the assembly of the mitotic spindle. J Cell Sci 2014; 127:4111-22. [DOI: 10.1242/jcs.151753] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The centrosome acts as the major microtubule-organizing center (MTOC) for cytoskeleton maintenance in interphase and mitotic spindle assembly in vertebrate cells. It duplicates only once per cell cycle in a highly spatiotemporally regulated manner. When the cell undergoes mitosis, the duplicated centrosomes separate to define spindle poles and monitor the assembly of the bipolar mitotic spindle for accurate chromosome separation and the maintenance of genomic stability. However, centrosome abnormalities occur frequently and often lead to monopolar or multipolar spindle formation, which results in chromosome instability and possibly tumorigenesis. A number of studies have begun to dissect the role of mitotic kinases, including NIMA-related kinases (Neks), cyclin-dependent kinases (CDKs), Polo-like kinases (Plks) and Aurora kinases, in regulating centrosome duplication, separation and maturation and subsequent mitotic spindle assembly during cell cycle progression. In this Commentary, we review the recent research progress on how these mitotic kinases are coordinated to couple the centrosome cycle with the cell cycle, thus ensuring bipolar mitotic spindle fidelity. Understanding this process will help to delineate the relationship between centrosomal abnormalities and spindle defects.
Collapse
|
35
|
Nakamura T, Saito H, Takekawa M. SAPK pathways and p53 cooperatively regulate PLK4 activity and centrosome integrity under stress. Nat Commun 2013; 4:1775. [PMID: 23653187 DOI: 10.1038/ncomms2752] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/15/2013] [Indexed: 01/19/2023] Open
Abstract
Polo-like kinase 4 is essential for centrosome duplication, but its hyperactivation causes supernumerary centrosomes. Here we report that polo-like kinase 4 is directly phosphorylated and activated by stress-activated protein kinase kinase kinases (SAPKKKs). Stress-induced polo-like kinase 4 activation promotes centrosome duplication, whereas stress-induced SAPK activation prevents centrosome duplication. In the early phase of stress response, the balance of these opposing signals prevents centrosome overduplication. However, in the late phase of stress response, p53 downregulates polo-like kinase 4 expression, thereby preventing sustained polo-like kinase 4 activity and centrosome amplification. If both p53 and the SAPKK MKK4 are simultaneously inactivated, as is frequently found in cancer cells, persistent polo-like kinase 4 activity combined with the lack of SAPK-mediated inhibition of centrosome duplication conspire to induce supernumerary centrosomes under stress. Indeed, tumour-derived MKK4 mutants induced centrosome amplification under genotoxic stress, but only in p53-negative cells. Thus, our results reveal a mechanism that preserves the numeral integrity of centrosomes, and an unexplored tumour-suppressive function of MKK4.
Collapse
Affiliation(s)
- Takanori Nakamura
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
36
|
Ledoux AC, Sellier H, Gillies K, Iannetti A, James J, Perkins ND. NFκB regulates expression of Polo-like kinase 4. Cell Cycle 2013; 12:3052-62. [PMID: 23974100 PMCID: PMC3875679 DOI: 10.4161/cc.26086] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/07/2013] [Accepted: 08/07/2013] [Indexed: 01/21/2023] Open
Abstract
Activation of the NFκB signaling pathway allows the cell to respond to infection and stress and can affect many cellular processes. As a consequence, NFκB activity must be integrated with a wide variety of parallel signaling pathways. One mechanism through which NFκB can exert widespread effects is through controlling the expression of key regulatory kinases. Here we report that NFκB regulates the expression of genes required for centrosome duplication, and that Polo-like kinase 4 (PLK4) is a direct NFκB target gene. RNA interference, chromatin immunoprecipitation, and analysis of the PLK4 promoter in a luciferase reporter assay revealed that all NFκB subunits participate in its regulation. Moreover, we demonstrate that NFκB regulation of PLK4 expression is seen in multiple cell types. Significantly long-term deletion of the NFκB2 (p100/p52) subunit leads to defects in centrosome structure. This data reveals a new component of cell cycle regulation by NFκB and suggests a mechanism through which deregulated NFκB activity in cancer can lead to increased genomic instability and uncontrolled proliferation.
Collapse
Affiliation(s)
- Adeline C Ledoux
- Institute for Cell and Molecular Biosciences; Faculty of Medical Sciences; Newcastle University; Newcastle Upon Tyne, UK
| | - Hélène Sellier
- Institute for Cell and Molecular Biosciences; Faculty of Medical Sciences; Newcastle University; Newcastle Upon Tyne, UK
| | | | - Alessio Iannetti
- Institute for Cell and Molecular Biosciences; Faculty of Medical Sciences; Newcastle University; Newcastle Upon Tyne, UK
| | - John James
- College of Life Sciences; University of Dundee; Dundee, UK
| | - Neil D Perkins
- Institute for Cell and Molecular Biosciences; Faculty of Medical Sciences; Newcastle University; Newcastle Upon Tyne, UK
| |
Collapse
|
37
|
Abstract
Polo-like kinases (PLKs) are marked by C-terminal polo box modules with critical protein interaction and subcellular targeting roles. Slevin et al. in this issue of Structure reveal the architecture of a hidden set of polo boxes from the divergent PLK4, a critical player in centrosome duplication, shedding new light on the evolution of PLKs and their functionally related kinase ZYG-1.
Collapse
|
38
|
Slevin LK, Nye J, Pinkerton DC, Buster DW, Rogers GC, Slep KC. The structure of the plk4 cryptic polo box reveals two tandem polo boxes required for centriole duplication. Structure 2012; 20:1905-17. [PMID: 23000383 DOI: 10.1016/j.str.2012.08.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/26/2012] [Accepted: 08/28/2012] [Indexed: 11/19/2022]
Abstract
Centrioles are key microtubule polarity determinants. Centriole duplication is tightly controlled to prevent cells from developing multipolar spindles, a situation that promotes chromosomal instability. A conserved component in the duplication pathway is Plk4, a polo kinase family member that localizes to centrioles in M/G1. To limit centriole duplication, Plk4 levels are controlled through trans-autophosphorylation that primes ubiquitination. In contrast to Plks 1-3, Plk4 possesses a unique central region called the "cryptic polo box." Here, we present the crystal structure of this region at 2.3 Å resolution. Surprisingly, the structure reveals two tandem homodimerized polo boxes, PB1-PB2, that form a unique winged architecture. The full PB1-PB2 cassette is required for binding the centriolar protein Asterless as well as robust centriole targeting. Thus, with its C-terminal polo box (PB3), Plk4 has a triple polo box architecture that facilitates oligomerization, targeting, and promotes trans-autophosphorylation, limiting centriole duplication to once per cell cycle.
Collapse
Affiliation(s)
- Lauren K Slevin
- Department of Biology, CB 3280, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Mitosis is tightly regulated and any errors in this process often lead to aneuploidy, genomic instability, and tumorigenesis. Deregulation of mitotic kinases is significantly associated with improper cell division and aneuploidy. Because of their importance during mitosis and the relevance to cancer, mitotic kinase signaling has been extensively studied over the past few decades and, as a result, several mitotic kinase inhibitors have been developed. Despite promising preclinical results, targeting mitotic kinases for cancer therapy faces numerous challenges, including safety and patient selection issues. Therefore, there is an urgent need to better understand the molecular mechanisms underlying mitotic kinase signaling and its interactive network. Increasing evidence suggests that tumor suppressor p53 functions at the center of the mitotic kinase signaling network. In response to mitotic spindle damage, multiple mitotic kinases phosphorylate p53 to either activate or deactivate p53-mediated signaling. p53 can also regulate the expression and function of mitotic kinases, suggesting the existence of a network of mutual regulation, which can be positive or negative, between mitotic kinases and p53 signaling. Therefore, deciphering this regulatory network will provide knowledge to overcome current limitations of targeting mitotic kinases and further improve the results of targeted therapy.
Collapse
|
40
|
Long T, Vanderstraete M, Cailliau K, Morel M, Lescuyer A, Gouignard N, Grevelding CG, Browaeys E, Dissous C. SmSak, the second Polo-like kinase of the helminth parasite Schistosoma mansoni: conserved and unexpected roles in meiosis. PLoS One 2012; 7:e40045. [PMID: 22768216 PMCID: PMC3386946 DOI: 10.1371/journal.pone.0040045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/31/2012] [Indexed: 11/18/2022] Open
Abstract
Polo-like kinases (Plks) are a family of conserved regulators of a variety of events throughout the cell cycle, expanded from one Plk in yeast to five Plks in mammals (Plk1-5). Plk1 is the best characterized member of the Plk family, homolog to the founding member Polo of Drosophila, and plays a major role in cell cycle progression by triggering G2/M transition. Plk4/Sak (for Snk (Serum-inducible kinase) akin kinase) is a unique member of the family, structurally distinct from other Plk members, with essential functions in centriole duplication. The genome of the trematode parasite Schistosoma mansoni contains only two Plk genes encoding SmPlk1 and SmSak. SmPlk1 has been shown already to be required for gametogenesis and parasite reproduction. In this work, in situ hybridization indicated that the structurally conserved Plk4 protein, SmSak, was largely expressed in schistosome female ovary and vitellarium. Expression of SmSak in Xenopus oocytes confirmed its Plk4 conserved function in centriole amplification. Moreover, analysis of the function of SmSak in meiosis progression of G2-blocked Xenopus oocytes indicated that, in contrast to SmPlk1, SmSak cannot induce G2/M transition in the absence of endogenous Plk1 (Plx1). Unexpectedly, meiosis progression was spontaneously observed in Plx1-depleted oocytes co-expressing SmSak and SmPlk1. Molecular interaction between SmSak and SmPlk1 was confirmed by co-immunoprecipitation of both proteins. These data indicate that Plk1 and Plk4 proteins have the potential to interact and cross-activate in cells, thus attributing for the first time a potential role of Plk4 proteins in meiosis/mitosis entry. This unexpected role of SmSak in meiosis could be relevant to further consider the function of this novel Plk in schistosome reproduction.
Collapse
Affiliation(s)
- Thavy Long
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Mathieu Vanderstraete
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Katia Cailliau
- EA 4479, IFR 147, Universite Lille 1 Sciences et Technologies, Villeneuve d’Ascq, France
| | - Marion Morel
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Arlette Lescuyer
- EA 4479, IFR 147, Universite Lille 1 Sciences et Technologies, Villeneuve d’Ascq, France
| | - Nadege Gouignard
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | | | - Edith Browaeys
- EA 4479, IFR 147, Universite Lille 1 Sciences et Technologies, Villeneuve d’Ascq, France
| | - Colette Dissous
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
41
|
de Cárcer G, Manning G, Malumbres M. From Plk1 to Plk5: functional evolution of polo-like kinases. Cell Cycle 2011; 10:2255-62. [PMID: 21654194 PMCID: PMC3230524 DOI: 10.4161/cc.10.14.16494] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 05/16/2011] [Indexed: 12/19/2022] Open
Abstract
Mammalian polo-like kinases (Plks) are characterized by the presence of an N-terminal protein kinase domain and a C-terminal polo-box domain (PBD) involved in substrate binding and regulation of kinase activity. Plk1-4 have traditionally been linked to cell cycle progression, genotoxic stress and, more recently, neuron biology. Recently, a fifth mammalian Plk family member, Plk5, has been characterized in murine and human cells. Plk5 is expressed mainly in differentiated tissues such as the cerebellum. Despite apparent loss of catalytic activity and a stop codon in the middle of the human gene, Plk5 proteins retain important functions in neuron biology. Notably, its expression is silenced by epigenetic alterations in brain tumors, such as glioblastomas, and its re-expression prevents cell proliferation of these tumor cells. In this review, we will focus on the non-cell cycle roles of Plks, the biology of the new member of the family and the possible kinase- and PBD-independent functions of polo-like kinases.
Collapse
Affiliation(s)
- Guillermo de Cárcer
- Cell Division and Cancer Group; Spanish National Cancer Research Centre (CNIO); Madrid, Spain
| | - Gerard Manning
- Razavi Newman Center for Bioinformatics; Salk Institute; La Jolla, California USA
| | - Marcos Malumbres
- Cell Division and Cancer Group; Spanish National Cancer Research Centre (CNIO); Madrid, Spain
| |
Collapse
|
42
|
Lukasiewicz KB, Greenwood TM, Negron VC, Bruzek AK, Salisbury JL, Lingle WL. Control of centrin stability by Aurora A. PLoS One 2011; 6:e21291. [PMID: 21731694 PMCID: PMC3121746 DOI: 10.1371/journal.pone.0021291] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 05/28/2011] [Indexed: 01/06/2023] Open
Abstract
Aurora A is an oncogenic serine/threonine kinase which can cause cell transformation and centrosome amplification when over-expressed. Human breast tumors show excess Aurora A and phospho-centrin in amplified centrosomes. Here, we show that Aurora A mediates the phosphorylation of and localizes with centrin at the centrosome, with both proteins reaching maximum abundance from prophase through metaphase, followed by their precipitous loss in late stages of mitosis. Over-expression of Aurora A results in excess phospho-centrin and centrosome amplification. In contrast, centrosome amplification is not seen in cells over-expressing Aurora A in the presence of a recombinant centrin mutant lacking the serine phosphorylation site at residue 170. Expression of a kinase dead Aurora A results in a decrease in mitotic index and abrogation of centrin phosphorylation. Finally, a recombinant centrin mutation that mimics centrin phosphorylation increases centrin's stability against APC/C-mediated proteasomal degradation. Taken together, these results suggest that the stability of centrin is regulated in part by Aurora A, and that excess phosphorylated centrin may promote centrosome amplification in cancer.
Collapse
Affiliation(s)
- Kara B. Lukasiewicz
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tammy M. Greenwood
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Vivian C. Negron
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Amy K. Bruzek
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jeffrey L. Salisbury
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (WLL); (JLS)
| | - Wilma L. Lingle
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (WLL); (JLS)
| |
Collapse
|
43
|
Bahassi EM. Polo-like kinases and DNA damage checkpoint: beyond the traditional mitotic functions. Exp Biol Med (Maywood) 2011; 236:648-57. [PMID: 21558091 DOI: 10.1258/ebm.2011.011011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Polo-like kinases (Plks) are a family of serine-threonine kinases that play a pivotal role in cell cycle progression and in cellular response to DNA damage. The Plks are highly conserved from yeast to mammals. There are five Plk family members (Plk1-5) in humans, of which Plk1, is the best characterized. The Plk1 isoform is being aggressively pursued as a target for cancer therapy, following observations that this protein is overexpressed in human tumors and is actively involved in malignant transformation. The roles of Plks in mitotic entry, spindle pole functions and cytokinesis are well established and have been the subject of several recent reviews. In this review, we discuss functions of Plks other than their classical roles in mitotic progression. When cells incur DNA damage, they activate checkpoint mechanisms that result in cell cycle arrest and allow time for repair. If the damage is extensive and cannot be repaired, cells will undergo cell death by apoptosis. If the damage is repaired, cells can resume cycling, as part of the process known as checkpoint recovery. If the damage is not repaired or incompletely repaired, cells can override the checkpoint and resume cycling with damaged DNA, a process called checkpoint adaptation. The Plks play a role in all three outcomes and their involvement in these processes will be the subject of this review.
Collapse
Affiliation(s)
- El Mustapha Bahassi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0562, USA.
| |
Collapse
|
44
|
Eckerdt F, Yamamoto TM, Lewellyn AL, Maller JL. Identification of a polo-like kinase 4-dependent pathway for de novo centriole formation. Curr Biol 2011; 21:428-32. [PMID: 21353560 PMCID: PMC3093158 DOI: 10.1016/j.cub.2011.01.072] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/30/2010] [Accepted: 01/28/2011] [Indexed: 12/26/2022]
Abstract
Supernumerary centrosomes are a key cause of genomic instability in cancer cells. New centrioles can be generated by duplication with a mother centriole as a platform or, in the absence of preexisting centrioles, by formation de novo. Polo-like kinase 4 (Plk4) regulates both modes of centriole biogenesis, and Plk4 deregulation has been linked to tumor development. We show that Plx4, the Xenopus homolog of mammalian Plk4 and Drosophila Sak, induces de novo centriole formation in vivo in activated oocytes and in egg extracts, but not in immature or in vitro matured oocytes. Both kinase activity and the polo-box domain of Plx4 are required for de novo centriole biogenesis. Polarization microscopy in "cycling" egg extracts demonstrates that de novo centriole formation is independent of Cdk2 activity, a major difference compared to template-driven centrosome duplication that is linked to the nuclear cycle and requires cyclinA/E/Cdk2. Moreover, we show that the Mos-MAPK pathway blocks Plx4-dependent de novo centriole formation before fertilization, thereby ensuring paternal inheritance of the centrosome. The results define a new system for studying the biochemical and molecular basis of de novo centriole formation and centriole biogenesis in general.
Collapse
Affiliation(s)
- Frank Eckerdt
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Tomomi M. Yamamoto
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Andrea L. Lewellyn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - James L. Maller
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
45
|
Aberrant methylation of Polo-like kinase CpG islands in Plk4 heterozygous mice. BMC Cancer 2011; 11:71. [PMID: 21324136 PMCID: PMC3047422 DOI: 10.1186/1471-2407-11-71] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 02/15/2011] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC), one of the most common cancers world-wide occurs twice as often in men compared to women. Predisposing conditions such as alcoholism, chronic viral hepatitis, aflatoxin B1 ingestion, and cirrhosis all contribute to the development of HCC. Methods We used a combination of methylation specific PCR and bisulfite sequencing, qReal-Time PCR (qPCR), and Western blot analysis to examine epigenetic changes for the Polo-like kinases (Plks) during the development of hepatocellular carcinoma (HCC) in Plk4 heterozygous mice and murine embryonic fibroblasts (MEFs). Results Here we report that the promoter methylation of Plk4 CpG islands increases with age, was more prevalent in males and that Plk4 epigenetic modification and subsequent downregulation of expression was associated with the development of HCC in Plk4 mutant mice. Interestingly, the opposite occurs with another Plk family member, Plk1 which was typically hypermethylated in normal liver tissue but became hypomethylated and upregulated in liver tumours. Furthermore, upon alcohol exposure murine embryonic fibroblasts exhibited increased Plk4 hypermethylation and downregulation along with increased centrosome numbers and multinucleation. Conclusions These results suggest that aberrant Plk methylation is correlated with the development of HCC in mice.
Collapse
|
46
|
Abstract
Polo-like kinase 4 (PLK4) is a unique member of the Polo-like family of kinases that shares little homology with its siblings and has an essential role in centriole duplication. The turn-over of this kinase must be strictly controlled to prevent centriole amplification. This is achieved, in part, by an autoregulatory mechanism, whereby PLK4 autophosphorylates residues in a PEST sequence located carboxy-terminal to its catalytic domain. Phosphorylated PLK4 is subsequently recognized by the SCF complex, ubiquitinylated and targeted to the proteasome for degradation. Recent data have also shown that active PLK4 is restricted to the centrosome, a mechanism that could serve to prevent aberrant centriole assembly elsewhere in the cell. While significant advances have been made in understanding how PLK4 is regulated it is certain that additional regulatory mechanisms exist to safeguard the fidelity of centriole duplication. Here, we overview past and present data discussing the regulation and functions of PLK4.
Collapse
|
47
|
Pearson CG, Winey M. Plk4/SAK/ZYG-1 in the regulation of centriole duplication. F1000 BIOLOGY REPORTS 2010; 2:58. [PMID: 21173875 PMCID: PMC2990628 DOI: 10.3410/b2-58] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Centrioles organize both centrosomes and cilia. Centriole duplication is tightly regulated and coordinated with the cell cycle to limit duplication to only once per cell cycle. Defects in centriole number and structure are commonly found in cancer. Plk4/SAK and the functionally related Caenorhabditis elegans ZYG-1 kinases initiate centriole duplication. Several recent studies have elucidated the regulated activity of these kinases and potential downstream targets for centriole assembly.
Collapse
Affiliation(s)
- Chad G Pearson
- University of Colorado, Molecular, Cellular and Developmental BiologyPorter Biosciences #416, CB0347, Boulder, CO 80309-0347USA
| | - Mark Winey
- University of Colorado, Molecular, Cellular and Developmental BiologyPorter Biosciences #416, CB0347, Boulder, CO 80309-0347USA
| |
Collapse
|
48
|
Rodríguez-Jiménez FJ, Moreno-Manzano V, Mateos-Gregorio P, Royo I, Erceg S, Murguia JR, Sánchez-Puelles JM. FM19G11: A new modulator of HIF that links mTOR activation with the DNA damage checkpoint pathways. Cell Cycle 2010; 9:2803-13. [PMID: 20676050 DOI: 10.4161/cc.9.14.12184] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The network consisting of mTOR and p53 pathways is crucial to understanding a wide variety of physiological and pathological events, including cancer and aging. In addition, the HIF1alpha protein, a downstream target of mTOR, is a hallmark of different tumor types and was the desired strategy of many drug discovery efforts. Here we present the novel chemical entity FM19G11, a new modulator of HIF1alpha expression, which was used as a molecular tool to dissect and further characterize the cross-talk between these signaling cascades in human colon carcinoma cell lines. To our knowledge, FM19G11 is the first drug that triggers a DNA damage response (DDR) associated with G(1)/S-phase arrest in a p53-dependent manner, due to rapid hyper-activation of the growth signaling pathway through mTOR. Assessment of colonies demonstrated that FM19G11 decreases the clonogenicity of HT29, HCT116/p53(+/+) and HCT116/p53(-/-) cells. Moreover, FM19G11 causes significant lower colony growth in soft agar of p53-proficient human colon cancer cells. Consequently, p53 sensitizes human colon cancer cells to FM19G11 by significant reduction of their viability, lessening their colony formation capability and shrinking their anchorage-independent growth. Cell signaling studies served to assign a new mode of action to FM19G11, whose tumor-suppressant activity compromises the survival of functional p53 malignant cells.
Collapse
|
49
|
Carvalho-Santos Z, Machado P, Branco P, Tavares-Cadete F, Rodrigues-Martins A, Pereira-Leal JB, Bettencourt-Dias M. Stepwise evolution of the centriole-assembly pathway. J Cell Sci 2010; 123:1414-26. [PMID: 20392737 DOI: 10.1242/jcs.064931] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The centriole and basal body (CBB) structure nucleates cilia and flagella, and is an essential component of the centrosome, underlying eukaryotic microtubule-based motility, cell division and polarity. In recent years, components of the CBB-assembly machinery have been identified, but little is known about their regulation and evolution. Given the diversity of cellular contexts encountered in eukaryotes, but the remarkable conservation of CBB morphology, we asked whether general mechanistic principles could explain CBB assembly. We analysed the distribution of each component of the human CBB-assembly machinery across eukaryotes as a strategy to generate testable hypotheses. We found an evolutionarily cohesive and ancestral module, which we term UNIMOD and is defined by three components (SAS6, SAS4/CPAP and BLD10/CEP135), that correlates with the occurrence of CBBs. Unexpectedly, other players (SAK/PLK4, SPD2/CEP192 and CP110) emerged in a taxon-specific manner. We report that gene duplication plays an important role in the evolution of CBB components and show that, in the case of BLD10/CEP135, this is a source of tissue specificity in CBB and flagella biogenesis. Moreover, we observe extreme protein divergence amongst CBB components and show experimentally that there is loss of cross-species complementation among SAK/PLK4 family members, suggesting species-specific adaptations in CBB assembly. We propose that the UNIMOD theory explains the conservation of CBB architecture and that taxon- and tissue-specific molecular innovations, gained through emergence, duplication and divergence, play important roles in coordinating CBB biogenesis and function in different cellular contexts.
Collapse
Affiliation(s)
- Zita Carvalho-Santos
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780-156 Oeiras, Portugal
| | | | | | | | | | | | | |
Collapse
|
50
|
Pellegrino R, Calvisi DF, Ladu S, Ehemann V, Staniscia T, Evert M, Dombrowski F, Schirmacher P, Longerich T. Oncogenic and tumor suppressive roles of polo-like kinases in human hepatocellular carcinoma. Hepatology 2010; 51:857-68. [PMID: 20112253 DOI: 10.1002/hep.23467] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Polo-like kinase (PLK) proteins play critical roles in the control of cell cycle progression, either favoring or inhibiting cell proliferation, and in DNA damage response. Although either overexpression or down-regulation of PLK proteins occurs frequently in various cancer types, no comprehensive analysis on their function in human hepatocellular carcinoma (HCC) has been performed to date. In the present study, we define roles for PLK1, PLK2, PLK3, and PLK4 during hepatocarcinogenesis. Levels of PLK1, as assessed by means of real-time reverse-transcription PCR and western blot analysis, were progressively increased from nonneoplastic surrounding liver tissues to HCC, reaching the highest expression in tumors with poorer outcome (as defined by the length of patients' survival) compared with normal livers. In sharp contrast, PLK2, PLK3, and PLK4 messenger RNA and protein expression gradually declined from nontumorous liver to HCC, with the lowest levels being detected in HCC with shorter survival. In liver tumors, PLK2-4 down-regulation was paralleled by promoter hypermethylation and/or loss of heterozygosity at the PLK2-4 loci. Subsequent functional studies revealed that PLK1 inhibition led to suppression of cell growth in vitro, whereas opposite effects followed PLK2-4 silencing in HCC cell lines. In particular, suppression of PLK1 resulted in a block in the G2/M phase of the cell cycle and in massive apoptosis of HCC cells in vitro regardless of p53 status. CONCLUSION PLK1-4 proteins are aberrantly regulated and possess different roles in human HCC, with PLK1 acting as an oncogene and PLK2-4 being presumably tumor suppressor genes. Thus, therapeutic approaches aimed at inactivating PLK1 and/or reactivating PLK2-4 might be highly useful in the treatment of human liver cancer.
Collapse
|