1
|
Ismail TM, Crick RG, Du M, Shivkumar U, Carnell A, Barraclough R, Wang G, Cheng Z, Yu W, Platt-Higgins A, Nixon G, Rudland PS. Targeted Destruction of S100A4 Inhibits Metastasis of Triple Negative Breast Cancer Cells. Biomolecules 2023; 13:1099. [PMID: 37509135 PMCID: PMC10377353 DOI: 10.3390/biom13071099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Most patients who die of cancer do so from its metastasis to other organs. The calcium-binding protein S100A4 can induce cell migration/invasion and metastasis in experimental animals and is overexpressed in most human metastatic cancers. Here, we report that a novel inhibitor of S100A4 can specifically block its increase in cell migration in rat (IC50, 46 µM) and human (56 µM) triple negative breast cancer (TNBC) cells without affecting Western-blotted levels of S100A4. The moderately-weak S100A4-inhibitory compound, US-10113 has been chemically attached to thalidomide to stimulate the proteasomal machinery of a cell. This proteolysis targeting chimera (PROTAC) RGC specifically eliminates S100A4 in the rat (IC50, 8 nM) and human TNBC (IC50, 3.2 nM) cell lines with a near 20,000-fold increase in efficiency over US-10113 at inhibiting cell migration (IC50, 1.6 nM and 3.5 nM, respectively). Knockdown of S100A4 in human TNBC cells abolishes this effect. When PROTAC RGC is injected with mouse TNBC cells into syngeneic Balb/c mice, the incidence of experimental lung metastases or local primary tumour invasion and spontaneous lung metastasis is reduced in the 10-100 nM concentration range (Fisher's Exact test, p ≤ 0.024). In conclusion, we have established proof of principle that destructive targeting of S100A4 provides the first realistic chemotherapeutic approach to selectively inhibiting metastasis.
Collapse
Affiliation(s)
- Thamir M. Ismail
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK; (T.M.I.); (R.B.); (A.P.-H.)
| | - Rachel G. Crick
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZB, UK; (R.G.C.); (U.S.); (A.C.)
| | - Min Du
- Department of Clinical Infection, Microbiology and Immunity, University of Liverpool, Liverpool L69 7ZB, UK; (M.D.); (G.W.)
| | - Uma Shivkumar
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZB, UK; (R.G.C.); (U.S.); (A.C.)
| | - Andrew Carnell
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZB, UK; (R.G.C.); (U.S.); (A.C.)
| | - Roger Barraclough
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK; (T.M.I.); (R.B.); (A.P.-H.)
| | - Guozheng Wang
- Department of Clinical Infection, Microbiology and Immunity, University of Liverpool, Liverpool L69 7ZB, UK; (M.D.); (G.W.)
| | - Zhenxing Cheng
- Medical School, Southeast University, Nanjing 230032, China; (Z.C.); (W.Y.)
- Department of Gastroenterology, First Affiliated Hospital, Anhui Medical University, Hefei 210009, China
| | - Weiping Yu
- Medical School, Southeast University, Nanjing 230032, China; (Z.C.); (W.Y.)
| | - Angela Platt-Higgins
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK; (T.M.I.); (R.B.); (A.P.-H.)
| | - Gemma Nixon
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZB, UK; (R.G.C.); (U.S.); (A.C.)
| | - Philip S. Rudland
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK; (T.M.I.); (R.B.); (A.P.-H.)
| |
Collapse
|
2
|
Sebák F, Horváth LB, Kovács D, Szolomájer J, Tóth GK, Babiczky Á, Bősze S, Bodor A. Novel Lysine-Rich Delivery Peptides of Plant Origin ERD and Human S100: The Effect of Carboxyfluorescein Conjugation, Influence of Aromatic and Proline Residues, Cellular Internalization, and Penetration Ability. ACS OMEGA 2021; 6:34470-34484. [PMID: 34963932 PMCID: PMC8697381 DOI: 10.1021/acsomega.1c04637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
The need for novel drug delivery peptides is an important issue of the modern pharmaceutical research. Here, we test K-rich peptides from plant dehydrin ERD14 (ERD-A, ERD-B, and ERD-C) and the C-terminal CPP-resembling region of S100A4 (S100) using the 5(6)-carboxyfluorescein (Cf) tag at the N-terminus. Via a combined pH-dependent NMR and fluorescence study, we analyze the effect of the Cf conjugation/modification on the structural behavior, separately investigating the (5)-Cf and (6)-Cf forms. Flow cytometry results show that all peptides internalize; however, there is a slight difference between the cellular internalization of (5)- and (6)-Cf-peptides. We indicate the possible importance of residues with an aromatic sidechain and proline. We prove that ERD-A localizes mostly in the cytosol, ERD-B and S100 have partial colocalization with lysosomal staining, and ERD-C mainly localizes within vesicle-like compartments, while the uptake mechanism mainly occurs through energy-dependent paths.
Collapse
Affiliation(s)
- Fanni Sebák
- Institute
of Chemistry, ELTE−Eötvös
Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- Doctoral
School of Pharmaceutical Sciences, Semmelweis
University, Üllői
út 26, H-1085 Budapest, Hungary
| | - Lilla Borbála Horváth
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- National
Public Health Center, Albert Flórián út 2-6, Budapest H-1097, Hungary
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/a, H-1117 Budapest, Hungary
| | - Dániel Kovács
- Institute
of Chemistry, ELTE−Eötvös
Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/a, H-1117 Budapest, Hungary
| | - János Szolomájer
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gábor K. Tóth
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Ákos Babiczky
- Institute
of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Doctoral
School of Psychology/Cognitive Science, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Szilvia Bősze
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- National
Public Health Center, Albert Flórián út 2-6, Budapest H-1097, Hungary
| | - Andrea Bodor
- Institute
of Chemistry, ELTE−Eötvös
Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
| |
Collapse
|
3
|
Ismail TM, Gross SR, Lancaster T, Rudland PS, Barraclough R. The Role of the C-Terminal Lysine of S100P in S100P-Induced Cell Migration and Metastasis. Biomolecules 2021; 11:biom11101471. [PMID: 34680103 PMCID: PMC8533620 DOI: 10.3390/biom11101471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022] Open
Abstract
S100P protein is a potent inducer of metastasis in a model system, and its presence in cancer cells of patients is strongly associated with their reduced survival times. A well-established Furth Wistar rat metastasis model system, methods for measuring cell migration, and specific inhibitors were used to study pathways of motility-driven metastasis. Cells expressing C-terminal mutant S100P proteins display markedly-reduced S100P-driven metastasis in vivo and cell migration in vitro. These cells fail to display the low focal adhesion numbers observed in cells expressing wild-type S100P, and the mutant S100P proteins exhibit reduced biochemical interaction with non-muscle myosin heavy chain isoform IIA in vitro. Extracellular inhibitors of the S100P-dependent plasminogen activation pathway reduce, but only in part, wild-type S100P-dependent cell migration; they are without effect on S100P-negative cells or cells expressing C-terminal mutant S100P proteins and have no effect on the numbers of focal adhesions. Recombinant wild-type S100P protein, added extracellularly to S100P-negative cells, stimulates cell migration, which is abolished by these inhibitors. The results identify at least two S100P-dependent pathways of migration, one cell surface and the other intracellularly-linked, and identify its C-terminal lysine as a target for inhibiting multiple migration-promoting activities of S100P protein and S100P-driven metastasis.
Collapse
Affiliation(s)
- Thamir M. Ismail
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK; (T.M.I.); (P.S.R.)
| | - Stephane R. Gross
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK;
- Correspondence: (S.R.G.); (R.B.)
| | - Tara Lancaster
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK;
| | - Philip S. Rudland
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK; (T.M.I.); (P.S.R.)
| | - Roger Barraclough
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK; (T.M.I.); (P.S.R.)
- Correspondence: (S.R.G.); (R.B.)
| |
Collapse
|
4
|
Yildirim A, Tekpinar M, Wassenaar TA. Competing Roles of Ca 2+ and Nonmuscle Myosin IIA on the Dynamics of the Metastasis-Associated Protein S100A4. J Phys Chem B 2021; 125:10059-10071. [PMID: 34464144 DOI: 10.1021/acs.jpcb.1c02096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The calcium-binding protein S100A4 plays an important role in a wide range of biological processes such as cell motility, invasion, angiogenesis, survival, differentiation, contractility, and tumor metastasis and interacts with a range of partners. To understand the functional roles and interplay of S100A4 binding partners such as Ca2+ and nonmuscle myosin IIA (NMIIA), we used molecular dynamics simulations to investigate apo S100A4 and four holo S100A4 structures: S100A4 bound to Ca2+, S100A4 bound to NMIIA, S100A4 bound to Ca2+ and NMIIA, and a mutated S100A4 bound to Ca2+ and NMIIA. Our results show that two competing factors, namely, Ca2+-induced activation and NMIIA-induced inhibition, modulate the dynamics of S100A4 in a competitive manner. Moreover, Ca2+ binding results in enhanced dynamics, regulating the interactions of S100A4 with NMIIA, while NMIIA induces asymmetric dynamics between the chains of S100A4. The results also show that in the absence of Ca2+ the S100A4-NMIIA interaction is weak compared to that of between S100A4 bound to Ca2+ and NMIIA, which may offer a quick response to dropping calcium levels. In addition, certain mutations are shown to play a marked role on the dynamics of S100A4. The results described here contribute to understanding the interactions of S100A4 with NMIIA and the functional roles of Ca2+, NMIIA, and certain mutations on the dynamics of S100A4. The results of this study could be interesting for the development of inhibitors that exploit the shift of balance between the competing roles of Ca2+ and NMIIA.
Collapse
Affiliation(s)
- Ahmet Yildirim
- Department of Physics, Siirt University, Siirt 56100, Turkey
| | - Mustafa Tekpinar
- Unit of Structural Dynamics of Biological Macromolecules, Pasteur Institute, UMR 3528 CNRS, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.,Data Science for Life Sciences, Hanze University of Applied Sciences, Zernikeplein 11, 9747 AS Groningen, The Netherlands
| |
Collapse
|
5
|
Cano‐Ballesteros S, Palmquist‐Gomes P, Marín‐Sedeño E, Guadix JA, Pérez‐Pomares JM. Fsp1 cardiac embryonic expression delineates atrioventricular endocardial cushion, coronary venous and lymphatic valve development. J Anat 2021; 238:508-514. [PMID: 32920869 PMCID: PMC7812130 DOI: 10.1111/joa.13306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/03/2023] Open
Abstract
Fsp1 (a.k.a S100A4 or Metastatin) is an intracellular and secreted protein widely regarded as a fibroblast marker. Recent studies have nonetheless shown that Fsp1 is also expressed by other cell types, including small subsets of endothelial cells. Since no detailed and systematic description of Fsp1 spatio-temporal expression pattern in cardiac vascular cells is available in the literature, we have used a transgenic murine line (Fsp1-GFP) to study Fsp1 expression in the developing and postnatal cardiac vasculature and endocardium. Our work shows that Fsp1 is expressed in the endocardium and mesenchyme of atrioventricular valve primordia, as well as in some coronary venous and lymphatic endothelial cells. Fsp1 expression in cardiac venous and lymphatic endothelium is progressively restricted to the leaflets of cardiac venous and lymphatic valves. Our results suggest that Fsp1 could play a role in the development of atrioventricular valves and participate in the patterning and morphogenesis of cardiac venous and lymphatic vessel valves.
Collapse
Affiliation(s)
- Sara Cano‐Ballesteros
- Department of Animal Biology, Faculty of SciencesInstituto Malagueño de Biomedicina (IBIMA), University of MálagaMálagaSpain,BIONAND, Centro Andaluz de Nanomedicina y BiotecnologíaJunta de AndalucíaUniversidad de MálagaMálagaSpain
| | - Paul Palmquist‐Gomes
- Department of Animal Biology, Faculty of SciencesInstituto Malagueño de Biomedicina (IBIMA), University of MálagaMálagaSpain,BIONAND, Centro Andaluz de Nanomedicina y BiotecnologíaJunta de AndalucíaUniversidad de MálagaMálagaSpain
| | - Ernesto Marín‐Sedeño
- Department of Animal Biology, Faculty of SciencesInstituto Malagueño de Biomedicina (IBIMA), University of MálagaMálagaSpain,BIONAND, Centro Andaluz de Nanomedicina y BiotecnologíaJunta de AndalucíaUniversidad de MálagaMálagaSpain
| | - Juan Antonio Guadix
- Department of Animal Biology, Faculty of SciencesInstituto Malagueño de Biomedicina (IBIMA), University of MálagaMálagaSpain,BIONAND, Centro Andaluz de Nanomedicina y BiotecnologíaJunta de AndalucíaUniversidad de MálagaMálagaSpain
| | - José María Pérez‐Pomares
- Department of Animal Biology, Faculty of SciencesInstituto Malagueño de Biomedicina (IBIMA), University of MálagaMálagaSpain,BIONAND, Centro Andaluz de Nanomedicina y BiotecnologíaJunta de AndalucíaUniversidad de MálagaMálagaSpain
| |
Collapse
|
6
|
Liu Z, Meng Y, Wang H, Rudland PS, Barraclough R, Zhang S. Metastasis-inducing protein S100A4 interacts with p53 in the nuclei of living cells. PRECISION RADIATION ONCOLOGY 2019. [DOI: 10.1002/pro6.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Zhen Liu
- Department of Oncology; Shandong Cancer Hospital, Shandong University Affiliated Shandong Cancer Hospital; Jinan Shandong Province China
- School of Medicine and Life Sciences; University of Jinan, Shandong Academy of Medical Sciences; Jinan Shandong Province China
| | - Ying Meng
- Department of Oncology; Shandong Cancer Hospital, Shandong University Affiliated Shandong Cancer Hospital; Jinan Shandong Province China
| | - Huijun Wang
- Department of Oncology; Shandong Cancer Hospital, Shandong University Affiliated Shandong Cancer Hospital; Jinan Shandong Province China
| | - Philip S. Rudland
- School of Biological Sciences; University of Liverpool; Liverpool UK
| | - Roger Barraclough
- School of Biological Sciences; University of Liverpool; Liverpool UK
| | - Shu Zhang
- Department of Oncology; Shandong Cancer Hospital, Shandong University Affiliated Shandong Cancer Hospital; Jinan Shandong Province China
- School of Medicine and Life Sciences; University of Jinan, Shandong Academy of Medical Sciences; Jinan Shandong Province China
| |
Collapse
|
7
|
Attenuation of cancer-initiating cells stemness properties by abrogating S100A4 calcium binding ability in head and neck cancers. Oncotarget 2018; 7:78946-78957. [PMID: 27793047 PMCID: PMC5346689 DOI: 10.18632/oncotarget.12935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/19/2016] [Indexed: 12/20/2022] Open
Abstract
S100A4 is a calcium-binding protein capable of promoting epithelial-mesenchymal transition. Previously, we have demonstrated that S100A4 is required to sustain the head and neck cancer-initiating cells (HN-CICs) subpopulation. In this study, to further investigate the molecular mechanism, we established the head and neck squamous cell carcinoma (HNSCC) cell lines stably expressing mutant S100A4 proteins with defective calcium-binding sites on either N-terminal (NM) or C-terminal (CM), or a deletion of the last 15 amino-acid residues (CD). We showed that the NM, CM and CD harboring sphere cells that were enriched with HN-CICs population exhibited impaired stemness and malignant properties in vitro, as well as reduced tumor growth ability in vivo. Mechanistically, we demonstrated that mutant S100A4 proteins decreased the promoter activity of Nanog, likely through inhibition of p53. Moreover, the biophysical analyses of purified recombinant mutant S100A4 proteins suggest that both NM and CM mutant S100A4 were very similar to the WT S100A4 with subtle difference on the secondary structure, and that the CD mutant protein displayed the unexpected monomeric form in the solution phase.Taken together, our results suggest that both the calcium-binding ability and the C-terminal region of S100A4 are important for HN-CICs to sustain its stemness property and malignancy, and that the mechanism could be mediated by repressing p53 and subsequently activating the Nanog expression.
Collapse
|
8
|
Metastasis-associated S100A4 is a specific amine donor and an activity-independent binding partner of transglutaminase-2. Biochem J 2015; 473:31-42. [DOI: 10.1042/bj20150843] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/20/2015] [Indexed: 01/30/2023]
Abstract
S100A4 and transglutaminase-2 have a role in metastasis. S100A4 is an interaction partner and specific amine substrate of transglutaminase-2, promoting its open conformation and leading to enhanced cell adhesion. Study of their interaction could contribute to the better understanding of metastasis.
Collapse
|
9
|
Duelli A, Kiss B, Lundholm I, Bodor A, Petoukhov MV, Svergun DI, Nyitray L, Katona G. The C-terminal random coil region tunes the Ca²⁺-binding affinity of S100A4 through conformational activation. PLoS One 2014; 9:e97654. [PMID: 24830809 PMCID: PMC4022583 DOI: 10.1371/journal.pone.0097654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/22/2014] [Indexed: 11/19/2022] Open
Abstract
S100A4 interacts with many binding partners upon Ca2+ activation and is strongly associated with increased metastasis formation. In order to understand the role of the C-terminal random coil for the protein function we examined how small angle X-ray scattering of the wild-type S100A4 and its C-terminal deletion mutant (residues 1–88, Δ13) changes upon Ca2+ binding. We found that the scattering intensity of wild-type S100A4 changes substantially in the 0.15–0.25 Å−1 q-range whereas a similar change is not visible in the C-terminus deleted mutant. Ensemble optimization SAXS modeling indicates that the entire C-terminus is extended when Ca2+ is bound. Pulsed field gradient NMR measurements provide further support as the hydrodynamic radius in the wild-type protein increases upon Ca2+ binding while the radius of Δ13 mutant does not change. Molecular dynamics simulations provide a rational explanation of the structural transition: the positively charged C-terminal residues associate with the negatively charged residues of the Ca2+-free EF-hands and these interactions loosen up considerably upon Ca2+-binding. As a consequence the Δ13 mutant has increased Ca2+ affinity and is constantly loaded at Ca2+ concentration ranges typically present in cells. The activation of the entire C-terminal random coil may play a role in mediating interaction with selected partner proteins of S100A4.
Collapse
Affiliation(s)
- Annette Duelli
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Bence Kiss
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Ida Lundholm
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Andrea Bodor
- Institute of Chemistry, Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Budapest, Hungary
| | - Maxim V. Petoukhov
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Hamburg, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Hamburg, Germany
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
- * E-mail: (LN); (GK)
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- * E-mail: (LN); (GK)
| |
Collapse
|
10
|
Gross SR, Sin CGT, Barraclough R, Rudland PS. Joining S100 proteins and migration: for better or for worse, in sickness and in health. Cell Mol Life Sci 2014; 71:1551-79. [PMID: 23811936 PMCID: PMC11113901 DOI: 10.1007/s00018-013-1400-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/12/2022]
Abstract
The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used.
Collapse
Affiliation(s)
- Stephane R. Gross
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET UK
| | - Connie Goh Then Sin
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET UK
| | - Roger Barraclough
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Philip S. Rudland
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| |
Collapse
|
11
|
Elliott PR, Irvine AF, Jung HS, Tozawa K, Pastok MW, Picone R, Badyal SK, Basran J, Rudland PS, Barraclough R, Lian LY, Bagshaw CR, Kriajevska M, Barsukov IL. Asymmetric mode of Ca²⁺-S100A4 interaction with nonmuscle myosin IIA generates nanomolar affinity required for filament remodeling. Structure 2012; 20:654-66. [PMID: 22483112 PMCID: PMC3343272 DOI: 10.1016/j.str.2012.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/31/2011] [Accepted: 02/09/2012] [Indexed: 01/01/2023]
Abstract
Filament assembly of nonmuscle myosin IIA (NMIIA) is selectively regulated by the small Ca2+-binding protein, S100A4, which causes enhanced cell migration and metastasis in certain cancers. Our NMR structure shows that an S100A4 dimer binds to a single myosin heavy chain in an asymmetrical configuration. NMIIA in the complex forms a continuous helix that stretches across the surface of S100A4 and engages the Ca2+-dependent binding sites of each subunit in the dimer. Synergy between these sites leads to a very tight association (KD ∼1 nM) that is unique in the S100 family. Single-residue mutations that remove this synergy weaken binding and ameliorate the effects of S100A4 on NMIIA filament assembly and cell spreading in A431 human epithelial carcinoma cells. We propose a model for NMIIA filament disassembly by S100A4 in which initial binding to the unstructured NMIIA tail initiates unzipping of the coiled coil and disruption of filament packing.
Collapse
Affiliation(s)
- Paul R Elliott
- Institute of Integrative Biology, BioSciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Du M, Wang G, Ismail TM, Gross S, Fernig DG, Barraclough R, Rudland PS. S100P dissociates myosin IIA filaments and focal adhesion sites to reduce cell adhesion and enhance cell migration. J Biol Chem 2012; 287:15330-44. [PMID: 22399300 DOI: 10.1074/jbc.m112.349787] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
S100 proteins promote cancer cell migration and metastasis. To investigate their roles in the process of migration we have constructed inducible systems for S100P in rat mammary and human HeLa cells that show a linear relationship between its intracellular levels and cell migration. S100P, like S100A4, differentially interacts with the isoforms of nonmuscle myosin II (NMIIA, K(d) = 0.5 μM; IIB, K(d) = 8 μM; IIC, K(d) = 1.0 μM). Accordingly, S100P dissociates NMIIA and IIC filaments but not IIB in vitro. NMIIA knockdown increases migration in non-induced cells and there is no further increase upon induction of S100P, whereas NMIIB knockdown reduces cell migration whether or not S100P is induced. NMIIC knockdown does not affect S100P-enhanced cell migration. Further study shows that NMIIA physically interacts with S100P in living cells. In the cytoplasm, S100P occurs in discrete nodules along NMIIA-containing filaments. Induction of S100P causes more peripheral distribution of NMIIA filaments. This change is paralleled by a significant drop in vinculin-containing, actin-terminating focal adhesion sites (FAS) per cell. The induction of S100P, consequently, causes significant reduction in cellular adhesion. Addition of a focal adhesion kinase (FAK) inhibitor reduces disassembly of FAS and thereby suppresses S100P-enhanced cell migration. In conclusion, this work has demonstrated a mechanism whereby the S100P-induced dissociation of NMIIA filaments leads to a weakening of FAS, reduced cell adhesion, and enhanced cell migration, the first major step in the metastatic cascade.
Collapse
Affiliation(s)
- Min Du
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
13
|
Goh Then Sin C, Hersch N, Rudland PS, Barraclough R, Hoffmann B, Gross SR. S100A4 downregulates filopodia formation through increased dynamic instability. Cell Adh Migr 2012; 5:439-47. [PMID: 21975553 DOI: 10.4161/cam.5.5.17773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell migration requires the initial formation of cell protrusions, lamellipodia and/or filopodia, the attachment of the leading lamella to extracellular cues and the formation and efficient recycling of focal contacts at the leading edge. The small calcium binding EF-hand protein S100A4 has been shown to promote cell motility but the direct molecular mechanisms responsible remain to be elucidated. In this work, we provide new evidences indicating that elevated levels of S100A4 affect the stability of filopodia and prevent the maturation of focal complexes. Increasing the levels of S100A4 in a rat mammary benign tumor derived cell line results in acquired cellular migration on the wound healing scratch assay. At the cellular levels, we found that high levels of S100A4 induce the formation of many nascent filopodia, but that only a very small and limited number of those can stably adhere and mature, as opposed to control cells, which generate fewer protrusions but are able to maintain these into more mature projections. This observation was paralleled by the fact that S100A4 overexpressing cells were unable to establish stable focal adhesions. Using different truncated forms of the S100A4 proteins that are unable to bind to myosin IIA, our data suggests that this newly identified functions of S100A4 is myosin-dependent, providing new understanding on the regulatory functions of S100A4 on cellular migration.
Collapse
|
14
|
Hapangama DK, Raju RS, Valentijn AJ, Barraclough D, Hart A, Turner MA, Platt-Higgins A, Barraclough R, Rudland PS. Aberrant expression of metastasis-inducing proteins in ectopic and matched eutopic endometrium of women with endometriosis: implications for the pathogenesis of endometriosis. Hum Reprod 2011; 27:394-407. [DOI: 10.1093/humrep/der412] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Jin Q, Chen H, Luo A, Ding F, Liu Z. S100A14 stimulates cell proliferation and induces cell apoptosis at different concentrations via receptor for advanced glycation end products (RAGE). PLoS One 2011; 6:e19375. [PMID: 21559403 PMCID: PMC3084824 DOI: 10.1371/journal.pone.0019375] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 03/31/2011] [Indexed: 01/09/2023] Open
Abstract
S100A14 is an EF-hand containing calcium-binding protein of the S100 protein family that exerts its biological effects on different types of cells. However, exact extracellular roles of S100A14 have not been clarified yet. Here we investigated the effects of S100A14 on esophageal squamous cell carcinoma (ESCC) cell lines. Results demonstrated that low doses of extracellular S100A14 stimulate cell proliferation and promote survival in KYSE180 cells through activating ERK1/2 MAPK and NF-κB signaling pathways. Immunoprecipitation assay showed that S100A14 binds to receptor for advanced glycation end products (RAGE) in KYSE180 cells. Inhibition of RAGE signaling by different approaches including siRNA for RAGE, overexpression of a dominant-negative RAGE construct or a RAGE antagonist peptide (AmphP) significantly blocked S100A14-induced effects, suggesting that S100A14 acts via RAGE ligation. Furthermore, mutation of the N-EF hand of S100A14 (E39A, E45A) virtually reduced 10 µg/ml S100A14-induced cell proliferation and ERK1/2 activation. However, high dose (80 µg/ml) of S100A14 causes apoptosis via the mitochondrial pathway with activation of caspase-3, caspase-9, and poly(ADP-ribose) polymerase. High dose S100A14 induces cell apoptosis is partially in a RAGE-dependent manner. This is the first study to demonstrate that S100A14 binds to RAGE and stimulates RAGE-dependent signaling cascades, promoting cell proliferation or triggering cell apoptosis at different doses.
Collapse
Affiliation(s)
- Qing'e Jin
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aiping Luo
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Ding
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
16
|
Mitsuhashi M, Sakata H, Kinjo M, Yazawa M, Takahashi M. Dynamic assembly properties of nonmuscle myosin II isoforms revealed by combination of fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy. J Biochem 2010; 149:253-63. [PMID: 21106542 DOI: 10.1093/jb/mvq134] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Myosin II molecules assemble into filaments through their C-terminal rod region, and are responsible for several cellular motile activities. Three isoforms of nonmuscle myosin II (IIA, IIB and IIC) are expressed in mammalian cells. However, little is known regarding the isoform composition in filaments. To obtain new insight into the assembly properties of myosin II isoforms, especially regarding the isoform composition in filaments, we performed a combination analysis of fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS), which enables us to acquire information on both the interaction and the size of each molecule simultaneously. Using C-terminal rod fragments of IIA and IIB (ARF296 and BRF305) labelled with different fluorescent probes, we demonstrated that hetero-assemblies were formed from a mixture of ARF296 and BRF305, and that dynamic exchange of rod fragments occurred between preformed homo-assemblies of each isoform in an isoform-independent manner. We also showed that Mts1 (S100A4) specifically stripped ARF296 away from the hetero-assemblies, and consequently, homo-assemblies of BRF305 were formed. These results suggest that IIA and IIB can form hetero-filaments in an isoform-independent manner, and that a factor like Mts1 can remove one isoform from the hetero-filament, resulting in a formation of homo-filaments consisting of another isoform.
Collapse
Affiliation(s)
- Mariko Mitsuhashi
- Division of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
17
|
The Calcium-Dependent Interaction of S100B with Its Protein Targets. Cardiovasc Psychiatry Neurol 2010; 2010. [PMID: 20827422 PMCID: PMC2933916 DOI: 10.1155/2010/728052] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/09/2010] [Indexed: 01/16/2023] Open
Abstract
S100B is a calcium signaling protein that is a member of the S100 protein family. An important feature of S100B and most other S100 proteins (S100s) is that they often bind Ca2+ ions relatively weakly in the absence of a protein target; upon binding their target proteins, Ca2+-binding then increases by as much as from 200- to 400-fold. This manuscript reviews the structural basis and physiological significance of increased Ca2+-binding affinity in the presence of protein targets. New information regarding redundancy among family members and the structural domains that mediate the interaction of S100B, and other S100s, with their targets is also presented. It is the diversity among individual S100s, the protein targets that they interact with, and the Ca2+ dependency of these protein-protein interactions that allow S100s to transduce changes in [Ca2+]intracellular levels into spatially and temporally unique biological responses.
Collapse
|
18
|
Radestock Y, Willing C, Kehlen A, Hoang-Vu C, Hombach-Klonisch S. Relaxin Enhances S100A4 and Promotes Growth of Human Thyroid Carcinoma Cell Xenografts. Mol Cancer Res 2010; 8:494-506. [DOI: 10.1158/1541-7786.mcr-09-0307] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Ismail TM, Zhang S, Fernig DG, Gross S, Martin-Fernandez ML, See V, Tozawa K, Tynan CJ, Wang G, Wilkinson MC, Rudland PS, Barraclough R. Self-association of calcium-binding protein S100A4 and metastasis. J Biol Chem 2009; 285:914-22. [PMID: 19917604 DOI: 10.1074/jbc.m109.010892] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevated levels of the calcium-binding protein S100A4 promote metastasis and in carcinoma cells are associated with reduced survival of cancer patients. S100A4 interacts with target proteins that affect a number of activities associated with metastatic cells. However, it is not known how many of these interactions are required for S100A4-promoted metastasis, thus hampering the design of specific inhibitors of S100A4-induced metastasis. Intracellular S100A4 exists as a homodimer through previously identified, well conserved, predominantly hydrophobic key contacts between the subunits. Here it is shown that mutating just one key residue, phenylalanine 72, to alanine is sufficient to reduce the metastasis-promoting activity of S100A4 to 50% that of the wild type protein, and just 2 or 3 specific mutations reduces the metastasis-promoting activity of S100A4 to less than 20% that of the wild type protein. These mutations inhibit the self-association of S100A4 in vivo and reduce markedly the affinity of S100A4 for at least two of its protein targets, a recombinant fragment of non-muscle myosin heavy chain isoform A, and p53. Inhibition of the self-association of S100 proteins might be a novel means of inhibiting their metastasis-promoting activities.
Collapse
Affiliation(s)
- Thamir M Ismail
- School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sherbet GV. Metastasis promoter S100A4 is a potentially valuable molecular target for cancer therapy. Cancer Lett 2008; 280:15-30. [PMID: 19059703 DOI: 10.1016/j.canlet.2008.10.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/30/2008] [Accepted: 10/27/2008] [Indexed: 11/25/2022]
Abstract
The growth, invasion and metastatic spread of cancer have been identified with the deregulation of cell proliferation, altered intercellular and cell-substratum adhesion and enhanced motility and the deposition of disseminated cancer cells at distant sites. The identification of therapeutic targets for cancer is crucial to human welfare. Drug development, molecular modelling and design of effective drugs greatly depend upon the identification of suitable therapeutic targets. Several genetic determinants relating to proliferation and growth, invasion and metastasis have been identified. S100A4 appears to be able to activate and integrate pathways to generate the phenotypic responses that are characteristic of cancer. S100A4 signalling can focus on factors associated with normal and aberrant proliferation, apoptosis and growth, and differentiation. It is able to activate signalling pathways leading to the remodelling of the cell membrane and the extracellular matrix; modulation of cytoskeletal dynamics, acquisition of invasiveness and induction of angiogenesis. Therefore S100A4 is arguably a molecular target of considerable potential possessing a wide ranging biological activity that can alter and regulate the major phenotypic features of cancer. The evolution of an appropriate strategy that permits the identification of therapeutic targets most likely to be effective in the disease process without unduly affecting normal biological processes and function is an incontrovertible imperative. By virtue of its ability to activate interacting and multi-functional signalling systems, S100A4 appears to offer suitable targets for developing new therapeutic procedures. Some effectors of the S100A4-activated pathways might also lend themselves as foci of therapeutic interest.
Collapse
Affiliation(s)
- G V Sherbet
- School of Electrical, Electronic and Computer Engineering, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
21
|
Moon A, Yong HY, Song JI, Cukovic D, Salagrama S, Kaplan D, Putt D, Kim H, Dombkowski A, Kim HRC. Global gene expression profiling unveils S100A8/A9 as candidate markers in H-ras-mediated human breast epithelial cell invasion. Mol Cancer Res 2008; 6:1544-53. [PMID: 18922970 DOI: 10.1158/1541-7786.mcr-08-0189] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The goal of the present study is to unveil the gene expression profile specific to the biological processes of human breast epithelial cell invasion and migration using an MCF10A model genetically engineered to constitutively activate the H-ras or N-ras signaling pathway. We previously showed that H-Ras, but not N-Ras, induces MCF10A cell invasion/migration, whereas both H-Ras and N-Ras induce cell proliferation and phenotypic transformation. Thus, these cell lines provide an experimental system to separate the gene expression profile associated with cell invasion apart from cell proliferation/transformation. Analysis of whole human genome microarray revealed that 412 genes were differentially expressed among MCF10A, N-Ras MCF10A, and H-Ras MCF10A cells and hierarchical clustering separated 412 genes into four clusters. We then tested whether S100A8 and S100A9, two of the genes which are most highly up-regulated in an H-Ras-specific manner, play a causative role for H-Ras-mediated MCF10A cell invasion and migration. Importantly, small interfering RNA-mediated knockdown of S100A8/A9 expression significantly reduced H-Ras-induced invasion/migration. Conversely, the induction of S100A8/A9 expression conferred the invasive/migratory phenotype to parental MCF10A cells. Furthermore, we provided evidence of signaling cross-talk between S100A8/A9 and the mitogen-activated protein kinase signaling pathways essential for H-Ras-mediated cell invasion and migration. Taken together, this study revealed S100A8/A9 genes as candidate markers for metastatic potential of breast epithelial cells. Our gene profile data provide useful information which may lead to the identification of additional potential targets for the prognosis and/or therapy of metastatic breast cancer.
Collapse
Affiliation(s)
- Aree Moon
- College of Pharmacy, Duksung Women's University, Seoul, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ismail TM, Fernig DG, Rudland PS, Terry CJ, Wang G, Barraclough R. The basic C-terminal amino acids of calcium-binding protein S100A4 promote metastasis. Carcinogenesis 2008; 29:2259-66. [PMID: 18784356 DOI: 10.1093/carcin/bgn217] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The calcium-binding protein S100A4 can induce a metastatic phenotype in animal model systems and its expression in various human cancers has been shown to be associated with metastasis and reduced patient survival. Using a series of nested deletion mutants, it is now shown that the two C-terminal lysine residues are required for the enhanced metastasis, invasion and migration abilities that S100A4 confers on cells in a model system of metastasis. Basic C-terminal residues enhance the affinity between S100A4 and its best characterized target, a recombinant C-terminal fragment of non-muscle myosin II heavy chain isoform A (NMMHC-IIA). In wild-type S100A4 protein, the presence of the C-terminal lysine, residue 101, enhances the rate of association between S100A4 and NMMHC-IIA. These results identify the amino acids of S100A4 that are involved in metastasis induction and show that the C-terminal region of S100A4 is a possible target for inhibitors of its metastatic action.
Collapse
Affiliation(s)
- Thamir M Ismail
- Cancer and Polio Research Fund Laboratories, Biosciences Building, University of Liverpool, Liverpool, UK
| | | | | | | | | | | |
Collapse
|
23
|
Dutta K, Cox CJ, Basavappa R, Pascal SM. 15N relaxation studies of Apo-Mts1: a dynamic S100 protein. Biochemistry 2008; 47:7637-47. [PMID: 18627127 DOI: 10.1021/bi8005048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mts1 is a member of the S100 family of EF-hand calcium-binding proteins. Like most S100 proteins, Mts1 exists as a dimer in solution and contains one canonical and one pseudo-EF-hand motif per monomer, each of which consists of two alpha helices connected by a loop capable of coordinating a calcium ion. The backbone dynamics of murine apo-Mts1 homodimer have been examined by nuclear magnetic resonance spectroscopy. Longitudinal and transverse relaxation data and steady-state (1)H- (15)N nuclear Overhauser effects were analyzed using model-free formalism. The extracted global correlation time is 9.94 ns. Results indicate that the protein backbone is most rigid at the dimer interface, made up of helices 1 and 4 from each monomer with mean S (2) ( S avg (2)) values approximately 0.9, flanked by helices 2 and 3 with lower S avg (2) values of 0.84 and 0.77, respectively. Each calcium-binding site along with the hinge joining the two EF-hands and the N- and C-termini are considerably more flexible than the dimer interface on a range of time scales and more flexible than the corresponding regions of other S100 proteins studied to date. As the hinge and the C-terminal tail are believed to interact with target proteins, these dynamic characteristics may have implications for Mts1 activity.
Collapse
Affiliation(s)
- Kaushik Dutta
- New York Structural Biology Center, 89 Convent Avenue, New York, New York 10033, USA.
| | | | | | | |
Collapse
|
24
|
Koshelev YA, Georgiev GP, Kibardin AV. Functions of protein MTS1 (S100A4) in normal and tumor cells. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Cabezón T, Celis JE, Skibshøj I, Klingelhöfer J, Grigorian M, Gromov P, Rank F, Myklebust JH, Maelandsmo GM, Lukanidin E, Ambartsumian N. Expression of S100A4 by a variety of cell types present in the tumor microenvironment of human breast cancer. Int J Cancer 2007; 121:1433-44. [PMID: 17565747 DOI: 10.1002/ijc.22850] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The S100A4 protein, which is involved in the metastasis process, is a member of the S100 superfamily of Ca-binding proteins. Members of this family are multifunctional signaling proteins with dual extra and intracellular functions involved in the regulation of diverse cellular processes. Several studies have established a correlation between S100A4 protein expression and worse prognosis for patients with various malignancies including breast cancer. In this article, we have used specific antibodies in combination with immunohistochemistry (IHC) to identify the cell types that express S100A4 in human breast cancer biopsies obtained from high-risk patients. IHC analysis of 68 tumor biopsies showed that the protein is expressed preferentially by various cell types present in the tumor microenvironment (macrophages, fibroblasts, activated lymphocytes), rather than by the tumor cells themselves. Moreover, we show that the protein is externalized by the stroma cells to the fluid that bathes the tumor microenvironment, where it is found in several forms that most likely correspond to charge variants. Using a specific ELISA test, we detected a significant higher concentration of S100A4 in the tumor interstitial fluid (TIF) as compared to their corresponding normal counterparts (NIF).
Collapse
Affiliation(s)
- Teresa Cabezón
- Department of Proteomics in Cancer, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gez S, Crossett B, Christopherson RI. Differentially expressed cytosolic proteins in human leukemia and lymphoma cell lines correlate with lineages and functions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1173-83. [PMID: 17698427 DOI: 10.1016/j.bbapap.2007.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/05/2007] [Accepted: 06/15/2007] [Indexed: 12/18/2022]
Abstract
Identification of cytosolic proteins differentially expressed between types of leukemia and lymphoma may provide a molecular basis for classification and understanding their cellular properties. Two-dimensional fluorescence difference gel electrophoresis (DIGE) and mass spectrometry have been used to identify proteins that are differentially expressed in cytosolic extracts from four human leukemia and lymphoma cell lines: HL-60 (acute promyelocytic leukemia), MEC1 (B-cell chronic lymphocytic leukemia), CCRF-CEM (T-cell acute lymphoblastic leukemia) and Raji (B-cell Burkitt's lymphoma). A total of 247 differentially expressed proteins were identified between the four cell lines. Analysis of the data by principal component analysis identified 22 protein spots (17 different protein species) differentially expressed at more than a 95% variance level between these cell lines. Several of these proteins were differentially expressed in only one cell line: HL-60 (myeloperoxidase, phosphoprotein 32 family member A, ras related protein Rab-11B, protein disulfide-isomerase, ran-specific GTPase-activating protein, nucleophosmin and S-100 calcium binding protein A4), and Raji (ezrin). Several of these proteins were differentially expressed in two cell lines: Raji and MEC1 (C-1-tetrahydrofolate synthase, elongation factor 2, alpha- and beta-tubulin, transgelin-2 and stathmin). MEC1 and CCRF-CEM (gamma-enolase), HL-60 and CCRF-CEM (ubiquitin-conjugating enzyme E2 N). The differentially expressed proteins identified in these four cell lines correlate with cellular properties and provide insights into the molecular basis of these malignancies.
Collapse
Affiliation(s)
- Swetlana Gez
- School of Molecular and Microbial Biosciences G08, University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
27
|
Seabra L, Warenius H. Proteomic co-expression of cyclin-dependent kinases 1 and 4 in human cancer cells. Eur J Cancer 2007; 43:1483-92. [PMID: 17481885 DOI: 10.1016/j.ejca.2007.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/08/2007] [Accepted: 03/15/2007] [Indexed: 10/23/2022]
Abstract
The roles of the cyclin-dependent kinases Cdk2, Cdk4 and Cdk6 and their complementary cyclin partners in moving cells from a quiescent state into active DNA synthesis are presently undergoing re-evaluation. Normal cell cycling now appears possible in the absence of any of these molecular controlling factors whilst certain cell-cycle control kinases, such as Cdk4, appear to be mandatory for cancer cell growth. Here, we describe a unique relationship between proteomic expression of Cdk1 and Cdk4 in human cancer cell lines and data from clinical malignant melanoma. The relationship was not present in normal diploid keratinocytes and fibroblasts. We suggest that the much tighter spread of Cdk1/Cdk4 ratios in human cancer cells compared to normal cells may selectively benefit the cancer cell and thus provide a potential novel anticancer target.
Collapse
Affiliation(s)
- Laurence Seabra
- Apoptosis Research Group, Life Sciences, Keele University, Keele, Staffordshire, UK
| | | |
Collapse
|
28
|
|
29
|
Santamaria-Kisiel L, Rintala-Dempsey A, Shaw G. Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 2006; 396:201-14. [PMID: 16683912 PMCID: PMC1462724 DOI: 10.1042/bj20060195] [Citation(s) in RCA: 473] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/24/2006] [Accepted: 03/27/2006] [Indexed: 12/12/2022]
Abstract
The S100 proteins comprise at least 25 members, forming the largest group of EF-hand signalling proteins in humans. Although the proteins are expressed in many tissues, each S100 protein has generally been shown to have a preference for expression in one particular tissue or cell type. Three-dimensional structures of several S100 family members have shown that the proteins assume a dimeric structure consisting of two EF-hand motifs per monomer. Calcium binding to these S100 proteins, with the exception of S100A10, results in an approx. 40 degrees alteration in the position of helix III, exposing a broad hydrophobic surface that enables the S100 proteins to interact with a variety of target proteins. More than 90 potential target proteins have been documented for the S100 proteins, including the cytoskeletal proteins tubulin, glial fibrillary acidic protein and F-actin, which have been identified mostly from in vitro experiments. In the last 5 years, efforts have concentrated on quantifying the protein interactions of the S100 proteins, identifying in vivo protein partners and understanding the molecular specificity for target protein interactions. Furthermore, the S100 proteins are the only EF-hand proteins that are known to form both homo- and hetero-dimers, and efforts are underway to determine the stabilities of these complexes and structural rationales for their formation and potential differences in their biological roles. This review highlights both the calcium-dependent and -independent interactions of the S100 proteins, with a focus on the structures of the complexes, differences and similarities in the strengths of the interactions, and preferences for homo- compared with hetero-dimeric S100 protein assembly.
Collapse
Affiliation(s)
| | - Anne C. Rintala-Dempsey
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Gary S. Shaw
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| |
Collapse
|
30
|
Leukert N, Vogl T, Strupat K, Reichelt R, Sorg C, Roth J. Calcium-dependent tetramer formation of S100A8 and S100A9 is essential for biological activity. J Mol Biol 2006; 359:961-72. [PMID: 16690079 DOI: 10.1016/j.jmb.2006.04.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 03/01/2006] [Accepted: 04/05/2006] [Indexed: 02/06/2023]
Abstract
S100 proteins comprise the largest family of calcium-binding proteins. Members of this family usually form homo- or heterodimers, which may associate to higher-order oligomers in a calcium-dependent manner. The heterodimers of S100A8 and S100A9 represent the major calcium-binding proteins in phagocytes. Both proteins regulate migration of these cells via modulation of tubulin polymerization. Calcium binding induces formation of (S100A8/S100A9)2 tetramers. The functional relevance of these higher-order oligomers of S100 proteins, however, is not yet clear. To investigate the importance of higher-order oligomerization for S100 proteins, we created a set of mutations within S100A9 (N69A, E78A, N69A+E78A) destroying the high-affinity C-terminal calcium-binding site (EF-hand II). Mutations in EF-hand II did not interfere with formation of the S100A8/S100A9 heterodimer as demonstrated by yeast two-hybrid experiments and pull-down assays. In contrast, mass spectrometric analysis and density gradient centrifugation revealed that calcium-induced association of (S100A8/S100A9)2 tetramers was strictly dependent on a functional EF-hand II in S100A9. Failure of tetramer formation was associated with a lack of functional activity of S100A8/S100A9 complexes in promoting the formation of microtubules. Thus, our data demonstrate that calcium-dependent formation of (S100A8/S100A9)2 tetramers is an essential prerequisite for biological function. This is the first report showing a functional relevance of calcium-induced higher-order oligomerization in the S100 family.
Collapse
Affiliation(s)
- Nadja Leukert
- Institute of Experimental Dermatology, University of Muenster, Roentgenstr. 21, 48149 Muenster, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Wang G, Platt-Higgins A, Carroll J, de Silva Rudland S, Winstanley J, Barraclough R, Rudland PS. Induction of metastasis by S100P in a rat mammary model and its association with poor survival of breast cancer patients. Cancer Res 2006; 66:1199-207. [PMID: 16424059 DOI: 10.1158/0008-5472.can-05-2605] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
S100P, an EF-hand calcium-binding protein, has been reported to be associated with the progression of many types of cancers. Transfection of an expression vector for S100P into a benign, nonmetastatic rat mammary cell line causes a 4- to 6-fold increase in its level in all four transformant cell clones. When the resultant transformant cell lines are introduced in turn into the mammary fat pads of syngeneic Furth-Wistar rats, there is a significant 3-fold increase in local muscle invasion and a significant induction of metastasis in 64% to 75% of tumor-bearing animals. In a group of 303 breast cancer patients followed for up to 20 years, antibodies to S100P immunocytochemically stain 161 primary tumors. Survival of patients with S100P-positive carcinomas is significantly worse by about 7-fold than for those with negatively stained carcinomas. There is also a significant association between the class level of immunocytochemical staining of the carcinoma cells and decreased patient survival. Positive staining for S100P is significantly associated with that for two other metastasis-inducing proteins, S100A4 and osteopontin. Patients with tumors that stained positively for both S100P and S100A4 have a significantly reduced survival of 1.1% over patients with either S100 protein alone. Multivariate regression analysis identifies S100P, S100A4, and osteopontin as the most significant independent indicators of death in this group of patients. These results suggest that stratification of patients into groups according to expression of multiple metastasis-inducing proteins may lead to a more accurate prediction of patient survival.
Collapse
Affiliation(s)
- Guozheng Wang
- Cancer and Polio Research Fund Laboratories, School of Biological Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|