1
|
Gough R, Treffy RW, Krucoff MO, Desai R. Advances in Glioblastoma Diagnosis: Integrating Genetics, Noninvasive Sampling, and Advanced Imaging. Cancers (Basel) 2025; 17:124. [PMID: 39796751 PMCID: PMC11720166 DOI: 10.3390/cancers17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Glioblastoma is the most common primary brain tumor in adult patients, and despite standard-of-care treatment, median survival has remained less than two years. Advances in our understanding of molecular mutations have led to changes in the diagnostic criteria of glioblastoma, with the WHO classification integrating important mutations into the grading system in 2021. We sought to review the basics of the important genetic mutations associated with glioblastoma, including known mechanisms and roles in disease pathogenesis/treatment. We also examined new advances in image processing as well as less invasive and noninvasive diagnostic tools that can aid in the diagnosis and surveillance of those undergoing treatment for glioblastoma. Our review is intended to serve as an overview of the current state-of-the-art in the diagnosis and management of glioblastoma.
Collapse
Affiliation(s)
| | | | | | - Rupen Desai
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.G.); (R.W.T.); (M.O.K.)
| |
Collapse
|
2
|
Nair NU, Schäffer AA, Gertz EM, Cheng K, Zerbib J, Sahu AD, Leor G, Shulman ED, Aldape KD, Ben-David U, Ruppin E. Chromosome 7 Gain Compensates for Chromosome 10 Loss in Glioma. Cancer Res 2024; 84:3464-3477. [PMID: 39078448 PMCID: PMC11479827 DOI: 10.1158/0008-5472.can-24-1366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
The co-occurrence of chromosome 10 loss and chromosome 7 gain in gliomas is the most frequent loss-gain co-aneuploidy pair in human cancers. This phenomenon has been investigated since the late 1980s without resolution. Expanding beyond previous gene-centric studies, we investigated the co-occurrence in a genome-wide manner, taking an evolutionary perspective. Mining of large-scale tumor aneuploidy data confirmed the previous finding of a small-scale longitudinal study that the most likely order is chromosome 10 loss, followed by chromosome 7 gain. Extensive analysis of genomic and transcriptomic data from both patients and cell lines revealed that this co-occurrence can be explained by functional rescue interactions that are highly enriched on chromosome 7, which could potentially compensate for any detrimental consequences arising from the loss of chromosome 10. Transcriptomic data from various normal, noncancerous human brain tissues were analyzed to assess which tissues may be most predisposed to tolerate compensation of chromosome 10 loss by chromosome 7 gain. The analysis indicated that the preexisting transcriptomic states in the cortex and frontal cortex, where gliomas arise, are more favorable than other brain regions for compensation by rescuer genes that are active on chromosome 7. Collectively, these findings suggest that the phenomenon of chromosome 10 loss and chromosome 7 gain in gliomas is orchestrated by a complex interaction of many genes residing within these two chromosomes and provide a plausible reason why this co-occurrence happens preferentially in cancers originating in certain regions of the brain. Significance: Increased expression of multiple rescuer genes on the gained chromosome 7 could compensate for the downregulation of several vulnerable genes on the lost chromosome 10, resolving the long-standing mystery of this frequent co-occurrence in gliomas.
Collapse
Affiliation(s)
- Nishanth Ulhas Nair
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro A. Schäffer
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - E. Michael Gertz
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kuoyuan Cheng
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- MSD, Beijing, China
| | - Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Avinash Das Sahu
- The University of New Mexico, Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Gil Leor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Eldad D. Shulman
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth D. Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Eytan Ruppin
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Lead contact
| |
Collapse
|
3
|
Yang J, Zhu X, Wang F, Chen Z, Zhang Y, Chen J, Ni H, Zhang C, Zhuge Q. SOXC Enhances NGN2-Mediated Reprogramming of Glioblastoma Cells Into Neuron-Like Cells by Modulating RhoA and RAC1/CDC42 Pathway Activity. CNS Neurosci Ther 2024; 30:e70075. [PMID: 39390804 PMCID: PMC11467166 DOI: 10.1111/cns.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Glioblastoma represents the most frequently diagnosed malignant neoplasm within the central nervous system. Human glioblastoma cells can be phenotypically reprogrammed into neuron-like cells through the forced expression of NEUROG2 and SOXC factors. NEUROG2 serves as a pioneer factor, establishing an initial framework for this transformation. However, the specific role of SOXC factors has not been fully elucidated. METHODS In this study, we used ChIP-seq to determine the potential target gene of NGN2. RNA-seq has been used to evaluate the transcriptional change during NGN2-SOX11-mediated neuron reprogramming. Immunofluorescence was used to determine the neuron reprogramming efficacy and cell proliferation ability. ChIP-qPCR, Co-IP, and Western Blot were performed to investigate the mechanism. RESULTS Our findings reveal that SOXC factors, in contrast to their previously identified function as transcriptional activators, act as transcriptional repressors. They achieve this by recruiting TRIM28 to suppress the expression of ECT2, a RhoGEF. This suppression results in the differential regulation of RhoA, RAC1, and CDC42 activities throughout the reprogramming process. We further establish that small molecules targeting RhoA and its effectors can substitute for SOXC factors in facilitating the neuronal reprogramming of glioblastoma cells. CONCLUSION These results underscore the pivotal role of SOXC factors' transcriptional repression and illuminate one of their specific downstream targets.
Collapse
Affiliation(s)
- Jianjing Yang
- Department of NeurosurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang‐US Joint Laboratory for Aging and Neurological Disease ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Xiaohong Zhu
- Department of NeurosurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang‐US Joint Laboratory for Aging and Neurological Disease ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Fan Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang‐US Joint Laboratory for Aging and Neurological Disease ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhen Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang‐US Joint Laboratory for Aging and Neurological Disease ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ying Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang‐US Joint Laboratory for Aging and Neurological Disease ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jiawei Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang‐US Joint Laboratory for Aging and Neurological Disease ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Haoqi Ni
- Department of NeurosurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang‐US Joint Laboratory for Aging and Neurological Disease ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Chun‐Li Zhang
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Qichuan Zhuge
- Department of NeurosurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Zhejiang‐US Joint Laboratory for Aging and Neurological Disease ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder ResearchThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
4
|
Olofsson IA, Kristjansson RP, Callesen I, Davidsson O, Winsvold B, Hjalgrim H, Ostrowski SR, Erikstrup C, Bruun MT, Pedersen OB, Burgdorf KS, Banasik K, Sørensen E, Mikkelsen C, Didriksen M, Dinh KM, Mikkelsen S, Brunak S, Ullum H, Chalmer MA, Olesen J, Kogelman LJA, Hansen TF. Genome-wide association study reveals a locus in ADARB2 for complete freedom from headache in Danish Blood Donors. Commun Biol 2024; 7:646. [PMID: 38802570 PMCID: PMC11130207 DOI: 10.1038/s42003-024-06299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Headache disorders are the most common disorders of the nervous system. The lifetime prevalence of headache disorders show that some individuals never experience headache. The etiology of complete freedom from headache is not known. To assess genetic variants associated with complete freedom from headache, we performed a genome-wide association study of individuals who have never experienced a headache. We included 63,992 individuals (2,998 individuals with complete freedom from headache and 60,994 controls) from the Danish Blood Donor Study Genomic Cohort. Participants were included in two rounds, from 2015 to 2018 and in 2020. We discovered a genome-wide significant association, with the lead variant rs7904615[G] in ADARB2 (EAF = 27%, OR = 1.20 [1.13-1.27], p = 3.92 × 10-9). The genomic locus was replicated in a non-overlapping cohort of 13,032 individuals (539 individuals with complete freedom from headache and 12,493 controls) from the Danish Blood Donor Study Genomic Cohort (p < 0.05, two-sided). Participants for the replication were included from 2015 to 2020. In conclusion, we show that complete freedom from headache has a genetic component, and we suggest that ADARB2 is involved in complete freedom from headache. The genomic locus was specific for complete freedom from headache and was not associated with any primary headache disorders.
Collapse
Affiliation(s)
- Isa Amalie Olofsson
- Danish Headache Center, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
- NeuroGenomic, Translational Research Center, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ragnar P Kristjansson
- Danish Headache Center, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Ida Callesen
- Danish Headache Center, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Olafur Davidsson
- Danish Headache Center, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Bendik Winsvold
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Heath and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Ole Birger Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Kristoffer S Burgdorf
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Karina Banasik
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christina Mikkelsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Maria Didriksen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Khoa Manh Dinh
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Brunak
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Mona Ameri Chalmer
- Danish Headache Center, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Lisette J A Kogelman
- Danish Headache Center, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
- NeuroGenomic, Translational Research Center, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Thomas Folkmann Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark.
- NeuroGenomic, Translational Research Center, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark.
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Nair NU, Schäffer AA, Gertz EM, Cheng K, Zerbib J, Sahu AD, Leor G, Shulman ED, Aldape KD, Ben-David U, Ruppin E. Chromosome 7 to the rescue: overcoming chromosome 10 loss in gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576103. [PMID: 38313282 PMCID: PMC10836086 DOI: 10.1101/2024.01.17.576103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The co-occurrence of chromosome 10 loss and chromosome 7 gain in gliomas is the most frequent loss-gain co-aneuploidy pair in human cancers, a phenomenon that has been investigated without resolution since the late 1980s. Expanding beyond previous gene-centric studies, we investigate the co-occurrence in a genome-wide manner taking an evolutionary perspective. First, by mining large tumor aneuploidy data, we predict that the more likely order is 10 loss followed by 7 gain. Second, by analyzing extensive genomic and transcriptomic data from both patients and cell lines, we find that this co-occurrence can be explained by functional rescue interactions that are highly enriched on 7, which can possibly compensate for any detrimental consequences arising from the loss of 10. Finally, by analyzing transcriptomic data from normal, non-cancerous, human brain tissues, we provide a plausible reason why this co-occurrence happens preferentially in cancers originating in certain regions of the brain.
Collapse
|
6
|
Peixoto J, Príncipe C, Pestana A, Osório H, Pinto MT, Prazeres H, Soares P, Lima RT. Using a Dual CRISPR/Cas9 Approach to Gain Insight into the Role of LRP1B in Glioblastoma. Int J Mol Sci 2023; 24:11285. [PMID: 37511044 PMCID: PMC10379115 DOI: 10.3390/ijms241411285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
LRP1B remains one of the most altered genes in cancer, although its relevance in cancer biology is still unclear. Recent advances in gene editing techniques, particularly CRISPR/Cas9 systems, offer new opportunities to evaluate the function of large genes, such as LRP1B. Using a dual sgRNA CRISPR/Cas9 gene editing approach, this study aimed to assess the impact of disrupting LRP1B in glioblastoma cell biology. Four sgRNAs were designed for the dual targeting of two LRP1B exons (1 and 85). The U87 glioblastoma (GB) cell line was transfected with CRISPR/Cas9 PX459 vectors. To assess LRP1B-gene-induced alterations and expression, PCR, Sanger DNA sequencing, and qRT-PCR were carried out. Three clones (clones B9, E6, and H7) were further evaluated. All clones presented altered cellular morphology, increased cellular and nuclear size, and changes in ploidy. Two clones (E6 and H7) showed a significant decrease in cell growth, both in vitro and in the in vivo CAM assay. Proteomic analysis of the clones' secretome identified differentially expressed proteins that had not been previously associated with LRP1B alterations. This study demonstrates that the dual sgRNA CRISPR/Cas9 strategy can effectively edit LRP1B in GB cells, providing new insights into the impact of LRP1B deletions in GBM biology.
Collapse
Grants
- PTDC/MEC-ONC/31520/2017 FEEI, FEDER through COMPETE 2020 -POCI, Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior
- POCI-01-0145-FEDER-028779 (PTDC/BIA-MIC/28779/2017) FEEI, FEDER through COMPETE 2020 -POCI, Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior
- project "Institute for Research and Innovation in Health Sciences" (UID/BIM/04293/2019) FEEI, FEDER through COMPETE 2020 -POCI, Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior
- "Cancer Research on Therapy Resistance: From Basic Mechanisms to Novel Targets"-NORTE-01-0145-FEDER-000051 Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF
- The Porto Comprehensive Cancer Center" with the reference NORTE-01-0145-FEDER-072678 - Consórcio PORTO.CCC - Porto.Comprehensive Cancer Center Raquel Seruca European Regional Development Fund
- ROTEIRO/0028/2013; LISBOA-01-0145-FEDER-022125 Portuguese Mass Spectrometry Network, integrated in the National Roadmap of Research Infra-structures of Strategic Relevance
Collapse
Affiliation(s)
- Joana Peixoto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
| | - Catarina Príncipe
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Ana Pestana
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
| | - Hugo Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FMUP-Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Marta Teixeira Pinto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Hugo Prazeres
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Paula Soares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FMUP-Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Raquel T Lima
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FMUP-Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
7
|
Coppieters N, Scalisi J, Digregorio M, Leparc L, Velazquez Saez L, Lombard A, Rogister B, Neirinckx V. Study of Strawberry Notch homolog 1 and 2 expression in human glioblastoma. J Neurooncol 2023; 161:515-523. [PMID: 36695974 DOI: 10.1007/s11060-023-04240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023]
Abstract
PURPOSE In this work, we aimed to comprehensively document the expression of Strawberry Notch homolog (SBNO) 1 and 2 in glioblastoma (GBM) tissue and patient-derived GBM stem-like cell (GSC) cultures. METHODS We investigated SBNO1 and SBNO2 expression at the RNA and protein levels in glioma patient tissue and GSCs, respectively by performing immunostainings and qPCR analyses. We also used publicly-available datasets for assessing SBNO1 and SBNO2 gene expression and related copy number alterations. We used lentiviral transduction of SBNO2 to analyze the effect of its expression in patient-derived GSCs. RESULTS We observed that SBNO2 expression is increased in GBM tissue samples compared to non tumoral brain, or lower-grade gliomas, whereas SBNO1 expression remains unchanged. We hypothesized that such SBNO2 high expression might be linked to copy-number alterations at the level of the 19p13 chromosome section. We located SBNO1 and SBNO2 in different subcellular compartments. Finally, we observed that SBNO2 overexpression induces different phenotypes in different patient-derived GSCs. CONCLUSION These results provide the first characterization of SBNO1 and SBNO2 expression in glioma tissue, and indicate SBNO2 as highly expressed in GBM.
Collapse
Affiliation(s)
- Natacha Coppieters
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Joshua Scalisi
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Marina Digregorio
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Louise Leparc
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Laetitia Velazquez Saez
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Arnaud Lombard
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
- Neurosurgery Department, University Hospital, University of Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
- Neurology Department, University Hospital, University of Liège, Liège, Belgium
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium.
| |
Collapse
|
8
|
Speen AM, Murray JR, Krantz QT, Davies D, Evansky P, Harrill JA, Everett LJ, Bundy JL, Dailey LA, Hill J, Zander W, Carlsten E, Monsees M, Zavala J, Higuchi MA. Benchmark Dose Modeling Approaches for Volatile Organic Chemicals using a Novel Air-Liquid Interface In Vitro Exposure System. Toxicol Sci 2022; 188:88-107. [PMID: 35426944 DOI: 10.1093/toxsci/kfac040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inhalation is the most relevant route of volatile organic chemical (VOC) exposure; however, due to unique challenges posed by their chemical properties and poor solubility in aqueous solutions, in vitro chemical safety testing is predominantly performed using direct application dosing/submerged exposures. To address the difficulties in screening toxic effects of VOCs, our cell culture exposure system permits cells to be exposed to multiple concentrations at air-liquid interface (ALI) in a 24-well format. ALI exposure methods permit direct chemical-to-cell interaction with the test article at physiological conditions. In the present study, BEAS-2B and primary normal human bronchial epithelial cells (pHBEC) are used to assess gene expression, cytotoxicity, and cell viability responses to a variety of volatile chemicals including acrolein, formaldehyde, 1,3-butadiene, acetaldehyde, 1-bromopropane, carbon tetrachloride, dichloromethane, and trichloroethylene. BEAS-2B cells were exposed to all the test agents, while pHBECs were only exposed to the latter four listed above. The VOC concentrations tested elicited only slight cell viability changes in both cell types. Gene expression changes were analyzed using benchmark dose (BMD) modeling. The BMD for the most sensitive gene set was within one order of magnitude of the threshold-limit value reported by the American Conference of Governmental Industrial Hygienists, and the most sensitive gene sets impacted by exposure correlate to known adverse health effects recorded in epidemiologic and in vivo exposure studies. Overall, our study outlines a novel in vitro approach for evaluating molecular-based points-of-departure in human airway epithelial cell exposure to volatile chemicals.
Collapse
Affiliation(s)
- Adam M Speen
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee 37830, USA
- CPHEA, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Jessica R Murray
- CPHEA, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Quentin Todd Krantz
- CPHEA, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - David Davies
- CPHEA, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Paul Evansky
- CPHEA, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Joshua A Harrill
- CCTE, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Logan J Everett
- CCTE, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Joseph L Bundy
- CCTE, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Lisa A Dailey
- CPHEA, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Jazzlyn Hill
- CPHEA, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
- Oak Ridge Associated Universities (ORAU), Oak Ridge, Tennessee 37830, USA
| | - Wyatt Zander
- CPHEA, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
- Oak Ridge Associated Universities (ORAU), Oak Ridge, Tennessee 37830, USA
| | - Elise Carlsten
- CPHEA, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
- Oak Ridge Associated Universities (ORAU), Oak Ridge, Tennessee 37830, USA
| | - Michael Monsees
- CPHEA, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
- Oak Ridge Associated Universities (ORAU), Oak Ridge, Tennessee 37830, USA
| | - Jose Zavala
- MedTec BioLab Inc., Hillsborough, North Carolina 27278, USA
| | - Mark A Higuchi
- CPHEA, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
9
|
Kwak S, Park SH, Kim SH, Sung GJ, Song JH, Jeong JH, Kim H, Ha CH, Kim SW, Choi KC. miR-3189-targeted GLUT3 repression by HDAC2 knockdown inhibits glioblastoma tumorigenesis through regulating glucose metabolism and proliferation. J Exp Clin Cancer Res 2022; 41:87. [PMID: 35260183 PMCID: PMC8903173 DOI: 10.1186/s13046-022-02305-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epigenetic regulations frequently appear in Glioblastoma (GBM) and are highly associated with metabolic alterations. Especially, Histone deacetylases (HDACs) correlates with the regulation of tumorigenesis and cell metabolism in GBM progression, and HDAC inhibitors report to have therapeutic efficacy in GBM and other neurological diseases; however, GBM prevention and therapy by HDAC inhibition lacks a mechanism in the focus of metabolic reprogramming. METHODS HDAC2 highly express in GBM and is analyzed in TCGA/GEPIA databases. Therefore, HDAC2 knockdown affects GBM cell death. Analysis of RNA sequencing and qRT-PCR reveals that miR-3189 increases and GLUT3 decreases by HDAC2 knockdown. GBM tumorigenesis also examines by using in vivo orthotopic xenograft tumor models. The metabolism change in HDAC2 knockdown GBM cells measures by glucose uptake, lactate production, and OCR/ECAR analysis, indicating that HDAC2 knockdown induces GBM cell death by inhibiting GLUT3. RESULTS Notably, GLUT3 was suppressed by increasing miR-3189, demonstrating that miR-3189-mediated GLUT3 inhibition shows an anti-tumorigenic effect and cell death by regulating glucose metabolism in HDAC2 knockdown GBM. CONCLUSIONS Our findings will demonstrate the central role of HDAC2 in GBM tumorigenesis through the reprogramming of glucose metabolism by controlling miR-3189-inhibited GLUT3 expression, providing a potential new therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Sungmin Kwak
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Seung-Ho Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Sung-Hak Kim
- Department of Animal Science, Chonnam National University, Gwangju, Republic of Korea
| | - Gi-Jun Sung
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Ji-Hye Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Ji-Hoon Jeong
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hyunhee Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Chang Hoon Ha
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Seong Who Kim
- Departments of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
10
|
LRP1B Expression Is Correlated With Age and Perineural Invasion in Metastatic Cutaneous Squamous Cell Carcinoma: A Pilot Study. Am J Dermatopathol 2022; 44:49-53. [PMID: 34889813 DOI: 10.1097/dad.0000000000002065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Abstract
MicroRNAs (miRNAs), a class of small noncoding RNA, posttranscriptionally regulate the expression of genes. Aberrant expression of miRNA is reported in various types of cancer. Since the first report of oncomiR-21 involvement in the glioma, its upregulation was reported in multiple cancers and was allied with high oncogenic property. In addition to the downregulation of tumor suppressor genes, the miR-21 is also associated with cancer resistance to various chemotherapy. The recent research is appraising miR-21 as a promising cancer target and biomarker for early cancer detection. In this review, we briefly explain the biogenesis and regulation of miR-21 in cancer cells. Additionally, the review features the assorted genes/pathways regulated by the miR-21 in various cancer and cancer stem cells.
Collapse
|
12
|
Gong S, Duan Y, Wu C, Osterhoff G, Schopow N, Kallendrusch S. A Human Pan-Cancer System Analysis of Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 3 (PLOD3). Int J Mol Sci 2021; 22:ijms22189903. [PMID: 34576068 PMCID: PMC8467482 DOI: 10.3390/ijms22189903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/11/2023] Open
Abstract
The overexpression of the enzymes involved in the degradation of procollagen lysine is correlated with various tumor entities. Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) expression was found to be correlated to the progression and migration of cancer cells in gastric, lung and prostate cancer. Here, we analyzed the gene expression, protein expression, and the clinical parameters of survival across 33 cancers based on the Clinical Proteomic Tumor Analysis Consortium (CPTAC), function annotation of the mammalian genome 5 (FANTOM5), Gene Expression Omnibus (GEO), Genotype-Tissue Expression (GTEx), Human Protein Atlas (HPA) and The Cancer Genome Atlas (TCGA) databases. Genetic alteration, immune infiltration and relevant cellular pathways were analyzed in detail. PLOD3 expression negatively correlated with survival periods and the infiltration level of CD8+ T cells, but positively correlated to the infiltration of cancer associated fibroblasts in diverse cancers. Immunohistochemistry in colon carcinomas, glioblastomas, and soft tissue sarcomas further confirm PLOD 3 expression in human cancer tissue. Moreover, amplification and mutation accounted for the largest proportion in esophageal adenocarcinoma and uterine corpus endometrial carcinoma, respectively; the copy number alteration of PLOD3 appeared in all cancers from TCGA; and molecular mechanisms further proved the effect of PLOD3 on tumorigenesis. In particular, PLOD3 expression appears to have a tumor immunological effect, and is related to multiple immune cells. Furthermore, it is also associated with tumor mutation burden and microsatellite instability in various tumors. PLOD3 acts as an inducer of various cancers, and it could be a potential biomarker for prognosis and targeted treatment.
Collapse
Affiliation(s)
- Siming Gong
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (S.G.); (N.S.); (S.K.)
| | - Yingjuan Duan
- Faculty of Chemistry and Mineralogy, University of Leipzig, 04103 Leipzig, Germany;
| | - Changwu Wu
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (S.G.); (N.S.); (S.K.)
- Correspondence:
| | - Georg Osterhoff
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Nikolas Schopow
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (S.G.); (N.S.); (S.K.)
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Sonja Kallendrusch
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (S.G.); (N.S.); (S.K.)
| |
Collapse
|
13
|
Príncipe C, Dionísio de Sousa IJ, Prazeres H, Soares P, Lima RT. LRP1B: A Giant Lost in Cancer Translation. Pharmaceuticals (Basel) 2021; 14:836. [PMID: 34577535 PMCID: PMC8469001 DOI: 10.3390/ph14090836] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1B (LRP1B) is a giant member of the LDLR protein family, which includes several structurally homologous cell surface receptors with a wide range of biological functions from cargo transport to cell signaling. LRP1B is among the most altered genes in human cancer overall. Found frequently inactivated by several genetic and epigenetic mechanisms, it has mostly been regarded as a putative tumor suppressor. Still, limitations in LRP1B studies exist, in particular associated with its huge size. Therefore, LRP1B expression and function in cancer remains to be fully unveiled. This review addresses the current understanding of LRP1B and the studies that shed a light on the LRP1B structure and ligands. It goes further in presenting increasing knowledge brought by technical and methodological advances that allow to better manipulate LRP1B expression in cells and to more thoroughly explore its expression and mutation status. New evidence is pushing towards the increased relevance of LRP1B in cancer as a potential target or translational prognosis and response to therapy biomarker.
Collapse
Affiliation(s)
- Catarina Príncipe
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- Cancer Signalling and Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Isabel J. Dionísio de Sousa
- Department of Oncology, Centro Hospitalar Universitário de São João, 4200-450 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Hugo Prazeres
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- IPO-Coimbra, Portuguese Oncology Institute of Coimbra, 3000-075 Coimbra, Portugal
| | - Paula Soares
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- Cancer Signalling and Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Raquel T. Lima
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- Cancer Signalling and Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
14
|
Brown LC, Tucker MD, Sedhom R, Schwartz EB, Zhu J, Kao C, Labriola MK, Gupta RT, Marin D, Wu Y, Gupta S, Zhang T, Harrison MR, George DJ, Alva A, Antonarakis ES, Armstrong AJ. LRP1B mutations are associated with favorable outcomes to immune checkpoint inhibitors across multiple cancer types. J Immunother Cancer 2021; 9:e001792. [PMID: 33653800 PMCID: PMC7929846 DOI: 10.1136/jitc-2020-001792] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 1b (encoded by LRP1B) is a putative tumor suppressor, and preliminary evidence suggests LRP1B-mutated cancers may have improved outcomes with immune checkpoint inhibitors (ICI). METHODS We conducted a multicenter, retrospective pan-cancer analysis of patients with LRP1B alterations treated with ICI at Duke University, Johns Hopkins University (JHU) and University of Michigan (UM). The primary objective was to assess the association between overall response rate (ORR) to ICI and pathogenic or likely pathogenic (P/LP) LRP1B alterations compared with LRP1B variants of unknown significance (VUS). Secondary outcomes were the associations with progression-free survival (PFS) and overall survival (OS) by LRP1B status. RESULTS We identified 101 patients (44 Duke, 35 JHU, 22 UM) with LRP1B alterations who were treated with ICI. The most common tumor types by alteration (P/LP vs VUS%) were lung (36% vs 49%), prostate (9% vs 7%), sarcoma (5% vs 7%), melanoma (9% vs 0%) and breast cancer (3% vs 7%). The ORR for patients with LRP1B P/LP versus VUS alterations was 54% and 13%, respectively (OR 7.5, 95% CI 2.9 to 22.3, p=0.0009). P/LP LRP1B alterations were associated with longer PFS (HR 0.42, 95% CI 0.26 to 0.68, p=0.0003) and OS (HR 0.62, 95% CI 0.39 to 1.01, p=0.053). These results remained consistent when excluding patients harboring microsatellite instability (MSI) and controlling for tumor mutational burden (TMB). CONCLUSIONS This multicenter study shows significantly better outcomes with ICI therapy in patients harboring P/LP versus VUS LRP1B alterations, independently of TMB/MSI status. Further mechanistic and prospective validation studies are warranted.
Collapse
Affiliation(s)
- Landon C Brown
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Matthew D Tucker
- Internal Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ramy Sedhom
- Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Eric B Schwartz
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason Zhu
- Levine Cancer Institute, Charlotte, North Carolina, USA
| | - Chester Kao
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Matthew K Labriola
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Rajan T Gupta
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Daniele Marin
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Yuan Wu
- Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Santosh Gupta
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Tian Zhang
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Michael R Harrison
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Daniel J George
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| | - Ajjai Alva
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Emmanuel S Antonarakis
- Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Andrew J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, North Carolina, USA
| |
Collapse
|
15
|
Wang R, Zhang S, Chen X, Li N, Li J, Jia R, Pan Y, Liang H. CircNT5E Acts as a Sponge of miR-422a to Promote Glioblastoma Tumorigenesis. Cancer Res 2018; 78:4812-4825. [PMID: 29967262 DOI: 10.1158/0008-5472.can-18-0532] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 11/16/2022]
Abstract
Circular RNA and long noncoding RNA function as efficient miRNA sponges that regulate gene expression in eukaryotes. However, the sponges of functional miRNAs in glioblastoma remain largely unknown. Here, we identify a subset of circRNAs and lncRNAs that are specifically increased in miR-422a-downregulated glioblastoma tissues. We characterized a novel circRNA derived from NT5E, named circNT5E, that is regulated by ADARB2 binding to sites flanking circRNA-forming introns. We hypothesized that circNT5E may serve as a sponge against miR-422a in glioblastoma tumorigenesis. circNT5E controlled multiple pathologic processes, including cell proliferation, migration, and invasion. circNT5E directly bound miR-422a and inhibited miR-422a activity. Furthermore, circNT5E was observed to sponge other miRNAs, exhibiting tumor suppressor-like features in glioblastoma. Taken together, these findings highlight a novel oncogenic function of circRNA in glioblastoma tumorigenesis.Significance: Microarray profiling of circRNA/lncRNA/mRNA in glioblastoma identifies circNT5E as an oncogenic circular RNA and a sponge of miR-422a. Cancer Res; 78(17); 4812-25. ©2018 AACR.
Collapse
Affiliation(s)
- Renjie Wang
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Department of Neurosurgery, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Sai Zhang
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Department of Neurosurgery, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Xuyi Chen
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Department of Neurosurgery, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Nan Li
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Department of Neurosurgery, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Jianwei Li
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Department of Neurosurgery, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Ruichao Jia
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Department of Neurosurgery, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Yuanqing Pan
- Department of Basic Medicine, Tianjin Medical College, Tianjin, China
| | - Haiqian Liang
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China. .,Department of Neurosurgery, Pingjin Hospital, Logistics University of Chinese People's Armed Police Forces, Tianjin, China.,Chinese Glioma Cooperative Group (CGCG), China
| |
Collapse
|
16
|
Ba Q, Li X, Huang C, Li J, Fu Y, Chen P, Duan J, Hao M, Zhang Y, Li J, Sun C, Ying H, Song H, Zhang R, Shen Z, Wang H. BCCIPβ modulates the ribosomal and extraribosomal function of S7 through a direct interaction. J Mol Cell Biol 2018; 9:209-219. [PMID: 28510697 PMCID: PMC5907838 DOI: 10.1093/jmcb/mjx019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 05/14/2017] [Indexed: 11/14/2022] Open
Abstract
Extraribosomal functions of ribosomal proteins (RPs) have gained much attention for their implications in tumorigenesis and progression. However, the regulations for transition between the ribosomal and extraribosomal functions of RPs are rarely reported. Herein, we identified a ribosomal protein S7-interacting partner, BCCIPβ, which modulates the functional conversion of S7. Through the N-terminal acidic domain, BCCIPβ interacts with the central basic region in S7 and regulates the extraribosomal distribution of S7. BCCIPβ deficiency abrogates the ribosomal accumulation but enhances the ribosome-free location of S7. This translocation further impairs protein synthesis and triggers ribosomal stress. Consequently, BCCIPβ deficiency suppresses the ribosomal function and initiates the extraribosomal function of S7, resulting in restriction of cell proliferation. Moreover, clinically relevant S7 mutations were found to dampen the interaction with BCCIPβ and facilitate the functional transition of S7. In conclusion, BCCIPβ, as a S7 modulator, contributes to the regulation of ribosomal and extraribosomal functions of S7 and has implications in cell growth and tumor development.
Collapse
Affiliation(s)
- Qian Ba
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoguang Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chao Huang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junyang Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yijing Fu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peizhan Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Juan Duan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Miao Hao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yinghua Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingquan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chuanqi Sun
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haiyun Song
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology of Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence to: Hui Wang, E-mail:
| |
Collapse
|
17
|
Overexpression of PLOD3 promotes tumor progression and poor prognosis in gliomas. Oncotarget 2018; 9:15705-15720. [PMID: 29644003 PMCID: PMC5884658 DOI: 10.18632/oncotarget.24594] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/21/2018] [Indexed: 11/25/2022] Open
Abstract
High-grade gliomas are the most threatening brain tumors due to aggressive proliferation and poor prognosis. Thus, utilizing genetic glioma biomarkers to forecast prognosis and guide clinical management is crucial. Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) modulates cancer progression and metastasis. However, its detailed function in cancer remains largely uninvestigated. PLOD3 expression was evaluated with real-time PCR in glioblastoma (GBM) cell lines and by Gene Expression Omnibus dataset analysis and immunohistochemistry of glioma tissues. We investigated the clinical use of PLOD3 for determining glioma prognosis. The biological roles of PLOD3 in proliferation, migration and invasion of GBM cells were studied both in vitro with wound-healing and transwell assays and in vivo using an orthotopic xenograft mouse model. Hypoxia and western blotting were applied to discover the molecular mechanisms underlying PLOD3 functions. PLOD3 mRNA and protein expression were upregulated in glioma tissues compared to normal brain tissues. PLOD3 overexpression was correlated with negative survival in glioma patients. PLOD3 silencing suppressed cell proliferation and induced G1 phase arrest through p53-independent regulation of the p21 pathway. Inhibition of PLOD3 in glioma cells decreased VEGF expression, migration and invasion by downregulating mesenchymal markers, including Snail and Twist. Notably, knockdown of PLOD3 inhibited HIF-1α accumulation via the ERK signaling pathway under hypoxia. Taken together, these discoveries reveal that PLOD3 is a potential therapeutic target in human gliomas.
Collapse
|
18
|
Expression of a recombinant full-length LRP1B receptor in human non-small cell lung cancer cells confirms the postulated growth-suppressing function of this large LDL receptor family member. Oncotarget 2018; 7:68721-68733. [PMID: 27626682 PMCID: PMC5356585 DOI: 10.18632/oncotarget.11897] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/13/2016] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein (LDL) receptor-related protein 1B (LRP1B), a member of the LDL receptor family, is frequently inactivated in multiple malignancies including lung cancer. LRP1B is therefore considered as a putative tumor suppressor. Due to its large size (4599 amino acids), until now only minireceptors or receptor fragments have been successfully cloned. To assess the effect of LRP1B on the proliferation of non-small cell lung cancer cells, we constructed and expressed a transfection vector containing the 13.800 bp full-length murine Lrp1b cDNA using a PCR-based cloning strategy. Expression of LRP1B was analyzed by quantitative RT-PCR (qRT-PCR) using primers specific for human LRP1B or mouse Lrp1b. Effective expression of the full length receptor was demonstrated by the appearance of a single 600 kDa band on Western Blots of HEK 293 cells. Overexpression of Lrp1b in non-small cell lung cancer cells with low or absent endogenous LRP1B expression significantly reduced cellular proliferation compared to empty vector-transfected control cells. Conversely, in Calu-1 cells, which express higher endogenous levels of the receptor, siRNA-mediated LRP1B knockdown significantly enhanced cellular proliferation. Taken together, these findings demonstrate that, consistent with the postulated tumor suppressor function, overexpression of full-length Lrp1b leads to impaired cellular proliferation, while LRP1B knockdown has the opposite effect. The recombinant Lrp1b construct represents a valuable tool to unravel the largely unknown physiological role of LRP1B and its potential functions in cancer pathogenesis.
Collapse
|
19
|
Yang Y, Liang S, Li Y, Gao F, Zheng L, Tian S, Yang P, Li L. Hepatoma-derived growth factor functions as an unfavorable prognostic marker of human gliomas. Oncol Lett 2018; 14:7179-7184. [PMID: 29344149 PMCID: PMC5754909 DOI: 10.3892/ol.2017.7180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/05/2017] [Indexed: 01/28/2023] Open
Abstract
Hepatoma-derived growth factor (HDGF) regulates various cellular processes involved in the onset and development of tumors. To evaluate the role of HDGF in human gliomas, western blotting analysis, immunohistochemistry staining and reverse transcription-quantitative polymerase chain reaction were performed to detect HDGF protein and mRNA expression levels in glioma and intractable epileptic brain tissue. Various clinicopathological characteristics, including age, gender, World health Organization grade, HDGF expression level, Karnofsky performance Status (KPS) and Ki-67 index were obtained from medical records. The correlation between HDGF expression and these clinicopathological characteristics was statistically evaluated. Following this, multivariate liner regression was used to evaluate their effect on patient survival time. HDGF expression, at the protein and mRNA levels, was observed to be more upregulated in glioma tissues compared with intractable epileptic brain tissue without tumor. Furthermore, the level of HDGF expression was positively associated with the grade of malignancy [grades II~IV, Ki-67 index ≥20% or KPS <80 (P<0.05)] and poor prognosis in glioma patients. Notably, the univariate survival analysis identified a negative correlation between HDGF-expression and survival time (P<0.01) and multivariate liner regression demonstrated that HDGF expression is an independent prognostic factor for gliomas (P=0.01). Overall, HDGF upregulation may be a crucial step in the development and invasion of glioma. Further survival analysis highlighted its prognostic value for this malignancy, implying its potential as a promising therapeutic target for gliomas.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, The 451st Hospital of Chinese People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - Shengru Liang
- Department of Gynaecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yuqian Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Fei Gao
- Department of Neurosurgery, The 3rd Hospital of Chinese People's Liberation, Army, Baoji, Shaanxi 721000, P.R. China
| | - Longlong Zheng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Shilai Tian
- Department of Neurosurgery, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Pu Yang
- Department of Neurosurgery, The 451st Hospital of Chinese People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - Lihong Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
20
|
Feng SW, Chen Y, Tsai WC, Chiou HYC, Wu ST, Huang LC, Lin C, Hsieh CC, Yang YJ, Hueng DY. Overexpression of TELO2 decreases survival in human high-grade gliomas. Oncotarget 2018; 7:46056-46066. [PMID: 27329594 PMCID: PMC5216781 DOI: 10.18632/oncotarget.10021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 05/28/2016] [Indexed: 02/02/2023] Open
Abstract
High-grade gliomas are characterized with poor prognosis. To improve the clinical outcome, biomarker is urgently needed for distinguishing oncotarget in high-grade gliomas. Telomere maintenance 2 (TELO2) regulates S-phase checkpoint in cell cycle, and is involved in DNA repair. However, the role of TELO2 in survival outcome of high-grade gliomas is still not yet clarified. This study aims to investigate the correlation between TELO2 mRNA expression and survival outcome of patients with high-grade gliomas. Based on bioinformatics study, we found that Kaplan-Meier analysis demonstrated shorter survival in patients with higher TELO2 mRNA levels than in those with lower TELO2 expression (median survival, 59 vs. 113 weeks, p=0.0017, by log-rank test, hazard ratio: 0.3505, 95% CI: 01824.-0.6735). TELO2 mRNA expression significantly higher in World Health Organization (WHO) grade IV than in non-tumor control (p=2.85 × 10−9). Moreover, TELO2 level was greater in WHO grade III than in non-tumor controls (p= 0.017) human gliomas. We further validated TELO2 mRNA expression and protein levels by using quantitative RT-PCR, Western blot, and immunohistochemical (IHC) stain of tissue microarray. Consistently, the TELO2 mRNA and protein expression were significantly elevated in human glioma cells in comparison with normal brain control. Additionally, IHC staining showed higher TELO2 immunostain score in high-grade gliomas than in low-grade gliomas, or normal brain control. Taken together, human high-grade gliomas increase TELO2 mRNA expression, and overexpression of TELO2 mRNA expression correlates with shorter survival outcome, supporting that TELO2 is an oncotarget in human gliomas.
Collapse
Affiliation(s)
- Shao-Wei Feng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Hsin-Ying Clair Chiou
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Chin Lin
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Chih-Chuan Hsieh
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Yun-Ju Yang
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan, R.O.C
| |
Collapse
|
21
|
Overexpression of NIMA-related kinase 2 is associated with poor prognoses in malignant glioma. J Neurooncol 2017; 132:409-417. [PMID: 28321704 DOI: 10.1007/s11060-017-2401-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 02/26/2017] [Indexed: 01/17/2023]
Abstract
Eleated expression of NIMA-related kinase 2 (NEK2) was frequently observed in a variety of malignant cancers, and it appears to be involved in the initiation, maintenance, progression, metastasis of cancer and is positively associated with poor prognosis. We sought to investigate NEK2 expression and its predictive roles in malignant gliomas, and study the correlation of NEK2 protein expression with proliferation, clinical parameters, overall survival and some other parameters. We investigate NEK2 protein expression in 99 samples of malignant gliomas, including 35 WHO grade II, 22 grade III, and 42 grade IV gliomas, by immunohistochemistry and western blot (n = 50). We then made correlative analysis of protein overexpression using the Kaplan-Meier method, Log rank test, and Cox proportional-hazards model analysis. NEK2 protein was overexpressed in malignant gliomas, but not in normal brain tissues. Overexpression of NEK2 correlated with malignancy, proliferation and adverse overall survival in gliomas. Moreover, chemotherapy, resection extent and WHO grade also correlate with overall survival in gliomas. However, within WHO grade II glioma subgroup, NEK2 overexpression showed no impact on overall survival. The present study firstly reveals that NEK2 protein is widely overexpressed in gliomas. NEK2 overexpression correlates significantly with malignancy (WHO grades), proliferation (Ki-67) and prognosis in malignant gliomas. NEK2 is a potential gene therapy target and prognostic indicator.
Collapse
|
22
|
Pohlkamp T, Wasser CR, Herz J. Functional Roles of the Interaction of APP and Lipoprotein Receptors. Front Mol Neurosci 2017; 10:54. [PMID: 28298885 PMCID: PMC5331069 DOI: 10.3389/fnmol.2017.00054] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022] Open
Abstract
The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD.
Collapse
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA; Department of Neuroscience, UT Southwestern Medical CenterDallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
23
|
Chen L, Ni S, Li M, Shen C, Lin Z, Ouyang Y, Xia F, Liang L, Jiang W, Ni R, Zhang J. High Expression of BCCIP β Can Promote Proliferation of Esophageal Squamous Cell Carcinoma. Dig Dis Sci 2017; 62:387-395. [PMID: 27995408 DOI: 10.1007/s10620-016-4382-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/10/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND BCCIP was originally identified as a BRCA2 interacting protein in humans and Ustilago maydis. It had low expression in some human cancer tissues. However, recent research indicated that many caretaker genes are also necessary for cell viability and their expression could contribute to tumor progression. AIM To characterize whether BCCIP is a caretaker gene in esophageal squamous cell carcinoma (ESCC). METHODS Western blotting and immunohistochemistry were used to measure the expression of BCCIP β. In vitro studies were used to verify the effects of BCCIP β in Eca109 cells. RESULTS Expression of BCCIP β was notably higher in tumor tissues of ESCC and Eca 109 cells. Meanwhile, the immunohistochemistry stain revealed that BCCIP β was positively correlated with clinical pathologic variables such as tumor size and tumor grade, as well as Ki-67, and prompted poor prognosis. In vitro studies such as starvation and refeeding assay along with BCCIP β-shRNA transfection assay demonstrated that BCCIP β expression promoted proliferation of ESCC cells. In addition, BCCIP β downregulation by silencing RNA significantly decreased the rate of colony formation, alleviated cellular apoptosis and increased the chemosensitivity of cisplatin. CONCLUSIONS This research first put forward that BCCIP β is an oncogene in human ESCC and contributes to the poor outcome of the deadly disease.
Collapse
Affiliation(s)
- Lingling Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Sujie Ni
- Department of Medical Oncology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Mei Li
- Department of Medical Oncology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Chaoyan Shen
- Department of Medical Oncology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhipeng Lin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Yu Ouyang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Fei Xia
- Department of Radiology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Li Liang
- Department of Medical Oncology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Wenyan Jiang
- Department of Medical Oncology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
24
|
Naz F, Sami N, Islam A, Ahmad F, Hassan MI. Ubiquitin-associated domain of MARK4 provides stability at physiological pH. Int J Biol Macromol 2016; 93:1147-1154. [DOI: 10.1016/j.ijbiomac.2016.09.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 01/08/2023]
|
25
|
Lin Z, Hu B, Ni W, Mao X, Zhou H, Lv J, Yin B, Shen Z, Wu M, Ding W, Xiao M, Ni R. Expression pattern of BCCIP in hepatocellular carcinoma is correlated with poor prognosis and enhanced cell proliferation. Tumour Biol 2016; 37:16305–16315. [PMID: 27832471 DOI: 10.1007/s13277-016-5424-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 09/23/2016] [Indexed: 12/23/2022] Open
Abstract
BCCIP was originally identified as a BRCA2- and CDKN1A- (Cip1/waf1/p21) interacting protein, also known as BCCIP. It has been reported to express in various types of cancers, including colorectal cancer (CRC), astrocytic brain tumors, and glioblastomas. However, the relationship between BCCIP expression and clinicopathological features of hepatocellular carcinoma (HCC) remains to be determined. Herein, we demonstrated that BCCIP was downregulated in clinical HCC tissues; its level was inversely correlated with multiple clinicopathological factors, such as tumor grade, tumor size, and Ki67 expression. Cox regression analysis of tumor samples revealed that BCCIP expression status was an independent prognostic factor for HCC patients' poor survival. Our study also indicated that BCCIP shutdown reduces p21 expression and accelerates G1 to S progression of LO2 hepatocytes significantly. Moreover, there is an interaction between BCCIP and p53 in hepatic L02 cells, and the downregulation of p21 expression by BCCIP is in a p53-dependent way. These findings revealed that BCCIP may play a significant role for the determination of HCC progression through its role in regulating cell growth. Thus, our results suggest that BCCIP is of potential interest for prognostic marker and therapeutic target of HCC.
Collapse
Affiliation(s)
- Zhipeng Lin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Baoying Hu
- Basic Medical Research Centre, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Wenkai Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Xiaofei Mao
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, People's Republic of China
| | - Huiling Zhou
- Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jiale Lv
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Bihui Yin
- Department of Hepatic Oncology, Nantong Tumor Hospital, Nantong, 226361, Jiangsu, People's Republic of China
| | - Zhongyi Shen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Miaomiao Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Wensen Ding
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
26
|
Affiliation(s)
- Victor A Levin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, UCSF School of Medicine, San Francisco, CA, USA
- Department of Neurosurgery and Neurology, Kaiser Permanente, Redwood City, CA, USA
| |
Collapse
|
27
|
Bui DA, Lee W, White AE, Harper JW, Schackmann RCJ, Overholtzer M, Selfors LM, Brugge JS. Cytokinesis involves a nontranscriptional function of the Hippo pathway effector YAP. Sci Signal 2016; 9:ra23. [PMID: 26933062 DOI: 10.1126/scisignal.aaa9227] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
YAP is a transcriptional coactivator that controls organ expansion and differentiation and is inhibited by the Hippo pathway in cells in interphase. Here, we demonstrated that, during mitosis, YAP localized to the midbody and spindle, subcellular structures that are involved in cytokinesis, the process by which contraction of the cytoskeleton produces two daughter cells. Furthermore, YAP was phosphorylated by CDK1, a kinase that promotes cell cycle progression. Knockdown of YAP by shRNA or expression of a nonphosphorylatable form of YAP delayed the separation of daughter cells (called abscission) and induced a cytokinesis phenotype associated with increased contractile force, membrane blebbing and bulges, and abnormal spindle orientation. Consequently, these defects led to an increased frequency of multinucleation, micronuclei, and aneuploidy. YAP was required for proper localization of proteins that regulate contraction during cytokinesis, including ECT2, MgcRacGap, Anillin, and RHOA. In addition, depletion of YAP increased the phosphorylation of myosin light chain, which would be expected to activate the contractile activity of myosin II, the molecular motor involved in cytokinesis. The polarity scaffold protein PATJ coprecipitated with YAP and colocalized with YAP at the cytokinesis midbody, and knockdown of PATJ phenocopied the cytokinetic defects and spindle orientation alterations induced by either YAP depletion or expression of a nonphosphorylatable YAP mutant. Together, these results reveal an unanticipated role for YAP in the proper organization of the cytokinesis machinery during mitosis through interaction with the polarity protein PATJ.
Collapse
Affiliation(s)
- Duyen Amy Bui
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Wendy Lee
- The Ronald O. Perelman Department of Dermatology and the Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Anne E White
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ron C J Schackmann
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Overholtzer
- BCMB (Biochemistry, Cell, and Molecular Biology) Allied Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA. Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Marziali G, Signore M, Buccarelli M, Grande S, Palma A, Biffoni M, Rosi A, D'Alessandris QG, Martini M, Larocca LM, De Maria R, Pallini R, Ricci-Vitiani L. Metabolic/Proteomic Signature Defines Two Glioblastoma Subtypes With Different Clinical Outcome. Sci Rep 2016; 6:21557. [PMID: 26857460 PMCID: PMC4746700 DOI: 10.1038/srep21557] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/22/2016] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma (GBM) is one of the deadliest human cancers. Because of the extremely unfavorable prognosis of GBM, it is important to develop more effective diagnostic and therapeutic strategies based on biologically and clinically relevant subclassification systems. Analyzing a collection of seventeen patient-derived glioblastoma stem-like cells (GSCs) by gene expression profiling, NMR spectroscopy and signal transduction pathway activation, we identified two GSC clusters, one characterized by a pro-neural-like phenotype and the other showing a mesenchymal-like phenotype. Evaluating the levels of proteins differentially expressed by the two GSC clusters in the TCGA GBM sample collection, we found that SRC activation is associated with a GBM subgroup showing better prognosis whereas activation of RPS6, an effector of mTOR pathway, identifies a subgroup with a worse prognosis. The two clusters are also differentiated by NMR spectroscopy profiles suggesting a potential prognostic stratification based on metabolic evaluation. Our data show that the metabolic/proteomic profile of GSCs is informative of the genomic/proteomic GBM landscape, which differs among tumor subtypes and is associated with clinical outcome.
Collapse
Affiliation(s)
- G Marziali
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - M Signore
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - M Buccarelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - S Grande
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - A Palma
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Biffoni
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - A Rosi
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Q G D'Alessandris
- nstitute of Neurosurgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - M Martini
- Institute of Anatomic Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - L M Larocca
- Institute of Anatomic Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - R De Maria
- Regina Elena National Cancer Institute, Rome, Italy
| | - R Pallini
- nstitute of Neurosurgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - L Ricci-Vitiani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
29
|
Porrello A, Piergentili RB. Contextualizing the Genes Altered in Bladder Neoplasms in Pediatric andTeen Patients Allows Identifying Two Main Classes of Biological ProcessesInvolved and New Potential Therapeutic Targets. Curr Genomics 2016; 17:33-61. [PMID: 27013923 PMCID: PMC4780474 DOI: 10.2174/1389202916666151014222603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
Research on bladder neoplasms in pediatric and teen patients (BNPTP) has described 21 genes, which are variously involved in this disease and are mostly responsible for deregulated cell proliferation. However, due to the limited number of publications on this subject, it is still unclear what type of relationships there are among these genes and which are the chances that, while having different molecular functions, they i) act as downstream effector genes of well-known pro- or anti- proliferative stimuli and/or interplay with biochemical pathways having oncological relevance or ii) are specific and, possibly, early biomarkers of these pathologies. A Gene Ontology (GO)-based analysis showed that these 21 genes are involved in biological processes, which can be split into two main classes: cell regulation-based and differentiation/development-based. In order to understand the involvement/overlapping with main cancer-related pathways, we performed a meta-analysis dependent on the 189 oncogenic signatures of the Molecular Signatures Database (OSMSD) curated by the Broad Institute. We generated a binary matrix with 53 gene signatures having at least one hit; this analysis i) suggests that some genes of the original list show inconsistencies and might need to be experimentally re- assessed or evaluated as biomarkers (in particular, ACTA2) and ii) allows hypothesizing that important (proto)oncogenes (E2F3, ERBB2/HER2, CCND1, WNT1, and YAP1) and (putative) tumor suppressors (BRCA1, RBBP8/CTIP, and RB1-RBL2/p130) may participate in the onset of this disease or worsen the observed phenotype, thus expanding the list of possible molecular targets for the treatment of BNPTP.
Collapse
Affiliation(s)
- A. Porrello
- Comprehensive Cancer Center (LCCC), University of North Carolina (UNC)-Chapel Hill, Chapel Hill, 27599 NC, USA
| | - R. b Piergentili
- Institute of Molecular Biology and Pathology at CNR (CNR-IBPM); Department of Biology and Biotechnologies, Sapienza – Università di Roma, Italy
| |
Collapse
|
30
|
PKR-inhibitor binds efficiently with human microtubule affinity-regulating kinase 4. J Mol Graph Model 2015; 62:245-252. [DOI: 10.1016/j.jmgm.2015.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/08/2015] [Accepted: 10/17/2015] [Indexed: 11/22/2022]
|
31
|
Naz F, Singh P, Islam A, Ahmad F, Imtaiyaz Hassan M. Human microtubule affinity-regulating kinase 4 is stable at extremes of pH. J Biomol Struct Dyn 2015. [PMID: 26208600 DOI: 10.1080/07391102.2015.1074942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MAP/microtubule affinity-regulating kinase 4 (MARK4) is a member of adenosine monophosphate-activated protein kinases, directly associated with cancer and neurodegenerative diseases. Here, we have cloned, expressed, and purified two variants of MARK4 [the kinase domain (MARK4-F2), and kinase domain along with 59 N-terminal residues (MARK4-F1)] and compared their stability at varying pH range. Structural and functional changes were observed by incubating both forms of MARK4 in buffers of different pH. We measured the secondary structure of MARK4 using circular dichroism and tertiary structure by measuring intrinsic fluorescence and absorbance properties along with the size of proteins by dynamic light scattering. We observed that at extremes of pH (below pH 3.5 and above pH 9.0), MARK4 is quite stable. However, a remarkable aggregate formation was observed at intermediate pH (between pH 3.5 and 9.0). To further validate this result, we have modeled both forms of MARK4 and performed molecular dynamics simulation for 15 ns. The spectroscopic observations are in excellent agreement with the findings of molecular dynamics simulation. We also performed ATPase activity at varying pH and found a significant correlation of structure of MARK4 with its enzyme activity. It is interesting to note that both forms of MARK4 are showing a similar pattern of structure changes with reference to pH.
Collapse
Affiliation(s)
- Farha Naz
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Parvesh Singh
- b School of Chemistry and Physics , University of Kwa-Zulu Natal , Chiltern Hill, Durban 4000 , South Africa
| | - Asimul Islam
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Faizan Ahmad
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Md Imtaiyaz Hassan
- a Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| |
Collapse
|
32
|
Hueng DY, Tsai WC, Chiou HYC, Feng SW, Lin C, Li YF, Huang LC, Lin MH. DDX3X Biomarker Correlates with Poor Survival in Human Gliomas. Int J Mol Sci 2015; 16:15578-91. [PMID: 26184164 PMCID: PMC4519914 DOI: 10.3390/ijms160715578] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/21/2015] [Accepted: 06/24/2015] [Indexed: 11/16/2022] Open
Abstract
Primary high-grade gliomas possess invasive growth and lead to unfavorable survival outcome. The investigation of biomarkers for prediction of survival outcome in patients with gliomas is important for clinical assessment. The DEAD (Asp-Glu-Ala-Asp) box helicase 3, X-linked (DDX3X) controls tumor migration, proliferation, and progression. However, the role of DDX3X in defining the pathological grading and survival outcome in patients with human gliomas is not yet clarified. We analyzed the DDX3X gene expression, WHO pathological grading, and overall survival from de-linked data. Further validation was done using quantitative RT-PCR of cDNA from normal brain and glioma, and immunohistochemical (IHC) staining of tissue microarray. Statistical analysis of GEO datasets showed that DDX3X mRNA expression demonstrated statistically higher in WHO grade IV (n = 81) than in non-tumor controls (n = 23, p = 1.13 × 10−10). Moreover, DDX3X level was also higher in WHO grade III (n = 19) than in non-tumor controls (p = 2.43 × 10−5). Kaplan–Meier survival analysis showed poor survival in patients with high DDX3X mRNA levels (n = 24) than in those with low DDX3X expression (n = 53) (median survival, 115 vs. 58 weeks, p = 0.0009, by log-rank test, hazard ratio: 0.3507, 95% CI: 0.1893–0.6496). Furthermore, DDX3X mRNA expression and protein production significantly increased in glioma cells compared with normal brain tissue examined by quantitative RT-PCR, and Western blot. IHC staining showed highly staining of high-grade glioma in comparison with normal brain tissue. Taken together, DDX3X expression level positively correlates with WHO pathologic grading and poor survival outcome, indicating that DDX3X is a valuable biomarker in human gliomas.
Collapse
Affiliation(s)
- Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Taipei 11490, Taiwan.
- Department of Biochemistry, National Defense Medical Center, No. 325, Section 2, Taipei 11490, Taiwan.
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Hsin-Ying Clair Chiou
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Taipei 11490, Taiwan.
| | - Shao-Wei Feng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Taipei 11490, Taiwan.
| | - Chin Lin
- Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Yao-Feng Li
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, No. 325, Section 2, Taipei 11490, Taiwan.
| | - Ming-Hong Lin
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
33
|
Micale L, Fusco C, Fontana A, Barbano R, Augello B, De Nittis P, Copetti M, Pellico MT, Mandriani B, Cocciadiferro D, Parrella P, Fazio VM, Dimitri LMC, D'Angelo V, Novielli C, Larizza L, Daga A, Merla G. TRIM8 downregulation in glioma affects cell proliferation and it is associated with patients survival. BMC Cancer 2015; 15:470. [PMID: 26077989 PMCID: PMC4468980 DOI: 10.1186/s12885-015-1449-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/19/2015] [Indexed: 12/03/2022] Open
Abstract
Background Human gliomas are a heterogeneous group of primary malignant brain tumors whose molecular pathogenesis is not yet solved. In this regard, a major research effort has been directed at identifying novel specific glioma-associated genes. Here, we investigated the effect of TRIM8 gene in glioma. Methods TRIM8 transcriptional level was profiled in our own glioma cases collection by qPCR and confirmed in the independent TCGA glioma cohort. The association between TRIM8 expression and Overall Survival and Progression-free Survival in TCGA cohort was determined by using uni-multivariable Cox regression analysis. The effect of TRIM8 on patient glioma cell proliferation was evaluated by performing MTT and clonogenic assays. The mechanisms causing the reduction of TRIM8 expression were explored by using qPCR and in vitro assays. Results We showed that TRIM8 expression correlates with unfavorable clinical outcome in glioma patients. We found that a restored TRIM8 expression induced a significant reduction of clonogenic potential in U87MG and patient’s glioblastoma cells. Finally we provide experimental evidences showing that miR-17 directly targets the 3′ UTR of TRIM8 and post-transcriptionally represses the expression of TRIM8. Conclusions Our study provides evidences that TRIM8 may participate in the carcinogenesis and progression of glioma and that the transcriptional repression of TRIM8 might have potential value for predicting poor prognosis in glioma patients. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1449-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucia Micale
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Poliambulatorio Giovanni Paolo II, I-71013, San Giovanni Rotondo (FG), Italy.
| | - Carmela Fusco
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Poliambulatorio Giovanni Paolo II, I-71013, San Giovanni Rotondo (FG), Italy.
| | - Andrea Fontana
- Biostatistics Unit, IRCCS Casa Sollievo della Sofferenza, Poliambulatorio Giovanni Paolo II, I-71013, San Giovanni Rotondo (FG), Italy.
| | - Raffaela Barbano
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, I-71013, San Giovanni Rotondo (FG), Italy.
| | - Bartolomeo Augello
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Poliambulatorio Giovanni Paolo II, I-71013, San Giovanni Rotondo (FG), Italy.
| | - Pasquelena De Nittis
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Poliambulatorio Giovanni Paolo II, I-71013, San Giovanni Rotondo (FG), Italy.
| | - Massimiliano Copetti
- Biostatistics Unit, IRCCS Casa Sollievo della Sofferenza, Poliambulatorio Giovanni Paolo II, I-71013, San Giovanni Rotondo (FG), Italy.
| | - Maria Teresa Pellico
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Poliambulatorio Giovanni Paolo II, I-71013, San Giovanni Rotondo (FG), Italy.
| | - Barbara Mandriani
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Poliambulatorio Giovanni Paolo II, I-71013, San Giovanni Rotondo (FG), Italy.
| | - Dario Cocciadiferro
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Poliambulatorio Giovanni Paolo II, I-71013, San Giovanni Rotondo (FG), Italy. .,Ph.D program in Experimental and Regenerative Medicine, University of Foggia, Foggia, Italy.
| | - Paola Parrella
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, I-71013, San Giovanni Rotondo (FG), Italy.
| | - Vito Michele Fazio
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, I-71013, San Giovanni Rotondo (FG), Italy.
| | | | - Vincenzo D'Angelo
- Neurosurgery Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo (FG), Italy.
| | - Chiara Novielli
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Lidia Larizza
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy. .,Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy.
| | - Antonio Daga
- Gene Transfer Lab; IRCSS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy.
| | - Giuseppe Merla
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Poliambulatorio Giovanni Paolo II, I-71013, San Giovanni Rotondo (FG), Italy.
| |
Collapse
|
34
|
McDonald JA. Canonical and noncanonical roles of Par-1/MARK kinases in cell migration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 312:169-99. [PMID: 25262242 DOI: 10.1016/b978-0-12-800178-3.00006-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The partitioning defective gene 1 (Par-1)/microtubule affinity-regulating kinase (MARK) family of serine-threonine kinases have diverse cellular roles. Primary among these roles are the establishment and maintenance of cell polarity and the promotion of microtubule dynamics. Par-1/MARK kinases also regulate a growing number of cellular functions via noncanonical protein targets. Recent studies have demonstrated that Par-1/MARK proteins are required for the migration of multiple cell types. This review outlines the current evidence for regulation of cell migration by Par-1/MARK through both canonical and noncanonical roles. Par-1/MARK canonical control of microtubules during nonneuronal and neuronal migration is described. Next, regulation of cell polarity by Par-1/MARK and its dynamic effect on the movement of migrating cells are discussed. As examples of recent research that have expanded, the roles of the Par-1/MARK in cell migration, noncanonical functions of Par-1/MARK in Wnt signaling and actomyosin dynamics are described. This review also highlights questions and current challenges to further understanding how the versatile Par-1/MARK proteins function in cell migration during development, homeostatic processes, and cancer.
Collapse
Affiliation(s)
- Jocelyn A McDonald
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
35
|
Chen J, Xia H, Zhang X, Karthik S, Pratap SV, Ooi LL, Hong W, Hui KM. ECT2 regulates the Rho/ERK signalling axis to promote early recurrence in human hepatocellular carcinoma. J Hepatol 2015; 62:1287-95. [PMID: 25617497 DOI: 10.1016/j.jhep.2015.01.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/09/2014] [Accepted: 01/08/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Early recurrence is the major obstacle for improving the outcome of patients with hepatocellular carcinoma (HCC). Therefore, identifying key molecules contributing to early HCC recurrence can enable the development of novel therapeutic strategies for the clinical management of HCC. Epithelial cell transforming sequence 2 (ECT2) has been implicated in human cancers, but its function in HCC is largely unknown. METHODS ECT2 expression was studied by microarrays, immunoblotting and immunohistochemistry in human HCC samples. siRNA- and lentiviral vector-mediated knockdown were employed to decipher the molecular functions of ECT2. RESULTS The upregulation of ECT2 is significantly associated with early recurrent HCC disease and poor survival. Knockdown of ECT2 markedly suppressed Rho GTPases activities, enhanced apoptosis, attenuated oncogenicity and reduced the metastatic ability of HCC cells. Moreover, knockdown of ECT2 or Rho also suppressed ERK activation, while the silencing of Rho or ERK led to a marked reduction in cell migration. Stable knockdown of ECT2 in vivo resulted in significant retardation of tumour growth and the suppression of ERK activation. High expression of ECT2 correlates with high ERK phosphorylation and poor survival of HCC patients. Furthermore, ECT2 enhances the expression and stability of RACGAP1, accelerating ECT2-mediated Rho activation to promote metastasis. CONCLUSIONS ECT2 is closely associated with the activation of the Rho/ERK signalling axis to promote early HCC recurrence. In addition, ECT2 can crosstalk with RACGAP1 to catalyse the GTP exchange involved in Rho signalling to further regulate tumour initiation and metastasis.
Collapse
Affiliation(s)
- Jianxiang Chen
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Singapore
| | - Hongping Xia
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Singapore
| | - Xiaoqian Zhang
- Institute of Molecular and Cell Biology, A(∗)STAR, Biopolis Drive Proteos, Singapore, Singapore
| | - Sekar Karthik
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Singapore
| | - Seshachalam Veerabrahma Pratap
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Singapore
| | - London Lucien Ooi
- Division of Surgical Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A(∗)STAR, Biopolis Drive Proteos, Singapore, Singapore
| | - Kam M Hui
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Singapore; Institute of Molecular and Cell Biology, A(∗)STAR, Biopolis Drive Proteos, Singapore, Singapore; Cancer & Stem Cell Biology Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
36
|
Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1066-82. [PMID: 25680866 DOI: 10.1016/j.bbalip.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
Abstract
Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on intracellular endosomal membranes, and these changes have been linked to a number of major neurological diseases including Alzheimer's, Parkinson's, epilepsy, stroke, cancer and a range of rarer inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and neurodevelopmental conditions such as Lowe's syndrome. This article analyses recent progress in this area and explains how PIP lipids are involved, to varying degrees, in almost every class of neurological disease. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.
| |
Collapse
|
37
|
Fontana L, Rovina D, Novielli C, Maffioli E, Tedeschi G, Magnani I, Larizza L. Suggestive evidence on the involvement of polypyrimidine-tract binding protein in regulating alternative splicing of MAP/microtubule affinity-regulating kinase 4 in glioma. Cancer Lett 2015; 359:87-96. [PMID: 25578778 DOI: 10.1016/j.canlet.2014.12.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/23/2014] [Accepted: 12/26/2014] [Indexed: 01/01/2023]
Abstract
MAP/microtubule affinity-regulating kinase 4 (MARK4) is a serine-threonine kinase that phosphorylates microtubule-associated proteins taking part in the regulation of microtubule dynamics. MARK4 is expressed in two spliced isoforms characterized by inclusion (MARK4S) or exclusion (MARK4L) of exon 16. The distinct expression profiles in the central nervous system and their imbalance in gliomas point to roles of MARK4L and MARK4S in cell proliferation and cell differentiation, respectively. Having ruled out mutations and transcription defects, we hypothesized that alterations in the expression of splicing factors may underlie deregulated MARK4 expression in gliomas. Bioinformatic analysis revealed four putative polypyrimidine-tract binding (PTB) protein binding sites in MARK4 introns 15 and 16. Glioma tissues and glioblastoma-derived cancer stem cells showed, compared with normal brain, significant overexpression of PTB, correlated with high MARK4L mRNA expression. Splicing minigene assays revealed a functional intronic splicing silencer in MARK4 intron 15, but mutagenesis of the PTB binding site in this region did not affect minigene splicing, suggesting that PTB may bind to a splicing silencer other than the predicted one and synergistically acting with the other predicted PTB sites. Electrophoretic mobility shift assays coupled with mass spectrometry confirmed binding of PTB to the polypyrimidine tract of intron 15, and thus its involvement in MARK4 alternative splicing. This finding, along with evidence of PTB overexpression in gliomas and glioblastoma-derived cancer stem cells and differentiated progeny, merged in pointing out the involvement of PTB in the switch to MARK4L, consistent with its established role in driving oncogenic splicing in brain tumors.
Collapse
Affiliation(s)
- L Fontana
- Department of Health Sciences, Medical Genetics, Università degli Studi di Milano, via Antonio di Rudinì 8, 20142 Milan, Italy
| | - D Rovina
- Department of Health Sciences, Medical Genetics, Università degli Studi di Milano, via Antonio di Rudinì 8, 20142 Milan, Italy
| | - C Novielli
- Department of Health Sciences, Medical Genetics, Università degli Studi di Milano, via Antonio di Rudinì 8, 20142 Milan, Italy
| | - E Maffioli
- Department of Animal Pathology, Hygiene and Veterinary Public Health, Università degli Studi di Milano, Via Celoria, 10, 20133 Milan, Italy; Fondazione Filarete, Viale Ortles 22/4, 20139 Milan, Italy
| | - G Tedeschi
- Department of Animal Pathology, Hygiene and Veterinary Public Health, Università degli Studi di Milano, Via Celoria, 10, 20133 Milan, Italy; Fondazione Filarete, Viale Ortles 22/4, 20139 Milan, Italy
| | - I Magnani
- Department of Health Sciences, Medical Genetics, Università degli Studi di Milano, via Antonio di Rudinì 8, 20142 Milan, Italy
| | - L Larizza
- Department of Health Sciences, Medical Genetics, Università degli Studi di Milano, via Antonio di Rudinì 8, 20142 Milan, Italy; Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Via Zucchi, 18, 20095 Cusano Milanino, Italy.
| |
Collapse
|
38
|
Waugh MG. Chromosomal Instability and Phosphoinositide Pathway Gene Signatures in Glioblastoma Multiforme. Mol Neurobiol 2014; 53:621-630. [PMID: 25502460 PMCID: PMC4703635 DOI: 10.1007/s12035-014-9034-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/30/2014] [Indexed: 12/29/2022]
Abstract
Structural rearrangements of chromosome 10 are frequently observed in glioblastoma multiforme and over 80 % of tumour samples archived in the catalogue of somatic mutations in cancer database had gene copy number loss for PI4K2A which encodes phosphatidylinositol 4-kinase type IIalpha. PI4K2A loss of heterozygosity mirrored that of PTEN, another enzyme that regulates phosphoinositide levels and also PIK3AP1, MINPP1, INPP5A and INPP5F. These results indicated a reduction in copy number for a set of phosphoinositide signalling genes that co-localise to chromosome 10q. This analysis was extended to a panel of phosphoinositide pathway genes on other chromosomes and revealed a number of previously unreported associations with glioblastoma multiforme. Of particular note were highly penetrant copy number losses for a group of X-linked phosphoinositide phosphatase genes OCRL, MTM1 and MTMR8; copy number amplifications for the chromosome 19 genes PIP5K1C, AKT2 and PIK3R2, and also for the phospholipase C genes PLCB1, PLCB4 and PLCG1 on chromosome 20. These mutations are likely to affect signalling and trafficking functions dependent on the PI(4,5)P2, PI(3,4,5)P3 and PI(3,5)P2 lipids as well as the inositol phosphates IP3, IP5 and IP6. Analysis of flanking genes with functionally unrelated products indicated that chromosomal instability as opposed to a phosphoinositide-specific process underlay this pattern of copy number variation. This in silico study suggests that in glioblastoma multiforme, karyotypic changes have the potential to cause multiple abnormalities in sets of genes involved in phosphoinositide metabolism and this may be important for understanding drug resistance and phosphoinositide pathway redundancy in the advanced disease state.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
39
|
Dixit U, Liu Z, Pandey AK, Kothari R, Pandey VN. Fuse binding protein antagonizes the transcription activity of tumor suppressor protein p53. BMC Cancer 2014; 14:925. [PMID: 25487856 PMCID: PMC4295397 DOI: 10.1186/1471-2407-14-925] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/01/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND FUSE binding protein1 (FBP1) is a transactivator of transcription of human c-myc proto-oncogene and expressed mainly in undifferentiated cells. It is also present in differentiated normal cells albeit with very low background. FBP1 is abundantly expressed in the majority of hepatocellular carcinoma tumors and has been implicated in tumor development. Although it down-regulates the expression of proapoptotic p21 protein, it is not known whether FBP1 also interacts and antagonizes the function of tumor suppressor protein p53. METHODS Western blotting was carried out to detect the expression level of FBP1, p21 and p53, and also p53 regulatory factors, BCCIP and TCTP; real-time quantitative PCR was done to determine the fold change in mRNA levels of target proteins; immunoprecipitation was carried out to determine the interaction of FBP1 with p53, BCCIP and TCTP. Cells stably knockdown for either FBP1; p53 or BCCIP were examined for p53 reporter activity under normal and radiation-induced stress. RESULTS FBP1 physically interacted with p53, impairing its transcription activity and reducing p53-mediated sensitivity to cellular stress. Knockdown of FBP1 expression activated p53-mediated response to cellular stress while transient expression of FBP1 in FBP-knockdown cells restored the inhibition of p53 activity. FBP1 not only interacted with both BCCIP and TCTP, which, respectively, function as positive and negative regulators of p53, but also regulated their expression under cellular stress. In FBP knockdown cells, TCTP expression was down-regulated under radiation-induced stress whereas expression of BCCIP and p21 were significantly up-regulated suggesting FBP1 as a potential regulator of these proteins. We hypothesize that the FBP1-mediated suppression of p53 activity may occur via preventing the interaction of p53 with BCCIP as well as by FBP1-mediated regulation of p53 regulatory proteins, TCTP and BCCIP. Since FBP1 suppresses p53 activity and is overexpressed in most HCC tumors, it may have a possible role in tumorigenesis. CONCLUSION FBP1 physically interacts with p53, functions as a regulator of p53-regulatory proteins (TCTP and BCCIP), and suppresses p53 transactivation activity under radiation-induced cellular stress. Since it is abundantly expressed in most HCC tumors, it may have implication in tumorigenesis and thus may be a possible target for drug development.
Collapse
Affiliation(s)
- Updesh Dixit
- />Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103 USA
| | - Zhihe Liu
- />Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510220 China
| | - Ashutosh K Pandey
- />Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103 USA
| | - Ramesh Kothari
- />Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103 USA
| | - Virendra N Pandey
- />Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103 USA
| |
Collapse
|
40
|
Giansanti MG, Sechi S, Frappaolo A, Belloni G, Piergentili R. Cytokinesis in Drosophila male meiosis. SPERMATOGENESIS 2014; 2:185-196. [PMID: 23094234 PMCID: PMC3469441 DOI: 10.4161/spmg.21711] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokinesis separates the cytoplasm and the duplicated genome into two daughter cells at the end of cell division. This process must be finely regulated to maintain ploidy and prevent tumor formation. Drosophila male meiosis provides an excellent cell system for investigating cytokinesis. Mutants affecting this process can be easily identified and spermatocytes are large cells particularly suitable for cytological analysis of cytokinetic structures. Over the past decade, the powerful tools of Drosophila genetics and the unique characteristics of this cell system have led researchers to identify molecular players of the cell cleavage machinery and to address important open questions. Although spermatocyte cytokinesis is incomplete, resulting in formation of stable intercellular bridges, the molecular mechanisms are largely conserved in somatic cells. Thus, studies of Drosophila male meiosis will shed new light on the complex cell circuits regulating furrow ingression and substantially further our knowledge of cancer and other human diseases.
Collapse
Affiliation(s)
- Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR; Dipartimento di Biologia e Biotecnologie Università Sapienza di Roma; Rome, Italy
| | | | | | | | | |
Collapse
|
41
|
Wyler E, Wandrey F, Badertscher L, Montellese C, Alper D, Kutay U. The beta-isoform of the BRCA2 and CDKN1A(p21)-interacting protein (BCCIP) stabilizes nuclear RPL23/uL14. FEBS Lett 2014; 588:3685-91. [DOI: 10.1016/j.febslet.2014.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
|
42
|
Rovina D, Fontana L, Monti L, Novielli C, Panini N, Sirchia SM, Erba E, Magnani I, Larizza L. Microtubule-associated protein/microtubule affinity-regulating kinase 4 (MARK4) plays a role in cell cycle progression and cytoskeletal dynamics. Eur J Cell Biol 2014; 93:355-65. [PMID: 25123532 DOI: 10.1016/j.ejcb.2014.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 11/18/2022] Open
Abstract
MARK4 is a serine-threonine kinase that phosphorylates MAP proteins, increasing microtubule dynamics. MARK4 differs from the other members of the MARK family for encoding two isoforms (MARK4L and MARK4S), differentially expressed in the nervous system, and for the peculiar localisation at the centrosome and the midbody. By cytofluorimetric analysis we showed that MARK4 is expressed throughout the cell cycle and preferentially activated during mitosis. Depletion of MARK4S affected the morphology and proliferation of fibroblasts and glioma cells, as the percentages of cells in S and G2/M phases were reduced and the percentage of cells in G1 was increased. In MARK4S silenced cells, centrosomes were duplicated and positioned apically to the nucleus, indicating that the centrosome cycle was altered and the cells arrested in G1 phase. Overexpression of MARK4L or MARK4S reduced the density of the microtubule network, confirming microtubules as the main target of MARK4, and revealed a novel co-localisation of MARK4 and vimentin. Taken together, our data confirm that MARK4 is a key component in the regulation of microtubule dynamics and highlight its major role in cell cycle progression, particularly at the G1/S transition. The co-localisation of vimentin and MARK4L suggests that MARK4 has a wide-ranging influence on cytoskeleton.
Collapse
Affiliation(s)
- Davide Rovina
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, 20142 Milan, Italy
| | - Laura Fontana
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, 20142 Milan, Italy
| | - Laura Monti
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, 20142 Milan, Italy
| | - Chiara Novielli
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, 20142 Milan, Italy
| | - Nicolò Panini
- Flow Cytometry Unit, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milan, Italy
| | - Silvia Maria Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, 20142 Milan, Italy
| | - Eugenio Erba
- Flow Cytometry Unit, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milan, Italy
| | - Ivana Magnani
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, 20142 Milan, Italy
| | - Lidia Larizza
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
43
|
Cheng YP, Lin C, Lin PY, Cheng CY, Ma HI, Chen CM, Hueng DY. Midkine expression in high grade gliomas: Correlation of this novel marker with proliferation and survival in human gliomas. Surg Neurol Int 2014; 5:78. [PMID: 24949221 PMCID: PMC4061577 DOI: 10.4103/2152-7806.133205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 03/20/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND High-grade primary glioma have poor prognosis and predictive biomarkers is very important. Midkine (MDK), a heparin-binding growth factor, is important in regulating carcinogenesis, cell proliferation, mitogenesis, and angiogenesis. This study aimed to identify over-expression of MDK in gliomas and correlate this with clinical outcomes. The authors put forward their hypothesis correlating proliferation and poor survival with over-expression of this novel protein. METHODS Two datasets from Gene Expression Omnibus (GEO) included human data of 100 and 180 patients, respectively. The MDK expression, World Health Organization (WHO) pathological grade, sex, age, and survival time were identified for statistical analysis. RESULTS A search of the GEO profile revealed that MDK expression level was statistically greater in the WHO grade IV compared with grade II (P = 0.002), in grades III and IV compared with nontumor control (P = 0.044 and P < 0.001, respectively) after adjustments using the Bonferroni method. By the Kaplan-Meier survival curve, the high MDK expression group had poorer survival outcome (2.38-fold hazard, 95% confidence interval: 1.22-4.63) than the low MDK expression group after adjustments for WHO grade and age. CONCLUSIONS Taken together, there is a positive correlation between MDK expression and WHO grading of human gliomas. Moreover, MDK over-expression is significant correlated to poor survival outcome in high-grade, suggesting that MDK may be an important therapeutic target.
Collapse
Affiliation(s)
- Yen-Po Cheng
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua, China
| | - Chin Lin
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ping-Yi Lin
- Transplant Medicine and Surgery Research Centre, Changhua Christian Hospital, Changhua, China
| | - Chun-Yuan Cheng
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua, China
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chien-Min Chen
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua, China
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC ; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
44
|
Silencing of KIF14 interferes with cell cycle progression and cytokinesis by blocking the p27(Kip1) ubiquitination pathway in hepatocellular carcinoma. Exp Mol Med 2014; 46:e97. [PMID: 24854087 PMCID: PMC4044675 DOI: 10.1038/emm.2014.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 11/26/2013] [Accepted: 12/06/2013] [Indexed: 01/19/2023] Open
Abstract
Although it has been suggested that kinesin family member 14 (KIF14) has oncogenic potential in various cancers, including hepatocellular carcinoma (HCC), the molecular mechanism of this potential remains unknown. We aimed to elucidate the role of KIF14 in hepatocarcinogenesis by knocking down KIF14 in HCC cells that overexpressed KIF14. After KIF14 knockdown, changes in tumor cell growth, cell cycle and cytokinesis were examined. We also examined cell cycle regulatory molecules and upstream Skp1/Cul1/F-box (SCF) complex molecules. Knockdown of KIF14 resulted in suppression of cell proliferation and failure of cytokinesis, whereas KIF14 overexpression increased cell proliferation. In KIF14-silenced cells, the levels of cyclins E1, D1 and B1 were profoundly decreased compared with control cells. Of the cyclin-dependent kinase inhibitors, the p27Kip1 protein level specifically increased after KIF14 knockdown. The increase in p27Kip1 was not due to elevation of its mRNA level, but was due to inhibition of the proteasome-dependent degradation pathway. To explore the pathway upstream of this event, we measured the levels of SCF complex molecules, including Skp1, Skp2, Cul1, Roc1 and Cks1. The levels of Skp2 and its cofactor Cks1 decreased in the KIF14 knockdown cells where p27Kip1 accumulated. Overexpression of Skp2 in the KIF14 knockdown cells attenuated the failure of cytokinesis. On the basis of these results, we postulate that KIF14 knockdown downregulates the expression of Skp2 and Cks1, which target p27Kip1 for degradation by the 26S proteasome, leading to accumulation of p27Kip1. The downregulation of Skp2 and Cks1 also resulted in cytokinesis failure, which may inhibit tumor growth. To the best of our knowledge, this is the first report that has identified the molecular target and oncogenic effect of KIF14 in HCC.
Collapse
|
45
|
Riehmer V, Gietzelt J, Beyer U, Hentschel B, Westphal M, Schackert G, Sabel MC, Radlwimmer B, Pietsch T, Reifenberger G, Weller M, Weber RG, Loeffler M. Genomic profiling reveals distinctive molecular relapse patterns in IDH1/2 wild-type glioblastoma. Genes Chromosomes Cancer 2014; 53:589-605. [PMID: 24706357 DOI: 10.1002/gcc.22169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/12/2014] [Indexed: 12/28/2022] Open
Abstract
Molecular changes associated with the progression of glioblastoma after standard radiochemotherapy remain poorly understood. We compared genomic profiles of 27 paired primary and recurrent IDH1/2 wild-type glioblastomas by genome-wide array-based comparative genomic hybridization. By bioinformatic analysis, primary and recurrent tumor profiles were normalized and segmented, chromosomal gains and losses identified taking the tumor cell content into account, and difference profiles deduced. Seven of 27 (26%) pairs lacked DNA copy number differences between primary and recurrent tumors (equal pairs). The recurrent tumors in 9/27 (33%) pairs contained all chromosomal imbalances of the primary tumors plus additional ones, suggesting a sequential acquisition of and/or selection for aberrations during progression (sequential pairs). In 11/27 (41%) pairs, the profiles of primary and recurrent tumors were divergent, i.e., the recurrent tumors contained additional aberrations but had lost others, suggesting a polyclonal composition of the primary tumors and considerable clonal evolution (discrepant pairs). Losses on 9p21.3 harboring the CDKN2A/B locus were significantly more common in primary tumors from sequential and discrepant (nonequal) pairs. Nonequal pairs showed ten regions of recurrent genomic differences between primary and recurrent tumors harboring 46 candidate genes associated with tumor recurrence. In particular, copy numbers of genes encoding apoptosis regulators were frequently changed at progression. In summary, approximately 25% of IDH1/2 wild-type glioblastoma pairs have stable genomic imbalances. In contrast, approximately 75% of IDH1/2 wild-type glioblastomas undergo further genomic aberrations and alter their clonal composition upon recurrence impacting their genomic profile, a process possibly facilitated by 9p21.3 loss in the primary tumor. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vera Riehmer
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cloning, expression, purification and refolding of microtubule affinity-regulating kinase 4 expressed in Escherichia coli. Appl Biochem Biotechnol 2014; 172:2838-48. [PMID: 24446173 DOI: 10.1007/s12010-014-0733-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Microtubule-associated protein/microtubule affinity-regulating kinase 4 (MARK4) is a member of the family Ser/Thr kinase and involved in numerous biological functions including microtubule bundle formation, nervous system development, positive regulation of programmed cell death, cell cycle control, cell polarity determination, cell shape alterations, cell division etc. For various biophysical and structural studies, we need this protein in adequate quantity. In this paper, we report a novel cloning strategy for MARK4. We have cloned MARK4 catalytic domain including 59 N-terminal extra residues with unknown function and catalytic domain alone in PQE30 vector. The recombinant MARK4 was expressed in the inclusion bodies in M15 cells. The inclusion bodies were solubilized effectively with 1.5% N-lauroylsarcosine in alkaline buffer and subsequently purified using Ni-NTA affinity chromatography in a single step with high purity and good concentration. Purity of protein was checked on sodium dodecyl sulphate-polyacrylamide gel electrophoresis and identified by using mass spectrometry immunoblotting. Refolding of the recombinant protein was validated by ATPase assay. Our purification procedure is quick, simple and produces adequate quantity of proteins with high purity in a limited step.
Collapse
|
47
|
NOTARANGELO ANGELANTONIO, TROMBETTA DOMENICO, D’ANGELO VINCENZO, PARRELLA PAOLA, PALUMBO ORAZIO, STORLAZZI CLELIATIZIANA, IMPERA LUCIANA, MUSCARELLA LUCIAANNA, LA TORRE ANTONELLA, AFFUSO ANDREA, FAZIO VITOMICHELE, CARELLA MASSIMO, ZELANTE LEOPOLDO. Establishment and genetic characterization of ANGM-CSS, a novel, immortal cell line derived from a human glioblastoma multiforme. Int J Oncol 2013; 44:717-24. [DOI: 10.3892/ijo.2013.2224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/15/2013] [Indexed: 11/06/2022] Open
|
48
|
Huang YY, Dai L, Gaines D, Droz-Rosario R, Lu H, Liu J, Shen Z. BCCIP suppresses tumor initiation but is required for tumor progression. Cancer Res 2013; 73:7122-33. [PMID: 24145349 DOI: 10.1158/0008-5472.can-13-1766] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dysfunctions of genome caretaker genes contribute to genomic instability and tumor initiation. Because many of the caretaker genes are also essential for cell viability, permanent loss of function of these genes would prohibit further tumor progression. How essential caretaker genes contribute to tumorigenesis is not fully understood. Here, we report a "hit-and-run" mode of action for an essential caretaker gene in tumorigenesis. Using a BRCA2-interacting protein BCCIP as the platform, we found that a conditional BCCIP knockdown and concomitant p53 deletion caused rapid development of medulloblastomas, which bear a wide spectrum of alterations involving the Sonic Hedgehog (Shh) pathway, consistent with a caretaker responsibility of BCCIP on genomic integrity. Surprisingly, the progressed tumors have spontaneously lost the transgenic BCCIP knockdown cassette and restored BCCIP expression. Thus, a transient downregulation of BCCIP, but not necessarily a permanent mutation, is sufficient to initiate tumorigenesis. After the malignant transformation has been accomplished and autonomous cancer growth has been established, BCCIP reverses its role from a tumor-initiation suppressor to become a requisite for progression. This exemplifies a new type of tumor suppressor, which is distinct from the classical tumor suppressors that are often permanently abrogated during tumorigenesis. It has major implications on how a nonmutagenic or transient regulation of essential caretaker gene contributes to tumorigenesis. We further suggest that BCCIP represents a paradoxical class of modulators for tumorigenesis as a suppressor for initiation but a requisite for progression (SIRP).
Collapse
Affiliation(s)
- Yi-Yuan Huang
- Authors' Affiliation: Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | | | | | | | | | | | | |
Collapse
|
49
|
Cook DR, Rossman KL, Der CJ. Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. Oncogene 2013; 33:4021-35. [PMID: 24037532 DOI: 10.1038/onc.2013.362] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 12/16/2022]
Abstract
The aberrant activity of Ras homologous (Rho) family small GTPases (20 human members) has been implicated in cancer and other human diseases. However, in contrast to the direct mutational activation of Ras found in cancer and developmental disorders, Rho GTPases are activated most commonly in disease by indirect mechanisms. One prevalent mechanism involves aberrant Rho activation via the deregulated expression and/or activity of Rho family guanine nucleotide exchange factors (RhoGEFs). RhoGEFs promote formation of the active GTP-bound state of Rho GTPases. The largest family of RhoGEFs is comprised of the Dbl family RhoGEFs with 70 human members. The multitude of RhoGEFs that activate a single Rho GTPase reflects the very specific role of each RhoGEF in controlling distinct signaling mechanisms involved in Rho activation. In this review, we summarize the role of Dbl RhoGEFs in development and disease, with a focus on Ect2 (epithelial cell transforming squence 2), Tiam1 (T-cell lymphoma invasion and metastasis 1), Vav and P-Rex1/2 (PtdIns(3,4,5)P3 (phosphatidylinositol (3,4,5)-triphosphate)-dependent Rac exchanger).
Collapse
Affiliation(s)
- D R Cook
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - K L Rossman
- 1] Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [2] Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - C J Der
- 1] Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA [2] Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [3] Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
50
|
Zheng S, Fu J, Vegesna R, Mao Y, Heathcock LE, Torres-Garcia W, Ezhilarasan R, Wang S, McKenna A, Chin L, Brennan CW, Yung WKA, Weinstein JN, Aldape KD, Sulman EP, Chen K, Koul D, Verhaak RGW. A survey of intragenic breakpoints in glioblastoma identifies a distinct subset associated with poor survival. Genes Dev 2013; 27:1462-72. [PMID: 23796897 DOI: 10.1101/gad.213686.113] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the advent of high-throughput sequencing technologies, much progress has been made in the identification of somatic structural rearrangements in cancer genomes. However, characterization of the complex alterations and their associated mechanisms remains inadequate. Here, we report a comprehensive analysis of whole-genome sequencing and DNA copy number data sets from The Cancer Genome Atlas to relate chromosomal alterations to imbalances in DNA dosage and describe the landscape of intragenic breakpoints in glioblastoma multiforme (GBM). Gene length, guanine-cytosine (GC) content, and local presence of a copy number alteration were closely associated with breakpoint susceptibility. A dense pattern of repeated focal amplifications involving the murine double minute 2 (MDM2)/cyclin-dependent kinase 4 (CDK4) oncogenes and associated with poor survival was identified in 5% of GBMs. Gene fusions and rearrangements were detected concomitant within the breakpoint-enriched region. At the gene level, we noted recurrent breakpoints in genes such as apoptosis regulator FAF1. Structural alterations of the FAF1 gene disrupted expression and led to protein depletion. Restoration of the FAF1 protein in glioma cell lines significantly increased the FAS-mediated apoptosis response. Our study uncovered a previously underappreciated genomic mechanism of gene deregulation that can confer growth advantages on tumor cells and may generate cancer-specific vulnerabilities in subsets of GBM.
Collapse
Affiliation(s)
- Siyuan Zheng
- Department of Bioinformatics and Computational Biology
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|