1
|
Przanowska RK, Chen Y, Uchida TO, Shibata E, Hao X, Rueda IS, Jensen K, Przanowski P, Trimboli A, Shibata Y, Leone G, Dutta A. DNA replication in primary hepatocytes without the six-subunit ORC. eLife 2025; 13:RP102915. [PMID: 40304571 PMCID: PMC12043314 DOI: 10.7554/elife.102915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
The six-subunit ORC is essential for the initiation of DNA replication in eukaryotes. Cancer cell lines in culture can survive and replicate DNA replication after genetic inactivation of individual ORC subunits, ORC1, ORC2, or ORC5. In primary cells, ORC1 was dispensable in the mouse liver for endo-reduplication, but this could be explained by the ORC1 homolog, CDC6, substituting for ORC1 to restore functional ORC. Here, we have created mice with a conditional deletion of ORC2, which does not have a homolog. Although mouse embryo fibroblasts require ORC2 for proliferation, mouse hepatocytes synthesize DNA in cell culture and endo-reduplicate in vivo without ORC2. Mouse livers endo-reduplicate after simultaneous deletion of ORC1 and ORC2 both during normal development and after partial hepatectomy. Since endo-reduplication initiates DNA synthesis like normal S phase replication these results unequivocally indicate that primary cells, like cancer cell lines, can load MCM2-7 and initiate replication without ORC.
Collapse
Affiliation(s)
- Róża K Przanowska
- Dept. of Biochemistry and Molecular Genetics, University of VirginiaCharlottesvilleUnited States
| | - Yuechuan Chen
- Dept. of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | | | - Etsuko Shibata
- Dept. of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Xiaoxiao Hao
- Dept. of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Isaac Segura Rueda
- Dept. of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Kate Jensen
- Dept. of Biochemistry and Molecular Genetics, University of VirginiaCharlottesvilleUnited States
| | - Piotr Przanowski
- Dept. of Biochemistry and Molecular Genetics, University of VirginiaCharlottesvilleUnited States
| | - Anthony Trimboli
- Cancer Center, University of Wisconsin in MilwaukeeMilwaukeeUnited States
| | - Yoshiyuki Shibata
- Dept. of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Gustavo Leone
- Cancer Center, University of Wisconsin in MilwaukeeMilwaukeeUnited States
| | - Anindya Dutta
- Dept. of Biochemistry and Molecular Genetics, University of VirginiaCharlottesvilleUnited States
- Dept. of Genetics, University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
2
|
Przanowska RK, Chen Y, Uchida TO, Shibata E, Hao X, Rueda IS, Jensen K, Przanowski P, Trimboli A, Shibata Y, Leone G, Dutta A. DNA replication in primary hepatocytes without the six-subunit ORC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.04.588006. [PMID: 38617300 PMCID: PMC11014565 DOI: 10.1101/2024.04.04.588006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The six subunit ORC is essential for initiation of DNA replication in eukaryotes. Cancer cell-lines in culture can survive and replicate DNA replication after genetic inactivation of individual ORC subunits, ORC1, ORC2 or ORC5. In primary cells, ORC1 was dispensable in the mouse liver for endo-reduplication, but this could be explained by the ORC1 homolog, CDC6, substituting for ORC1 to restore functional ORC. Here, we have created mice with a conditional deletion of ORC2, which does not have a homolog. Although mouse embryo fibroblasts require ORC2 for proliferation, mouse hepatocytes synthesize DNA in cell culture and endo-reduplicate in vivo without ORC2. Mouse livers endo-reduplicate after simultaneous deletion of ORC1 and ORC2 both during normal development and after partial hepatectomy. Since endo-reduplication initiates DNA synthesis like normal S phase replication these results unequivocally indicate that primary cells, like cancer cell lines, can load MCM2-7 and initiate replication without ORC.
Collapse
|
3
|
Gao H, Yuan X, Wang J, Yan Y, Zhang X, He T, Lin X, Zhang H, Liu Z. Knockdown of Fzr inhibited the growth of Nilaparvata lugens by blocking endocycle. PEST MANAGEMENT SCIENCE 2025; 81:36-43. [PMID: 39229824 DOI: 10.1002/ps.8403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND The endocycle can generate cells referred to as 'polyploid'. Fizzy-related protein (Fzr) plays an important role in driving the mitosis-to-endocycle transition. The brown planthopper (BPH), Nilaparvata lugens (Stål), a serious insect pest, feeds exclusively on rice. However, polyploidy and its regulatory mechanisms are poorly understood in BPH. RESULTS Here, we found that the ploidy levels of follicles H (FH) and accessory gland (AG) significantly increased with BPH age when examining the polyploidy of FH and AG of salivary glands. Fzr was identified as an important regulator for polyploidy in BPH salivary gland. Knockdown of Fzr resulted in a decrease in cell size and DNA content in nymph salivary glands. Fzr knockdown transcriptionally upregulated cyclin-dependent kinase 1 (CDK1), CDK2, cyclin A (CycA) and CycB, and downregulated CycD, CycE, Myc and mini-chromosome maintenance protein 2-7 (MCM2-7). Phenotypically, Fzr knockdown significantly suppressed salivary protein production, feeding and survival in BPH nymphs. CONCLUSION Our results show that BPH salivary glands exhibit obvious polyploidy, and Fzr positively regulates the endocycle in nymph salivary gland. These findings provide clues for the study of the regulatory mechanisms of insect polyploidy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haoli Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaowei Yuan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jingting Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yangyang Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Tianshun He
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, China
| | - Xumin Lin
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huihui Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Guo S, An HM, Tian Z, Liu W, Wang XP. Downregulation of the DNA replication pathway genes stimulate reproductive diapause preparation in the cabbage beetle, Colaphellus bowringi. Int J Biol Macromol 2025; 286:138464. [PMID: 39645116 DOI: 10.1016/j.ijbiomac.2024.138464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Diapause is a prevalent strategy employed by insects to survive adverse environmental conditions, by halting development and reducing metabolic activity. Although the suppression of DNA replication aligns logically with these reduced developmental and physiological activities, the role of DNA replication in regulating insect diapause remains largely unknown. In this study, we used the cabbage beetle, Colaphellus bowringi, to investigate the role of DNA replication pathway in regulating reproductive diapause. Transcriptome analysis identified DNA replication as a key pathway during diapause preparation in female adults. Fourteen DNA replication genes were isolated, encompassing essential stages of DNA replication, including DNA unwinding, primer synthesis, and DNA synthesis. These genes exhibited consistently reduced expression in diapause females compared to those in reproductive females. RNA interference knockdown of these genes in reproductive female adults resulted in 11 out of 14 gene depletions, manifesting typical diapause traits such as suppressed vitellogenesis, arrested ovary growth, and increased lipid accumulation. Furthermore, we demonstrated 20-hydroxyecdysone (20E), through canonical signaling pathway, regulates the differential expression of DNA replication genes between reproductive and diapause states. Our findings suggest 20E deficiency suppresses DNA replication to induce reproductive diapause, and highlighting the DNA replication process as a potential target for pest management.
Collapse
Affiliation(s)
- Shuang Guo
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao-Min An
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Zhong Tian
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wen Liu
- Department of Biological Sciences, University of Alberta, G-504, Biological Sciences Bldg., Edmonton, Alberta T6G 2E9, Canada
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Yang Q, Wijaya F, Kapoor R, Chandrasekaran H, Jagtiani S, Moran I, Hime GR. Unusual modes of cell and nuclear divisions characterise Drosophila development. Biochem Soc Trans 2024; 52:2281-2295. [PMID: 39508395 PMCID: PMC11668308 DOI: 10.1042/bst20231341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
The growth and development of metazoan organisms is dependent upon a co-ordinated programme of cellular proliferation and differentiation, from the initial formation of the zygote through to maintenance of mature organs in adult organisms. Early studies of proliferation of ex vivo cultures and unicellular eukaryotes described a cyclic nature of cell division characterised by periods of DNA synthesis (S-phase) and segregation of newly synthesized chromosomes (M-phase) interspersed by seeming inactivity, the gap phases, G1 and G2. We now know that G1 and G2 play critical roles in regulating the cell cycle, including monitoring of favourable environmental conditions to facilitate cell division, and ensuring genomic integrity prior to DNA replication and nuclear division. M-phase is usually followed by the physical separation of nascent daughters, termed cytokinesis. These phases where G1 leads to S phase, followed by G2 prior to M phase and the subsequent cytokinesis to produce two daughters, both identical in genomic composition and cellular morphology are what might be termed an archetypal cell division. Studies of development of many different organs in different species have demonstrated that this stereotypical cell cycle is often subverted to produce specific developmental outcomes, and examples from over 100 years of analysis of the development of Drosophila melanogaster have uncovered many different modes of cell division within this one species.
Collapse
Affiliation(s)
- Qiaolin Yang
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Fernando Wijaya
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ridam Kapoor
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Harshaa Chandrasekaran
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Siddhant Jagtiani
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Izaac Moran
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gary R. Hime
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
6
|
Li D, Jin T, Liu J, Lu C, Yang X, Zhang H, Bi L, Yan Y, Zhang L, Sang Y, Jin B, Bi X. Long noncoding RNA DREAMer bridges the DREAM complex and E2f1 to regulate endoreplication in Drosophila. SCIENCE ADVANCES 2024; 10:eadr4936. [PMID: 39514671 PMCID: PMC11546848 DOI: 10.1126/sciadv.adr4936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Rb/E2f and DREAM complexes play vital roles in regulating cell cycle progression. To date, how they coordinate their functions to regulate cell cycle-dependent gene expression is not clear. Here, we identified a long noncoding RNA (lncRNA), which we named DREAMer, that bridges the interaction between E2f1 and the dREAM complex to regulate endoreplication specifically in Drosophila salivary gland. We show that E2f1 directly stimulates DREAMer expression, whereas DREAMer mediates the repression of e2f1 transcription by modulating the recruitment of the dREAM complex to the e2f1 promoter via a direct interaction with the dREAM component E2f2. The depletion of DREAMer impairs dREAM binding, leading to derepression of e2f1 transcription, which ultimately increases E2f1 activity and promotes the endoreplication. Furthermore, the transcriptomic analysis revealed profound changes in cell cycle-related gene expression in DREAMerKO salivary glands. Together, our findings reveal an lncRNA-mediated link between the dREAM complex and E2f1, which regulates endoreplication during development.
Collapse
Affiliation(s)
- Dong Li
- School of Medicine, Nantong University, Nantong 226001, China
| | - Tianyu Jin
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jun Liu
- School of Medicine, Nantong University, Nantong 226001, China
| | - Chunlin Lu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xianmei Yang
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Haiyan Zhang
- School of Medicine, Nantong University, Nantong 226001, China
| | - Limin Bi
- School of Medicine, Nantong University, Nantong 226001, China
| | - Yuhang Yan
- School of Medicine, Nantong University, Nantong 226001, China
| | - Lijiao Zhang
- School of Medicine, Nantong University, Nantong 226001, China
| | - Yan Sang
- Computer Technology Centre, Affiliated Hospital of Nantong University, School of Medicine, Nantong 226001, China
| | - Bilian Jin
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Xiaolin Bi
- School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
7
|
Méndez-López TT, Carrero JC, Lanz-Mendoza H, Ochoa-Zarzosa A, Mukherjee K, Contreras-Garduño J. Metabolism and immune memory in invertebrates: are they dissociated? Front Immunol 2024; 15:1379471. [PMID: 39055712 PMCID: PMC11269087 DOI: 10.3389/fimmu.2024.1379471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Since the discovery of specific immune memory in invertebrates, researchers have investigated its immune response to diverse microbial and environmental stimuli. Nevertheless, the extent of the immune system's interaction with metabolism, remains relatively enigmatic. In this mini review, we propose a comprehensive investigation into the intricate interplay between metabolism and specific immune memory. Our hypothesis is that cellular endocycles and epigenetic modifications play pivotal roles in shaping this relationship. Furthermore, we underscore the importance of the crosstalk between metabolism and specific immune memory for understanding the evolutionary costs. By evaluating these costs, we can gain deeper insights into the adaptive strategies employed by invertebrates in response to pathogenic challenges. Lastly, we outline future research directions aimed at unraveling the crosstalk between metabolism and specific immune memory. These avenues of inquiry promise to illuminate fundamental principles governing host-pathogen interactions and evolutionary trade-offs, thus advancing our understanding of invertebrate immunology.
Collapse
Affiliation(s)
- Texca T. Méndez-López
- Posgrado en Ciencias Biológicas, Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Julio César Carrero
- Departmento de Immunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Humberto Lanz-Mendoza
- Instituto Nacional de Salud Pública, Departamento de Enfermedades Infecciosas, Cuernavaca, Mexico
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Krishnendu Mukherjee
- Institute of Hygiene, University Hospital Müenster, University of Münster, Münster, Germany
| | - Jorge Contreras-Garduño
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Escuela Nacional de Estudios Superiores, unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Mexico
| |
Collapse
|
8
|
Nguyen YDH, Pham TLA, Nishihara T, Kamei K, Tran DB. Depletion of lipid storage droplet-1 delays endoreplication progression and induces cell death in Drosophila salivary gland. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22132. [PMID: 38993002 DOI: 10.1002/arch.22132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/15/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
Perilipins are evolutionarily conserved from insects to mammals. Drosophila lipid storage droplet-1 (LSD-1) is a lipid storage droplet membrane surface-binding protein family member and a counterpart to mammalian perilipin 1 and is known to play a role in lipolysis. However, the function of LSD-1 during specific tissue development remains under investigation. This study demonstrated the role of LSD-1 in salivary gland development. Knockdown of Lsd-1 in the salivary gland was established using the GAL4/UAS system. The third-instar larvae of knockdown flies had small salivary glands containing cells with smaller nuclei. The null mutant Drosophila also showed the same phenotype. The depletion of LSD-1 expression induced a delay of endoreplication due to decreasing CycE expression and increasing DNA damage. Lsd-1 genetically interacted with Myc in the third-instar larvae. These results demonstrate that LSD-1 is involved in cell cycle and cell death programs in the salivary gland, providing novel insight into the effects of LSD-1 in regulating salivary gland development and the interaction between LSD-1 and Myc.
Collapse
Affiliation(s)
- Yen D H Nguyen
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, Japan
| | - Tuan L A Pham
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, Japan
| | - Taisei Nishihara
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, Japan
| | - Kaeko Kamei
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, Japan
| | - Duy Binh Tran
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
9
|
Donati M, Kazakov DV. Beyond typical histology of BAP1-inactivated melanocytoma. Pathol Res Pract 2024; 259:155162. [PMID: 38326181 DOI: 10.1016/j.prp.2024.155162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
BAP1-inactivated melanocytoma (BIM) is a novel subgroup of melanocytic neoplasm listed in the 5th edition of WHO classification of skin tumor. BIM is characterized by two molecular alterations, including a mitogenic driver mutation (usually BRAF gene) and the loss of function of BAP1, a tumor suppressor gene located on chromosome 3p21, which encodes for BRCA1-associated protein (BAP1). The latter represents a nuclear-localized deubiquitinase involved in several cellular processes including cell cycle regulation, chromatin remodeling, DNA damage response, differentiation, senescence and cell death. BIMs are histologically characterized by a population of large epithelioid melanocytes with well-demarcated cytoplasmic borders and copious eosinophilic cytoplasm, demonstrating loss of BAP1 nuclear expression by immunohistochemistry. Recently, we have published a series of 50 cases, extending the morphological spectrum of the neoplasm and highlighting some new microscopic features. In the current article, we focus on some new histological features, attempting to explain and link them to certain mechanisms of tumor development, including senescence, endoreplication, endocycling, asymmetric cytokinesis, entosis and others. In light of the morphological and molecular findings observed in BIM, we postulated that this entity unmasks a fine mechanism of tumor in which both clonal/stochastic and hierarchical model can be unified.
Collapse
Affiliation(s)
- Michele Donati
- Department of Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Department of Pathology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy.
| | - Dmitry V Kazakov
- IDP Dermatohistopathologie Institut, Pathologie Institut Enge, Zurich, Switzerland
| |
Collapse
|
10
|
Ito N, Sakamoto T, Oko Y, Sato H, Hanamata S, Sakamoto Y, Matsunaga S. Nuclear pore complex proteins are involved in centromere distribution. iScience 2024; 27:108855. [PMID: 38318384 PMCID: PMC10839643 DOI: 10.1016/j.isci.2024.108855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/28/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
The subnuclear distribution of centromeres is cooperatively regulated by condensin II and the linker of nucleoskeleton and cytoskeleton (LINC) complex. However, other nuclear membrane structures and nuclear proteins are probably involved in centromere dynamics and distribution. Here, we focused on the nuclear pore complex (NPC), which is known to regulate gene expression, transcription memory, and chromatin structure in addition to transport between the cytoplasm and nucleoplasm. We report here that some nucleoporins (Nups), including Nup85, Nup133, CG1, Nup93b, and NUA, are involved in centromere scattering in Arabidopsis thaliana. In addition, the centromere dynamics after metaphase in nup mutants were found to be similar to that of the condensin II mutant. Furthermore, both biochemical and genetic approaches showed that the Nups interact with the LINC complex. These results suggest that Nups regulate centromere scattering cooperatively with condensin II and the LINC complex.
Collapse
Affiliation(s)
- Nanami Ito
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Takuya Sakamoto
- Department of Science, Faculty of Science, Kanagawa University, Yokohama, Kanagawa 221-8686, Japan
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuka Oko
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Shigeru Hanamata
- Department of Science, Faculty of Science, Kanagawa University, Yokohama, Kanagawa 221-8686, Japan
| | - Yuki Sakamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sachihiro Matsunaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
11
|
Zhou XL, Wei Y, Chen P, Yang X, Lu C, Pan MH. A novel transcription factor, BmZFP67, regulates endomitosis switch by controlling the expression of cyclin B in silk glands. Int J Biol Macromol 2023:124931. [PMID: 37263320 DOI: 10.1016/j.ijbiomac.2023.124931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 06/03/2023]
Abstract
Endomitosis is involved in developmental processes associated with an increase in metabolic cell activity, which is characterized by repeated rounds of DNA replication without cytokinesis. Endomitosis cells are widespread in protozoa, plants, animals and humans. Endomitosis cell cycle is currently viewed as a variation of the canonical cell cycle and transformed from mitotic cell cycle. However, the meaningful question about how endomitosis transformed from mitosis is still unclear. Herein, we identified a novel transcription factor in silk glands, ZFP67, which is gradually reduced in silk glands during the transition of mitosis to endomitosis. In addition, over-expressed ZFP67 in silk glands led to the transition delayed. And, knock-out of ZFP67 led to abnormal chromatin division and unsuccessful cell division. These data reveled that ZFP67 played an important role in transition of mitosis to endomitosis. Furthermore, ZFP67 can regulate the transcription of cyclin B, a key cyclin related to cell division and G2/M phase, which is demonstrated by chromatin immunoprecipitation and dual luciferase reporter system in this article. In conclusion, it can be speculated that the decreasing expression of ZFP67 in silk glands during the transition stage of mitosis-to-endomitosis resulted in the lack of cyclin B, which further led to unsuccessful cytokinesis and then promoted the transition from mitosis to endomitosis of silk gland cells.
Collapse
Affiliation(s)
- Xiao-Lin Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yi Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Xi Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| |
Collapse
|
12
|
Molano-Fernández M, Hickson ID, Herranz H. Cyclin E overexpression in the Drosophila accessory gland induces tissue dysplasia. Front Cell Dev Biol 2023; 10:992253. [PMID: 36704199 PMCID: PMC9871066 DOI: 10.3389/fcell.2022.992253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
The regulation of the cell division cycle is governed by a complex network of factors that together ensure that growing or proliferating cells maintain a stable genome. Defects in this system can lead to genomic instability that can affect tissue homeostasis and thus compromise human health. Variations in ploidy and cell heterogeneity are observed frequently in human cancers. Here, we examine the consequences of upregulating the cell cycle regulator Cyclin E in the Drosophila melanogaster male accessory gland. The accessory gland is the functional analog of the human prostate. This organ is composed of a postmitotic epithelium that is emerging as a powerful in vivo system for modelling different aspects of tumor initiation and progression. We show that Cyclin E upregulation in this model is sufficient to drive tissue dysplasia. Cyclin E overexpression drives endoreplication and affects DNA integrity, which results in heterogeneous nuclear and cellular composition and variable degrees of DNA damage. We present evidence showing that, despite the presence of genotoxic stress, those cells are resistant to apoptosis and thus defective cells are not eliminated from the tissue. We also show that Cyclin E-expressing cells in the accessory gland display mitochondrial DNA aggregates that colocalize with Cyclin E protein. Together, the findings presented here show that Cyclin E upregulation in postmitotic cells of the accessory gland organ causes cellular defects such as genomic instability and mitochondrial defects, eventually leading to tissue dysplasia. This study highlights novel mechanisms by which Cyclin E might contribute to disease initiation and progression.
Collapse
Affiliation(s)
- Maria Molano-Fernández
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ian D. Hickson
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark,Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark,*Correspondence: Héctor Herranz,
| |
Collapse
|
13
|
Ohhara Y, Kato Y, Kamiyama T, Yamakawa-Kobayashi K. Su(var)2-10- and Su(var)205-dependent upregulation of the heterochromatic gene neverland is required for developmental transition in Drosophila. Genetics 2022; 222:iyac137. [PMID: 36149288 PMCID: PMC9630985 DOI: 10.1093/genetics/iyac137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/29/2022] [Indexed: 11/14/2022] Open
Abstract
Animals develop from juveniles to sexually mature adults through the action of steroid hormones. In insect metamorphosis, a surge of the steroid hormone ecdysone prompts the transition from the larval to the adult stage. Ecdysone is synthesized by a series of biosynthetic enzymes that are specifically expressed in an endocrine organ, the prothoracic gland. At the late larval stage, the expression levels of ecdysone biosynthetic enzymes are upregulated through the action of numerous transcription factors, thus initiating metamorphosis. In contrast, the mechanism by which chromatin regulators support the expression of ecdysone biosynthetic genes is largely unknown. Here, we demonstrate that Su(var)2-10 and Su(var)205, suppressor of variegation [Su(var)] genes encoding a chromatin regulator Su(var)2-10 and nonhistone heterochromatic protein 1a, respectively, regulate the transcription of one of the heterochromatic ecdysone biosynthetic genes, neverland, in Drosophila melanogaster. Knockdown of Su(var)2-10 and Su(var)205 in the prothoracic gland caused a decrease in neverland expression, resulting in a defect in larval-to-prepupal transition. Furthermore, overexpression of neverland and administration of 7-dehydrocholesterol, a biosynthetic precursor of ecdysone produced by Neverland, rescued developmental defects in Su(var)2-10 and Su(var)205 knockdown animals. These results indicate that Su(var)2-10- and Su(var)205-mediated proper expression of neverland is required for the initiation of metamorphosis. Given that Su(var)2-10-positive puncta are juxtaposed with the pericentromeric heterochromatic region, we propose that Su(var)2-10- and Su(var)205-dependent regulation of inherent heterochromatin structure at the neverland gene locus is essential for its transcriptional activation.
Collapse
Affiliation(s)
- Yuya Ohhara
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| | - Yuki Kato
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| | - Takumi Kamiyama
- College of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
14
|
de Oliveira PN, da Silva LFC, Eloy NB. The role of APC/C in cell cycle dynamics, growth and development in cereal crops. FRONTIERS IN PLANT SCIENCE 2022; 13:987919. [PMID: 36247602 PMCID: PMC9558237 DOI: 10.3389/fpls.2022.987919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Cereal crops can be considered the basis of human civilization. Thus, it is not surprising that these crops are grown in larger quantities worldwide than any other food supply and provide more energy to humankind than any other provision. Additionally, attempts to harness biomass consumption continue to increase to meet human energy needs. The high pressures for energy will determine the demand for crop plants as resources for biofuel, heat, and electricity. Thus, the search for plant traits associated with genetic increases in yield is mandatory. In multicellular organisms, including plants, growth and development are driven by cell division. These processes require a sequence of intricated events that are carried out by various protein complexes and molecules that act punctually throughout the cycle. Temporal controlled degradation of key cell division proteins ensures a correct onset of the different cell cycle phases and exit from the cell division program. Considering the cell cycle, the Anaphase-Promoting Complex/Cyclosome (APC/C) is an important conserved multi-subunit ubiquitin ligase, marking targets for degradation by the 26S proteasome. Studies on plant APC/C subunits and activators, mainly in the model plant Arabidopsis, revealed that they play a pivotal role in several developmental processes during growth. However, little is known about the role of APC/C in cereal crops. Here, we discuss the current understanding of the APC/C controlling cereal crop development.
Collapse
|
15
|
Diegmiller R, Nunley H, Shvartsman SY, Imran Alsous J. Quantitative models for building and growing fated small cell networks. Interface Focus 2022; 12:20210082. [PMID: 35865502 PMCID: PMC9184967 DOI: 10.1098/rsfs.2021.0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Small cell clusters exhibit numerous phenomena typically associated with complex systems, such as division of labour and programmed cell death. A conserved class of such clusters occurs during oogenesis in the form of germline cysts that give rise to oocytes. Germline cysts form through cell divisions with incomplete cytokinesis, leaving cells intimately connected through intercellular bridges that facilitate cyst generation, cell fate determination and collective growth dynamics. Using the well-characterized Drosophila melanogaster female germline cyst as a foundation, we present mathematical models rooted in the dynamics of cell cycle proteins and their interactions to explain the generation of germline cell lineage trees (CLTs) and highlight the diversity of observed CLT sizes and topologies across species. We analyse competing models of symmetry breaking in CLTs to rationalize the observed dynamics and robustness of oocyte fate specification, and highlight remaining gaps in knowledge. We also explore how CLT topology affects cell cycle dynamics and synchronization and highlight mechanisms of intercellular coupling that underlie the observed collective growth patterns during oogenesis. Throughout, we point to similarities across organisms that warrant further investigation and comment on the extent to which experimental and theoretical findings made in model systems extend to other species.
Collapse
Affiliation(s)
- Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Hayden Nunley
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Stanislav Y. Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | | |
Collapse
|
16
|
Dysfunction of lipid storage droplet-2 suppresses endoreplication and induces JNK pathway-mediated apoptotic cell death in Drosophila salivary glands. Sci Rep 2022; 12:4302. [PMID: 35277579 PMCID: PMC8917166 DOI: 10.1038/s41598-022-08299-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
The lipid storage droplet-2 (LSD-2) protein of Drosophila is a homolog of mammalian perilipin 2, which is essential for promoting lipid accumulation and lipid droplet formation. The function of LSD-2 as a regulator of lipolysis has also been demonstrated. However, other LSD-2 functions remain unclear. To investigate the role of LSD-2, we performed tissue-specific depletion in the salivary glands of Drosophila using a combination of the Gal4-upstream activating sequence system and RNA interference. LSD-2 depletion inhibited the entry of salivary gland cells into the endoreplication cycle and delayed this process by enhancing CycE expression, disrupting the development of this organ. The deficiency of LSD-2 expression enhanced reactive oxygen species production in the salivary gland and promoted JNK-dependent apoptosis by suppressing dMyc expression. This phenomenon did not result from lipolysis. Therefore, LSD-2 is vital for endoreplication cell cycle and cell death programs.
Collapse
|
17
|
Zangarelli C, Arnaiz O, Bourge M, Gorrichon K, Jaszczyszyn Y, Mathy N, Escoriza L, Bétermier M, Régnier V. Developmental timing of programmed DNA elimination in Paramecium tetraurelia recapitulates germline transposon evolutionary dynamics. Genome Res 2022; 32:2028-2042. [PMID: 36418061 PMCID: PMC9808624 DOI: 10.1101/gr.277027.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
With its nuclear dualism, the ciliate Paramecium constitutes a unique model to study how host genomes cope with transposable elements (TEs). P. tetraurelia harbors two germline micronuclei (MICs) and a polyploid somatic macronucleus (MAC) that develops from one MIC at each sexual cycle. Throughout evolution, the MIC genome has been continuously colonized by TEs and related sequences that are removed from the somatic genome during MAC development. Whereas TE elimination is generally imprecise, excision of approximately 45,000 TE-derived internal eliminated sequences (IESs) is precise, allowing for functional gene assembly. Programmed DNA elimination is concomitant with genome amplification. It is guided by noncoding RNAs and repressive chromatin marks. A subset of IESs is excised independently of this epigenetic control, raising the question of how IESs are targeted for elimination. To gain insight into the determinants of IES excision, we established the developmental timing of DNA elimination genome-wide by combining fluorescence-assisted nuclear sorting with high-throughput sequencing. Essentially all IESs are excised within only one endoreplication round (32C to 64C), whereas TEs are eliminated at a later stage. We show that DNA elimination proceeds independently of replication. We defined four IES classes according to excision timing. The earliest excised IESs tend to be independent of epigenetic factors, display strong sequence signals at their ends, and originate from the most ancient integration events. We conclude that old IESs have been optimized during evolution for early and accurate excision by acquiring stronger sequence determinants and escaping epigenetic control.
Collapse
Affiliation(s)
- Coralie Zangarelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Mickaël Bourge
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Kevin Gorrichon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Nathalie Mathy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Loïc Escoriza
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Mireille Bétermier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Vinciane Régnier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France;,Université Paris Cité, UFR Sciences du Vivant, 75205 Paris Cedex 13, France
| |
Collapse
|
18
|
Soffers JHM, Alcantara SGM, Li X, Shao W, Seidel CW, Li H, Zeitlinger J, Abmayr SM, Workman JL. The SAGA core module is critical during Drosophila oogenesis and is broadly recruited to promoters. PLoS Genet 2021; 17:e1009668. [PMID: 34807910 PMCID: PMC8648115 DOI: 10.1371/journal.pgen.1009668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/06/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022] Open
Abstract
The Spt/Ada-Gcn5 Acetyltransferase (SAGA) coactivator complex has multiple modules with different enzymatic and non-enzymatic functions. How each module contributes to gene expression is not well understood. During Drosophila oogenesis, the enzymatic functions are not equally required, which may indicate that different genes require different enzymatic functions. An analogy for this phenomenon is the handyman principle: while a handyman has many tools, which tool he uses depends on what requires maintenance. Here we analyzed the role of the non-enzymatic core module during Drosophila oogenesis, which interacts with TBP. We show that depletion of SAGA-specific core subunits blocked egg chamber development at earlier stages than depletion of enzymatic subunits. These results, as well as additional genetic analyses, point to an interaction with TBP and suggest a differential role of SAGA modules at different promoter types. However, SAGA subunits co-occupied all promoter types of active genes in ChIP-seq and ChIP-nexus experiments, and the complex was not specifically associated with distinct promoter types in the ovary. The high-resolution genomic binding profiles were congruent with SAGA recruitment by activators upstream of the start site, and retention on chromatin by interactions with modified histones downstream of the start site. Our data illustrate that a distinct genetic requirement for specific components may conceal the fact that the entire complex is physically present and suggests that the biological context defines which module functions are critical. Embryonic development critically relies on the differential expression of genes in different tissues. This involves the dynamic interplay between DNA, sequence-specific transcription factors, coactivators and chromatin remodelers, which guide the transcription machinery to the appropriate promoters for productive transcription. To understand how this happens at the molecular level, we need to understand when and how coactivator complexes such as SAGA function. SAGA consists of multiple modules with well characterized enzymatic functions. This study shows that the non-enzymatic core module of SAGA is required for Drosophila oogenesis, while the enzymatic functions are largely dispensable. Despite this differential requirement, SAGA subunits appear to be broadly recruited to all promoter types, consistent with the biochemical integrity of the complex. These results suggest that genetic requirements for different modules depend on the developmental demands.
Collapse
Affiliation(s)
- Jelly H. M. Soffers
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sergio G-M Alcantara
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Xuanying Li
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Wanqing Shao
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Christopher W. Seidel
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Susan M. Abmayr
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Jerry L. Workman
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
19
|
Das S, Caballero M, Kolesnikova T, Zhimulev I, Koren A, Nordman J. Replication timing analysis in polyploid cells reveals Rif1 uses multiple mechanisms to promote underreplication in Drosophila. Genetics 2021; 219:6369517. [PMID: 34740250 PMCID: PMC8570783 DOI: 10.1093/genetics/iyab147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022] Open
Abstract
Regulation of DNA replication and copy number is necessary to promote genome stability and maintain cell and tissue function. DNA replication is regulated temporally in a process known as replication timing (RT). Rap1-interacting factor 1 (Rif1) is a key regulator of RT and has a critical function in copy number control in polyploid cells. Previously, we demonstrated that Rif1 functions with SUUR to inhibit replication fork progression and promote underreplication (UR) of specific genomic regions. How Rif1-dependent control of RT factors into its ability to promote UR is unknown. By applying a computational approach to measure RT in Drosophila polyploid cells, we show that SUUR and Rif1 have differential roles in controlling UR and RT. Our findings reveal that Rif1 acts to promote late replication, which is necessary for SUUR-dependent underreplication. Our work provides new insight into the process of UR and its links to RT.
Collapse
Affiliation(s)
- Souradip Das
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Madison Caballero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tatyana Kolesnikova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.,Laboratory of Structural, Functional and Comparative Genomics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Igor Zhimulev
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.,Laboratory of Structural, Functional and Comparative Genomics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jared Nordman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
20
|
Double peroxidase and histone acetyltransferase AgTip60 maintain innate immune memory in primed mosquitoes. Proc Natl Acad Sci U S A 2021; 118:2114242118. [PMID: 34711682 DOI: 10.1073/pnas.2114242118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022] Open
Abstract
Immune priming in Anopheles gambiae is mediated by the systemic release of a hemocyte differentiation factor (HDF), a complex of lipoxin A4 bound to Evokin, a lipid carrier. HDF increases the proportion of circulating granulocytes and enhances mosquito cellular immunity. Here, we show that Evokin is present in hemocytes and fat-body cells, and messenger RNA (mRNA) expression increases significantly after immune priming. The double peroxidase (DBLOX) enzyme, present in insects but not in vertebrates, is essential for HDF synthesis. DBLOX is highly expressed in oenocytes in the fat-body tissue, and these cells increase in number in primed mosquitoes. We provide direct evidence that the histone acetyltransferase AgTip60 (AGAP001539) is also essential for a sustained increase in oenocyte numbers, HDF synthesis, and immune priming. We propose that oenocytes may function as a population of cells that are reprogrammed, and orchestrate and maintain a broad, systemic, and long-lasting state of enhanced immune surveillance in primed mosquitoes.
Collapse
|
21
|
Jang S, Lee J, Mathews J, Ruess H, Williford AO, Rangan P, Betrán E, Buszczak M. The Drosophila ribosome protein S5 paralog RpS5b promotes germ cell and follicle cell differentiation during oogenesis. Development 2021; 148:272089. [PMID: 34495316 DOI: 10.1242/dev.199511] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/01/2021] [Indexed: 01/15/2023]
Abstract
Emerging evidence suggests that ribosome heterogeneity may have important functional consequences in the translation of specific mRNAs within different cell types and under various conditions. Ribosome heterogeneity comes in many forms, including post-translational modification of ribosome proteins (RPs), absence of specific RPs and inclusion of different RP paralogs. The Drosophila genome encodes two RpS5 paralogs: RpS5a and RpS5b. While RpS5a is ubiquitously expressed, RpS5b exhibits enriched expression in the reproductive system. Deletion of RpS5b results in female sterility marked by developmental arrest of egg chambers at stages 7-8, disruption of vitellogenesis and posterior follicle cell (PFC) hyperplasia. While transgenic rescue experiments suggest functional redundancy between RpS5a and RpS5b, molecular, biochemical and ribo-seq experiments indicate that RpS5b mutants display increased rRNA transcription and RP production, accompanied by increased protein synthesis. Loss of RpS5b results in microtubule-based defects and in mislocalization of Delta and Mindbomb1, leading to failure of Notch pathway activation in PFCs. Together, our results indicate that germ cell-specific expression of RpS5b promotes proper egg chamber development by ensuring the homeostasis of functional ribosomes.
Collapse
Affiliation(s)
- Seoyeon Jang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeon Lee
- Lydia Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeremy Mathews
- Lydia Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Holly Ruess
- Lydia Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anna O Williford
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Prashanth Rangan
- RNA Institute, Department of Biological Sciences, University at Albany, SUNY, Albany, NY 12222, USA
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
22
|
Almeida Machado Costa C, Wang XF, Ellsworth C, Deng WM. Polyploidy in development and tumor models in Drosophila. Semin Cancer Biol 2021; 81:106-118. [PMID: 34562587 DOI: 10.1016/j.semcancer.2021.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
Polyploidy, a cell status defined as more than two sets of genomic DNA, is a conserved strategy across species that can increase cell size and biosynthetic production, but the functional aspects of polyploidy are nuanced and vary across cell types. Throughout Drosophila developmental stages (embryo, larva, pupa and adult), polyploid cells are present in numerous organs and help orchestrate development while contributing to normal growth, well-being and homeostasis of the organism. Conversely, increasing evidence has shown that polyploid cells are prevalent in Drosophila tumors and play important roles in tumor growth and invasiveness. Here, we summarize the genes and pathways involved in polyploidy during normal and tumorigenic development, the mechanisms underlying polyploidization, and the functional aspects of polyploidy in development, homeostasis and tumorigenesis in the Drosophila model.
Collapse
Affiliation(s)
- Caique Almeida Machado Costa
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Calder Ellsworth
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States.
| |
Collapse
|
23
|
Kim M, Delos Santos K, Moon NS. Proper CycE-Cdk2 activity in endocycling tissues requires regulation of the cyclin-dependent kinase inhibitor Dacapo by dE2F1b in Drosophila. Genetics 2021; 217:1-15. [PMID: 33683365 DOI: 10.1093/genetics/iyaa029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/06/2020] [Indexed: 01/05/2023] Open
Abstract
Polyploidy is an integral part of development and is associated with cellular stress, aging, and pathological conditions. The endocycle, comprised of successive rounds of G and S phases without mitosis, is widely employed to produce polyploid cells in plants and animals. In Drosophila, maintenance of the endocycle is dependent on E2F-governed oscillations of Cyclin E (CycE)-Cdk2 activity, which is known to be largely regulated at the level of transcription. In this study, we report an additional level of E2F-dependent control of CycE-Cdk2 activity during the endocycle. Genetic experiments revealed that an alternative isoform of Drosophila de2f1, dE2F1b, regulates the expression of the p27CIP/KIP-like Cdk inhibitor Dacapo (Dap). We provide evidence showing that dE2F1b-dependent Dap expression in endocycling tissues is necessary for setting proper CycE-Cdk2 activity. Furthermore, we demonstrate that dE2F1b is required for proliferating cell nuclear antigen expression that establishes a negative feedback loop in S phase. Overall, our study reveals previously unappreciated E2F-dependent regulatory networks that are critical for the periodic transition between G and S phases during the endocycle.
Collapse
Affiliation(s)
- Minhee Kim
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec H3A 1B1 Canada
| | - Keemo Delos Santos
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec H3A 1B1 Canada
| | - Nam-Sung Moon
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec H3A 1B1 Canada
| |
Collapse
|
24
|
Janssen R, Budd GE. Oscillating waves of Fox, Cyclin and CDK gene expression indicate unique spatiotemporal control of cell cycling during nervous system development in onychophorans. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 62:101042. [PMID: 33752095 DOI: 10.1016/j.asd.2021.101042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Forkhead box (Fox) genes code for a class of transcription factors with many different fundamental functions in animal development including cell cycle control. Other important factors of cell cycle control are Cyclins and Cyclin-dependent kinases (CDKs). Here we report on the oscillating expression of three Fox genes, FoxM, FoxN14 (jumeaux) and FoxN23 (Checkpoint suppressor like-1), Cyclins and CDKs in an onychophoran, a representative of a relatively small group of animals that are closely related to the arthropods. Expression of these genes is in the form of several waves that start as dot-like domains in the center of each segment and then transform into concentric rings that run towards the periphery of the segments. This oscillating gene expression, however, occurs exclusively along the anterior-posterior body axis in the tissue ventral to the base of the appendages, a region where the central nervous system and the enigmatic ventral and preventral organs of the onychophoran develop. We suggest that the oscillating gene expression and the resulting waves of expression we report are likely correlated with cell cycle control during the development of the onychophoran nervous system. This intriguing patterning appears to be unique for onychophorans as it is not found in any of the arthropods we also investigated in this study, and is likely correlated with the slow embryonic development of onychophorans compared to arthropods.
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden.
| | - Graham E Budd
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| |
Collapse
|
25
|
Burbridge K, Holcombe J, Weavers H. Metabolically active and polyploid renal tissues rely on graded cytoprotection to drive developmental and homeostatic stress resilience. Development 2021; 148:dev197343. [PMID: 33913484 PMCID: PMC8214761 DOI: 10.1242/dev.197343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/29/2021] [Indexed: 12/26/2022]
Abstract
Body tissues are frequently exposed to stress, from toxic byproducts generated during cellular metabolism through to infection or wounding. Although it is well-established that tissues respond to exogenous injury by rapidly upregulating cytoprotective machinery, how energetically demanding tissues - vulnerable to persistent endogenous insult - withstand stress is poorly understood. Here, we show that the cytoprotective factors Nrf2 and Gadd45 act within a specific renal cell subtype, the energetically and biosynthetically active 'principal' cells, to drive stress resilience during Drosophila renal development and homeostasis. Renal tubules lacking Gadd45 exhibit striking morphogenetic defects (with cell death, inflammatory infiltration and reduced ploidy) and accumulate significant DNA damage in post-embryonic life. In parallel, the transcription factor Nrf2 is active during periods of intense renal physiological activity, where it protects metabolically active renal cells from oxidative damage. Despite its constitutive nature, renal cytoprotective activity must be precisely balanced and sustained at modest sub-injury levels; indeed, further experimental elevation dramatically perturbs renal development and function. We suggest that tissues requiring long-term protection must employ restrained cytoprotective activity, whereas higher levels might only be beneficial if activated transiently pre-emptive to exogenous insult.
Collapse
Affiliation(s)
| | | | - Helen Weavers
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
26
|
Xu W, Mo Y, He Y, Fan Y, He G, Fu W, Chen S, Liu J, Liu W, Peng L, Xiao Y. A New Method for Chromosomes Preparation by ATP-Competitive Inhibitor SP600125 via Enhancement of Endomitosis in Fish. Front Bioeng Biotechnol 2021; 8:606496. [PMID: 33520960 PMCID: PMC7838586 DOI: 10.3389/fbioe.2020.606496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023] Open
Abstract
Previous studies have suggested that 1,9-Pyrazoloanthrone, known as SP600125, can induce cell polyploidization. However, what is the phase of cell cycle arrest caused by SP600125 and the underlying regulation is still an interesting issue to be further addressed. Research in this article shows that SP600125 can block cell cycle progression at the prometaphase of mitosis and cause endomitosis. It is suggested that enhancement of the p53 signaling pathway and weakening of the spindle assembly checkpoint are associated with the SP600125-induced cell cycle arrest. Using preliminary SP600125 treatment, the samples of the cultured fish cells and the fish tissues display a great number of chromosome splitting phases. Summarily, SP600125 can provide a new protocol of chromosomes preparation for karyotype analysis owing to its interference with prometaphase of mitosis.
Collapse
Affiliation(s)
- Wenting Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yanxiu Mo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China.,Department of Histology and Embryology, School of Basic Medical Science, Xiangnan University, Chenzhou, China
| | - Yu He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yunpeng Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Guomin He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shujuan Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
27
|
Aedes aegypti post-emergence transcriptome: Unveiling the molecular basis for the hematophagic and gonotrophic capacitation. PLoS Negl Trop Dis 2021; 15:e0008915. [PMID: 33406161 PMCID: PMC7815146 DOI: 10.1371/journal.pntd.0008915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 01/19/2021] [Accepted: 10/22/2020] [Indexed: 01/01/2023] Open
Abstract
The adult females of Aedes aegypti mosquitoes are facultative hematophagous insects but they are unable to feed on blood right after pupae emergence. The maturation process that takes place during the first post-emergence days, hereafter named hematophagic and gonotrophic capacitation, comprises a set of molecular and physiological changes that prepare the females for the first gonotrophic cycle. Notwithstanding, the molecular bases underlying mosquito hematophagic and gonotrophic capacitation remain obscure. Here, we investigated the molecular and biochemical changes in adult Ae. aegypti along the first four days post-emergence, prior to a blood meal. We performed a RNA-Seq analysis of the head and body, comparing male and female gene expression time courses. A total of 811 and 203 genes were differentially expressed, respectively in the body and head, and both body parts showed early, mid, and late female-specific expression profiles. Female-specific up-regulation of genes involved in muscle development and the oxidative phosphorylation pathway were remarkable features observed in the head. Functional assessment of mitochondrial oxygen consumption in heads showed a gradual increase in respiratory capacity and ATP-linked respiration as a consequence of induced mitochondrial biogenesis and content over time. This pattern strongly suggests that boosting oxidative phosphorylation in heads is a required step towards blood sucking habit. Several salivary gland genes, proteases, and genes involved in DNA replication and repair, ribosome biogenesis, and juvenile hormone signaling were up-regulated specifically in the female body, which may reflect the gonotrophic capacitation. This comprehensive description of molecular and biochemical mechanisms of the hematophagic and gonotrophic capacitation in mosquitoes unravels potentially new targets for vector control.
Collapse
|
28
|
Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin Cancer Biol 2020; 81:145-159. [PMID: 33276091 DOI: 10.1016/j.semcancer.2020.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Unusually large cancer cells with abnormal nuclei have been documented in the cancer literature since 1858. For more than 100 years, they have been generally disregarded as irreversibly senescent or dying cells, too morphologically misshapen and chromatin too disorganized to be functional. Cell enlargement, accompanied by whole genome doubling or more, is observed across organisms, often associated with mitigation strategies against environmental change, severe stress, or the lack of nutrients. Our comparison of the mechanisms for polyploidization in other organisms and non-transformed tissues suggest that cancer cells draw from a conserved program for their survival, utilizing whole genome doubling and pausing proliferation to survive stress. These polyaneuploid cancer cells (PACCs) are the source of therapeutic resistance, responsible for cancer recurrence and, ultimately, cancer lethality.
Collapse
|
29
|
Kolesnikova TD, Kolodyazhnaya AV, Pokholkova GV, Schubert V, Dovgan VV, Romanenko SA, Prokopov DY, Zhimulev IF. Effects of Mutations in the Drosophila melanogaster Rif1 Gene on the Replication and Underreplication of Pericentromeric Heterochromatin in Salivary Gland Polytene Chromosomes. Cells 2020; 9:cells9061501. [PMID: 32575592 PMCID: PMC7349278 DOI: 10.3390/cells9061501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023] Open
Abstract
In Drosophila salivary gland polytene chromosomes, a substantial portion of heterochromatin is underreplicated. The combination of mutations SuURES and Su(var)3-906 results in the polytenization of a substantial fraction of unique and moderately repeated sequences but has almost no effect on satellite DNA replication. The Rap1 interacting factor 1 (Rif) protein is a conserved regulator of replication timing, and in Drosophila, it affects underreplication in polytene chromosomes. We compared the morphology of pericentromeric regions and labeling patterns of in situ hybridization of heterochromatin-specific DNA probes between wild-type salivary gland polytene chromosomes and the chromosomes of Rif1 mutants and SuUR Su(var)3-906 double mutants. We show that, despite general similarities, heterochromatin zones exist that are polytenized only in the Rif1 mutants, and that there are zones that are under specific control of Su(var)3-9. In the Rif1 mutants, we found additional polytenization of the largest blocks of satellite DNA (in particular, satellite 1.688 of chromosome X and simple satellites in chromosomes X and 4) as well as partial polytenization of chromosome Y. Data on pulsed incorporation of 5-ethynyl-2′-deoxyuridine (EdU) into polytene chromosomes indicated that in the Rif1 mutants, just as in the wild type, most of the heterochromatin becomes replicated during the late S phase. Nevertheless, a significantly increased number of heterochromatin replicons was noted. These results suggest that Rif1 regulates the activation probability of heterochromatic origins in the satellite DNA region.
Collapse
Affiliation(s)
- Tatyana D. Kolesnikova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
- Laboratory of Structural, Functional and Comparative Genomics, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| | - Alexandra V. Kolodyazhnaya
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Galina V. Pokholkova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland, Germany;
| | - Viktoria V. Dovgan
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Svetlana A. Romanenko
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
| | - Dmitry Yu. Prokopov
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
- Laboratory of Structural, Functional and Comparative Genomics, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
30
|
Ren D, Song J, Ni M, Kang L, Guo W. Regulatory Mechanisms of Cell Polyploidy in Insects. Front Cell Dev Biol 2020; 8:361. [PMID: 32548115 PMCID: PMC7272692 DOI: 10.3389/fcell.2020.00361] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Polyploidy cells undergo the endocycle to generate DNA amplification without cell division and have important biological functions in growth, development, reproduction, immune response, nutrient support, and conferring resistance to DNA damage in animals. In this paper, we have specially summarized current research progresses in the regulatory mechanisms of cell polyploidy in insects. First, insect hormones including juvenile hormone and 20-hydroxyecdysone regulate the endocycle of variant cells in diverse insect species. Second, cells skip mitotic division in response to developmental programming and conditional stimuli such as wound healing, regeneration, and aging. Third, the reported regulatory pathways of mitotic to endocycle switch (MES), including Notch, Hippo, and JNK signaling pathways, are summarized and constructed into genetic network. Thus, we think that the studies in crosstalk of hormones and their effects on canonical pathways will shed light on the mechanism of cell polyploidy and elucidate the evolutionary adaptions of MES through diverse insect species.
Collapse
Affiliation(s)
- Dani Ren
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Juan Song
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Ni
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Hebei University, Baoding, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Hebei University, Baoding, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Baskin L, Derpinghaus A, Cao M, Sinclair A, Li Y, Overland M, Cunha GR. Hot spots in fetal human penile and clitoral development. Differentiation 2019; 112:27-38. [PMID: 31874420 DOI: 10.1016/j.diff.2019.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/28/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022]
Abstract
To better understand how the human fetal penis and clitoris grows and remodels, we undertook an investigation to define active areas of cellular proliferation and programmed cell death spatially and temporally during development of human fetal external genitalia from the indifferent stage (8 weeks) to 18 weeks of gestation. Fifty normal human fetal penile and clitoral specimens were examined using macroscopic imaging, scanning electron microscopy and immunohistochemical localization for the cellular proliferation and apoptotic markers, Ki67 and Caspase-3, respectively. A number of hot spots of cellular proliferation characterized by Ki67 localization are present in the penis and clitoris especially early in development, most notably in the corporal body, glans, remodeling glanular urethra, the urethral plate, the roof of the urethral groove and the fully formed penile urethra. The 12-fold increase in penile length over 10 weeks of growth from 8 to 18 weeks of gestation based on Ki67 labelling appears to be driven by cellular proliferation in the corporal body and glans. Throughout all ages in both the developing penis and clitoris Ki67 labeling was consistently elevated in the ventral epidermis and ventral mesenchyme relative to the dorsal counterparts. This finding is consistent with the intense morphogenetic activity/remodeling in the ventral half of the genital tubercle in both sexes involving formation of the urethral/vestibular plates, canalization of the urethral/vestibular plates and fusion of the urethral folds to form the penile urethra. Areas of reduced or absent Ki67 staining include the urethral fold epithelium that fuses to form the penile tubular urethra. In contrast, the urethral fold mesenchyme is positive for Ki67. Apoptosis was rarely noted in the developing penis and clitoris; the only area of minimal Caspase-3 localization was in the epithelium of the ventral epithelial glanular channel remodeling.
Collapse
Affiliation(s)
- Laurence Baskin
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA.
| | - Amber Derpinghaus
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Mei Cao
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Adriane Sinclair
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Yi Li
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Maya Overland
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| |
Collapse
|
32
|
Blatt P, Martin ET, Breznak SM, Rangan P. Post-transcriptional gene regulation regulates germline stem cell to oocyte transition during Drosophila oogenesis. Curr Top Dev Biol 2019; 140:3-34. [PMID: 32591078 DOI: 10.1016/bs.ctdb.2019.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
During oogenesis, several developmental processes must be traversed to ensure effective completion of gametogenesis including, stem cell maintenance and asymmetric division, differentiation, mitosis and meiosis, and production of maternally contributed mRNAs, making the germline a salient model for understanding how cell fate transitions are mediated. Due to silencing of the genome during meiotic divisions, there is little instructive transcription, barring a few examples, to mediate these critical transitions. In Drosophila, several layers of post-transcriptional regulation ensure that the mRNAs required for these processes are expressed in a timely manner and as needed during germline differentiation. These layers of regulation include alternative splicing, RNA modification, ribosome production, and translational repression. Many of the molecules and pathways involved in these regulatory activities are conserved from Drosophila to humans making the Drosophila germline an elegant model for studying the role of post-transcriptional regulation during stem cell differentiation and meiosis.
Collapse
Affiliation(s)
- Patrick Blatt
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, United States; University at Albany SUNY, Albany, NY, United States
| | - Elliot T Martin
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, United States; University at Albany SUNY, Albany, NY, United States
| | - Shane M Breznak
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, United States; University at Albany SUNY, Albany, NY, United States
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, United States; University at Albany SUNY, Albany, NY, United States.
| |
Collapse
|
33
|
Moreno-Moreno O, Torras-Llort M, Azorin F. The E3-ligases SCFPpa and APC/CCdh1 co-operate to regulate CENP-ACID expression across the cell cycle. Nucleic Acids Res 2019; 47:3395-3406. [PMID: 30753559 PMCID: PMC6468245 DOI: 10.1093/nar/gkz060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/22/2022] Open
Abstract
Centromere identity is determined by the specific deposition of CENP-A, a histone H3 variant localizing exclusively at centromeres. Increased CENP-A expression, which is a frequent event in cancer, causes mislocalization, ectopic kinetochore assembly and genomic instability. Proteolysis regulates CENP-A expression and prevents its misincorporation across chromatin. How proteolysis restricts CENP-A localization to centromeres is not well understood. Here we report that, in Drosophila, CENP-ACID expression levels are regulated throughout the cell cycle by the combined action of SCFPpa and APC/CCdh1. We show that SCFPpa regulates CENP-ACID expression in G1 and, importantly, in S-phase preventing its promiscuous incorporation across chromatin during replication. In G1, CENP-ACID expression is also regulated by APC/CCdh1. We also show that Cal1, the specific chaperone that deposits CENP-ACID at centromeres, protects CENP-ACID from SCFPpa-mediated degradation but not from APC/CCdh1-mediated degradation. These results suggest that, whereas SCFPpa targets the fraction of CENP-ACID that is not in complex with Cal1, APC/CCdh1 mediates also degradation of the Cal1-CENP-ACID complex and, thus, likely contributes to the regulation of centromeric CENP-ACID deposition.
Collapse
Affiliation(s)
- Olga Moreno-Moreno
- Institute of Molecular Biology of Barcelona, IBMB, CSIC. Baldiri Reixac 4. 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute for Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Mònica Torras-Llort
- Institute of Molecular Biology of Barcelona, IBMB, CSIC. Baldiri Reixac 4. 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute for Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Fernando Azorin
- Institute of Molecular Biology of Barcelona, IBMB, CSIC. Baldiri Reixac 4. 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute for Science and Technology. Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
34
|
Ren D, Guo W, Yang P, Song J, He J, Zhao L, Kang L. Structural and functional differentiation of a fat body-like tissue adhering to testis follicles facilitates spermatogenesis in locusts. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 113:103207. [PMID: 31421206 DOI: 10.1016/j.ibmb.2019.103207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/27/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
The fat body is distributed throughout the body of insects, playing the essential role in intermediary metabolism and nutrient storage. However, the function of differentiation of fat bodies adhering to different tissues remains largely unknown. Here, we identified a fat body-like tissue (FLT) surrounding testis follicles and described its features at morphological, cellular and molecular levels. The FLT is morphologically distinguished with the abdominal fat body (FB) and dominated by diploid cells instead of polyploid cells. The transcriptomic analysis demonstrated that the FLT and FB have dramatically different gene expression profiles. Moreover, genes in the cell cycle pathway, which include both DNA replication- and cell division-related genes, were successively active during development of the FLT, suggesting that FLT cells possibly undergo a mitotic cycle rather than an endocycle. Deprivation of the FLT resulted in distortion of the testis follicles, disappearance of sperm bundles, reduction of total sperm number and increase of dead sperm, indicating a critical role of the FLT in the spermatogenesis in testis follicles. The special functional differentiation of the two similar tissues suggested that FLT-FB cells are able to establish a promising system to study mitotic-to-endocycle transition.
Collapse
Affiliation(s)
- Dani Ren
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Yang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Juan Song
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing He
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lianfeng Zhao
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
35
|
Kolesnikova TD, Antonenko OV, Makunin IV. Replication timing in Drosophila and its peculiarities in polytene chromosomes. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Drosophila melanogaster is one of the popular model organisms in DNA replication studies. Since the 1960s, DNA replication of polytene chromosomes has been extensively studied by cytological methods. In the recent two decades, the progress in our understanding of DNA replication was associated with new techniques. Use of fluorescent dyes increased the resolution of cytological methods significantly. High-throughput methods allowed analysis of DNA replication on a genome scale, as well as its correlation with chromatin structure and gene activi ty. Precise mapping of the cytological structures of polytene chromosomes to the genome assembly allowed comparison of replication between polytene chromosomes and chromosomes of diploid cells. New features of replication characteristic for D. melanogaster were described for both diploid and polytene chromosomes. Comparison of genomic replication profiles revealed a significant similarity between Drosophila and other well-studi ed eukaryotic species, such as human. Early replication is often confined to intensely transcribed gene-dense regions characterized by multiple replication initiation sites. Features of DNA replication in Drosophila might be explained by a compact genome. The organization of replication in polytene chromosomes has much in common with the organization of replication in chromosomes in diploid cells. The most important feature of replication in polytene chromosomes is its low rate and the dependence of S-phase duration on many factors: external and internal, local and global. The speed of replication forks in D. melanogaster polytene chromosomes is affected by SUUR and Rif1 proteins. It is not known yet how universal the mechanisms associated with these factors are, but their study is very promising.
Collapse
Affiliation(s)
- T. D. Kolesnikova
- Institute of Molecular and Cellular Biology, SB RAS. Novosibirsk State University
| | | | - I. V. Makunin
- Institute of Molecular and Cellular Biology, SB RAS; Research Computing Centre, The University of Queensland
| |
Collapse
|
36
|
Developmental Control of the Cell Cycle: Insights from Caenorhabditis elegans. Genetics 2019; 211:797-829. [PMID: 30846544 PMCID: PMC6404260 DOI: 10.1534/genetics.118.301643] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
During animal development, a single fertilized egg forms a complete organism with tens to trillions of cells that encompass a large variety of cell types. Cell cycle regulation is therefore at the center of development and needs to be carried out in close coordination with cell differentiation, migration, and death, as well as tissue formation, morphogenesis, and homeostasis. The timing and frequency of cell divisions are controlled by complex combinations of external and cell-intrinsic signals that vary throughout development. Insight into how such controls determine in vivo cell division patterns has come from studies in various genetic model systems. The nematode Caenorhabditis elegans has only about 1000 somatic cells and approximately twice as many germ cells in the adult hermaphrodite. Despite the relatively small number of cells, C. elegans has diverse tissues, including intestine, nerves, striated and smooth muscle, and skin. C. elegans is unique as a model organism for studies of the cell cycle because the somatic cell lineage is invariant. Somatic cells divide at set times during development to produce daughter cells that adopt reproducible developmental fates. Studies in C. elegans have allowed the identification of conserved cell cycle regulators and provided insights into how cell cycle regulation varies between tissues. In this review, we focus on the regulation of the cell cycle in the context of C. elegans development, with reference to other systems, with the goal of better understanding how cell cycle regulation is linked to animal development in general.
Collapse
|
37
|
H3K9 Promotes Under-Replication of Pericentromeric Heterochromatin in Drosophila Salivary Gland Polytene Chromosomes. Genes (Basel) 2019; 10:genes10020093. [PMID: 30700014 PMCID: PMC6409945 DOI: 10.3390/genes10020093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/11/2022] Open
Abstract
Chromatin structure and its organization contributes to the proper regulation and timing of DNA replication. Yet, the precise mechanism by which chromatin contributes to DNA replication remains incompletely understood. This is particularly true for cell types that rely on polyploidization as a developmental strategy for growth and high biosynthetic capacity. During Drosophila larval development, cells of the salivary gland undergo endoreplication, repetitive rounds of DNA synthesis without intervening cell division, resulting in ploidy values of ~1350C. S phase of these endocycles displays a reproducible pattern of early and late replicating regions of the genome resulting from the activity of the same replication initiation factors that are used in diploid cells. However, unlike diploid cells, the latest replicating regions of polyploid salivary gland genomes, composed primarily of pericentric heterochromatic enriched in H3K9 methylation, are not replicated each endocycle, resulting in under-replicated domains with reduced ploidy. Here, we employ a histone gene replacement strategy in Drosophila to demonstrate that mutation of a histone residue important for heterochromatin organization and function (H3K9) but not mutation of a histone residue important for euchromatin function (H4K16), disrupts proper endoreplication in Drosophila salivary gland polyploid genomes thereby leading to DNA copy gain in pericentric heterochromatin. These findings reveal that H3K9 is necessary for normal levels of under-replication of pericentric heterochromatin and suggest that under-replication at pericentric heterochromatin is mediated through H3K9 methylation.
Collapse
|
38
|
Wu Z, Guo W, Yang L, He Q, Zhou S. Juvenile hormone promotes locust fat body cell polyploidization and vitellogenesis by activating the transcription of Cdk6 and E2f1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 102:1-10. [PMID: 30205150 DOI: 10.1016/j.ibmb.2018.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Juvenile hormone (JH) is known to promote cell polyploidization for insect vitellogenesis and egg production, but the underlying mechanisms remain poorly understood. Using the migratory locust Locusta migratoria as a model system, we report here that the expression of cyclin-dependent kinase 6 (Cdk6) and adenovirus E2 factor-1 (E2f1), the core mediators in cell cycle progression is regulated by JH and its receptor Methoprene-tolerant (Met). JH acts through its receptor complex comprised of Met and Taiman to directly activate the transcription of Cdk6 and E2f1. Depletion of Cdk6 or E2f1 results in significantly decreased ploidy, precocious mitotic entry and increased cell numbers in the fat body, accompanied by substantial reduction of Vitellogenin gene expression, blocked ovarian growth and arrested oocyte maturation. These findings indicate a crucial role of Cdk6 and E2f1 in JH-regulated polyploidization and vitellogenesis as well as a novel regulatory machinery for endocycling in insects.
Collapse
Affiliation(s)
- Zhongxia Wu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Libin Yang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qiongjie He
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shutang Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
39
|
Munden A, Rong Z, Sun A, Gangula R, Mallal S, Nordman JT. Rif1 inhibits replication fork progression and controls DNA copy number in Drosophila. eLife 2018; 7:e39140. [PMID: 30277458 PMCID: PMC6185109 DOI: 10.7554/elife.39140] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022] Open
Abstract
Control of DNA copy number is essential to maintain genome stability and ensure proper cell and tissue function. In Drosophila polyploid cells, the SNF2-domain-containing SUUR protein inhibits replication fork progression within specific regions of the genome to promote DNA underreplication. While dissecting the function of SUUR's SNF2 domain, we identified an interaction between SUUR and Rif1. Rif1 has many roles in DNA metabolism and regulates the replication timing program. We demonstrate that repression of DNA replication is dependent on Rif1. Rif1 localizes to active replication forks in a partially SUUR-dependent manner and directly regulates replication fork progression. Importantly, SUUR associates with replication forks in the absence of Rif1, indicating that Rif1 acts downstream of SUUR to inhibit fork progression. Our findings uncover an unrecognized function of the Rif1 protein as a regulator of replication fork progression.
Collapse
Affiliation(s)
- Alexander Munden
- Department of Biological SciencesVanderbilt UniversityNashvilleUnited States
| | - Zhan Rong
- Department of Biological SciencesVanderbilt UniversityNashvilleUnited States
| | - Amanda Sun
- Department of Biological SciencesVanderbilt UniversityNashvilleUnited States
| | - Rama Gangula
- Department of MedicineVanderbilt University School of MedicineNashvilleUnited States
| | - Simon Mallal
- Department of MedicineVanderbilt University School of MedicineNashvilleUnited States
- Department of Pathology, Microbiology and ImmunologyVanderbilt University School of MedicineNashvilleUnited States
| | - Jared T Nordman
- Department of Biological SciencesVanderbilt UniversityNashvilleUnited States
| |
Collapse
|
40
|
Shu Z, Row S, Deng WM. Endoreplication: The Good, the Bad, and the Ugly. Trends Cell Biol 2018; 28:465-474. [PMID: 29567370 DOI: 10.1016/j.tcb.2018.02.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 01/08/2023]
Abstract
To battle adverse internal and external conditions and maintain homeostasis, diploid organisms employ various cellular processes, such as proliferation and apoptosis. In some tissues, an alternative mechanism, endoreplication, is employed toward similar goals. Endoreplication is an evolutionarily conserved cell cycle program during which cells replicate their genomes without division, resulting in polyploid cells. Importantly, endoreplication is reported to be indispensable for normal development and organ formation across various organisms, from fungi to humans. In recent years, more attention has been drawn to delineating its connections to wound healing and tumorigenesis. In this Review, we discuss mechanisms of endoreplication and polyploidization, their essential and positive roles in normal development and tissue homeostasis, and the relationship between polyploidy and cancer.
Collapse
Affiliation(s)
- Zhiqiang Shu
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Sarayu Row
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
41
|
Kim M, Tang JP, Moon NS. An alternatively spliced form affecting the Marked Box domain of Drosophila E2F1 is required for proper cell cycle regulation. PLoS Genet 2018; 14:e1007204. [PMID: 29420631 PMCID: PMC5821395 DOI: 10.1371/journal.pgen.1007204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 02/21/2018] [Accepted: 01/16/2018] [Indexed: 12/28/2022] Open
Abstract
Across metazoans, cell cycle progression is regulated by E2F family transcription factors that can function as either transcriptional activators or repressors. For decades, the Drosophila E2F family has been viewed as a streamlined RB/E2F network, consisting of one activator (dE2F1) and one repressor (dE2F2). Here, we report that an uncharacterized isoform of dE2F1, hereon called dE2F1b, plays an important function during development and is functionally distinct from the widely-studied dE2F1 isoform, dE2F1a. dE2F1b contains an additional exon that inserts 16 amino acids to the evolutionarily conserved Marked Box domain. Analysis of de2f1b-specific mutants generated via CRISPR/Cas9 indicates that dE2F1b is a critical regulator of the cell cycle during development. This is particularly evident in endocycling salivary glands in which a tight control of dE2F1 activity is required. Interestingly, close examination of mitotic tissues such as eye and wing imaginal discs suggests that dE2F1b plays a repressive function as cells exit from the cell cycle. We also provide evidence demonstrating that dE2F1b differentially interacts with RBF1 and alters the recruitment of RBF1 and dE2F1 to promoters. Collectively, our data suggest that dE2F1b is a novel member of the E2F family, revealing a previously unappreciated complexity in the Drosophila RB/E2F network.
Collapse
Affiliation(s)
- Minhee Kim
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
| | - Jack P. Tang
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
| | - Nam-Sung Moon
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
42
|
Yeung YT, Yin S, Lu B, Fan S, Yang R, Bai R, Zhang C, Bode AM, Liu K, Dong Z. Losmapimod Overcomes Gefitinib Resistance in Non-small Cell Lung Cancer by Preventing Tetraploidization. EBioMedicine 2018; 28:51-61. [PMID: 29398601 PMCID: PMC5835564 DOI: 10.1016/j.ebiom.2018.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 02/03/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is known to play a critical role in non-small cell lung cancer (NSCLC). Constitutively active EGFR mutations, including in-frame deletion in exon 19 and L858R point mutation in exon 21, contribute about 90% of all EGFR-activating mutations in NSCLC. Although oral EGFR-tyrosine kinase inhibitors (TKIs), gefitinib and erlotinib, show dramatic clinical efficacy with significantly prolonged progression-free survival in patients harboring these EGFR-activating mutations, most of these patients will eventually develop acquired resistance. Researchers have recently named genomic instability as one of the hallmarks of cancer. Genomic instability usually involves a transient phase of polyploidization, in particular tetraploidization. Tetraploid cells can undergo asymmetric cell division or chromosome loss, leading to tumor heterogeneity and multidrug resistance. Therefore, identification of signaling pathways involved in tetraploidization is crucial in overcoming drug resistance. In our present study, we found that gefitinib could activate YAP-MKK3/6-p38 MAPK-STAT3 signaling and induce tetraploidization in gefitinib-resistance cells. Using p38 MAPK inhibitors, SB203580 and losmapimod, we could eliminate gefitinib-induced tetraploidization and overcome gefitinib-resistance. In addition, shRNA approach to knockdown p38α MAPK could prevent tetraploidy formation and showed significant inhibition of cancer cell growth. Finally, in an in vivo study, losmapimod could successfully overcome gefitinib resistance using an in-house established patient-derived xenograft (PDX) mouse model. Overall, these findings suggest that losmapimod could be a potential clinical agent to overcome gefitinib resistance in NSCLC. Gefitinib induces tetraploidy formation in gefitinib-resistant NSCLC cells YAP-MKK3/6-p38 MAPK signaling is essential for tetraploidization Losmapimod, a p38 MAPK inhibitor, overcomes gefitinib-resistance both in vitro and PDX xenograft mode
Gefitinib is a targeted drug therapy in non-small cell lung cancer (NSCLC) which shows dramatic clinical efficacy. However, most of these patients eventually develop drug resistance. Although researchers have identified different mechanisms contributing to the drug resistance, developing a single therapy to overcome the drug resistance remains difficult. In this study, we find that tetraploidization of cancer cells through YAP-MKK3/6-p38 MAPK signaling could be one of the common mechanisms in developing the drug resistance. By using losmapimod, we could eliminate tetraploidization and overcome gefitinib resistance in an animal model suggesting that losmapimod could be a potential clinical agent to overcome gefitinib resistance in NSCLC.
Collapse
Affiliation(s)
- Yiu To Yeung
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China; The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Shuying Yin
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Bingbing Lu
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China; Pathophysiology Department, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China
| | - Suyu Fan
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Ran Yang
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Ruihua Bai
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengjuan Zhang
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Kangdong Liu
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China; The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China; Pathophysiology Department, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China; Collaborative Innovation Center, Cancer Chemoprevention of Henan, Zhengzhou, Henan, China.
| | - Zigang Dong
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China; The Hormel Institute, University of Minnesota, Austin, MN, USA; The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China; Pathophysiology Department, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China; Collaborative Innovation Center, Cancer Chemoprevention of Henan, Zhengzhou, Henan, China.
| |
Collapse
|
43
|
Guarner A, Morris R, Korenjak M, Boukhali M, Zappia MP, Van Rechem C, Whetstine JR, Ramaswamy S, Zou L, Frolov MV, Haas W, Dyson NJ. E2F/DP Prevents Cell-Cycle Progression in Endocycling Fat Body Cells by Suppressing dATM Expression. Dev Cell 2017; 43:689-703.e5. [PMID: 29233476 PMCID: PMC5901703 DOI: 10.1016/j.devcel.2017.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/28/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
To understand the consequences of the complete elimination of E2F regulation, we profiled the proteome of Drosophila dDP mutants that lack functional E2F/DP complexes. The results uncovered changes in the larval fat body, a differentiated tissue that grows via endocycles. We report an unexpected mechanism of E2F/DP action that promotes quiescence in this tissue. In the fat body, dE2F/dDP limits cell-cycle progression by suppressing DNA damage responses. Loss of dDP upregulates dATM, allowing cells to sense and repair DNA damage and increasing replication of loci that are normally under-replicated in wild-type tissues. Genetic experiments show that ectopic dATM is sufficient to promote DNA synthesis in wild-type fat body cells. Strikingly, reducing dATM levels in dDP-deficient fat bodies restores cell-cycle control, improves tissue morphology, and extends animal development. These results show that, in some cellular contexts, dE2F/dDP-dependent suppression of DNA damage signaling is key for cell-cycle control and needed for normal development.
Collapse
Affiliation(s)
- Ana Guarner
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Michael Korenjak
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Myriam Boukhali
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL 60607, USA
| | - Capucine Van Rechem
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Johnathan R Whetstine
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland Avenue, Chicago, IL 60607, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13(th) Street, Charlestown, MA 02129, USA.
| |
Collapse
|
44
|
DNA Replication Control During Drosophila Development: Insights into the Onset of S Phase, Replication Initiation, and Fork Progression. Genetics 2017; 207:29-47. [PMID: 28874453 PMCID: PMC5586379 DOI: 10.1534/genetics.115.186627] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Proper control of DNA replication is critical to ensure genomic integrity during cell proliferation. In addition, differential regulation of the DNA replication program during development can change gene copy number to influence cell size and gene expression. Drosophila melanogaster serves as a powerful organism to study the developmental control of DNA replication in various cell cycle contexts in a variety of differentiated cell and tissue types. Additionally, Drosophila has provided several developmentally regulated replication models to dissect the molecular mechanisms that underlie replication-based copy number changes in the genome, which include differential underreplication and gene amplification. Here, we review key findings and our current understanding of the developmental control of DNA replication in the contexts of the archetypal replication program as well as of underreplication and differential gene amplification. We focus on the use of these latter two replication systems to delineate many of the molecular mechanisms that underlie the developmental control of replication initiation and fork elongation.
Collapse
|
45
|
Posukh OV, Maksimov DA, Laktionov PP, Koryakov DE, Belyakin SN. Functional dissection of Drosophila melanogaster SUUR protein influence on H3K27me3 profile. Epigenetics Chromatin 2017; 10:56. [PMID: 29191233 PMCID: PMC5709859 DOI: 10.1186/s13072-017-0163-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In eukaryotes, heterochromatin replicates late in S phase of the cell cycle and contains specific covalent modifications of histones. SuUR mutation found in Drosophila makes heterochromatin replicate earlier than in wild type and reduces the level of repressive histone modifications. SUUR protein was shown to be associated with moving replication forks, apparently through the interaction with PCNA. The biological process underlying the effects of SUUR on replication and composition of heterochromatin remains unknown. RESULTS Here we performed a functional dissection of SUUR protein effects on H3K27me3 level. Using hidden Markow model-based algorithm we revealed SuUR-sensitive chromosomal regions that demonstrated unusual characteristics: They do not contain Polycomb and require SUUR function to sustain H3K27me3 level. We tested the role of SUUR protein in the mechanisms that could affect H3K27me3 histone levels in these regions. We found that SUUR does not affect the initial H3K27me3 pattern formation in embryogenesis or Polycomb distribution in the chromosomes. We also ruled out the possible effect of SUUR on histone genes expression and its involvement in DSB repair. CONCLUSIONS Obtained results support the idea that SUUR protein contributes to the heterochromatin maintenance during the chromosome replication. A model that explains major SUUR-associated phenotypes is proposed.
Collapse
Affiliation(s)
- Olga V Posukh
- Genomics Lab, Institute of Molecular and Cellular Biology SB RAS, Lavrentyev ave. 8/2, Novosibirsk, Russia, 630090
| | - Daniil A Maksimov
- Genomics Lab, Institute of Molecular and Cellular Biology SB RAS, Lavrentyev ave. 8/2, Novosibirsk, Russia, 630090
| | - Petr P Laktionov
- Genomics Lab, Institute of Molecular and Cellular Biology SB RAS, Lavrentyev ave. 8/2, Novosibirsk, Russia, 630090
| | - Dmitry E Koryakov
- Genomics Lab, Institute of Molecular and Cellular Biology SB RAS, Lavrentyev ave. 8/2, Novosibirsk, Russia, 630090.,Novosibirsk State University, Pirogov str. 2, Novosibirsk, Russia
| | - Stepan N Belyakin
- Genomics Lab, Institute of Molecular and Cellular Biology SB RAS, Lavrentyev ave. 8/2, Novosibirsk, Russia, 630090. .,Novosibirsk State University, Pirogov str. 2, Novosibirsk, Russia.
| |
Collapse
|
46
|
Behdani E, Bakhtiarizadeh MR. Construction of an integrated gene regulatory network link to stress-related immune system in cattle. Genetica 2017; 145:441-454. [PMID: 28825201 DOI: 10.1007/s10709-017-9980-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/14/2017] [Indexed: 01/01/2023]
Abstract
The immune system is an important biological system that is negatively impacted by stress. This study constructed an integrated regulatory network to enhance our understanding of the regulatory gene network used in the stress-related immune system. Module inference was used to construct modules of co-expressed genes with bovine leukocyte RNA-Seq data. Transcription factors (TFs) were then assigned to these modules using Lemon-Tree algorithms. In addition, the TFs assigned to each module were confirmed using the promoter analysis and protein-protein interactions data. Therefore, our integrated method identified three TFs which include one TF that is previously known to be involved in immune response (MYBL2) and two TFs (E2F8 and FOXS1) that had not been recognized previously and were identified for the first time in this study as novel regulatory candidates in immune response. This study provides valuable insights on the regulatory programs of genes involved in the stress-related immune system.
Collapse
Affiliation(s)
- Elham Behdani
- Department of Animal Sciences, College of Agriculture and Natural Resources, Ramin University, Khozestan, Iran
| | | |
Collapse
|
47
|
Cheng MH, Andrejka L, Vorster PJ, Hinman A, Lipsick JS. The Drosophila LIN54 homolog Mip120 controls two aspects of oogenesis. Biol Open 2017; 6:967-978. [PMID: 28522430 PMCID: PMC5550918 DOI: 10.1242/bio.025825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The conserved multi-protein MuvB core associates with the Myb oncoproteins and with the RB-E2F-DP tumor suppressor proteins in complexes that regulate cell proliferation, differentiation, and apoptosis. Drosophila Mip120, a homolog of LIN54, is a sequence-specific DNA-binding protein within the MuvB core. A mutant of Drosophilamip120 was previously shown to cause female and male sterility. We now show that Mip120 regulates two different aspects of oogenesis. First, in the absence of the Mip120 protein, egg chambers arrest during the transition from stage 7 to 8 with a failure of the normal program of chromosomal dynamics in the ovarian nurse cells. Specifically, the decondensation, disassembly and dispersion of the endoreplicated polytene chromosomes fail to occur without Mip120. The conserved carboxy-terminal DNA-binding and protein-protein interaction domains of Mip120 are necessary but not sufficient for this process. Second, we show that a lack of Mip120 causes a dramatic increase in the expression of benign gonial cell neoplasm (bgcn), a gene that is normally expressed in only a small number of cells within the ovary including the germline stem cells. Summary:Drosophila Mip120/LIN54, regulates ovarian nurse cell chromosome disassembly and germline-specific gene expression. These functions of Mip120 require its less conserved N-terminus in addition to its CXC DNA-binding and HCH protein-interaction domains.
Collapse
Affiliation(s)
- Mei-Hsin Cheng
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Laura Andrejka
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Paul J Vorster
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Albert Hinman
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Joseph S Lipsick
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| |
Collapse
|
48
|
Sekelsky J. DNA Repair in Drosophila: Mutagens, Models, and Missing Genes. Genetics 2017; 205:471-490. [PMID: 28154196 PMCID: PMC5289830 DOI: 10.1534/genetics.116.186759] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/18/2016] [Indexed: 12/22/2022] Open
Abstract
The numerous processes that damage DNA are counterbalanced by a complex network of repair pathways that, collectively, can mend diverse types of damage. Insights into these pathways have come from studies in many different organisms, including Drosophila melanogaster Indeed, the first ideas about chromosome and gene repair grew out of Drosophila research on the properties of mutations produced by ionizing radiation and mustard gas. Numerous methods have been developed to take advantage of Drosophila genetic tools to elucidate repair processes in whole animals, organs, tissues, and cells. These studies have led to the discovery of key DNA repair pathways, including synthesis-dependent strand annealing, and DNA polymerase theta-mediated end joining. Drosophila appear to utilize other major repair pathways as well, such as base excision repair, nucleotide excision repair, mismatch repair, and interstrand crosslink repair. In a surprising number of cases, however, DNA repair genes whose products play important roles in these pathways in other organisms are missing from the Drosophila genome, raising interesting questions for continued investigations.
Collapse
Affiliation(s)
- Jeff Sekelsky
- Department of Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
49
|
Wei Y, Reveal B, Cai W, Lilly MA. The GATOR1 Complex Regulates Metabolic Homeostasis and the Response to Nutrient Stress in Drosophila melanogaster. G3 (BETHESDA, MD.) 2016; 6:3859-3867. [PMID: 27672113 PMCID: PMC5144957 DOI: 10.1534/g3.116.035337] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/15/2016] [Indexed: 02/06/2023]
Abstract
TORC1 regulates metabolism and growth in response to a large array of upstream inputs. The evolutionarily conserved trimeric GATOR1 complex inhibits TORC1 activity in response to amino acid limitation. In humans, the GATOR1 complex has been implicated in a wide array of pathologies including cancer and hereditary forms of epilepsy. However, the precise role of GATOR1 in animal physiology remains largely undefined. Here, we characterize null mutants of the GATOR1 components nprl2, nprl3, and iml1 in Drosophila melanogaster We demonstrate that all three mutants have inappropriately high baseline levels of TORC1 activity and decreased adult viability. Consistent with increased TORC1 activity, GATOR1 mutants exhibit a cell autonomous increase in cell growth. Notably, escaper nprl2 and nprl3 mutant adults have a profound locomotion defect. In line with a nonautonomous role in the regulation of systemic metabolism, expressing the Nprl3 protein in the fat body, a nutrient storage organ, and hemocytes but not muscles and neurons rescues the motility of nprl3 mutants. Finally, we show that nprl2 and nprl3 mutants fail to activate autophagy in response to amino acid limitation and are extremely sensitive to both amino acid and complete starvation. Thus, in Drosophila, in addition to maintaining baseline levels of TORC1 activity, the GATOR1 complex has retained a critical role in the response to nutrient stress. In summary, the TORC1 inhibitor GATOR1 contributes to multiple aspects of the development and physiology of Drosophila.
Collapse
Affiliation(s)
- Youheng Wei
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Brad Reveal
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Weili Cai
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Mary A Lilly
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
50
|
Laws KM, Drummond-Barbosa D. AMP-activated protein kinase has diet-dependent and -independent roles in Drosophila oogenesis. Dev Biol 2016; 420:90-99. [PMID: 27729213 DOI: 10.1016/j.ydbio.2016.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/16/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022]
Abstract
Multiple aspects of organismal physiology influence the number and activity of stem cells and their progeny, including nutritional status. Previous studies demonstrated that Drosophila germline stem cells (GSCs), follicle stem cells (FSCs), and their progeny sense and respond to diet via complex mechanisms involving many systemic and local signals. AMP-activated protein kinase, or AMPK, is a highly conserved regulator of energy homeostasis known to be activated under low cellular energy conditions; however, its role in the ovarian response to diet has not been investigated. Here, we describe nutrient-dependent and -independent requirements for AMPK in Drosophila oogenesis. We found that AMPK is cell autonomously required for the slow down in GSC and follicle cell proliferation that occurs on a poor diet. Similarly, AMPK activity is necessary in the germline for the degeneration of vitellogenic stages in response to nutrient deprivation. In contrast, AMPK activity is not required within the germline to modulate its growth. Instead, AMPK acts in follicle cells to negatively regulate their growth and proliferation, thereby indirectly limiting the size of the underlying germline cyst within developing follicles. Paradoxically, AMPK is required for GSC maintenance in well-fed flies (when AMPK activity is presumably at its lowest), suggesting potentially important roles for basal AMPK activity in specific cell types. Finally, we identified a nutrient-independent, developmental role for AMPK in cyst encapsulation by follicle cells. These results uncover specific AMPK requirements in multiple cell types in the ovary and suggest that AMPK can function outside of its canonical nutrient-sensing role in specific developmental contexts.
Collapse
Affiliation(s)
- Kaitlin M Laws
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room W3118, Baltimore, MD 21205, USA.
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room W3118, Baltimore, MD 21205, USA; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room W3118, Baltimore, MD 21205, USA.
| |
Collapse
|