1
|
Zhu B, Zheng T, Wang W, Gu Y, Wei C, Li Q, Wang Z. Genotype-phenotype correlations of neurofibromatosis type 1: a cross-sectional study from a large Chinese cohort. J Neurol 2024; 271:1893-1900. [PMID: 38095723 DOI: 10.1007/s00415-023-12127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 03/28/2024]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a highly heterogeneous autosomal genetic disorder characterized by a broad spectrum of clinical and molecular manifestations. The correlations between genotype and phenotype in NF1 remain elusive. This study aimed to elucidate genotype-phenotype associations in a large Chinese cohort of NF1 patients. METHODS We included NF1 patients from our center who underwent genetic testing for NF1 variants and systemic examination. Genotype-phenotype correlation analyses were performed, focusing on variation types and involved neurofibromin domains. RESULTS A total of 195 patients were enrolled, comprising 105 males and 90 females, with a median age of 18 years. Truncating variants, single amino acid variations, and splicing variants accounted for 139/195 (71.3%), 23/195 (11.8%), and 33/195 (16.9%), respectively. Patients with splicing variants exhibited a significantly higher prevalence of spinal plexiform neurofibromas (spinal PNF) than those with truncating variants (76.4% vs. 51.8%; p = 0.022). Variations affecting the PKC domain were associated with higher rates of cutaneous neurofibromas (CNF) (100% vs. 64.9%, p < 0.001), Lisch nodules (100% vs. 61.2%, p < 0.001), plexiform neurofibromas (PNF) (100% vs. 95.7%, p = 0.009), and psychiatric disorders (11.8% vs. 1.6%, p = 0.042). Patients with mutations in the CSRD had an elevated risk of secondary primary malignancies (11.6% vs. 2.8%, p = 0.015). GRD involvement might enhance the risk of Lisch nodules (76.9% vs. 53.7%, p = 0.044). Variations in the Sec14-PH domain were correlated with a higher rate of CNF (76.8% vs. 58.6%, p = 0.014). Additionally, we found that the p.R1748* variants carry a high risk of malignancy. CONCLUSION Our study suggested some novel genotype-phenotype correlations within a Chinese cohort, providing innovative insights into this complex field that may contribute to genetic counseling, risk stratification, and clinical management for the NF1 population.
Collapse
Affiliation(s)
- Beiyao Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Tingting Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yihui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chengjiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
2
|
Pan R, Dai J, Liang W, Wang H, Ye L, Ye S, Lin Z, Huang S, Xiong Y, Zhang L, Lu L, Wang O, Shen X, Liao W, Lu X. PDE4DIP contributes to colorectal cancer growth and chemoresistance through modulation of the NF1/RAS signaling axis. Cell Death Dis 2023; 14:373. [PMID: 37355626 PMCID: PMC10290635 DOI: 10.1038/s41419-023-05885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023]
Abstract
Phosphodiesterase 4D interacting protein (PDE4DIP) is a centrosome/Golgi protein associated with cyclic nucleotide phosphodiesterases. PDE4DIP is commonly mutated in human cancers, and its alteration in mice leads to a predisposition to intestinal cancer. However, the biological function of PDE4DIP in human cancer remains obscure. Here, we report for the first time the oncogenic role of PDE4DIP in colorectal cancer (CRC) growth and adaptive MEK inhibitor (MEKi) resistance. We show that the expression of PDE4DIP is upregulated in CRC tissues and associated with the clinical characteristics and poor prognosis of CRC patients. Knockdown of PDE4DIP impairs the growth of KRAS-mutant CRC cells by inhibiting the core RAS signaling pathway. PDE4DIP plays an essential role in the full activation of oncogenic RAS/ERK signaling by suppressing the expression of the RAS GTPase-activating protein (RasGAP) neurofibromin (NF1). Mechanistically, PDE4DIP promotes the recruitment of PLCγ/PKCε to the Golgi apparatus, leading to constitutive activation of PKCε, which triggers the degradation of NF1. Upregulation of PDE4DIP results in adaptive MEKi resistance in KRAS-mutant CRC by reactivating the RAS/ERK pathway. Our work reveals a novel functional link between PDE4DIP and NF1/RAS signal transduction and suggests that targeting PDE4DIP is a promising therapeutic strategy for KRAS-mutant CRC.
Collapse
Affiliation(s)
- Rulu Pan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Juji Dai
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weicheng Liang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongxiao Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lin Ye
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Siqi Ye
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ziqi Lin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shishun Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yan Xiong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Li Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Liting Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ouchen Wang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanqin Liao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
3
|
Báez-Flores J, Rodríguez-Martín M, Lacal J. The therapeutic potential of neurofibromin signaling pathways and binding partners. Commun Biol 2023; 6:436. [PMID: 37081086 PMCID: PMC10119308 DOI: 10.1038/s42003-023-04815-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Neurofibromin controls many cell processes, such as growth, learning, and memory. If neurofibromin is not working properly, it can lead to health problems, including issues with the nervous, skeletal, and cardiovascular systems and cancer. This review examines neurofibromin's binding partners, signaling pathways and potential therapeutic targets. In addition, it summarizes the different post-translational modifications that can affect neurofibromin's interactions with other molecules. It is essential to investigate the molecular mechanisms that underlie neurofibromin variants in order to provide with functional connections between neurofibromin and its associated proteins for possible therapeutic targets based on its biological function.
Collapse
Affiliation(s)
- Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
4
|
Xu J, Zhang Y, Zhu K, Li J, Guan Y, He X, Jin X, Bai G, Hu L. Clinical characteristics and in silico analysis of congenital pseudarthrosis of the tibia combined with neurofibromatosis type 1 caused by a novel NF1 mutation. Front Genet 2022; 13:991314. [PMID: 36246612 PMCID: PMC9553987 DOI: 10.3389/fgene.2022.991314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Congenital pseudarthrosis of the tibia (CPT) is a rare congenital bone malformation, which has a strong relationship with Neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant disease leading to multisystem disorders. Here, we presented the genotypic and phenotypic characteristics of one unique case of a five-generation Chinese family. The proband was CPT accompanied with NF1 due to NF1 mutation. The proband developed severe early-onset CPT combined with NF1 after birth. Appearance photos and X-ray images of the left limb of the proband showed significant bone malformation. Slit-lamp examination showed Lisch nodules in both eyes of the proband. Whole-exome sequencing (WES) and Sanger sequencing confirmed the truncation variant of NF1 (c.871G>T, p. E291*). Sequence conservative and evolutionary conservation analysis indicated that the novel mutation (p.E291*) was highly conserved. The truncated mutation led to the loss of functional domains, including CSRD, GRD, TBD, SEC14-PH, CTD, and NLS. It may explain why the mutation led to a severe clinical feature. Our report expands the genotypic spectrum of NF1 mutations and the phenotypic spectrum of CPT combined with NF1.
Collapse
Affiliation(s)
- Jingfang Xu
- Department of Orthopaedics, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ying Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhu
- Department of Pathology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiabin Li
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yuelin Guan
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xinyu He
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xuejing Jin
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guannan Bai
- Department of Child Health Care, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lidan Hu
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
5
|
Neurofibromatosis Type 1 Gene Alterations Define Specific Features of a Subset of Glioblastomas. Int J Mol Sci 2021; 23:ijms23010352. [PMID: 35008787 PMCID: PMC8745708 DOI: 10.3390/ijms23010352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) gene mutations or alterations occur within neurofibromatosis type 1 as well as in many different malignant tumours on the somatic level. In glioblastoma, NF1 loss of function plays a major role in inducing the mesenchymal (MES) subtype and, therefore defining the most aggressive glioblastoma. This is associated with an immune signature and mediated via the NF1–MAPK–FOSL1 axis. Specifically, increased invasion seems to be regulated via mutations in the leucine-rich domain (LRD) of the NF1 gene product neurofibromin. Novel targets for therapy may arise from neurofibromin deficiency-associated cellular mechanisms that are summarised in this review.
Collapse
|
6
|
The cryo-EM structure of the human neurofibromin dimer reveals the molecular basis for neurofibromatosis type 1. Nat Struct Mol Biol 2021; 28:982-988. [PMID: 34887559 DOI: 10.1038/s41594-021-00687-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022]
Abstract
Neurofibromin (NF1) mutations cause neurofibromatosis type 1 and drive numerous cancers, including breast and brain tumors. NF1 inhibits cellular proliferation through its guanosine triphosphatase-activating protein (GAP) activity against rat sarcoma (RAS). In the present study, cryo-electron microscope studies reveal that the human ~640-kDa NF1 homodimer features a gigantic 30 × 10 nm array of α-helices that form a core lemniscate-shaped scaffold. Three-dimensional variability analysis captured the catalytic GAP-related domain and lipid-binding SEC-PH domains positioned against the core scaffold in a closed, autoinhibited conformation. We postulate that interaction with the plasma membrane may release the closed conformation to promote RAS inactivation. Our structural data further allow us to map the location of disease-associated NF1 variants and provide a long-sought-after structural explanation for the extreme susceptibility of the molecule to loss-of-function mutations. Collectively these findings present potential new routes for therapeutic modulation of the RAS pathway.
Collapse
|
7
|
N Abdel-Aziz N, Y El-Kamah G, A Khairat R, R Mohamed H, Z Gad Y, El-Ghor AM, Amr KS. Mutational spectrum of NF1 gene in 24 unrelated Egyptian families with neurofibromatosis type 1. Mol Genet Genomic Med 2021; 9:e1631. [PMID: 34080803 PMCID: PMC8683698 DOI: 10.1002/mgg3.1631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/19/2020] [Accepted: 02/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background Neurofibromatosis 1 (NF1; OMIM# 162200) is a common autosomal dominant genetic disease [incidence: ~1:3500]. In 95% of cases, clinical diagnosis of the disease is based on the presence of at least two of the seven National Institute of Health diagnostic criteria. The molecular pathology underlying this disorder entails mutation in the NF1 gene. The aim of this study was to investigate clinical and molecular characteristics of a cohort of Egyptian NF1 patients. Method This study included 35 clinically diagnosed NF1 patients descending from 25 unrelated families. Patients had ≥2 NIH diagnostic criteria. Examination of NF1 gene was done through direct cDNA sequencing of multiple overlapping fragments. This was supplemented by NF1 multiple ligation dependent probe amplification (MLPA) analysis of leucocytic DNA. Results The clinical presentations encompassed, café‐au‐lait spots in 100% of probands, freckling (52%), neurofibromas (20%), Lisch nodules of the iris (12%), optic pathway glioma (8%), typical skeletal disorders (20%), and positive family history (32%). Mutations could be detected in 24 families (96%). Eight mutations (33%) were novel. Conclusion This study illustrates the underlying molecular pathology among Egyptian NF1 patients for the first time. It also reports on 8 novel mutation expanding pathogenic mutational spectra in the NF1 gene.
Collapse
Affiliation(s)
- Nahla N Abdel-Aziz
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Ghada Y El-Kamah
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Rabab A Khairat
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Hanan R Mohamed
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Yehia Z Gad
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Akmal M El-Ghor
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Khalda S Amr
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
8
|
Bergoug M, Doudeau M, Godin F, Mosrin C, Vallée B, Bénédetti H. Neurofibromin Structure, Functions and Regulation. Cells 2020; 9:cells9112365. [PMID: 33121128 PMCID: PMC7692384 DOI: 10.3390/cells9112365] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Neurofibromin is a large and multifunctional protein encoded by the tumor suppressor gene NF1, mutations of which cause the tumor predisposition syndrome neurofibromatosis type 1 (NF1). Over the last three decades, studies of neurofibromin structure, interacting partners, and functions have shown that it is involved in several cell signaling pathways, including the Ras/MAPK, Akt/mTOR, ROCK/LIMK/cofilin, and cAMP/PKA pathways, and regulates many fundamental cellular processes, such as proliferation and migration, cytoskeletal dynamics, neurite outgrowth, dendritic-spine density, and dopamine levels. The crystallographic structure has been resolved for two of its functional domains, GRD (GAP-related (GTPase-activating protein) domain) and SecPH, and its post-translational modifications studied, showing it to be localized to several cell compartments. These findings have been of particular interest in the identification of many therapeutic targets and in the proposal of various therapeutic strategies to treat the symptoms of NF1. In this review, we provide an overview of the literature on neurofibromin structure, function, interactions, and regulation and highlight the relationships between them.
Collapse
|
9
|
Nuclear Isoforms of Neurofibromin Are Required for Proper Spindle Organization and Chromosome Segregation. Cells 2020; 9:cells9112348. [PMID: 33114250 PMCID: PMC7690890 DOI: 10.3390/cells9112348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
Mitotic spindles are highly organized, microtubule (MT)-based, transient structures that serve the fundamental function of unerring chromosome segregation during cell division and thus of genomic stability during tissue morphogenesis and homeostasis. Hence, a multitude of MT-associated proteins (MAPs) regulates the dynamic assembly of MTs in preparation for mitosis. Some tumor suppressors, normally functioning to prevent tumor development, have now emerged as significant MAPs. Among those, neurofibromin, the product of the Neurofibromatosis-1 gene (NF1), a major Ras GTPase activating protein (RasGAP) in neural cells, controls also the critical function of chromosome congression in astrocytic cellular contexts. Cell type- and development-regulated splicings may lead to the inclusion or exclusion of NF1exon51, which bears a nuclear localization sequence (NLS) for nuclear import at G2; yet the functions of the produced NLS and ΔNLS neurofibromin isoforms have not been previously addressed. By using a lentiviral shRNA system, we have generated glioblastoma SF268 cell lines with conditional knockdown of NLS or ΔNLS transcripts. In dissecting the roles of NLS or ΔNLS neurofibromins, we found that NLS-neurofibromin knockdown led to increased density of cytosolic MTs but loss of MT intersections, anastral spindles featuring large hollows and abnormal chromosome positioning, and finally abnormal chromosome segregation and increased micronuclei frequency. Therefore, we propose that NLS neurofibromin isoforms exert prominent mitotic functions.
Collapse
|
10
|
Bellazzo A, Collavin L. Cutting the Brakes on Ras-Cytoplasmic GAPs as Targets of Inactivation in Cancer. Cancers (Basel) 2020; 12:cancers12103066. [PMID: 33096593 PMCID: PMC7588890 DOI: 10.3390/cancers12103066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary GTPase-Activating Proteins (RasGAPs) are a group of structurally related proteins with a fundamental role in controlling the activity of Ras in normal and cancer cells. In particular, loss of function of RasGAPs may contribute to aberrant Ras activation in cancer. Here we review the multiple molecular mechanisms and factors that are involved in downregulating RasGAPs expression and functions in cancer. Additionally, we discuss how extracellular stimuli from the tumor microenvironment can control RasGAPs expression and activity in cancer cells and stromal cells, indirectly affecting Ras activation, with implications for cancer development and progression. Abstract The Ras pathway is frequently deregulated in cancer, actively contributing to tumor development and progression. Oncogenic activation of the Ras pathway is commonly due to point mutation of one of the three Ras genes, which occurs in almost one third of human cancers. In the absence of Ras mutation, the pathway is frequently activated by alternative means, including the loss of function of Ras inhibitors. Among Ras inhibitors, the GTPase-Activating Proteins (RasGAPs) are major players, given their ability to modulate multiple cancer-related pathways. In fact, most RasGAPs also have a multi-domain structure that allows them to act as scaffold or adaptor proteins, affecting additional oncogenic cascades. In cancer cells, various mechanisms can cause the loss of function of Ras inhibitors; here, we review the available evidence of RasGAP inactivation in cancer, with a specific focus on the mechanisms. We also consider extracellular inputs that can affect RasGAP levels and functions, implicating that specific conditions in the tumor microenvironment can foster or counteract Ras signaling through negative or positive modulation of RasGAPs. A better understanding of these conditions might have relevant clinical repercussions, since treatments to restore or enhance the function of RasGAPs in cancer would help circumvent the intrinsic difficulty of directly targeting the Ras protein.
Collapse
|
11
|
Cui XW, Ren JY, Gu YH, Li QF, Wang ZC. NF1, Neurofibromin and Gene Therapy: Prospects of Next-Generation Therapy. Curr Gene Ther 2020; 20:100-108. [PMID: 32767931 DOI: 10.2174/1566523220666200806111451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022]
Abstract
Neurofibromatosis type 1 [NF1] is an autosomal dominant genetic disorder affecting multiple organs. NF1 is well known for its various clinical manifestations, including café-au-late macules, Lisch nodules, bone deformity and neurofibromas. However, there is no effective therapy for NF1. Current therapies are aimed at alleviating NF1 clinical symptoms but not curing the disease. By altering pathogenic genes, gene therapy regulates cell activities at the nucleotide level. In this review, we described the structure and functions of neurofibromin domains, including GAP-related domain [GRD], cysteine-serine rich domain [CSRD], leucine-rich domain [LRD] and C-terminal domain [CTD], which respectively alter downstream pathways. By transfecting isolated sequences of these domains, researchers can partially restore normal cell functions in neurofibroma cell lines. Furthermore, recombinant transgene sequences may be designed to encode truncated proteins, which is functional and easy to be packaged into viral vectors. In addition, the treatment effect of gene therapy is also determined by various factors such as the vectors selection, transgene packaging strategies and drug administration. We summarized multiple NF1 gene therapy strategies and discussed their feasibility from multiple angles. Different protein domains alter the function and downstream pathways of neurofibromin.
Collapse
Affiliation(s)
- Xi-Wei Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jie-Yi Ren
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
12
|
Karouzaki S, Peta C, Tsirimonaki E, Mangoura D. PKCε-dependent H-Ras activation encompasses the recruitment of the RasGEF SOS1 and of the RasGAP neurofibromin in the lipid rafts of embryonic neurons. Neurochem Int 2019; 131:104582. [PMID: 31629778 DOI: 10.1016/j.neuint.2019.104582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/27/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023]
Abstract
The spatial organization of plasma membrane proteins is a key factor in the generation of distinct signal outputs, especially for PKC/Ras/ERK signalling. Regulation of activation of the membrane-bound Ras, critical for neuronal differentiation and highly specialized functions, is controlled by exchanges in nucleotides catalyzed by nucleotide exchange factors (GEFs) for GTP loading and Ras activation, and by Ras GTPase Activated Proteins (RasGAPs) that lead to activation of the intrinsic GTPase activity of Ras and thus its inactivation. PKCs are potent Ras activators yet the mechanistic details of these interactions, or the involvement of specific PKC isoforms are now beginning to be addressed. Even less known is the topology where RasGAPs terminate Ras activation. Towards this aim, we isolated lipid rafts from chick embryo neural tissue and primary neuronal cultures when PKCε is the prominent isoform and in combination with in vitro kinase assays, we now show that, in response the PKCε-specific activating peptide ψεRACK, an activated PKCε is recruited to lipid rafts; similar mobility was established when PKCε was physiologically activated with the Cannabinoid receptor 1 (CB1) agonist methanandamide. Activation of H-Ras for both agents was then established for the first time using in vivo RasGAP activity assays, which showed similar temporal profiles of activation and lateral mobility. Moreover, we found that the GEF SOS1, and the major neuronal RasGAP neurofibromin, a specific PKCε substrate, were both transiently significantly enriched in the rafts. Finally, our in silico analysis revealed a highly probable, conserved palmitoylation site adjacent to a CARC motif on neurofibromin, both of which are included only in the RasGAP related domain type I (GRDI) with the known high H-RasGAP activity. Taken together, these results suggest that PKCε activation regulates the spatial plasma membrane enrichments of both SOS1 and neurofibromin, thus controlling the output of activated H-Ras available for downstream signalling in neurons.
Collapse
Affiliation(s)
- Sophia Karouzaki
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece
| | - Charoula Peta
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece
| | - Emmanouella Tsirimonaki
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece
| | - Dimitra Mangoura
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece.
| |
Collapse
|
13
|
Scheffzek K, Shivalingaiah G. Ras-Specific GTPase-Activating Proteins-Structures, Mechanisms, and Interactions. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031500. [PMID: 30104198 DOI: 10.1101/cshperspect.a031500] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ras-specific GTPase-activating proteins (RasGAPs) down-regulate the biological activity of Ras proteins by accelerating their intrinsic rate of GTP hydrolysis, basically by a transition state stabilizing mechanism. Oncogenic Ras is commonly not sensitive to RasGAPs caused by interference of mutants with the electronic or steric requirements of the transition state, resulting in up-regulation of activated Ras in respective cells. RasGAPs are modular proteins containing a helical catalytic RasGAP module surrounded by smaller domains that are frequently involved in the subcellular localization or contributing to regulatory features of their host proteins. In this review, we summarize current knowledge about RasGAP structure, mechanism, regulation, and dual-substrate specificity and discuss in some detail neurofibromin, one of the most important negative Ras regulators in cellular growth control and neuronal function.
Collapse
Affiliation(s)
- Klaus Scheffzek
- Division of Biological Chemistry (Biocenter), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Giridhar Shivalingaiah
- Division of Biological Chemistry (Biocenter), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
14
|
Molosh AI, Shekhar A. Neurofibromatosis type 1 as a model system to study molecular mechanisms of autism spectrum disorder symptoms. PROGRESS IN BRAIN RESEARCH 2018; 241:37-62. [PMID: 30447756 DOI: 10.1016/bs.pbr.2018.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neurofibromatosis type 1 (NF1) is monogenic neurodevelopmental disorder caused by mutation of NF1 gene, which leads to increased susceptibility to various tumors formations. Additionally, majority of patients with NF1 are experience high incidence of cognitive deficits. Particularly, we review the growing number of reports demonstrated a higher incidence of autism spectrum disorder (ASD) in individuals with NF1. In this review we also discuss face validity of preclinical Nf1 mouse models. Then we describe discoveries from these animal models that have uncovered the deficiencies in the regulation of Ras and other intracellular pathways as critical mechanisms underlying the Nf1 cognitive problems. We also summarize and interpret recent preclinical and clinical studies that point toward potential pharmacological therapies for NF1 patients.
Collapse
Affiliation(s)
- Andrei I Molosh
- Department of Psychiatry, Institute of Psychiatric Research, IU School of Medicine, Indianapolis, IN, United States; Stark Neurosciences Research Institute, IU School of Medicine, Indianapolis, IN, United States.
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, IU School of Medicine, Indianapolis, IN, United States; Stark Neurosciences Research Institute, IU School of Medicine, Indianapolis, IN, United States; Department of Pharmacology & Toxicology, IU School of Medicine, Indianapolis, IN, United States; Indiana Clinical and Translational Institute, IU School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
15
|
Xu M, Xiong H, Han Y, Li C, Mai S, Huang Z, Ai X, Guo Z, Zeng F, Guo Q. Identification of Mutation Regions on NF1 Responsible for High- and Low-Risk Development of Optic Pathway Glioma in Neurofibromatosis Type I. Front Genet 2018; 9:270. [PMID: 30087692 PMCID: PMC6066643 DOI: 10.3389/fgene.2018.00270] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/03/2018] [Indexed: 12/30/2022] Open
Abstract
Neurofibromatosis type I is a rare neurocutaneous syndrome resulting from loss-of-function mutations of NF1. The present study sought to determine a correlation between mutation regions on NF1 and the risk of developing optic pathway glioma (OPG) in patients with neurofibromatosis type I. A total of 215 patients with neurofibromatosis type I, from our clinic or previously reported literature, were included in the study after applying strict inclusion and exclusion criteria. Of these, 100 patients with OPG were classified into the OPG group and 115 patients without OPG (aged ≥ 10 years) were assigned to the Non-OPG group. Correlation between different mutation regions and risk of OPG was analyzed. The mutation clustering in the 5′ tertile of NF1 was not significantly different between OPG and Non-OPG groups (P = 0.131). Interestingly, patients with mutations in the cysteine/serine-rich domain of NF1 had a higher risk of developing OPG than patients with mutations in other regions [P = 0.019, adjusted odds ratio (OR) = 2.587, 95% confidence interval (CI) = 1.167–5.736], whereas those in the HEAT-like repeat region had a lower risk (P = 0.036, adjusted OR = 0.396, 95% CI = 0.166–0.942). This study confirms a new correlation between NF1 genotype and OPG phenotype in patients with neurofibromatosis type I, and provides novel insights into molecular functions of neurofibromin.
Collapse
Affiliation(s)
- Min Xu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Xiong
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanfang Han
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chijun Li
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaozhen Mai
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Dermatology, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhongzhou Huang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuechen Ai
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhixuan Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fanqin Zeng
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Rosset C, Vairo F, Cristina Bandeira I, Fonini M, Netto CBO, Ashton-Prolla P. Clinical and molecular characterization of neurofibromatosis in southern Brazil. Expert Rev Mol Diagn 2018; 18:577-586. [PMID: 29685074 DOI: 10.1080/14737159.2018.1468256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Neurofibromatoses (type 1: NF1; type 2: NF2) are autosomal dominant tumor predisposition syndromes mostly caused by loss-of-function mutations in the tumor suppressor genes NF1 and NF2, respectively. Genotyping is important for correct diagnosis of these diseases. The authors aimed to characterize NF1 and NF2 variants in patients from Southern Brazil. METHODS Ninety-three unrelated probands with NF1 and 7 unrelated probands with NF2 features were recruited from an Oncogenetics center in Southern Brazil. Two next generation sequencing panels were customized to identify point mutations: NF1 (NF1, RNF135, and SUZ12 genes) and NF2 (NF2 and SMARCB1 genes). Large rearrangements were assessed by Multiplex Ligation-dependent Probe Amplification. RESULTS Sixty-eight heterozygous NF1 variants were identified in 75/93 probands (80%) and 3 heterozygous NF2 variants were identified in 3/7 probands (43%). In NF1, 59 (87%) variants were pathogenic (4 large rearrangements - 6%), 6 (9%) were likely pathogenic, 3 (4%) were variants of uncertain significance and 28 (41%) were novel. In NF2, all variants were pathogenic. No novel genotype-phenotype correlations were observed; however, previously described correlations were confirmed in our cohort. CONCLUSION The clinical and molecular characterization of neurofibromatoses in different populations is very important to provide further insights into the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Clévia Rosset
- a Laboratório de Medicina Genômica - Centro de Pesquisa Experimental , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,b Programa de Pós-graduação em Genética e Biologia Molecular , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Filippo Vairo
- c Serviço de Genética Médica , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | - Isabel Cristina Bandeira
- a Laboratório de Medicina Genômica - Centro de Pesquisa Experimental , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,b Programa de Pós-graduação em Genética e Biologia Molecular , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Maievi Fonini
- a Laboratório de Medicina Genômica - Centro de Pesquisa Experimental , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil
| | | | - Patricia Ashton-Prolla
- a Laboratório de Medicina Genômica - Centro de Pesquisa Experimental , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,b Programa de Pós-graduação em Genética e Biologia Molecular , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil.,c Serviço de Genética Médica , Hospital de Clínicas de Porto Alegre , Porto Alegre , Brazil.,d Departamento de Genética , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| |
Collapse
|
17
|
Koczkowska M, Chen Y, Callens T, Gomes A, Sharp A, Johnson S, Hsiao MC, Chen Z, Balasubramanian M, Barnett CP, Becker TA, Ben-Shachar S, Bertola DR, Blakeley JO, Burkitt-Wright EMM, Callaway A, Crenshaw M, Cunha KS, Cunningham M, D'Agostino MD, Dahan K, De Luca A, Destrée A, Dhamija R, Eoli M, Evans DGR, Galvin-Parton P, George-Abraham JK, Gripp KW, Guevara-Campos J, Hanchard NA, Hernández-Chico C, Immken L, Janssens S, Jones KJ, Keena BA, Kochhar A, Liebelt J, Martir-Negron A, Mahoney MJ, Maystadt I, McDougall C, McEntagart M, Mendelsohn N, Miller DT, Mortier G, Morton J, Pappas J, Plotkin SR, Pond D, Rosenbaum K, Rubin K, Russell L, Rutledge LS, Saletti V, Schonberg R, Schreiber A, Seidel M, Siqveland E, Stockton DW, Trevisson E, Ullrich NJ, Upadhyaya M, van Minkelen R, Verhelst H, Wallace MR, Yap YS, Zackai E, Zonana J, Zurcher V, Claes K, Martin Y, Korf BR, Legius E, Messiaen LM. Genotype-Phenotype Correlation in NF1: Evidence for a More Severe Phenotype Associated with Missense Mutations Affecting NF1 Codons 844-848. Am J Hum Genet 2018; 102:69-87. [PMID: 29290338 PMCID: PMC5777934 DOI: 10.1016/j.ajhg.2017.12.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000-3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons-Leu844, Cys845, Ala846, Leu847, and Gly848-located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844-848 exists and will be valuable in the management and genetic counseling of a significant number of individuals.
Collapse
Affiliation(s)
- Magdalena Koczkowska
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yunjia Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tom Callens
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alicia Gomes
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Angela Sharp
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sherrell Johnson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Meng-Chang Hsiao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zhenbin Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, UK
| | | | - Troy A Becker
- Medical Genetics, John Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA
| | - Shay Ben-Shachar
- The Genetic Institute, Tel-Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel-Aviv 6997801, Israel
| | - Debora R Bertola
- Department of Pediatrics, University of São Paulo, São Paulo 05403-000, Brazil
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emma M M Burkitt-Wright
- Genomic Medicine, Division of Evolution and Genomic Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Alison Callaway
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury SP2 8BJ, UK
| | - Melissa Crenshaw
- Medical Genetics, John Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA
| | - Karin S Cunha
- Department of Pathology, School of Medicine, Universidade Federal Fluminense, Niterói 24220-900, Brazil
| | - Mitch Cunningham
- Division of Genetic, Genomic and Metabolic Disorders, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Maria D D'Agostino
- Department of Medical Genetics, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Karin Dahan
- Center for Human Genetics, Institute of Pathology and Genetics (IPG), Gosselies 6041, Belgium
| | - Alessandro De Luca
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo 71013, Italy
| | - Anne Destrée
- Center for Human Genetics, Institute of Pathology and Genetics (IPG), Gosselies 6041, Belgium
| | - Radhika Dhamija
- Department of Clinical Genomics and Neurology, Mayo Clinic, Phoenix, AZ 85259, USA
| | - Marica Eoli
- Unit of Molecular Neuro-Oncology, IRCCS Foundation, Carlo Besta Neurological Institute, Milan 20133, Italy
| | - D Gareth R Evans
- Genomic Medicine, Division of Evolution and Genomic Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | | | | | - Karen W Gripp
- Division of Medical Genetics, Al DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Jose Guevara-Campos
- Pediatrics Service, Felipe Guevara Rojas Hospital, University of Oriente, El Tigre-Anzoátegui, Venezuela 6034, Spain
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Concepcion Hernández-Chico
- Department of Genetics, Hospital Universitario Ramón y Cayal, Institute of Health Research (IRYCIS), Madrid 28034, Spain and Center for Biomedical Research-Network of Rare Diseases (CIBERER)
| | - LaDonna Immken
- Dell Children's Medical Center of Central Texas, Austin, TX 78723, USA
| | - Sandra Janssens
- Center for Medical Genetics, Ghent University Hospital, Ghent 9000, Belgium
| | - Kristi J Jones
- Department of Clinical Genetics, the Children's Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Beth A Keena
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Aaina Kochhar
- Department of Genetics, Valley Children's Healthcare, Madera, CA 93636, USA
| | - Jan Liebelt
- Women's and Children's Hospital/SA Pathology, North Adelaide, SA 5006, Australia
| | - Arelis Martir-Negron
- Division of Clinical Genetics, Center for Genomic Medicine, Miami Cancer Institute, Miami, FL 33176, USA
| | | | - Isabelle Maystadt
- Center for Human Genetics, Institute of Pathology and Genetics (IPG), Gosselies 6041, Belgium
| | - Carey McDougall
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Meriel McEntagart
- St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Nancy Mendelsohn
- Genomics Medicine Program, Children's Hospital Minnesota, Minneapolis, MN 55404, USA
| | - David T Miller
- Multidisciplinary Neurofibromatosis Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Geert Mortier
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp 2650, Belgium
| | - Jenny Morton
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham B15 2TG, UK
| | - John Pappas
- Department of Pediatrics, Clinical Genetic Services, NYU School of Medicine, New York, NY 10016, USA
| | - Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dinel Pond
- Genomics Medicine Program, Children's Hospital Minnesota, Minneapolis, MN 55404, USA
| | - Kenneth Rosenbaum
- Division of Genetics and Metabolism, Children's National Health System, Washington, DC 20010, USA
| | - Karol Rubin
- University of Minnesota Health, Minneapolis, MN 55404, USA
| | - Laura Russell
- Department of Medical Genetics, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Lane S Rutledge
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Veronica Saletti
- Developmental Neurology Unit, IRCCS Foundation, Carlo Besta Neurological Institute, Milan 20133, Italy
| | - Rhonda Schonberg
- Division of Genetics and Metabolism, Children's National Health System, Washington, DC 20010, USA
| | - Allison Schreiber
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Meredith Seidel
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Elizabeth Siqveland
- Genomics Medicine Program, Children's Hospital Minnesota, Minneapolis, MN 55404, USA
| | - David W Stockton
- Division of Genetic, Genomic and Metabolic Disorders, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy and Italy Istituto di Ricerca Pediatria, IRP, Città della Speranza, Padova 35128, Italy
| | - Nicole J Ullrich
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Meena Upadhyaya
- Division of Cancer and Genetics, Cardiff University, Cardiff CF14 4XN, UK
| | - Rick van Minkelen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 GE, the Netherlands
| | - Helene Verhelst
- Department of Paediatrics, Division of Paediatric Neurology, Ghent University Hospital, Ghent 9000, Belgium
| | - Margaret R Wallace
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Yoon-Sim Yap
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; Faculty of Health Sciences, School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan Zonana
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Vickie Zurcher
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kathleen Claes
- Center for Medical Genetics, Ghent University Hospital, Ghent 9000, Belgium
| | - Yolanda Martin
- Department of Genetics, Hospital Universitario Ramón y Cayal, Institute of Health Research (IRYCIS), Madrid 28034, Spain and Center for Biomedical Research-Network of Rare Diseases (CIBERER)
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Eric Legius
- Department of Human Genetics, KU Leuven - University of Leuven, Leuven 3000, Belgium
| | - Ludwine M Messiaen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
18
|
Hennig A, Markwart R, Esparza-Franco MA, Ladds G, Rubio I. Ras activation revisited: role of GEF and GAP systems. Biol Chem 2016; 396:831-48. [PMID: 25781681 DOI: 10.1515/hsz-2014-0257] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
Ras is a prototypical small G-protein and a central regulator of growth, proliferation and differentiation processes in virtually every nucleated cell. As such, Ras becomes engaged and activated by multiple growth factors, mitogens, cytokines or adhesion receptors. Ras activation comes about by changes in the steady-state equilibrium between the inactive guanosine diphosphate (GDP)-bound and active guanosine triphosphate (GTP)-bound states of Ras, resulting in the mostly transient accumulation of Ras-GTP. Three decades of intense Ras research have disclosed various families of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) as the two principal regulatory elements of the Ras-GDP/GTP loading status. However, with the possible exception of the GEF Sos, we still have only a rudimentary knowledge of the precise role played by many GEF and GAP members in the signalling network upstream of Ras. As for GAPs, we even lack the fundamental understanding of whether they function as genuine signal transducers in the context of growth factor-elicited Ras activation or rather act as passive modulators of the Ras-GDP/GTP cycle. Here we sift through the large body of Ras literature and review the relevant data for understanding the participation and precise role played by GEFs and GAPs in the process of Ras activation.
Collapse
|
19
|
Hennig A, Markwart R, Wolff K, Schubert K, Cui Y, Prior IA, Esparza-Franco MA, Ladds G, Rubio I. Feedback activation of neurofibromin terminates growth factor-induced Ras activation. Cell Commun Signal 2016; 14:5. [PMID: 26861207 PMCID: PMC4746934 DOI: 10.1186/s12964-016-0128-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/03/2016] [Indexed: 02/08/2023] Open
Abstract
Background Growth factors induce a characteristically short-lived Ras activation in cells emerging from quiescence. Extensive work has shown that transient as opposed to sustained Ras activation is critical for the induction of mitogenic programs. Mitogen-induced accumulation of active Ras-GTP results from increased nucleotide exchange driven by the nucleotide exchange factor Sos. In contrast, the mechanism accounting for signal termination and prompt restoration of basal Ras-GTP levels is unclear, but has been inferred to involve feedback inhibition of Sos. Remarkably, how GTP-hydrolase activating proteins (GAPs) participate in controlling the rise and fall of Ras-GTP levels is unknown. Results Monitoring nucleotide exchange of Ras in permeabilized cells we find, unexpectedly, that the decline of growth factor-induced Ras-GTP levels proceeds in the presence of unabated high nucleotide exchange, pointing to GAP activation as a major mechanism of signal termination. Experiments with non-hydrolysable GTP analogues and mathematical modeling confirmed and rationalized the presence of high GAP activity as Ras-GTP levels decline in a background of high nucleotide exchange. Using pharmacological and genetic approaches we document a raised activity of the neurofibromatosis type I tumor suppressor Ras-GAP neurofibromin and an involvement of Rsk1 and Rsk2 in the down-regulation of Ras-GTP levels. Conclusions Our findings show that, in addition to feedback inhibition of Sos, feedback stimulation of the RasGAP neurofibromin enforces termination of the Ras signal in the context of growth-factor signaling. These findings ascribe a precise role to neurofibromin in growth factor-dependent control of Ras activity and illustrate how, by engaging Ras-GAP activity, mitogen-challenged cells play safe to ensure a timely termination of the Ras signal irrespectively of the reigning rate of nucleotide exchange. Electronic supplementary material The online version of this article (doi:10.1186/s12964-016-0128-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Hennig
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Hans-Knöll-Str.2, 07745, Jena, Germany.
| | - Robby Markwart
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Hans-Knöll-Str.2, 07745, Jena, Germany.
| | - Katharina Wolff
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Hans-Knöll-Str.2, 07745, Jena, Germany.
| | - Katja Schubert
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Hans-Knöll-Str.2, 07745, Jena, Germany.
| | - Yan Cui
- Leibniz Institute for Age Research - Fritz Lipmann Institute, 07745, Jena, Germany.
| | - Ian A Prior
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK.
| | | | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK.
| | - Ignacio Rubio
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Hans-Knöll-Str.2, 07745, Jena, Germany. .,Center for Sepsis Control and Care, University Hospital, 07747, Jena, Germany.
| |
Collapse
|
20
|
K.M. Ip C, Yin J, K.S. Ng P, Lin SY, B. Mills G. Genomic-Glycosylation Aberrations in Tumor Initiation, Progression and Management. AIMS MEDICAL SCIENCE 2016. [DOI: 10.3934/medsci.2016.4.386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Abstract
Neurofibromatosis type 1 (NF1) is a relatively common tumour predisposition syndrome related to germline aberrations of NF1, a tumour suppressor gene. The gene product neurofibromin is a negative regulator of the Ras cellular proliferation pathway, and also exerts tumour suppression via other mechanisms. Recent next-generation sequencing projects have revealed somatic NF1 aberrations in various sporadic tumours. NF1 plays a critical role in a wide range of tumours. NF1 alterations appear to be associated with resistance to therapy and adverse outcomes in several tumour types. Identification of a patient's germline or somatic NF1 aberrations can be challenging, as NF1 is one of the largest human genes, with a myriad of possible mutations. Epigenetic factors may also contribute to inadequate levels of neurofibromin in cancer cells. Clinical trials of NF1-based therapeutic approaches are currently limited. Preclinical studies on neurofibromin-deficient malignancies have mainly been on malignant peripheral nerve sheath tumour cell lines or xenografts derived from NF1 patients. However, the emerging recognition of the role of NF1 in sporadic cancers may lead to the development of NF1-based treatments for other tumour types. Improved understanding of the implications of NF1 aberrations is critical for the development of novel therapeutic strategies.
Collapse
|
22
|
Koliou X, Fedonidis C, Kalpachidou T, Mangoura D. Nuclear import mechanism of neurofibromin for localization on the spindle and function in chromosome congression. J Neurochem 2015; 136:78-91. [PMID: 26490262 DOI: 10.1111/jnc.13401] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 12/28/2022]
Abstract
Neurofibromatosis type-1 (NF-1) is caused by mutations in the tumor suppressor gene NF1; its protein product neurofibromin is a RasGTPase-activating protein, a property that has yet to explain aneuploidy, most often observed in astrocytes in NF-1. Here, we provide a mechanistic model for the regulated nuclear import of neurofibromin during the cell cycle and for a role in chromosome congression. Specifically, we demonstrate that neurofibromin, phosphorylated on Ser2808, a residue adjacent to a nuclear localization signal in the C-terminal domain (CTD), by Protein Kinase C-epsilon (PKC-ε), accumulates in a Ran-dependent manner and through binding to lamin in the nucleus at G2 in glioblastoma cells. Furthermore, we identify CTD as a tubulin-binding domain and show that a phosphomimetic substitution of its Ser2808 results in a predominantly nuclear localization. Confocal analysis shows that endogenous neurofibromin localizes on the centrosomes at interphase, as well as on the mitotic spindle, through direct associations with tubulins, in glioblastoma cells and primary astrocytes. More importantly, analysis of mitotic phenotypes after siRNA-mediated depletion shows that acute loss of this tumor suppressor protein leads to aberrant chromosome congression at the metaphase plate. Therefore, neurofibromin protein abundance and nuclear import are mechanistically linked to an error-free chromosome congression. Concerned with neurofibromin's, a tumor suppressor, mechanism of action, we demonstrate in astrocytic cells that its synthesis, phosphorylation by Protein Kinase C-ε on Ser2808 (a residue adjacent to a nuclear localization sequence), and nuclear import are cell cycle-dependent, being maximal at G2. During mitosis, neurofibromin is an integral part of the spindle, while its depletion leads to aberrant chromosome congression, possibly explaining the development of chromosomal instability in Neurofibromatosis type-1. Read the Editorial Highlight for this article on page 11. Cover Image for this issue: doi: 10.1111/jnc.13300.
Collapse
Affiliation(s)
- Xeni Koliou
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Constantinos Fedonidis
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Theodora Kalpachidou
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitra Mangoura
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
23
|
Protein kinase Cβ mediates downregulated expression of glucagon-like peptide-1 receptor in hypertensive rat renal arteries. J Hypertens 2015; 33:784-90; discussion 790. [DOI: 10.1097/hjh.0000000000000480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Zhou P, Chen T, Fang Y, Wang H, Li M, Ma P, He L, Li Q, Liu T, Yang X, Nie F, Wang X, Yuan Y, Zhou L, Peng R, Liu Z, Zhou Q. Down-regulated Six2 by knockdown of neurofibromin results in apoptosis of metanephric mesenchyme cells in vitro. Mol Cell Biochem 2014; 390:205-13. [DOI: 10.1007/s11010-014-1971-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/21/2014] [Indexed: 11/29/2022]
|
25
|
Tsirimonaki E, Fedonidis C, Pneumaticos SG, Tragas AA, Michalopoulos I, Mangoura D. PKCε signalling activates ERK1/2, and regulates aggrecan, ADAMTS5, and miR377 gene expression in human nucleus pulposus cells. PLoS One 2013; 8:e82045. [PMID: 24312401 PMCID: PMC3842981 DOI: 10.1371/journal.pone.0082045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 10/29/2013] [Indexed: 12/25/2022] Open
Abstract
The protein kinase C (PKC) signaling, a major regulator of chondrocytic differentiation, has been also implicated in pathological extracellular matrix remodeling, and here we investigate the mechanism of PKCε-dependent regulation of the chondrocytic phenotype in human nucleus pulposus (NP) cells derived from herniated disks. NP cells from each donor were successfully propagated for 25+ culture passages, with remarkable tolerance to repeated freeze-and-thaw cycles throughout long-term culturing. More specifically, after an initial downregulation of COL2A1, a stable chondrocytic phenotype was attested by the levels of mRNA expression for aggrecan, biglycan, fibromodulin, and lumican, while higher expression of SOX-trio and Patched-1 witnessed further differentiation potential. NP cells in culture also exhibited a stable molecular profile of PKC isoforms: throughout patient samples and passages, mRNAs for PKC α, δ, ε, ζ, η, ι, and µ were steadily detected, whereas β, γ, and θ were not. Focusing on the signalling of PKCε, an isoform that may confer protection against degeneration, we found that activation with the PKCε-specific activator small peptide ψεRACK led sequentially to a prolonged activation of ERK1/2, increased abundance of the early gene products ATF, CREB1, and Fos with concurrent silencing of transcription for Ki67, and increases in mRNA expression for aggrecan. More importantly, ψεRACK induced upregulation of hsa-miR-377 expression, coupled to decreases in ADAMTS5 and cleaved aggrecan. Therefore, PKCε activation in late passage NP cells may represent a molecular basis for aggrecan availability, as part of an PKCε/ERK/CREB/AP-1-dependent transcriptional program that includes upregulation of both chondrogenic genes and microRNAs. Moreover, this pathway should be considered as a target for understanding the molecular mechanism of IVD degeneration and for therapeutic restoration of degenerated disks.
Collapse
Affiliation(s)
| | | | - Spiros G. Pneumaticos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Orthopedics, Athens Medical School, University of Athens, Athens, Greece
| | | | | | - Dimitra Mangoura
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
26
|
Chen SN, Gurha P, Lombardi R, Ruggiero A, Willerson JT, Marian AJ. The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circ Res 2013; 114:454-68. [PMID: 24276085 DOI: 10.1161/circresaha.114.302810] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RATIONALE Mutations in the intercalated disc proteins, such as plakophilin 2 (PKP2), cause arrhythmogenic cardiomyopathy (AC). AC is characterized by the replacement of cardiac myocytes by fibro-adipocytes, cardiac dysfunction, arrhythmias, and sudden death. OBJECTIVE To delineate the molecular pathogenesis of AC. METHODS AND RESULTS Localization and levels of selected intercalated disc proteins, including signaling molecules, were markedly reduced in human hearts with AC. Altered protein constituents of intercalated discs were associated with activation of the upstream Hippo molecules in the human hearts, in Nkx2.5-Cre:Dsp(W/F) and Myh6:Jup mouse models of AC, and in the PKP2 knockdown HL-1 myocytes (HL-1(PKP2:shRNA)). Level of active protein kinase C-α isoform, which requires PKP2 for activity, was reduced. In contrast, neurofibromin 2 (or Merlin), a molecule upstream of the Hippo pathway and that is inactivated by protein kinase C-α isoform, was activated. Consequently, the downstream Hippo molecules mammalian STE20-like protein kinases 1/2 (MST1/2), large tumor suppressor kinases 1/2 (LATS1/2), and Yes-associated protein (YAP) (the latter is the effector of the pathway) were phosphorylated. Coimmunoprecipitation detected binding of phosphorylated YAP, phosphorylated β-catenin, and junction protein plakoglobin (the latter translocated from the junction). RNA sequencing, transcript quantitative polymerase chain reaction, and reporter assays showed suppressed activity of SV40 transcriptional enhancer factor domain (TEAD) and transcription factor 7-like 2 (TCF7L2), which are transcription factors of the Hippo and the canonical Wnt signaling, respectively. In contrast, adipogenesis was enhanced. Simultaneous knockdown of Lats1/2, molecules upstream to YAP, rescued inactivation of YAP and β-catenin and adipogenesis in the HL-1(PKP2:shRNA) myocytes. CONCLUSIONS Molecular remodeling of the intercalated discs leads to pathogenic activation of the Hippo pathway, suppression of the canonical Wnt signaling, and enhanced adipogenesis in AC. The findings offer novel mechanisms for the pathogenesis of AC.
Collapse
Affiliation(s)
- Suet Nee Chen
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, The University of Texas Health Sciences Center at Houston, Houston, TX; and Texas Heart Institute, Houston, TX
| | | | | | | | | | | |
Collapse
|
27
|
Morphine mediates a proinflammatory phenotype via μ-opioid receptor–PKCɛ–Akt–ERK1/2 signaling pathway in activated microglial cells. Biochem Pharmacol 2013; 86:487-96. [DOI: 10.1016/j.bcp.2013.05.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/28/2013] [Accepted: 05/31/2013] [Indexed: 11/18/2022]
|
28
|
PKC-epsilon activation is required for recognition memory in the rat. Behav Brain Res 2013; 253:280-9. [PMID: 23911427 DOI: 10.1016/j.bbr.2013.07.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 11/20/2022]
Abstract
Activation of PKCɛ, an abundant and developmentally regulated PKC isoform in the brain, has been implicated in memory throughout life and across species. Yet, direct evidence for a mechanistic role for PKCɛ in memory is still lacking. Hence, we sought to evaluate this in rats, using short-term treatments with two PKCɛ-selective peptides, the inhibitory ɛV1-2 and the activating ψɛRACK, and the novel object recognition task (NORT). Our results show that the PKCɛ-selective activator ψɛRACK, did not have a significant effect on recognition memory. In the short time frames used, however, inhibition of PKCɛ activation with the peptide inhibitor ɛV1-2 significantly impaired recognition memory. Moreover, when we addressed at the molecular level the immediate proximal signalling events of PKCɛ activation in acutely dissected rat hippocampi, we found that ψɛRACK increased in a time-dependent manner phosphorylation of MARCKS and activation of Src, Raf, and finally ERK1/2, whereas ɛV1-2 inhibited all basal activity of this pathway. Taken together, these findings present the first direct evidence that PKCɛ activation is an essential molecular component of recognition memory and point toward the use of systemically administered PKCɛ-regulating peptides as memory study tools and putative therapeutic agents.
Collapse
|
29
|
Nemethova M, Bolcekova A, Ilencikova D, Durovcikova D, Hlinkova K, Hlavata A, Kovacs L, Kadasi L, Zatkova A. Thirty-nine novel neurofibromatosis 1 (NF1) gene mutations identified in Slovak patients. Ann Hum Genet 2013; 77:364-79. [PMID: 23758643 DOI: 10.1111/ahg.12026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/22/2013] [Indexed: 01/20/2023]
Abstract
We performed a complex analysis of the neurofibromatosis type 1 (NF1) gene in Slovakia based on direct cDNA sequencing supplemented by multiple ligation dependent probe amplification (MLPA) analysis. All 108 patients had café-au-lait spots, 85% had axilary and/or inguinal freckling, 61% neurofibromas, 36% Lisch nodules of the iris and 31% optic pathway glioma, 5% suffered from typical skeletal disorders, and 51% of patients had family members with NF1. In 78 of the 86 (90.7%) index patients our analysis revealed the presence of NF1 mutations, 68 of which were small changes (87.2%), including 39 (50%) novel. Among the identified mutations the most prevalent were small deletions and insertions causing frameshift (42.3%), followed by nonsense (14.1%), missense (12.8%), and typical splicing (11.5%) mutations. Type 1 NF1 deletions and intragenic deletions/duplication were identified in five cases each (6.4%). Interestingly, in five other cases nontypical splicing variants were found, whose real effect on NF1 transcript would have remained undetected if using a DNA-based method alone, thus underlying the advantage of using the cDNA-based sequencing. We show that Slovak NF1 patients have a similar repertoire of NF1 germline mutations compared to other populations, with some prevalence of small deletions/insertions and a decreased proportion of nonsense mutations.
Collapse
Affiliation(s)
- Martina Nemethova
- Laboratory of Genetics, Institute of Molecular Physiology and Genetics, Bratislava, Slovakia
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vallée B, Doudeau M, Godin F, Gombault A, Tchalikian A, de Tauzia ML, Bénédetti H. Nf1 RasGAP inhibition of LIMK2 mediates a new cross-talk between Ras and Rho pathways. PLoS One 2012; 7:e47283. [PMID: 23082153 PMCID: PMC3474823 DOI: 10.1371/journal.pone.0047283] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 09/13/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Ras GTPases mediate numerous biological processes through their ability to cycle between an inactive GDP-bound form and an active GTP-bound form. Guanine nucleotide exchange factors (GEFs) favor the formation of the active Ras-GTP, whereas GTPase activating proteins (GAPs) promote the formation of inactive Ras-GDP. Numerous studies have established complex signaling cross-talks between Ras GTPases and other members of the superfamily of small GTPases. GEFs were thought to play a major role in these cross-talks. However, recently GAPs were also shown to play crucial roles in these processes. Among RasGAPs, Nf1 is of special interest. Nf1 is responsible for the genetic disease Neurofibromatosis type I, and recent data strongly suggest that this RasGAP connects different signaling pathways. METHODOLOGY/PRINCIPAL FINDINGS In order to know if the RasGAP Nf1 might play a role in connecting Ras GTPases to other small GTPase pathways, we systematically looked for new partners of Nf1, by performing a yeast two-hybrid screening on its SecPH domain. LIMK2, a major kinase of the Rho/ROCK/LIMK2/cofilin pathway, was identified in this screening. We confirmed this interaction by co-immunoprecipitation experiments, and further characterized it. We also demonstrated its specificity: the close related homolog of LIMK2, LIMK1, does not interact with the SecPH domain of Nf1. We then showed that SecPH partially inhibits the kinase activity of LIMK2 on cofilin. Our results furthermore suggest a precise mechanism for this inhibition: in fact, SecPH would specifically prevent LIMK2 activation by ROCK, its upstream regulator. CONCLUSIONS/SIGNIFICANCE Although previous data had already connected Nf1 to actin cytoskeleton dynamics, our study provides for the first time possible detailed molecular requirements of this involvement. Nf1/LIMK2 interaction and inhibition allows to directly connect neurofibromatosis type I to actin cytoskeleton remodeling, and provides evidence that the RasGAP Nf1 mediates a new cross-talk between Ras and Rho signaling pathways within the superfamily of small GTPases.
Collapse
Affiliation(s)
- Béatrice Vallée
- Centre de Biophysique Moléculaire, Centre Nationale de la Recherche Scientifique (CNRS), University of Orléans and Institut National de la Santé et de la Recherche Médicale (INSERM), Orléans, France
| | - Michel Doudeau
- Centre de Biophysique Moléculaire, Centre Nationale de la Recherche Scientifique (CNRS), University of Orléans and Institut National de la Santé et de la Recherche Médicale (INSERM), Orléans, France
| | - Fabienne Godin
- Centre de Biophysique Moléculaire, Centre Nationale de la Recherche Scientifique (CNRS), University of Orléans and Institut National de la Santé et de la Recherche Médicale (INSERM), Orléans, France
| | | | | | | | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, Centre Nationale de la Recherche Scientifique (CNRS), University of Orléans and Institut National de la Santé et de la Recherche Médicale (INSERM), Orléans, France
| |
Collapse
|
31
|
Stowe IB, Mercado EL, Stowe TR, Bell EL, Oses-Prieto JA, Hernández H, Burlingame AL, McCormick F. A shared molecular mechanism underlies the human rasopathies Legius syndrome and Neurofibromatosis-1. Genes Dev 2012; 26:1421-6. [PMID: 22751498 DOI: 10.1101/gad.190876.112] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Ras/mitogen-activated protein kinase (MAPK) pathway plays a critical role in transducing mitogenic signals from receptor tyrosine kinases. Loss-of-function mutations in one feedback regulator of Ras/MAPK signaling, SPRED1 (Sprouty-related protein with an EVH1 domain), cause Legius syndrome, an autosomal dominant human disorder that resembles Neurofibromatosis-1 (NF1). Spred1 functions as a negative regulator of the Ras/MAPK pathway; however, the underlying molecular mechanism is poorly understood. Here we show that neurofibromin, the NF1 gene product, is a Spred1-interacting protein that is necessary for Spred1's inhibitory function. We show that Spred1 binding induces the plasma membrane localization of NF1, which subsequently down-regulates Ras-GTP levels. This novel mechanism for the regulation of neurofibromin provides a molecular bridge for understanding the overlapping pathophysiology of NF1 and Legius syndrome.
Collapse
Affiliation(s)
- Irma B Stowe
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Han D, Spengler BA, Ross RA. Increased wild-type N-ras activation by neurofibromin down-regulation increases human neuroblastoma stem cell malignancy. Genes Cancer 2012; 2:1034-43. [PMID: 22737269 DOI: 10.1177/1947601912443127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 02/20/2012] [Indexed: 12/30/2022] Open
Abstract
Cellular heterogeneity is a well-known feature of human neuroblastoma tumors and cell lines. Of the 3 phenotypes (N-, I-, and S-type) isolated and characterized, the I-type cancer stem cell of neuroblastoma is the most malignant. Here, we report that, although wild-type N-Ras protein is expressed at the same level in all 3 neuroblastoma cell phenotypes, activated N-Ras-GTP level is significantly higher in I-type cancer stem cells. When activated N-Ras levels were decreased by transfection of a dominant-negative N-Ras construct, the malignant potential of I-type cancer stem cells decreased significantly. Conversely, when weakly malignant N-type cells were transfected with a constitutively active N-Ras construct, activated N-Ras levels, and malignant potential, were significantly increased. Thus, high levels of N-Ras-GTP are required for the increased malignancy of I-type neuroblastoma cancer stem cells. Moreover, increased activation of N-Ras results from significant down-regulation of neurofibromin (NF1), an important RasGAP. This specific down-regulation is mediated by an ubiquitin-proteasome-dependent pathway. Thus, decreased expression of NF1 in I-type neuroblastoma cancer stem cells causes a high level of activated N-Ras that is, at least in part, responsible for their higher tumorigenic potential.
Collapse
Affiliation(s)
- Dan Han
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | | | | |
Collapse
|
33
|
Thomas L, Richards M, Mort M, Dunlop E, Cooper DN, Upadhyaya M. Assessment of the potential pathogenicity of missense mutations identified in the GTPase-activating protein (GAP)-related domain of the neurofibromatosis type-1 (NF1) gene. Hum Mutat 2012; 33:1687-96. [PMID: 22807134 DOI: 10.1002/humu.22162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/28/2012] [Indexed: 11/09/2022]
Abstract
Neurofibromatosis type-1 (NF1) is caused by constitutional mutations of the NF1 tumor-suppressor gene. Although ∼85% of inherited NF1 microlesions constitute truncating mutations, the remaining ∼15% are missense mutations whose pathological relevance is often unclear. The GTPase-activating protein-related domain (GRD) of the NF1-encoded protein, neurofibromin, serves to define its major function as a negative regulator of the Ras-MAPK (mitogen-activated protein kinase) signaling pathway. We have established a functional assay to assess the potential pathogenicity of 15 constitutional nonsynonymous NF1 missense mutations (11 novel and 4 previously reported but not functionally characterized) identified in the NF1-GRD (p.R1204G, p.R1204W, p.R1276Q, p.L1301R, p.I1307V, p.T1324N, p.E1327G, p.Q1336R, p.E1356G, p.R1391G, p.V1398D, p.K1409E, p.P1412R, p.K1436Q, p.S1463F). Individual mutations were introduced into an NF1-GRD expression vector and activated Ras was assayed by an enzyme-linked immunosorbent assay (ELISA). Ten NF1-GRD variants were deemed to be potentially pathogenic by virtue of significantly elevated levels of activated GTP-bound Ras in comparison to wild-type NF1 protein. The remaining five NF1-GRD variants were deemed less likely to be of pathological significance as they exhibited similar levels of activated Ras to the wild-type protein. These conclusions received broad support from both bioinformatic analysis and molecular modeling and serve to improve our understanding of NF1-GRD structure and function.
Collapse
Affiliation(s)
- Laura Thomas
- Institute of Medical Genetics, Cardiff University, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
NF1 (neurofibromatosis type I) is a common genetic disease that affects one in 3500 individuals. The disease is completely penetrant but shows variable phenotypic expression in patients. NF1 is a large gene, and its pre-mRNA undergoes alternative splicing. The NF1 protein, neurofibromin, is involved in diverse signalling cascades. One of the best characterized functions of NF1 is its function as a Ras-GAP (GTPase-activating protein). NF1 exon 23a is an alternative exon that lies within the GAP-related domain of neurofibromin. This exon is predominantly included in most tissues, and it is skipped in CNS (central nervous system) neurons. The isoform in which exon 23a is skipped has 10 times higher Ras-GAP activity than the isoform in which exon 23a is included. Exon 23a inclusion is tightly regulated by at least three different families of RNA-binding proteins: CELF {CUG-BP (cytosine-uridine-guanine-binding protein) and ETR-3 [ELAV (embryonic lethal abnormal vision)-type RNA-binding protein]-like factor}, Hu and TIA-1 (T-cell intracellular antigen 1)/TIAR (T-cell intracellular antigen 1-related protein). The CELF and Hu proteins promote exon 23a skipping, while the TIA-1/TIAR proteins promote its inclusion. The widespread clinical variability that is observed among NF1 patients cannot be explained by NF1 mutations alone and it is believed that modifier genes may have a role in the variability. We suggest that the regulation of alternative splicing may act as a modifier to contribute to the variable expression in NF1 patients.
Collapse
|
35
|
Carroll SL. Molecular mechanisms promoting the pathogenesis of Schwann cell neoplasms. Acta Neuropathol 2012; 123:321-48. [PMID: 22160322 PMCID: PMC3288530 DOI: 10.1007/s00401-011-0928-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/01/2011] [Accepted: 12/04/2011] [Indexed: 12/20/2022]
Abstract
Neurofibromas, schwannomas and malignant peripheral nerve sheath tumors (MPNSTs) all arise from the Schwann cell lineage. Despite their common origin, these tumor types have distinct pathologies and clinical behaviors; a growing body of evidence indicates that they also arise via distinct pathogenic mechanisms. Identification of the genes that are mutated in genetic diseases characterized by the development of either neurofibromas and MPNSTs [neurofibromatosis type 1 (NF1)] or schwannomas [neurofibromatosis type 2 (NF2), schwannomatosis and Carney complex type 1] has greatly advanced our understanding of these mechanisms. The development of genetically engineered mice with ablation of NF1, NF2, SMARCB1/INI1 or PRKAR1A has confirmed the key role these genes play in peripheral nerve sheath tumorigenesis. Establishing the functions of the NF1, NF2, SMARCB1/INI1 and PRKAR1A gene products has led to the identification of key cytoplasmic signaling pathways promoting Schwann cell neoplasia and identified new therapeutic targets. Analyses of human neoplasms and genetically engineered mouse models have established that interactions with other tumor suppressors such as TP53 and CDKN2A promote neurofibroma-MPNST progression and indicate that intratumoral interactions between neoplastic and non-neoplastic cell types play an essential role in peripheral nerve sheath tumorigenesis. Recent advances have also provided new insights into the identity of the neural crest-derived populations that give rise to different types of peripheral nerve sheath tumors. Based on these findings, we now have an initial outline of the molecular mechanisms driving the pathogenesis of neurofibromas, MPNSTs and schwannomas. However, this improved understanding in turn raises a host of intriguing new questions.
Collapse
Affiliation(s)
- Steven L Carroll
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, 1720 Seventh Avenue South, SC930G3, Birmingham, AL 35294-0017, USA.
| |
Collapse
|
36
|
Abstract
Ever since their discovery as cellular counterparts of viral oncogenes more than 25 years ago, much progress has been made in understanding the complex networks of signal transduction pathways activated by oncogenic Ras mutations in human cancers. The activity of Ras is regulated by nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), and much emphasis has been put into the biochemical and structural analysis of the Ras/GAP complex. The mechanisms by which GAPs catalyze Ras-GTP hydrolysis have been clarified and revealed that oncogenic Ras mutations confer resistance to GAPs and remain constitutively active. However, it is yet unclear how cells coordinate the large and divergent GAP protein family to promote Ras inactivation and ensure a certain biological response. Different domain arrangements in GAPs to create differential protein-protein and protein-lipid interactions are probably key factors determining the inactivation of the 3 Ras isoforms H-, K-, and N-Ras and their effector pathways. In recent years, in vitro as well as cell- and animal-based studies examining GAP activity, localization, interaction partners, and expression profiles have provided further insights into Ras inactivation and revealed characteristics of several GAPs to exert specific and distinct functions. This review aims to summarize knowledge on the cell biology of RasGAP proteins that potentially contributes to differential regulation of spatiotemporal Ras signaling.
Collapse
Affiliation(s)
- Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
37
|
Brossier NM, Carroll SL. Genetically engineered mouse models shed new light on the pathogenesis of neurofibromatosis type I-related neoplasms of the peripheral nervous system. Brain Res Bull 2011; 88:58-71. [PMID: 21855613 DOI: 10.1016/j.brainresbull.2011.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/28/2011] [Accepted: 08/02/2011] [Indexed: 12/22/2022]
Abstract
Neurofibromatosis type 1 (NF1), the most common genetic disorder affecting the human nervous system, is characterized by the development of multiple benign Schwann cell tumors in skin and large peripheral nerves. These neoplasms, which are termed dermal and plexiform neurofibromas respectively, have distinct clinical courses; of particular note, plexiform, but not dermal, neurofibromas often undergo malignant progression to form malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy occurring in NF1 patients. In recent years, a number of genetically engineered mouse models have been created to investigate the molecular mechanisms driving the pathogenesis of these tumors. These models have been designed to address key questions including: (1) whether NF1 loss in the Schwann cell lineage is essential for tumorigenesis; (2) what cell type(s) in the Schwann cell lineage gives rise to dermal neurofibromas, plexiform neurofibromas and MPNSTs; (3) how the tumor microenvironment contributes to neoplasia; (4) what additional mutations contribute to neurofibroma-MPNST progression; (5) what role different neurofibromin-regulated Ras proteins play in this process and (6) how dysregulated growth factor signaling facilitates PNS tumorigenesis. In this review, we summarize the major findings from each of these models and their limitations as well as how discrepancies between these models may be reconciled. We also discuss how information gleaned from these models can be synthesized to into a comprehensive model of tumor formation in peripheral nervous system and consider several of the major questions that remain unanswered about this process.
Collapse
Affiliation(s)
- Nicole M Brossier
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | |
Collapse
|
38
|
Jouhilahti EM, Peltonen S, Heape AM, Peltonen J. The pathoetiology of neurofibromatosis 1. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1932-9. [PMID: 21457932 PMCID: PMC3081157 DOI: 10.1016/j.ajpath.2010.12.056] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/01/2010] [Accepted: 12/10/2010] [Indexed: 01/13/2023]
Abstract
Although a mutation in the NF1 gene is the only factor required to initiate the neurocutaneous-skeletal neurofibromatosis 1 (NF1) syndrome, the pathoetiology of the multiple manifestations of this disease in different organ systems seems increasingly complex. The wide spectrum of different clinical phenotypes and their development, severity, and prognosis seem to result from the cross talk between numerous cell types, cell signaling networks, and cell-extracellular matrix interactions. The bi-allelic inactivation of the NF1 gene through a "second hit" seems to be of crucial importance to the development of certain manifestations, such as neurofibromas, café-au-lait macules, and glomus tumors. In each case, the second hit involves only one cell type, which is subsequently clonally expanded in a discrete lesion. Neurofibromas, which are emphasized in this review, and cutaneous neurofibromas in particular, are known to contain a subpopulation of NF1-diploinsufficient Schwann cells and a variety of NF1-haploinsufficient cell types. A recent study identified a multipotent precursor cell population with an NF1(+/-) genotype that resides in human cutaneous neurofibromas and that has been suggested to play a role in their pathogenesis.
Collapse
Affiliation(s)
- Eeva-Mari Jouhilahti
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | - Anthony M. Heape
- Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Juha Peltonen
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
39
|
Asimaki O, Leondaritis G, Lois G, Sakellaridis N, Mangoura D. Cannabinoid 1 receptor-dependent transactivation of fibroblast growth factor receptor 1 emanates from lipid rafts and amplifies extracellular signal-regulated kinase 1/2 activation in embryonic cortical neurons. J Neurochem 2011; 116:866-73. [DOI: 10.1111/j.1471-4159.2010.07030.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Asimaki O, Mangoura D. Cannabinoid receptor 1 induces a biphasic ERK activation via multiprotein signaling complex formation of proximal kinases PKCε, Src, and Fyn in primary neurons. Neurochem Int 2010; 58:135-44. [PMID: 21074588 DOI: 10.1016/j.neuint.2010.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 11/17/2022]
Abstract
Cannabinoid receptors 1 (CB1Rs) play important roles in the regulation of dendritic branching, synapse density, and synaptic transmission through multiple G-protein-coupled signaling systems, including the activation of the extracellular signal-regulated kinases ERK1/2. The proximal signaling interactions leading to ERK1/2 activation by CB1R in CNS remain, however, unclear. Here, we present evidence that the CB1R agonist methanandamide induced a biphasic and sustained activation of ERK1/2 in primary neurons derived from E7 telencephalon. We show that E7 neurons natively express high levels of CB1R message and protein, the majority of which associates with PKCɛ at basal conditions. We now demonstrate that the first peak of ERK activation by CB1R was mediated by the sequential activation of G(q), PLC, and PKCɛ, selectively, and that the CB1R-activated PKCɛ acutely formed transient signaling modules containing activated Src and Fyn. A second pool of CB1Rs, coupled to PTX-sensitive activation of G(i/o), utilized as effectors additional Src and Fyn molecules to generate a second, additional wave of ERK activation at 15 min. Concurrently to these intermolecular signaling interactions, cytoskeleton-associated proteins MARCKS and p120catenin were drastically modified by phosphorylation of PKC and Src, respectively. These receptor-proximal signaling events correlated well with induction of neuritic outgrowth in the long term. Our data provide evidence for multiprotein signaling complex formation in the coupling of CB1R to activation of ERK in CNS neurons, and may elucidate several of the less understood acute effects of cannabinoid drugs.
Collapse
Affiliation(s)
- Olga Asimaki
- Developmental Neurobiology and Neurochemistry Group, Basic Neurosciences, Center for Preventive Medicine, Neurosciences and Social Psychiatry, Biomedical Research Foundation of the Academy of Athens, 4, Soranou Ephessiou Street, 11527 Athens, Greece
| | | |
Collapse
|
41
|
Kaleem A, Ahmad I, Walker-Nasir E, Hoessli DC, Shakoori AR. Effect on the Ras/Raf signaling pathway of post-translational modifications of neurofibromin: in silico study of protein modification responsible for regulatory pathways. J Cell Biochem 2010; 108:816-24. [PMID: 19718661 DOI: 10.1002/jcb.22301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mapping and chemical characterization of post-translational modifications (PTMs) in proteins are critical to understand the regulatory mechanisms involving modified proteins and their role in disease. Neurofibromatosis type 1 (NF-1) is an autosomal dominantly inherited disorder, where NF1 mutations usually result in a reduced level of the tumor suppressor protein, neurofibromin (NF). NF is a multifunctional cytoplasmic protein that regulates microtubule dynamics and participates in several signaling pathways, particularly the RAS signaling pathway. NF is a Ras GTPase-activating protein (GAP) that prevents oncogenesis by converting GTP-Ras to GDP-Ras. This function of NF is regulated by phosphorylation. Interplay of phosphorylation with O-GlcNAc modification on the same or vicinal Ser/Thr residues, the Yin Yang sites, is well known in cytoplasmic and nuclear proteins. The dynamic aspects of PTMs and their interplay being difficult to follow in vivo, we undertook this in silico work to predict and define the possible role of Yin Yang sites in NF-1. Interplay of phosphorylation and O-GlcNAc modification is proposed as a mechanism controlling the Ras signaling pathway.
Collapse
Affiliation(s)
-
- Institute of Molecular Sciences and Bioinformatics, Lahore, Pakistan.
| | | | | | | | | | | |
Collapse
|
42
|
The RasGAP proteins Ira2 and neurofibromin are negatively regulated by Gpb1 in yeast and ETEA in humans. Mol Cell Biol 2010; 30:2264-79. [PMID: 20160012 DOI: 10.1128/mcb.01450-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neurofibromatosis type 1 (NF1) gene encodes the GTPase-activating protein (GAP) neurofibromin, which negatively regulates Ras activity. The yeast Saccharomyces cerevisiae has two neurofibromin homologs, Ira1 and Ira2. To understand how these proteins are regulated, we utilized an unbiased proteomics approach to identify Ira2 and neurofibromin binding partners. We demonstrate that the Gpb1/Krh2 protein binds and negatively regulates Ira2 by promoting its ubiquitin-dependent proteolysis. We extended our findings to show that in mammalian cells, the ETEA/UBXD8 protein directly interacts with and negatively regulates neurofibromin. ETEA contains both UBA and UBX domains. Overexpression of ETEA downregulates neurofibromin in human cells. Purified ETEA, but not a mutant of ETEA that lacks the UBX domain, ubiquitinates the neurofibromin GAP-related domain in vitro. Silencing of ETEA expression increases neurofibromin levels and downregulates Ras activity. These findings provide evidence for conserved ubiquitination pathways regulating the RasGAP proteins Ira2 (in yeast) and neurofibromin (in humans).
Collapse
|
43
|
Liang P, Jiang B, Huang X, Xiao W, Zhang P, Yang X, Long J, Xiao X, Huang X. Anti-apoptotic role of EGF in HaCaT keratinocytes via a PPARbeta-dependent mechanism. Wound Repair Regen 2009; 16:691-8. [PMID: 19128264 DOI: 10.1111/j.1524-475x.2008.00419.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epidermal growth factor (EGF) plays an important role in epithelial cell proliferation and apoptosis. Our recent studies found that EGF-attenuated tumor necrosis factor-alpha induced HaCaT keratinocyte apoptosis, and this effect was accompanied by up-regulation of the expression of peroxisome proliferator-activated receptor beta (PPARbeta). However, little is known about whether PPARbeta is functionally involved in the inhibition of keratinocyte apoptosis by EGF. Here, we showed that EGF up-regulated the DNA-binding and transcriptional regulation activities of PPARbeta. Antisense phosphorothioate oligonucleotides against PPARbeta markedly inhibited de novo synthesis of PPARbeta and attenuated the protective effect of EGF on tumor necrosis factor-alpha-induced apoptosis. L165041, a specific PPARbeta ligand, significantly enhanced the transcriptional regulation activity of PPARbeta and increased the protective effect of EGF. These results suggest a molecular mechanism by which EGF protects HaCaT keratinocytes against apoptosis in a PPARbeta-dependent manner.
Collapse
Affiliation(s)
- Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Leondaritis G, Petrikkos L, Mangoura D. Regulation of the Ras-GTPase activating protein neurofibromin by C-tail phosphorylation: implications for protein kinase C/Ras/extracellular signal-regulated kinase 1/2 pathway signaling and neuronal differentiation. J Neurochem 2009; 109:573-83. [PMID: 19220708 DOI: 10.1111/j.1471-4159.2009.05975.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PKC, Ras, and ERK1/2 signaling is pivotal to differentiation along the neuronal cell lineage. One crucial protein that may play a central role in this signaling pathway is the Ras GTPase-activating protein, neurofibromin, a PKC substrate that may exert a positive role in neuronal differentiation. In this report, we studied the dynamics of PKC/Ras/ERK pathway signaling, during differentiation of SH-SY5Y neuroblastoma cells upon treatment with the PKC agonist, phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Surprisingly, we observed that, among other PKC-dependent signaling events, TPA induced a rapid and sustained decrease of neurofibromin immunoreactivity which was not due to proteolysis. Instead, we identified a specific phosphorylation event at the C-tail of neurofibromin. This phosphorylation was acute and correlated perfectly with the signaling dynamics of the Ras/ERK pathway. Moreover, it persisted throughout prolonged treatment and TPA-induced differentiation of SH-SY5Y cells, concurrently with sustained activation of ERK1/2. Most importantly, C-tail phosphorylation of neurofibromin correlated with a shift of neurofibromin localization from the nucleus to the cytosol. We propose that PKC-dependent, sustained C-tail phosphorylation is a requirement for prolonged recruitment of neurofibromin from the nucleus to the cytosol in order for a fine regulation of Ras/ERK pathway activity to be achieved during differentiation.
Collapse
Affiliation(s)
- George Leondaritis
- Neurosciences, Biomedical Research Foundation of the Academy of Athens, Greece
| | | | | |
Collapse
|
45
|
Bonneau F, Lenherr ED, Pena V, Hart DJ, Scheffzek K. Solubility survey of fragments of the neurofibromatosis type 1 protein neurofibromin. Protein Expr Purif 2008; 65:30-7. [PMID: 19111619 DOI: 10.1016/j.pep.2008.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 12/02/2008] [Accepted: 12/02/2008] [Indexed: 12/13/2022]
Abstract
The protein giant neurofibromin (320kDa) is the protein product of the NF1 tumor suppressor gene, alterations of which are responsible for the pathogenesis of neurofibromatosis type 1 (NF1). Neurofibromin is a Ras-specific GTPase activating protein (RasGAP) that, 15 years after the cloning of the gene, remains the only clearly defined function of the protein. In a structural proteomics approach, we aimed at defining functions beyond RasGAP activity based on the discovery of structural modules. Given the poor outcome of domain prediction tools, we have undertaken a fragment solubility survey covering the full protein sequence, with the aim of defining new domain boundaries or fragments that could be investigated by biochemical methods including structural analysis. More than 200 constructs have been expressed and tested for solubility in small scale assays. Boundaries were chosen based upon secondary structure predictions, sequence conservation among neurofibromin orthologues and chemical properties of amino acids. Using this strategy we recently discovered a novel bipartite module in neurofibromin. We have expanded our study to include ESPRIT, a library-based construct screen, to perform fragment testing at a finer level with respect to the choice of terminal residues. Our study confirms earlier notions about the challenges neurofibromin presents to the biochemist and points to strategies whereby the success rate may be enhanced in the future.
Collapse
Affiliation(s)
- Fabien Bonneau
- European Laboratory of Molecular Biology (EMBL), Structural & Computational Biology and Developmental Biology Units, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
46
|
Theofilopoulos S, Lykidis A, Leondaritis G, Mangoura D. Novel function of the human presqualene diphosphate phosphatase as a type II phosphatidate phosphatase in phosphatidylcholine and triacylglyceride biosynthesis pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:731-42. [DOI: 10.1016/j.bbalip.2008.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 08/29/2008] [Accepted: 09/11/2008] [Indexed: 11/27/2022]
|
47
|
Liang P, Jiang B, Yang X, Xiao X, Huang X, Long J, Zhang P, Zhang M, Xiao M, Xie T, Huang X. The role of peroxisome proliferator-activated receptor-beta/delta in epidermal growth factor-induced HaCaT cell proliferation. Exp Cell Res 2008; 314:3142-51. [PMID: 18625220 DOI: 10.1016/j.yexcr.2008.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 06/11/2008] [Accepted: 06/13/2008] [Indexed: 11/30/2022]
Abstract
Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) expression and activation is involved in the cell proliferation. However, little is known about the role of PPARbeta/delta in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPARbeta/delta mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, an EGF receptor (EGFR) special inhibitor, caused attenuation of PPARbeta/delta protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPARbeta/delta binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPARbeta/delta caused selectively inhibition of PPARbeta/delta protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPARbeta/delta, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPARbeta/delta up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPARbeta/delta promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPARbeta/delta expression in a c-Jun-dependent manner and PPARbeta/delta plays a vital role in EGF-stimulated proliferation of HaCaT cells.
Collapse
Affiliation(s)
- Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
McBride SM, Haas-Kogan DA. Nutrient-sensitive, antagonistically pleiotropic genes and their contribution to malignant behavior. Med Hypotheses 2008; 70:444-53. [DOI: 10.1016/j.mehy.2007.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/06/2007] [Indexed: 10/23/2022]
|
49
|
Ho IS, Hannan F, Guo HF, Hakker I, Zhong Y. Distinct functional domains of neurofibromatosis type 1 regulate immediate versus long-term memory formation. J Neurosci 2007; 27:6852-7. [PMID: 17581973 PMCID: PMC6672704 DOI: 10.1523/jneurosci.0933-07.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a dominant genetic disorder that causes tumors of the peripheral nervous system. In addition, >40% of afflicted children have learning difficulties. The NF1 protein contains a highly conserved GTPase-activating protein domain that inhibits Ras activity, and the C-terminal region regulates cAMP levels via G-protein-dependent activation of adenylyl cyclase. Behavioral analysis indicates that learning is disrupted in both Drosophila and mouse NF1 models. Our previous work has shown that defective cAMP signaling leads to the learning phenotype in Drosophila Nf1 mutants. In the present report, our experiments showed that in addition to learning, long-term memory was also abolished in Nf1 mutants. However, altered NF1-regulated Ras activity is responsible for this defect rather than altered cAMP levels. Furthermore, by expressing clinically relevant human NF1 mutations and deletions in Drosophila Nf1-null mutants, we demonstrated that the GAP-related domain of NF1 was necessary and sufficient for long-term memory, whereas the C-terminal domain of NF1 was essential for immediate memory. Thus, we show that two separate functional domains of the same protein can participate independently in the formation of two distinct memory components.
Collapse
Affiliation(s)
- Ivan Shun Ho
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | |
Collapse
|
50
|
Bausch B, Borozdin W, Mautner VF, Hoffmann MM, Boehm D, Robledo M, Cascon A, Harenberg T, Schiavi F, Pawlu C, Peczkowska M, Letizia C, Calvieri S, Arnaldi G, Klingenberg-Noftz RD, Reisch N, Fassina A, Brunaud L, Walter MA, Mannelli M, MacGregor G, Palazzo FF, Barontini M, Walz MK, Kremens B, Brabant G, Pfäffle R, Koschker AC, Lohoefner F, Mohaupt M, Gimm O, Jarzab B, McWhinney SR, Opocher G, Januszewicz A, Kohlhase J, Eng C, Neumann HPH. Germline NF1 mutational spectra and loss-of-heterozygosity analyses in patients with pheochromocytoma and neurofibromatosis type 1. J Clin Endocrinol Metab 2007; 92:2784-92. [PMID: 17426081 DOI: 10.1210/jc.2006-2833] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a pheochromocytoma-associated syndrome. Because of the low prevalence of pheochromocytoma in NF1, we ascertained subjects by pheochromocytoma that also had NF1 in the hope of describing the germline NF1 mutational spectra of NF1-related pheochromocytoma. MATERIALS AND METHODS An international registry for NF1-pheochromocytomas was established. Mutation scanning was performed using denaturing HPLC for intragenic variation and quantitative PCR for large deletions. Loss-of-heterozygosity analysis using markers in and around NF1 was performed. RESULTS There were 37 eligible subjects (ages 14-70 yr). Of 21 patients with corresponding tumor available, 67% showed somatic loss of the nonmutated allele at the NF1 locus vs. 0 of 12 sporadic tumors (P = 0.0002). Overall, 86% of the 37 patients had exonic or splice site mutations, 14% large deletions or duplications; 79% of the mutations are novel. The cysteine-serine rich domain (CSR) was affected in 35% but the RAS GTPase activating protein domain (RGD) in only 13%. There did not appear to be an association between any clinical features, particularly pheochromocytoma presentation and severity, and NF1 mutation genotype. CONCLUSIONS The germline NF1 mutational spectra comprise intragenic mutations and deletions in individuals with pheochromocytoma and NF1. NF1 mutations tended to cluster in the CSR over the RAS-GAP domain, suggesting that CSR plays a more prominent role in individuals with NF1-pheochromocytoma than in NF1 individuals without this tumor. Loss-of-heterozygosity of NF1 markers in NF1-related pheochromocytoma was significantly more frequent than in sporadic pheochromocytoma, providing further molecular evidence that pheochromocytoma is a true component of NF1.
Collapse
Affiliation(s)
- Birke Bausch
- Department of Neurology, University Medical Center Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|