1
|
Johnson DE, Disis ML. Vaccines for cancer interception in familial adenomatous polyposis. Front Immunol 2025; 16:1525157. [PMID: 39944699 PMCID: PMC11813938 DOI: 10.3389/fimmu.2025.1525157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/03/2025] [Indexed: 05/09/2025] Open
Abstract
Familial adenomatous polyposis (FAP) is an inherited autosomal dominant disorder caused by germline mutations in the adenomatous polyposis coli (APC) gene. FAP is associated with the development of hundreds of adenomas in the small and large intestines of individuals starting in the teenage years with a near 100% risk of developing colorectal cancer by adulthood. Eventually polyps develop throughout the gastrointestinal tract. Chemoprevention approaches have been somewhat successful in reducing polyp burden, but have not reduced the risk of the development of colorectal cancer or other cancers. The lack of efficacy of more standard drug approaches may be due to limited exposure to the agent only to specific periods while the drug is being metabolized, limited drug penetrance in the colon, and patient adherence to daily dosing and drug side effects. The success of immune therapy for the treatment of invasive cancer has led to research focused on the use of immune based approaches for polyp control in FAP, specifically polyp directed vaccines. Vaccines targeting antigens expressed in FAP lesions may be a superior method to control polyp burden and prevent disease progression as compared to classic chemoprevention drugs. A limited number of vaccines can be administered over a short period of time to generate a lasting immune response. Appropriately primed antigen specific T-cells can traffic to any site in the body where antigen is expressed, recognize, and eliminate the antigen expressing cell. Immunologic memory will allow the immune response to persist and the specificity of the immune response will limit toxicity to the targeted polyp. This review will examine the current state of vaccines directed against FAP lesions and highlight the challenges and opportunities of translating vaccines for cancer interception in FAP to the clinic.
Collapse
Affiliation(s)
- David E. Johnson
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Mary L. Disis
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Radhakrishnan SK, Nath D, Russ D, Merodio LB, Lad P, Daisi FK, Acharjee A. Machine learning-based identification of proteomic markers in colorectal cancer using UK Biobank data. Front Oncol 2025; 14:1505675. [PMID: 39839775 PMCID: PMC11746037 DOI: 10.3389/fonc.2024.1505675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Colorectal cancer is one of the leading causes of cancer-related mortality in the world. Incidence and mortality are predicted to rise globally during the next several decades. When detected early, colorectal cancer is treatable with surgery and medications. This leads to the requirement for prognostic and diagnostic biomarker development. Our study integrates machine learning models and protein network analysis to identify protein biomarkers for colorectal cancer. Our methodology leverages an extensive collection of proteome profiles from both healthy and colorectal cancer individuals. To identify a potential biomarker with high predictive ability, we used three machine learning models. To enhance the interpretability of our models, we quantify each protein's contribution to the model's predictions using SHapley Additive exPlanations values. Three classifiers-LASSO, XGBoost, and LightGBM were evaluated for predictive performance along with hyperparameter tuning of each model using grid search, with LASSO achieving the highest AUC of 75% in the UK Biobank dataset and the AUCs for LightGBM and XGBoost are 69.61% and 71.42%, respectively. Using SHapley Additive exPlanations values, TFF3, LCN2, and CEACAM5 were found to be key biomarkers associated with cell adhesion and inflammation. Protein quantitative trait loci analyze studies provided further evidence for the involvement of TFF1, CEACAM5, and SELE in colorectal cancer, with possible connections to the PI3K/Akt and MAPK signaling pathways. By offering insights into colorectal cancer diagnostics and targeted therapeutics, our findings set the stage for further biomarker validation.
Collapse
Affiliation(s)
| | - Dipanwita Nath
- College of Medicine and Health, School of Medical Sciences, Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Dominic Russ
- College of Medicine and Health, School of Medical Sciences, Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Translational Medicine, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Centre for Health Data Research, University of Birmingham, Birmingham, United Kingdom
| | - Laura Bravo Merodio
- College of Medicine and Health, School of Medical Sciences, Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Translational Medicine, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Centre for Health Data Research, University of Birmingham, Birmingham, United Kingdom
| | - Priyani Lad
- College of Medicine and Health, School of Medical Sciences, Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Folakemi Kola Daisi
- College of Medicine and Health, School of Medical Sciences, Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Animesh Acharjee
- College of Medicine and Health, School of Medical Sciences, Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Translational Medicine, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Centre for Health Data Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Lutz F, Han SY, Büyücek S, Möller K, Viehweger F, Schlichter R, Menz A, Luebke AM, Bawahab AA, Reiswich V, Kluth M, Hube-Magg C, Hinsch A, Weidemann S, Lennartz M, Dum D, Bernreuther C, Lebok P, Sauter G, Marx AH, Simon R, Krech T, Fraune C, Gorbokon N, Burandt E, Minner S, Steurer S, Clauditz TS, Jacobsen F. Expression of Trefoil Factor 1 (TFF1) in Cancer: A Tissue Microarray Study Involving 18,878 Tumors. Diagnostics (Basel) 2024; 14:2157. [PMID: 39410561 PMCID: PMC11475926 DOI: 10.3390/diagnostics14192157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Trefoil factor 1 (TFF1) plays a role in the mucus barrier. Methods: To evaluate the prevalence of TFF1 expression in cancer, a tissue microarray containing 18,878 samples from 149 tumor types and 608 samples of 76 normal tissue types was analyzed through immunohistochemistry (IHC). Results: TFF1 staining was detectable in 65 of 149 tumor categories. The highest rates of TFF1 positivity were found in mucinous ovarian carcinomas (76.2%), colorectal adenomas and adenocarcinomas (47.1-75%), breast neoplasms (up to 72.9%), bilio-pancreatic adenocarcinomas (42.1-62.5%), gastro-esophageal adenocarcinomas (40.4-50.0%), neuroendocrine neoplasms (up to 45.5%), cervical adenocarcinomas (39.1%), and urothelial neoplasms (up to 24.3%). High TFF1 expression was related to a low grade of malignancy in non-invasive urothelial carcinomas of the bladder (p = 0.0225), low grade of malignancy (p = 0.0003), estrogen and progesterone receptor expression (p < 0.0001), non-triple negativity (p = 0.0005) in invasive breast cancer of no special type, and right-sided tumor location (p = 0.0021) in colorectal adenocarcinomas. Conclusions: TFF1 IHC has only limited utility for the discrimination of different tumor entities given its expression in many tumor entities. The link between TFF1 expression and parameters of malignancy argues for a relevant biological role of TFF1 in cancer. TFF1 may represent a suitable therapeutic target due to its expression in only a few normal cell types.
Collapse
Affiliation(s)
- Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Soo-Young Han
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Seyma Büyücek
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Andreas M. Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Ahmed Abdulwahab Bawahab
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Andreas H. Marx
- Department of Pathology, Academic Hospital Fuerth, 90766 Fuerth, Germany;
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
- Institute of Pathology, Clinical Center Osnabrueck, 49078 Osnabrueck, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Till S. Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.L.); (S.-Y.H.); (S.B.); (K.M.); (F.V.); (R.S.); (A.M.); (A.M.L.); (V.R.); (M.K.); (C.H.-M.); (A.H.); (S.W.); (M.L.); (D.D.); (C.B.); (P.L.); (G.S.); (T.K.); (C.F.); (N.G.); (E.B.); (S.M.); (S.S.); (T.S.C.); (F.J.)
| |
Collapse
|
4
|
Okuda Y, Shimura T, Abe Y, Iwasaki H, Nishigaki R, Fukusada S, Sugimura N, Kitagawa M, Yamada T, Taguchi A, Kataoka H. Urinary dipeptidase 1 and trefoil factor 1 are promising biomarkers for early diagnosis of colorectal cancer. J Gastroenterol 2024; 59:572-585. [PMID: 38836911 DOI: 10.1007/s00535-024-02110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/24/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Currently utilized serum tumor markers and fecal immunochemical tests do not have sufficient diagnostic power for colorectal cancer (CRC) due to their low sensitivities. To establish non-invasive urinary protein biomarkers for early CRC diagnosis, we performed stepwise analyses employing urine samples from CRCs and healthy controls (HCs). METHODS Among 474 urine samples, 363 age- and sex-matched participants (188 HCs, 175 stage 0-III CRCs) were randomly divided into discovery (16 HCs, 16 CRCs), training (110 HCs, 110 CRCs), and validation (62 HCs, 49 CRCs) cohorts. RESULTS Of the 23 urinary protein candidates comprehensively identified from mass spectrometry in the discovery cohort, urinary levels of dipeptidase 1 (uDPEP1) and Trefoil factor1 (uTFF1) were the two most significant diagnostic biomarkers for CRC in both training and validation cohorts using enzyme-linked immunosorbent assays. A urinary biomarker panel comprising uDPEP1 and uTFF1 significantly distinguished CRCs from HCs, showing area under the curves of 0.825-0.956 for stage 0-III CRC and 0.792-0.852 for stage 0/I CRC. uDPEP1 and uTFF1 also significantly distinguished colorectal adenoma (CRA) patients from HCs, with uDPEP1 and uTFF1 increasing significantly in the order of HCs, CRA patients, and CRC patients. Moreover, expression levels of DPEP1 and TFF1 were also significantly higher in the serum and tumor tissues of CRC, compared to HCs and normal tissues, respectively. CONCLUSIONS This study established a promising and non-invasive urinary protein biomarker panel, which enables the early detection of CRC with high sensitivity.
Collapse
Affiliation(s)
- Yusuke Okuda
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan.
| | - Yuichi Abe
- Division of Molecular Diagnostics, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
| | - Hiroyasu Iwasaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Ruriko Nishigaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Shigeki Fukusada
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Naomi Sugimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Mika Kitagawa
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Tamaki Yamada
- Okazaki Public Health Center, 1-3 Harusaki, Harisaki-Cho, Okazaki, 444-0827, Japan
| | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-Ku, Nagoya, Aichi, 464-8681, Japan
- Division of Advanced Cancer Diagnostics, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| |
Collapse
|
5
|
Minegishi K, Dobashi Y, Koyama T, Ishibashi Y, Furuya M, Tsubochi H, Ohmoto Y, Yasuda T, Nomura S. Diagnostic utility of trefoil factor families for the early detection of lung cancer and their correlation with tissue expression. Oncol Lett 2023; 25:139. [PMID: 36909373 PMCID: PMC9996639 DOI: 10.3892/ol.2023.13725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/22/2022] [Indexed: 02/23/2023] Open
Abstract
Trefoil factors (TFFs) are upregulated in numerous types of cancer, including those of the breast, the colon, the lung and the pancreas, suggesting their potential utility as biomarkers for screening. In the present study, the clinical relevance of serum or urinary TFFs as biomarkers were comprehensively evaluated and the correlation with TFF expression levels in lung cancer tissue was examined. Serum and urine were collected from 199 patients with lung cancer and 198 healthy individuals. Concentrations of serum and urinary TFF1, TFF2 and TFF3 were measured using ELISA and the potential of TFF levels to discriminate between cancer and non-cancer samples was evaluated. In 100 of the cancer cases, expression of TFF1-3 was analyzed using immunohistochemical staining of paraffin sections. Furthermore, the relationship between TFF levels and clinicopathological factors among these cancer cases was analyzed using immunohistochemistry of tissue specimens, quantified and statistically analyzed. While serum levels of all TFFs measured using ELISA were significantly higher in patients with lung cancer compared with those in healthy individuals, urinary TFFs were lower. Areas under the curve (AUC) of the receiver operating characteristic curves for serum/urinary TFF1, TFF2 and TFF3 were 0.709/0.594, 0.722/0.501 and 0.663/0.665, respectively. Furthermore, the combination of serum TFF1, TFF2, TFF3 and urinary TFF1 and TFF3 demonstrated the highest AUC (0.826). In the clinicopathological analysis, serum TFF1 was higher in the early pathological T-stage (pTis/1/2) compared with the later stage (pT3/4) and TFF2 was higher in the pN0/1 than the pN2 group. With regards to the histological types, urinary TFF1 was higher in squamous cell carcinoma than adenocarcinoma (AC), but TFF2 tended to be higher in AC. Using immunohistochemical analysis, although TFF1 and TFF3 expression showed positive correlation with serum concentrations, TFF2 was inversely correlated. In conclusion, serum and urinary TFF levels are promising predictive biomarkers, and their measurements provide a useful in vivo and non-invasive diagnostic screening tool. In particular, TFF1 and TFF3 could be surrogate markers of clinicopathological profiles of human lung cancer.
Collapse
Affiliation(s)
- Kentaro Minegishi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Saitama 330-8500, Japan
| | - Yoh Dobashi
- Department of Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Saitama 330-8500, Japan.,Department of Pathology, School of Medicine, International University of Health and Welfare Hospital, Nasushiobara, Tochigi 329-2763, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Yuko Ishibashi
- Department of Surgery, Breast Surgery, Tokyo Women's Medical University, Adachi Medical Center, Adachi, Tokyo 123-8558, Japan
| | - Miki Furuya
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroyoshi Tsubochi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Saitama 330-8500, Japan
| | - Yasukazu Ohmoto
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8505, Japan
| | - Tomohiko Yasuda
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.,Department of Gastrointestinal Surgery, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba 270-1694, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
6
|
Minegishi K, Dobashi Y, Tsubochi H, Hagiwara K, Ishibashi Y, Nomura S, Nakamura R, Ohmoto Y, Endo S. TFF-1 Functions to Suppress Multiple Phenotypes Associated with Lung Cancer Progression. Onco Targets Ther 2021; 14:4761-4777. [PMID: 34531663 PMCID: PMC8439977 DOI: 10.2147/ott.s322697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction Trefoil Factor (TFF) is a member of a protein family comprised of three isoforms, of which TFF-1 exhibits antithetical functions; promotion or suppression of cell proliferation, survival and invasion, depending on the cancer type. However, the pathobiological function of TFF-1 in lung carcinoma has been still unclear. Methods We examined the expression and secretion of TFF-1 using cultured human lung carcinoma cells by immunoblotting, immunofluorescence, enzyme-linked immunosorbent assay and quantitative real-time PCR analyses. The effects of TFF-1 on various phenotypes were analyzed in two cell lines, including those transfected with cDNA encoding TFF-1. Cell proliferation and death were examined by hemocytometer cell counting and by colorimetric viability/cytotoxicity assay. Cell cycle profile, migration and invasion were also examined by flow cytometry, wound healing assay and Matrigel Transwell assay, respectively. The effect of TFF-1 overexpression was confirmed by additional transfection of TFF-1-specific siRNA. Results Endogenous TFF-1 protein expression and secretion into the media were observed exclusively in adenocarcinoma-derived cell lines. Forced overexpression of TFF-1 drove cell cycle transition, while the proliferation decreased by 19% to 25% due to increased cell death. This cell death was predominantly caused by apoptosis, as assessed by the activation of caspase 3/7. Cell migration was also suppressed by 71% to 82% in TFF-1-transfected cells. The suppressive effect of TFF-1 on proliferation and migration was restored by transfection of TFF-1 siRNA. Moreover, invasion was also suppressed to 77% to 83% in TFF-1-transfected cells. Conclusion These findings reveal that TFF-1 functions as a suppressor of cancer proliferation by induction of apoptosis, cell migration and invasion and thus may provide a synergistic target for potential treatment strategies for human lung carcinoma.
Collapse
Affiliation(s)
- Kentaro Minegishi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yoh Dobashi
- Department of Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan.,Department of Pathology, School of Medicine, International University of Health and Welfare, Tochigi, Japan
| | - Hiroyoshi Tsubochi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Koichi Hagiwara
- Division of Pulmonary Medicine, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yuko Ishibashi
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Breast Surgery, Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ritsuko Nakamura
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasukazu Ohmoto
- Tokushima University Industry-University R&D Startup Leading Institute, Tokushima, Japan
| | - Shunsuke Endo
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
7
|
Matsubara D, Yoshimoto T, Soda M, Amano Y, Kihara A, Funaki T, Ito T, Sakuma Y, Shibano T, Endo S, Hagiwara K, Ishikawa S, Fukayama M, Murakami Y, Mano H, Niki T. Reciprocal expression of trefoil factor-1 and thyroid transcription factor-1 in lung adenocarcinomas. Cancer Sci 2020; 111:2183-2195. [PMID: 32237253 PMCID: PMC7293082 DOI: 10.1111/cas.14403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
Molecular targeted therapies against EGFR and ALK have improved the quality of life of lung adenocarcinoma patients. However, targetable driver mutations are mainly found in thyroid transcription factor‐1 (TTF‐1)/NK2 homeobox 1 (NKX2‐1)‐positive terminal respiratory unit (TRU) types and rarely in non‐TRU types. To elucidate the molecular characteristics of the major subtypes of non‐TRU‐type adenocarcinomas, we analyzed 19 lung adenocarcinoma cell lines (11 TRU types and 8 non‐TRU types). A characteristic of non‐TRU‐type cell lines was the strong expression of TFF‐1 (trefoil factor‐1), a gastric mucosal protective factor. An immunohistochemical analysis of 238 primary lung adenocarcinomas resected at Jichi Medical University Hospital revealed that TFF‐1 was positive in 31 cases (13%). Expression of TFF‐1 was frequently detected in invasive mucinous (14/15, 93%), enteric (2/2, 100%), and colloid (1/1, 100%) adenocarcinomas, less frequent in acinar (5/24, 21%), papillary (7/120, 6%), and solid (2/43, 5%) adenocarcinomas, and negative in micropapillary (0/1, 0%), lepidic (0/23, 0%), and microinvasive adenocarcinomas or adenocarcinoma in situ (0/9, 0%). Expression of TFF‐1 correlated with the expression of HNF4‐α and MUC5AC (P < .0001, P < .0001, respectively) and inversely correlated with that of TTF‐1/NKX2‐1 (P < .0001). These results indicate that TFF‐1 is characteristically expressed in non‐TRU‐type adenocarcinomas with gastrointestinal features. The TFF‐1‐positive cases harbored KRAS mutations at a high frequency, but no EGFR or ALK mutations. Expression of TFF‐1 correlated with tumor spread through air spaces, and a poor prognosis in advanced stages. Moreover, the knockdown of TFF‐1 inhibited cell proliferation and soft‐agar colony formation and induced apoptosis in a TFF‐1‐high and KRAS‐mutated lung adenocarcinoma cell line. These results indicate that TFF‐1 is not only a biomarker, but also a potential molecular target for non‐TRU‐type lung adenocarcinomas.
Collapse
Affiliation(s)
- Daisuke Matsubara
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan.,Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taichiro Yoshimoto
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Manabu Soda
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Amano
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Atsushi Kihara
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Toko Funaki
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ito
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuji Sakuma
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Tomoki Shibano
- Department of Thoracic Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Shunsuke Endo
- Department of Thoracic Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Koichi Hagiwara
- Department of Respiratory Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Shumpei Ishikawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masashi Fukayama
- Human Pathology Department, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshiro Niki
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
8
|
Yusufu A, Shayimu P, Tuerdi R, Fang C, Wang F, Wang H. TFF3 and TFF1 expression levels are elevated in colorectal cancer and promote the malignant behavior of colon cancer by activating the EMT process. Int J Oncol 2019; 55:789-804. [PMID: 31432157 PMCID: PMC6741840 DOI: 10.3892/ijo.2019.4854] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022] Open
Abstract
Reports on the roles of the secreted trefoil factor (TFF)1 and 3 in colorectal cancer (CRC) and their underlying mechanisms of action in tumorigenesis are not common and are controversial. In the present study, the mRNA expression and promoter methylation of TFF1 and TFF3 in cancer and adjacent normal tissues were investigated, and their association with other clinical factors and patient prognosis were evaluated. Moreover, the association between TFF3 and epithelial mesenchymal transition (EMT) was explored by overexpressing or inhibiting TFF3 expression. The results revealed that the mRNA level of TFF1 and TFF3 in the cancer tissues was significantly higher than that in the matched adjacent normal tissues (P=0.034 and P=0.007, respectively), and a higher expression of TFF3, but not TFF1, was predominantly associated with clinicopathological factors and a poorer prognosis. No correlation was observed between promoter methylation and the expression of TFF1 or TFF3. The overexpression of TFF3 promoted the proliferation, migration and invasiveness of HT29 cells, and induced an increase in the expression of Twist1, Snail and Vimentin, while causing a decrease in E-cadherin expression. On the contrary, the knockdown of TFF3 resulted in opposite effects in the LoVo cells. On the whole, the findings of this study indicate that TFF3 may be a promising new factor for the estimation of the survival of patients with CRC, and may promote the malignant progression of CRC by activating the EMT process. Therefore, TFF3 may be a future potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Aikeremu Yusufu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Paerhati Shayimu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Rousidan Tuerdi
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Cheng Fang
- Department of Gastrointestinal Surgery, Xi Jing Digestive Disease Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fei Wang
- Department of Gastrointestinal Surgery, Xi Jing Digestive Disease Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Haijiang Wang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| |
Collapse
|
9
|
Zhang W, Zeng Q, Ban Z, Cao J, Chu T, Lei D, Liu C, Guo W, Zeng X. Effects of let-7c on the proliferation of ovarian carcinoma cells by targeted regulation of CDC25a gene expression. Oncol Lett 2018; 16:5543-5550. [PMID: 30405749 DOI: 10.3892/ol.2018.9327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/03/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs serve a role in the development of ovarian cancer (OC). The present study investigated whether let-7c is able to regulate the proliferation of OC cells by targeting cell division cycle 25A (CDC25a). The reverse transcription-quantitative polymerase chain reaction was performed to detect the expression of let-7c in OC specimens. Let-7c agomir was transfected into OC cells, and the proliferation and apoptosis of OC cells were detected. A dual-luciferase assay and western blotting were performed to analyze whether CDC25a was the target gene of let-7c as well as its interaction site. The results revealed that, in OC tissue, let-7c was downregulated when compared with normal ovarian tissue. A Cell Counting Kit-8 (CCK8) assay, colony formation assay and flow cytometry demonstrated that increased expression of let-7c was able to inhibit the proliferation and increase the apoptosis of OC cells. Western blotting revealed that upregulated let-7c is able to decrease the expression of CDC25a, and a dual-luciferase assay and a recovery assay demonstrated that let-7c was able to regulate the expression of the 3' untranslated region of CDC25a. Therefore, the roles of let-7c in inhibiting the proliferation and promoting the apoptosis of OC cells may be realized through the regulation of the expression of CDC25a. The results of the present study revealed that let-7c may be a novel target in the diagnosis and treatment of OC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qingru Zeng
- Department of Ultrasound, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhenying Ban
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jing Cao
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Tianjiao Chu
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Dongmei Lei
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chi Liu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Wentao Guo
- Pathogen Biology Laboratory, The Basic Medical College of Guangdong Medical University, Dongguan, Guangdong 523000, P.R. China
| | - Xianxu Zeng
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
10
|
TFF1 Promotes EMT-Like Changes through an Auto-Induction Mechanism. Int J Mol Sci 2018; 19:ijms19072018. [PMID: 29997345 PMCID: PMC6073196 DOI: 10.3390/ijms19072018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Trefoil factor 1 (TFF1) is a small secreted protein expressed in the gastrointestinal tract where, together with the other two members of its family, it plays an essential role in mucosal protection and repair against injury. The molecular mechanisms involved in the protective function of all three TFF proteins are not fully elucidated. In this paper, we investigated the role of TFF1 in epithelial to mesenchymal transition (EMT) events. The effects of TFF1 on cellular models in normoxia and/or hypoxia were evaluated by western blot, immunofluorescence, qRT-PCR and trans-well invasion assays. Luciferase reporter assays were used to assess the existence of an auto-regulatory mechanism of TFF1. The methylation status of TFF1 promoter was measured by high-resolution melting (HRM) analysis. We demonstrate a TFF1 auto-induction mechanism with the identification of a specific responsive element located between −583 and −212 bp of its promoter. Our results suggest that TFF1 can regulate its own expression in normoxic, as well as in hypoxic, conditions acting synergistically with the hypoxia-inducible factor 1 (HIF-1α) pathway. Functionally, this auto-induction mechanism seems to promote cell invasion and EMT-like modifications in vitro. Additionally, exogenously added human recombinant TFF1 protein was sufficient to observe similar effects. Together, these findings suggest that the hypoxic conditions, which can be induced by gastric injury, promote TFF1 up-regulation, strengthened by an auto-induction mechanism, and that the trefoil peptide takes part in the epithelial-mesenchymal transition events eventually triggered to repair the damage.
Collapse
|
11
|
Bajpai R, Nagaraju GP. Specificity protein 1: Its role in colorectal cancer progression and metastasis. Crit Rev Oncol Hematol 2017; 113:1-7. [PMID: 28427500 DOI: 10.1016/j.critrevonc.2017.02.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Indexed: 01/20/2023] Open
Abstract
Specificity protein 1 (Sp1) is a widely expressed transcription factor that plays an important role in the promotion of oncogenes required for tumor survival, progression and metastasis. Sp1 is highly expressed in several cancers including colorectal cancer (CRC) and is related to poor prognosis. Therefore, targeting Sp1 is a rational for CRC therapy. In this review, we will recapitulate the current understanding of Sp1 signaling, its molecular mechanisms, and its potential involvement in CRC growth, progression and metastasis. We will also discuss the current therapeutic drugs for CRC and their mechanism of action via Sp1.
Collapse
Affiliation(s)
- Richa Bajpai
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
12
|
Alix-Panabières C, Cayrefourcq L, Mazard T, Maudelonde T, Assenat E, Assou S. Molecular Portrait of Metastasis-Competent Circulating Tumor Cells in Colon Cancer Reveals the Crucial Role of Genes Regulating Energy Metabolism and DNA Repair. Clin Chem 2017; 63:700-713. [DOI: 10.1373/clinchem.2016.263582] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
AbstractBACKGROUNDUnraveling the molecular mechanisms that regulate the biology of metastasis-competent circulating tumor cells (CTCs) is urgently needed to understand metastasis formation and tumor relapse. Our group previously established the first cell line (CTC-MCC-41) derived from metastasis-competent CTCs of a patient with colon cancer.METHODSIn this study, we analyzed the transcriptome of CTC-MCC-41 cells using Human Genome U133 Plus 2.0 microarrays with the aim of unraveling the molecular basis of their special features (stem cell properties and ability to initiate and support metastasis formation).RESULTSComparison of the transcriptome data of metastasis-competent CTC-MCC-41 cells and of HT-29 cells (derived from a primary colon cancer) highlights the differential expression of genes that regulate energy metabolism [peroxisome proliferator-activated receptor γ coactivator 1A (PPARGC1A), peroxisome proliferator-activated receptor γ coactivator 1B (PPARGC1B), fatty acid binding protein 1 (FABP1), aldehyde dehydrogenase 3 family member A1 (ALDH3A1)], DNA repair [BRCA1 interacting protein C-terminal helicase 1 (BRIP1), Fanconi anemia complementation group B (FANCB), Fanconi anemia complementation group M (FANCM)], and stemness [glutaminase 2 (GLS2), cystathionine-beta-synthase (CBS), and cystathionine gamma-lyase (CTH)]. The differential expression of 20 genes was validated by quantitative reverse transcription PCR.CONCLUSIONSThis study gives a comprehensive outlook on the molecular events involved in colon cancer progression and provides potential CTC biomarkers that may help develop new therapies to specifically target CTCs with stem cell properties that cause metastases and tumor relapse in patients with colon cancer.
Collapse
Affiliation(s)
- Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, Department of Cellular and Tissue Biopathology of Tumors, University Medical Centre, Montpellier, France
- EA2415 – Help for Personalized Decision: Methodological Aspects, University Institute of Clinical Research (IURC), University of Montpellier, Montpellier, France
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells, Department of Cellular and Tissue Biopathology of Tumors, University Medical Centre, Montpellier, France
- EA2415 – Help for Personalized Decision: Methodological Aspects, University Institute of Clinical Research (IURC), University of Montpellier, Montpellier, France
| | - Thibault Mazard
- Department of Medical Oncology, Institut du Cancer à Montpellier (ICM), France
- Institut du Cancer à Montpellier (ICM), Montpellier, France
| | - Thierry Maudelonde
- Laboratory of Hormonal and Cell Biology, University Medical Centre, Montpellier, France
- EA2415 – Help for Personalized Decision: Methodological Aspects, University Institute of Clinical Research (IURC), University of Montpellier, Montpellier, France
| | - Eric Assenat
- Department of Medical Oncology, University Medical Centre, Montpellier, France
| | - Said Assou
- University of Montpellier, UFR de Médecine, Montpellier, France
- INSERM U1183; Institute for Regenerative Medicine and Biotherapy, CHU Montpellier, Hôpital Saint-Eloi, Montpellier, France
| |
Collapse
|
13
|
Khaidakov M, Lai KK, Roudachevski D, Sargsyan J, Goyne HE, Pai RK, Lamps LW, Hagedorn CH. Gastric Proteins MUC5AC and TFF1 as Potential Diagnostic Markers of Colonic Sessile Serrated Adenomas/Polyps. Am J Clin Pathol 2016; 146:530-537. [PMID: 28430953 PMCID: PMC5377921 DOI: 10.1093/ajcp/aqw142] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES A subset of colon cancers originates from sessile serrated adenomas/polyps (SSA/Ps). Our goal was to identify markers for SSA/Ps that could aid in distinguishing them from hyperplastic polyps (HPs). METHODS We performed immunostaining for gastric proteins MUC5AC and TFF1 in formalin-fixed, paraffin-embedded (FFPE) samples of HPs (n = 47), SSA/Ps (n = 37), and normal colon (n = 30). RESULTS Control mucosa expressed only trace amounts of MUC5AC and TFF1. HPs exhibited an 11.3- and 11.4-fold increase in MUC5AC and TFF1 expression confined to the upper segments of the crypts near the luminal surface of the polyps. SSA/Ps displayed on average 1.6-fold (MUC5AC, P < .008) and 1.4-fold (TFF1, P < .03) higher signal intensity for these markers than HPs, with a dramatic coexpression of MUC5AC and TFF1 typically occupying the entire length of the crypt. Immunoperoxidase results were similar to immunofluorescence staining for both MUC5AC and TFF1. CONCLUSIONS Our results suggest that the analysis of expression of MUC5AC and TFF1 may be useful for differentiating SSA/Ps from HPs. We also suggest the possibility that crypt morphology may be at least partly due to overproduction of highly viscous gastric mucins and that these proteins may play a role in the serrated pathway to colon carcinogenesis.
Collapse
Affiliation(s)
- Magomed Khaidakov
- From the Department of Medicine
- Central Arkansas Veterans Healthcare System, Little Rock
| | - Keith K. Lai
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock
| | | | | | - Hannah E. Goyne
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock
| | - Rish K. Pai
- Department of Pathology, Mayo Clinic, Scottsdale, AZ
| | - Laura W. Lamps
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock
| | - Curt H. Hagedorn
- From the Department of Medicine
- Central Arkansas Veterans Healthcare System, Little Rock
| |
Collapse
|
14
|
Misago N, Toda S. Sebaceous carcinoma within rippled/carcinoid pattern sebaceoma. J Cutan Pathol 2015; 43:64-70. [DOI: 10.1111/cup.12575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/14/2011] [Accepted: 06/01/2011] [Indexed: 01/29/2023]
Affiliation(s)
| | - Shuji Toda
- Department of Pathology, Faculty of Medicine; Saga University; Saga Japan
| |
Collapse
|
15
|
Gala MK, Austin T, Ogino S, Chan AT. TFF2-CXCR4 Axis Is Associated with BRAF V600E Colon Cancer. Cancer Prev Res (Phila) 2015; 8:614-9. [PMID: 25899003 DOI: 10.1158/1940-6207.capr-14-0444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/13/2015] [Indexed: 02/07/2023]
Abstract
Oncogene-induced senescence (OIS), a tumor-suppressive mechanism that is induced by the replicative and metabolic stress of oncogene activation, is a key barrier in the development of BRAF V600E colon cancer. Inhibition of this mechanism has been observed through epigenetic changes observed in sporadic serrated polyps, as well as through the germline mutations associated with those who develop serrated polyposis. We hypothesize that upregulated autocrine factors exist that are specific to the serrated pathway and also promote bypass of oncogene-induced senescence. To identify such autocrine factors, we integrate analyses of microarrays of sessile serrated polyps and two large colon cancer cohorts, the Cancer Genome Atlas (TCGA; n = 153), and French national Cartes d'Identité des Tumeurs (CIT) program (n = 462), with enhanced gene annotation through natural language processing techniques of the existing medical corpus. We reproducibly associate higher expression of the ligand-receptor axis of TFF2 and CXCR4 with BRAF V600E-mutant colon cancer (P = 3.0 × 10(-3) and 0.077, respectively for TCGA; P = 3.0 × 10(-8) and 5.1 × 10(-7) for CIT). Given well-described oncogenic roles of TFF2 and CXCR4 in colon cancer, and availability of CXCR4 inhibitors for other clinical indications, this ligand-receptor axis may represent an actionable target for prevention and treatment of this molecular subtype of colorectal cancer.
Collapse
Affiliation(s)
- Manish K Gala
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Thomas Austin
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shuji Ogino
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
16
|
Morito K, Nakamura J, Kitajima Y, Kai K, Tanaka T, Kubo H, Miyake S, Noshiro H. The value of trefoil factor 3 expression in predicting the long‑term outcome and early recurrence of colorectal cancer. Int J Oncol 2015; 46:563-568. [PMID: 25405728 DOI: 10.3892/ijo.2014.2755] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/16/2014] [Indexed: 02/05/2023] Open
Abstract
The trefoil factor (TFF) family comprises three thermo-stable and protease-resistant proteins (TFF1, TFF2 and TFF3) and plays an essential role in gastrointestinal mucosa protection and regeneration, and TFFs have recently been found to be involved in the development and progression of various types of cancer. However, the clinical significance of TFFs in colorectal cancer (CRC) patients remains unclear. The present study determined the relationship between TFF expression and clinicopathological findings, as well as long-term outcome in CRC patients. The mRNA expression levels of TFFs were examined in the excised CRC specimens obtained from 154 consecutive CRC patients who underwent surgical resection between 2005 and 2007 at our institution. TFF3 expression was significantly associated with the presence of distant metastasis (p=0.017), although neither TFF1 nor TFF2 expression was associated with the clinicopathological features. Survival rate of the patients with positive TFF3 was significantly worse compared to those with negative TFF3 (p=0.011). A multivariate analysis revealed that the expression of TFF3, lymph node metastasis, and vascular invasion were independent prognostic factors for disease-specific survival. Furthermore, among 134 patients with no clinical findings of metastasis at surgery, the patients with positive TFF3 experienced recurrence within one year more frequently than those with negative TFF3 (p=0.039). In conclusion, TFF3 is not only a useful biomarker for a long-term surgical result in CRC patient, but also may be a risk factor of early recurrence.
Collapse
Affiliation(s)
- Kiyoto Morito
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Jun Nakamura
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Yoshihiko Kitajima
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Keita Kai
- Department of Pathology and Microbiology, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Tomokazu Tanaka
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Hiroshi Kubo
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Shuusuke Miyake
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| | - Hirokazu Noshiro
- Department of Surgery, Saga University Faculty of Medicine, Saga 849-8501, Japan
| |
Collapse
|
17
|
Markićević M, Džodić R, Buta M, Kanjer K, Mandušić V, Nešković-Konstantinović Z, Nikolić-Vukosavljević D. Trefoil factor 1 in early breast carcinoma: a potential indicator of clinical outcome during the first 3 years of follow-up. Int J Med Sci 2014; 11:663-73. [PMID: 24843314 PMCID: PMC4025164 DOI: 10.7150/ijms.8194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/15/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND A role of an estrogen-regulated, autocrine motogenic factor was assumed to be a major biological role of trefoil factor 1 (TFF1) in breast cancer. TFF1 is regarded as a predictive factor for positive response to endocrine therapy in breast cancer patients. The aim of our study was to examine TFF1 level distribution in breast carcinomas in order to distinguish estrogen-independent from estrogen-dependent TFF1 expression and to evaluate clinical usefulness of TFF1 status in early breast cancer during the first 3 years of follow-up. METHODS The study included 226 patients with primary operable invasive early breast carcinomas for whom an equal, a 3-year follow-up was conducted. TFF1 levels as well as estrogen receptor (ER) and progesterone receptor (PR) levels were measured in cytosolic extracts of tumor samples by immunoradiometric assay or by use of classical biochemical method, respectively. Non-parametric statistical tests were applied for data analyses. RESULTS Statistical analysis revealed that TFF1 levels were significantly higher in premenopausal patients (p=0.02), or in tumors with: lower histological grade (p<0.001), positive ER or PR status (p<0.001, in both cases). On the basis of TFF1 level distribution between ER-negative and ER-positive postmenopausal patients with tumors of different histological grade, 14 ng/mg was set as the cut-off value to distinguish estrogen-independent from estrogen-dependent TFF1 expression in breast cancer. Depending on menopausal and PR status, positive TFF1 status identified patients at opposite risk for relapse among ER-positive patients with grade II tumors. Among ER- and PR-positive premenopausal patients with grade II tumors, TFF1 status alone identified patients at opposite risk for relapse. CONCLUSIONS Determination of TFF1 status might identify patients at different risk for relapse and help in making decision on administering adjuvant therapy for early breast cancer patients during the first 3 years of follow-up.
Collapse
Affiliation(s)
- Milan Markićević
- 1. Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Radan Džodić
- 2. Surgical Oncology Clinic, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia; ; 3. University of Belgrade School of Medicine, Dr Subotića 8, 11000 Belgrade, Serbia
| | - Marko Buta
- 2. Surgical Oncology Clinic, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Ksenija Kanjer
- 1. Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Vesna Mandušić
- 4. Vinča Institute of Nuclear Science, Mike Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| | - Zora Nešković-Konstantinović
- 5. Clinic of Medical Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Dragica Nikolić-Vukosavljević
- 1. Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| |
Collapse
|
18
|
Huang YG, Li YF, Pan BL, Wang LP, Zhang Y, Lee WH, Zhang Y. Trefoil factor 1 gene alternations and expression in colorectal carcinomas. TUMORI JOURNAL 2013; 99:702-7. [DOI: 10.1177/030089161309900610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims and backgroundAberrant expression of the trefoil factor family (TFF) has been recognized to be involved in the development and/or progression of various solid tumors. Increased trefoil factor 1 (TFF1) expression is found associated with tumor progression in some tumors, and TFF1 missense mutations have been detected in gastric cancer. The aim of the study was to analyze TFF1 alternations and expression in colorectal carcinoma and their correlation with cancer progression and pathological aspects.MethodsTFF1 mutations were detected in colorectal carcinomas by DNA sequencing. TFF1mRNA and protein levels in subsets of the primary tumors were determined using quantitative reverse transcription polymerase chain reaction and immunohistochemistry analyses. The serum level of TFF1 was also detected by enzyme-linked immunosorbent assay for patients with colorectal carcinoma.ResultsFive variants were detected in the 5'-untranslation region and intron 1 of TFF1. TFF1 expression was increased in colorectal carcinoma compared to paired distal colonic mucosa. Immunohistochemistry in primary colorectal carcinoma showed no significant differences in tumor TFF1 levels with respect to clinicopathological parameters such as the patient's sex, cancer differentiation, stage and lymph node metastasis. However, serum TFF1 levels were significantly elevated in patients with colorectal carcinoma compared to healthy individuals.ConclusionsThe results indicate that TFF1 missense mutations seem to be a rare event in colorectal carcinogenesis. Serum TFF1 may be a potential useful marker for patients with colorectal carcinoma.
Collapse
Affiliation(s)
- You-Guang Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology
- Tumor institue of Yunnan Province, The 3rd Affiliated Hospital of Kunming
| | - Yun-Feng Li
- Tumor institue of Yunnan Province, The 3rd Affiliated Hospital of Kunming
| | - Bao-Long Pan
- Department of Clinical Laboratory, The 1st Hospital of Yuxi, Yunnan Province
| | - Li-Ping Wang
- Department of Pathology, Yan-an Hospital of Kunming, Kunming, China
| | - Yong Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology
| |
Collapse
|
19
|
Bougen NM, Amiry N, Yuan Y, Kong XJ, Pandey V, Vidal LJP, Perry JK, Zhu T, Lobie PE. Trefoil factor 1 suppression of E-CADHERIN enhances prostate carcinoma cell invasiveness and metastasis. Cancer Lett 2012; 332:19-29. [PMID: 23266572 DOI: 10.1016/j.canlet.2012.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 11/22/2012] [Accepted: 12/16/2012] [Indexed: 11/17/2022]
Abstract
Metastasis is the primary mediator of prostate cancer (PCA) lethality and poses a significant clinical obstacle. The identification of factors involved in the metastasis of PCA is imperative. We demonstrate herein that trefoil factor 1 (TFF1) promotes PCA cell migration and invasion in vitro and metastasis in vivo. The capacity of TFF1 to enhance cell migration/invasion is mediated by transcriptional repression of E-CADHERIN. Consideration of targeted inhibition of TFF1 to prevent metastasis of prostate carcinoma is warranted.
Collapse
Affiliation(s)
- N M Bougen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Deficiency in trefoil factor 1 (TFF1) increases tumorigenicity of human breast cancer cells and mammary tumor development in TFF1-knockout mice. Oncogene 2011; 30:3261-73. [PMID: 21358676 PMCID: PMC3141110 DOI: 10.1038/onc.2011.41] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although trefoil factor 1 (TFF1; previously named pS2) is abnormally expressed in about 50% of human breast tumors, its physiopathological role in this disease has been poorly studied. Moreover, controversial data have been reported. TFF1 function in the mammary gland therefore needs to be clarified. In this study, using retroviral vectors, we performed TFF1 gain- or loss-of-function experiments in four human mammary epithelial cell lines: normal immortalized TFF1-negative MCF10A, malignant TFF1-negative MDA-MB-231 and malignant TFF1-positive MCF7 and ZR75.1. The expression of TFF1 stimulated the migration and invasion in the four cell lines. Forced TFF1 expression in MCF10A, MDA-MB-231 and MCF7 cells did not modify anchorage-dependent or -independent cell proliferation. By contrast, TFF1 knockdown in MCF7 enhanced soft-agar colony formation. This increased oncogenic potential of MCF7 cells in the absence of TFF1 was confirmed in vivo in nude mice. Moreover, chemically induced tumorigenesis in TFF1-deficient (TFF1-KO) mice led to higher tumor incidence in the mammary gland and larger tumor size compared with wild-type mice. Similarly, tumor development was increased in the TFF1-KO ovary and lung. Collectively, our results clearly show that TFF1 does not exhibit oncogenic properties, but rather reduces tumor development. This beneficial function of TFF1 is in agreement with many clinical studies reporting a better outcome for patients with TFF1-positive breast primary tumors.
Collapse
|
21
|
[Trefoil factor: from laboratory to clinic]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2010; 31:17-26. [PMID: 20446449 DOI: 10.3724/sp.j.1141.2010.01017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Trefoil factor (TFF) family is a group of peptides with one or several trefoil factor domains in their structure, which are highly conserved in evolution, and are characterized by heat and enzymatic digestion resistance. The mammalian TFFs have three members (TFF1-3), and the gastrointestinal tract and the airway system are major organs of their expression and secretion. At certain physiological conditions, with a tissue-specific distribution, TFF plays an important role in mucosal protection and wound healing. But in the malignant tissues, TFF is widely expressed, correlated strongly with the genesis, metastasis and invasion of tumor cells. These phenomena indicated that TFF may be a possible common mediator of oncogenic responses to different stimuli. The biological functions of TFF involve complex regulatory processes. Single chain TFF may activate cell membrane receptors and induce specific signaling transduction. On the other hand, TFF can form a complex with other proteins to exert its biological effects. In clinical medicine, TFF is primarily applied as drugs in the mucosal protection, in the prevention and the treatment of mucosal damage-related diseases and as pathological biomarkers of tumors. At present the first hand actions and the molecular mechanisms related to TFFs are still the major challenges in TFF research. Furthermore, the discovery of the naturally occurring complex of TFF and crystallins is highly valuable to the understanding of the biological functions and action mechanisms of TFF.
Collapse
|
22
|
Lu S, Archer MC. Sp1 coordinately regulates de novo lipogenesis and proliferation in cancer cells. Int J Cancer 2010; 126:416-25. [PMID: 19621387 DOI: 10.1002/ijc.24761] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cancers express high levels of fatty acid synthase (FAS) from which they derive fatty acids for membrane biosynthesis to sustain cell proliferation. How cancer cells coordinate de novo lipogenesis and proliferation has not been investigated. Transcription factors Sp1, Sp3 and Sp4 are overexpressed in a variety of cancers and regulate gene expression by interacting with GC-rich Sp1 binding sites. Genes encoding FAS and cell cycle proteins such as CDC25A contain Sp1 binding sites in their promoters. We demonstrate by RNA interference that Sp1, Sp3 and Sp4 all play a role in regulating CDC25A expression and proliferation in human breast cancer cells. Only Sp1, however, also regulates FAS. Furthermore, mithramycin, which blocks Sp1 binding sites, decreased proliferation, inhibited CDC25A and FAS expression and reduced binding of Sp1 to the promoters of these genes as assessed by ChIP assays. Conversely, 17beta-estradiol (E(2)) increased proliferation and CDC25A and FAS expression along with increased binding of Sp1 to the promoters of the 2 genes. In addition, we showed that the expression of sterol regulatory element-binding protein-1c (SREBP-1c), the only transcription factor that has been shown to regulate genes of lipogenic enzymes in cancer cells, is also regulated by Sp1. Finally, we demonstrated that Sp1 plays a role in sustaining proliferation and FAS expression in colon as well as prostate cancer cells. Overall, these observations suggest that Sp1 coordinately regulates de novo lipogenesis and proliferation in cancer cells.
Collapse
Affiliation(s)
- Suying Lu
- Department of Nutritional Sciences, University of Toronto, ON, Canada
| | | |
Collapse
|
23
|
Amiry N, Kong X, Muniraj N, Kannan N, Grandison PM, Lin J, Yang Y, Vouyovitch CM, Borges S, Perry JK, Mertani HC, Zhu T, Liu D, Lobie PE. Trefoil factor-1 (TFF1) enhances oncogenicity of mammary carcinoma cells. Endocrinology 2009; 150:4473-83. [PMID: 19589871 DOI: 10.1210/en.2009-0066] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The functional role of autocrine trefoil factor-1 (TFF1) in mammary carcinoma has not been previously elucidated. Herein, we demonstrate that forced expression of TFF1 in mammary carcinoma cells resulted in increased total cell number as a consequence of increased cell proliferation and survival. Forced expression of TFF1 enhanced anchorage-independent growth and promoted scattered cell morphology with increased cell migration and invasion. Moreover, forced expression of TFF1 increased tumor size in xenograft models. Conversely, RNA interference-mediated depletion of TFF1 in mammary carcinoma cells significantly reduced anchorage-independent growth and migration. Furthermore, neutralization of secreted TFF1 protein by polyclonal antibody decreased mammary carcinoma cell viability in vitro and resulted in regression of mammary carcinoma xenografts. We have therefore demonstrated that TFF1 possesses oncogenic functions in mammary carcinoma cells. Functional antagonism of TFF1 can therefore be considered as a novel therapeutic strategy for mammary carcinoma.
Collapse
Affiliation(s)
- Naeem Amiry
- The Liggins Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Over-expression of cathepsin E and trefoil factor 1 in sessile serrated adenomas of the colorectum identified by gene expression analysis. Virchows Arch 2009; 454:291-302. [DOI: 10.1007/s00428-009-0731-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 11/25/2008] [Accepted: 01/08/2009] [Indexed: 12/21/2022]
|
25
|
Perry JK, Kannan N, Grandison PM, Mitchell MD, Lobie PE. Are trefoil factors oncogenic? Trends Endocrinol Metab 2008; 19:74-81. [PMID: 18054496 DOI: 10.1016/j.tem.2007.10.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 10/19/2007] [Accepted: 10/22/2007] [Indexed: 12/24/2022]
Abstract
Trefoil factors (TFFs), in particular TFF1, are classical estrogen-regulated genes and have served as markers of estrogen gene regulation by various environmental estrogens. TFFs are also regulated by several other factors including growth hormone (hGH), insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF) and various oncogenic stimuli. TFFs are secreted proteins present in serum and possess the potential to act as growth factors promoting cell survival, anchorage-independent growth and motility. Recent compelling evidence has emerged from experimental and clinical studies to indicate a pivotal role of TFFs in oncogenic transformation, growth and metastatic extension of common human solid tumours. This review will summarize the current evidence for the involvement of TFFs in human cancer.
Collapse
Affiliation(s)
- Jo K Perry
- Liggins Institute, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
26
|
Perry JK, Emerald BS, Mertani HC, Lobie PE. The oncogenic potential of growth hormone. Growth Horm IGF Res 2006; 16:277-289. [PMID: 17101287 DOI: 10.1016/j.ghir.2006.09.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 09/28/2006] [Indexed: 10/23/2022]
Abstract
A growing body of recent literature indicates that in addition to an essential role in growth and development, growth hormone may also play a more sinister role in oncogenic transformation and neoplastic progression. Here we review the accumulating evidence implicating growth hormone in the development and progression of cancer and describe what is known of the mechanisms utilised by this hormone in neoplastic transformation.
Collapse
Affiliation(s)
- Jo K Perry
- The Liggins Institute and the National Research Centre for Growth and Development, University of Auckland, 2-6 Park Avenue, Grafton, Private Bag 92019, Auckland 1023, New Zealand
| | | | | | | |
Collapse
|