1
|
Hunter CD, Cairo CW. Detection Strategies for Sialic Acid and Sialoglycoconjugates. Chembiochem 2024; 25:e202400402. [PMID: 39444251 DOI: 10.1002/cbic.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Glycoconjugates are a vast class of biomolecules implicated in biological processes important for human health and disease. The structural complexity of glycoconjugates remains a challenge to deciphering their precise biological roles and for their development as biomarkers and therapeutics. Human glycoconjugates on the outside of the cell are modified with sialic (neuraminic) acid residues at their termini. The enzymes that install sialic acids are sialyltransferases (SiaTs), a family of 20 different isoenzymes. The removal and degradation of sialic acids is mediated by neuraminidase (NEU; sialidase) enzymes, of which there are four isoenzymes. In this review, we discuss chemical and biochemical approaches for the detection and analysis of sialoglycoconjugate (SGC) structures and their enzymatic products. The most common methods include affinity probes and synthetic substrates. Fluorogenic and radiolabelled substrates are also important tools for many applications, including screening for enzyme inhibitors. Strategies that give insight into the native substrate-specificity of enzymes that regulate SGCs (SiaT & NEU) are necessary to improve our understanding of the role of sialic acid metabolism in health and disease.
Collapse
Affiliation(s)
- Carmanah D Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
2
|
Filipsky F, Läubli H. Regulation of sialic acid metabolism in cancer. Carbohydr Res 2024; 539:109123. [PMID: 38669826 DOI: 10.1016/j.carres.2024.109123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Sialic acid, the terminal structure of cell surface glycans, has essential functions in regulating immune response, cell-to-cell communication, and cell adhesion. More importantly, an increased level of sialic acid, termed hypersialylation, has emerged as a commonly observed phenotype in cancer. Therefore, targeting sialic acid ligands (sialoglycans) and their receptors (Siglecs) may provide a new therapeutic approach for cancer immunotherapy. We highlight the complexity of the sialic acid metabolism and its involvement in malignant transformation within individual cancer subtypes. In this review, we focus on the dysregulation of sialylation, the intricate nature of sialic acid synthesis, and clinical perspective. We aim to provide a brief insight into the mechanism of hypersialylation and how our understanding of these processes can be leveraged for the development of novel therapeutics.
Collapse
Affiliation(s)
- Filip Filipsky
- Department of Biomedicine, University Hospital and University of Basel, Switzerland
| | - Heinz Läubli
- Department of Biomedicine, University Hospital and University of Basel, Switzerland; Division of Oncology, University Hospital Basel, Switzerland.
| |
Collapse
|
3
|
Tatsuta T, Ito J, Yamamoto K, Sugawara S, Hosono M, Sato M, Miyagi T. Sialidase NEU3 Contributes to the Invasiveness of Bladder Cancer. Biomedicines 2024; 12:192. [PMID: 38255300 PMCID: PMC10813053 DOI: 10.3390/biomedicines12010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Bladder cancer is the 10th most commonly diagnosed cancer worldwide. The current standard treatment for advanced bladder cancer is neoadjuvant cisplatin (NAC)-based chemotherapy followed by cystectomy. However, the response rate to chemotherapy is only 50%, owing to cisplatin resistance, and there is a need for novel therapies. Because the invasiveness of bladder cancer greatly influences patient prognosis, a mechanistic analysis of the invasive function can lead to therapeutic targets. Sialidases, which remove sialic acid residues from the nonreducing ends of sugar chains and catalyze the initial reaction in the degradation of sugar chains, are predicted to be involved in cell invasion and motility. However, the involvement of sialidases in bladder cancer, especially their relationship with the invasive ability, remains unclear. Here, using patient tissues and multiple bladder cancer cell lines, we show that the sialidase NEU3 is highly expressed in bladder cancer. Analysis of NEU3's function using its siRNA-mediated knockdown revealed that NEU3 contributes to bladder cancer invasiveness. Mechanistic analysis showed that NEU3 activates ERK and PI3K signaling. Our results show that NEU3 is involved in the malignancy of bladder cancer, and its suppression may lead to novel treatments for bladder cancer.
Collapse
Affiliation(s)
- Takeo Tatsuta
- Division of Cell Recognition Study, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan; (T.T.); (S.S.); (M.H.)
| | - Jun Ito
- Department of Urology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan; (J.I.); (M.S.)
| | - Koji Yamamoto
- Faculty of Health and Medical Care, Saitama Medical University, Saitama 350-0496, Japan;
| | - Shigeki Sugawara
- Division of Cell Recognition Study, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan; (T.T.); (S.S.); (M.H.)
| | - Masahiro Hosono
- Division of Cell Recognition Study, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan; (T.T.); (S.S.); (M.H.)
| | - Makoto Sato
- Department of Urology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan; (J.I.); (M.S.)
| | - Taeko Miyagi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan
| |
Collapse
|
4
|
Salvato I, Ricciardi L, Dal Col J, Nigro A, Giurato G, Memoli D, Sellitto A, Lamparelli EP, Crescenzi MA, Vitale M, Vatrella A, Nucera F, Brun P, Caicci F, Dama P, Stiff T, Castellano L, Idrees S, Johansen MD, Faiz A, Wark PA, Hansbro PM, Adcock IM, Caramori G, Stellato C. Expression of targets of the RNA-binding protein AUF-1 in human airway epithelium indicates its role in cellular senescence and inflammation. Front Immunol 2023; 14:1192028. [PMID: 37483631 PMCID: PMC10360199 DOI: 10.3389/fimmu.2023.1192028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction The RNA-binding protein AU-rich-element factor-1 (AUF-1) participates to posttranscriptional regulation of genes involved in inflammation and cellular senescence, two pathogenic mechanisms of chronic obstructive pulmonary disease (COPD). Decreased AUF-1 expression was described in bronchiolar epithelium of COPD patients versus controls and in vitro cytokine- and cigarette smoke-challenged human airway epithelial cells, prompting the identification of epithelial AUF-1-targeted transcripts and function, and investigation on the mechanism of its loss. Results RNA immunoprecipitation-sequencing (RIP-Seq) identified, in the human airway epithelial cell line BEAS-2B, 494 AUF-1-bound mRNAs enriched in their 3'-untranslated regions for a Guanine-Cytosine (GC)-rich binding motif. AUF-1 association with selected transcripts and with a synthetic GC-rich motif were validated by biotin pulldown. AUF-1-targets' steady-state levels were equally affected by partial or near-total AUF-1 loss induced by cytomix (TNFα/IL1β/IFNγ/10 nM each) and siRNA, respectively, with differential transcript decay rates. Cytomix-mediated decrease in AUF-1 levels in BEAS-2B and primary human small-airways epithelium (HSAEC) was replicated by treatment with the senescence- inducer compound etoposide and associated with readouts of cell-cycle arrest, increase in lysosomal damage and senescence-associated secretory phenotype (SASP) factors, and with AUF-1 transfer in extracellular vesicles, detected by transmission electron microscopy and immunoblotting. Extensive in-silico and genome ontology analysis found, consistent with AUF-1 functions, enriched RIP-Seq-derived AUF-1-targets in COPD-related pathways involved in inflammation, senescence, gene regulation and also in the public SASP proteome atlas; AUF-1 target signature was also significantly represented in multiple transcriptomic COPD databases generated from primary HSAEC, from lung tissue and from single-cell RNA-sequencing, displaying a predominant downregulation of expression. Discussion Loss of intracellular AUF-1 may alter posttranscriptional regulation of targets particularly relevant for protection of genomic integrity and gene regulation, thus concurring to airway epithelial inflammatory responses related to oxidative stress and accelerated aging. Exosomal-associated AUF-1 may in turn preserve bound RNA targets and sustain their function, participating to spreading of inflammation and senescence to neighbouring cells.
Collapse
Affiliation(s)
- Ilaria Salvato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Luca Ricciardi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Assunta Sellitto
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Maria Assunta Crescenzi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Monica Vitale
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Francesco Nucera
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Paola Dama
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Thomas Stiff
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Leandro Castellano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Alen Faiz
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Peter A. Wark
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Ian M. Adcock
- National Heart and Lung Institute, Imperial College London and the National Institute for Health and Care Research (NIHR) Imperial Biomedical Research Centre, London, United Kingdom
| | - Gaetano Caramori
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| |
Collapse
|
5
|
Li J, Ren J, Liao H, Guo W, Feng K, Huang T, Cai YD. Identification of dynamic gene expression profiles during sequential vaccination with ChAdOx1/BNT162b2 using machine learning methods. Front Microbiol 2023; 14:1138674. [PMID: 37007526 PMCID: PMC10063797 DOI: 10.3389/fmicb.2023.1138674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
To date, COVID-19 remains a serious global public health problem. Vaccination against SARS-CoV-2 has been adopted by many countries as an effective coping strategy. The strength of the body’s immune response in the face of viral infection correlates with the number of vaccinations and the duration of vaccination. In this study, we aimed to identify specific genes that may trigger and control the immune response to COVID-19 under different vaccination scenarios. A machine learning-based approach was designed to analyze the blood transcriptomes of 161 individuals who were classified into six groups according to the dose and timing of inoculations, including I-D0, I-D2-4, I-D7 (day 0, days 2–4, and day 7 after the first dose of ChAdOx1, respectively) and II-D0, II-D1-4, II-D7-10 (day 0, days 1–4, and days 7–10 after the second dose of BNT162b2, respectively). Each sample was represented by the expression levels of 26,364 genes. The first dose was ChAdOx1, whereas the second dose was mainly BNT162b2 (Only four individuals received a second dose of ChAdOx1). The groups were deemed as labels and genes were considered as features. Several machine learning algorithms were employed to analyze such classification problem. In detail, five feature ranking algorithms (Lasso, LightGBM, MCFS, mRMR, and PFI) were first applied to evaluate the importance of each gene feature, resulting in five feature lists. Then, the lists were put into incremental feature selection method with four classification algorithms to extract essential genes, classification rules and build optimal classifiers. The essential genes, namely, NRF2, RPRD1B, NEU3, SMC5, and TPX2, have been previously associated with immune response. This study also summarized expression rules that describe different vaccination scenarios to help determine the molecular mechanism of vaccine-induced antiviral immunity.
Collapse
Affiliation(s)
- Jing Li
- School of Computer Science, Baicheng Normal University, Baicheng, Jilin, China
| | - JingXin Ren
- School of Life Sciences, Shanghai University, Shanghai, China
| | | | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| |
Collapse
|
6
|
Hirai G. Sialidase-Resistant Ganglioside GM3 Analogues: Evaluation of Biological Activity. Methods Mol Biol 2023; 2613:79-87. [PMID: 36587072 DOI: 10.1007/978-1-0716-2910-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Glycolipids play important biological roles mainly in biological membranes, but their functions at the molecular level remain to be fully established. A chemical biology approach using exogenously added glycolipid probes would be promising, but the possibility of cleavage by cellular glycohydrolases complicates the interpretation of results. Thus, there is a need for non-hydolyzable analogues. In the present study, we designed and synthesized GM3 analogues resistant to GM3-degrading sialidase by replacing the O-sialoside linkage with a C-sialoside linkage. The bioactivity of the analogues was also investigated.
Collapse
Affiliation(s)
- Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
7
|
Quirino MWL, Albuquerque APB, De Souza MFD, Da Silva Filho AF, Martins MR, Da Rocha Pitta MG, Pereira MC, De Melo Rêgo MJB. alpha2,3 sialic acid processing enzymes expression in gastric cancer tissues reveals that ST3Gal3 but not Neu3 are associated with Lauren's classification, angiolymphatic invasion and histological grade. Eur J Histochem 2022; 66. [PMID: 36172711 PMCID: PMC9577379 DOI: 10.4081/ejh.2022.3330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 08/27/2022] [Indexed: 11/22/2022] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. Despite progress in the last decades, there are still no reliable biomarkers for the diagnosis of and prognosis for GC. Aberrant sialylation is a widespread critical event in the development of GC. Neuraminidases (Neu) and sialyltransferases (STs) regulate the ablation and addition of sialic acid during glycoconjugates biosynthesis, and they are a considerable source of biomarkers in various cancers. This study retrospectively characterized Neu3 and ST3Gal3 expression by immunohistochemistry in 71 paraffin-embedded GC tissue specimens and analyzed the relationship between their expression and the clinicopathological parameters. Neu3 expression was markedly increased in GC tissues compared with non-tumoral tissues (p<0.0001). Intratumoral ST3Gal3 staining was significantly associated with intestinal subtype (p=0.0042) and was negatively associated with angiolymphatic invasion (p=0.0002) and higher histological grade G3 (p=0.0066). Multivariate analysis revealed that ST3Gal3 positivity is able to predict Lauren's classification. No associations were found between Neu3 staining and clinical parameters. The in silico analysis of mRNA expression in GC validation cohorts corroborates the significant ST3Gal3 association with higher histological grade observed in our study. These findings suggest that ST3Gal3 expression may be an indicator for aggressiveness of primary GC.
Collapse
Affiliation(s)
- Michael W L Quirino
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Amanda P B Albuquerque
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Maria F D De Souza
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Antônio F Da Silva Filho
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | | | - Maira G Da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Michelly C Pereira
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| | - Moacyr J B De Melo Rêgo
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for -Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE.
| |
Collapse
|
8
|
Miyagi T, Yamamoto K. Review sialidase NEU3 and its pathological significance. Glycoconj J 2022; 39:677-683. [PMID: 35675020 DOI: 10.1007/s10719-022-10067-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/07/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
Abstract
Sialidases (EC 3.2.1.18, also called neuraminidases) catalyze the removal of α-glycosidically linked sialic acid residues from glycoproteins and glycolipids; this is the initial step in the degradation of these glycoconjugates. Sialidases of mammalian origin have been implicated in not only lysosomal catabolism but also the modulation of functional molecules involved in many biological processes. To date, four types of mammalian sialidases have been cloned and designated as Neu1, Neu2, Neu3 and Neu4. These sialidases differ in their subcellular localization and enzymatic properties, as well as their chromosomal localization, and they are expressed in a tissue-specific manner. Among the sialidases, the plasma membrane-associated sialidase Neu3 appears to play particular roles in controlling transmembrane signaling through the modulation of gangliosides, and its aberrant expression is closely related to various pathogeneses, including that of cancer. Interestingly, the human orthologue NEU3 acts in two ways, catalytic hydrolysis of gangliosides and protein interactions with other signaling molecules. Aberrant NEU3 expression can induce various pathological conditions. This review briefly summarizes recent studies, focusing on the involvement of NEU3 in various pathological phenomena.
Collapse
Affiliation(s)
- Taeko Miyagi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan.
| | - Koji Yamamoto
- Faculty of Health and Medical Care, Saitama Medical University, Moroyama, Saitama, Japan
| |
Collapse
|
9
|
Role of glycosyltransferases in carcinogenesis; growth factor signaling and EMT/MET programs. Glycoconj J 2022; 39:167-176. [PMID: 35089466 PMCID: PMC8795723 DOI: 10.1007/s10719-022-10041-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023]
Abstract
The glycosylation of cell surface receptors has been shown to regulate each step of signal transduction, including receptor trafficking to the cell surface, ligand binding, dimerization, phosphorylation, and endocytosis. In this review we focus on the role of glycosyltransferases that are involved in the modification of N-glycans, such as the effect of branching and elongation in signaling by various cell surface receptors. In addition, the role of those enzymes in the EMT/MET programs, as related to differentiation and cancer development, progress and therapy resistance is discussed.
Collapse
|
10
|
Role of Glycans on Key Cell Surface Receptors That Regulate Cell Proliferation and Cell Death. Cells 2021; 10:cells10051252. [PMID: 34069424 PMCID: PMC8159107 DOI: 10.3390/cells10051252] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cells undergo proliferation and apoptosis, migration and differentiation via a number of cell surface receptors, most of which are heavily glycosylated. This review discusses receptor glycosylation and the known roles of glycans on the functions of receptors expressed in diverse cell types. We included growth factor receptors that have an intracellular tyrosine kinase domain, growth factor receptors that have a serine/threonine kinase domain, and cell-death-inducing receptors. N- and O-glycans have a wide range of functions including roles in receptor conformation, ligand binding, oligomerization, and activation of signaling cascades. A better understanding of these functions will enable control of cell survival and cell death in diseases such as cancer and in immune responses.
Collapse
|
11
|
Läubli H, Kawanishi K, George Vazhappilly C, Matar R, Merheb M, Sarwar Siddiqui S. Tools to study and target the Siglec-sialic acid axis in cancer. FEBS J 2020; 288:6206-6225. [PMID: 33251699 DOI: 10.1111/febs.15647] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
Siglecs are widely expressed on leucocytes and bind to ubiquitously presented glycans containing sialic acids (sialoglycans). Most Siglecs carry an immunoreceptor tyrosine-based inhibition motif (ITIM) and elicit an inhibitory intracellular signal upon ligand binding. A few Siglec receptors can, however, recruit immunoreceptor tyrosine-based activation motif (ITAM)-containing factors, which activate cells. The role of hypersialylation (the enhanced expression of sialoglycans) has recently been explored in cancer progression. Mechanistic studies have shown that hypersialylation on cancer cells can engage inhibitory Siglecs on the surface of immune cells and induce immunosuppression. These recent studies strongly suggest that the Siglec-sialic acid axis can act as a potential target for cancer immunotherapy. Moreover, the use of new tools and techniques is facilitating these studies. In this review, we summarise techniques used to study Siglecs, including different mouse models, monoclonal antibodies, Siglec fusion proteins, and sialoglycan arrays. Furthermore, we discuss the recent major developments in the study of Siglecs in cancer immunosuppression, tools, and techniques used in targeting the Siglec-sialic acid axis and the possibility of clinical intervention.
Collapse
Affiliation(s)
- Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, and Medical Oncology, Department of Internal Medicine, University Hospital Basel, Switzerland
| | - Kunio Kawanishi
- Kidney and Vascular Pathology, University of Tsukuba, Ibaraki, Japan
| | | | - Rachel Matar
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), UAE
| | - Maxime Merheb
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), UAE
| | | |
Collapse
|
12
|
Minami A, Fujita Y, Shimba S, Shiratori M, Kaneko YK, Sawatani T, Otsubo T, Ikeda K, Kanazawa H, Mikami Y, Sekita R, Kurebayashi Y, Takahashi T, Miyagi T, Ishikawa T, Suzuki T. The sialidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid is a glucose-dependent potentiator of insulin secretion. Sci Rep 2020; 10:5198. [PMID: 32251344 PMCID: PMC7089948 DOI: 10.1038/s41598-020-62203-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Sialidase cleaves sialic acid residues from a sialoglycoconjugate: oligosaccharides, glycolipids and glycoproteins that contain sialic acid. Histochemical imaging of the mouse pancreas using a benzothiazolylphenol-based sialic acid derivative (BTP3-Neu5Ac), a highly sensitive histochemical imaging probe used to assess sialidase activity, showed that pancreatic islets have intense sialidase activity. The sialidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA) remarkably enhances glutamate release from hippocampal neurons. Since there are many similar processes between synaptic vesicle exocytosis and secretory granule exocytosis, we investigated the effect of DANA on insulin release from β-cells. Insulin release was induced in INS-1D cells by treatment with 8.3 mM glucose, and the release was enhanced by treatment with DANA. In a mouse intraperitoneal glucose tolerance test, the increase in serum insulin levels was enhanced by intravenous injection with DANA. However, under fasting conditions, insulin release was not enhanced by treatment with DANA. Calcium oscillations induced by 8.3 mM glucose treatment of INS-1D cells were not affected by DANA. Blood insulin levels in sialidase isozyme Neu3-deficient mice were significantly higher than those in WT mice under ad libitum feeding conditions, but the levels were not different under fasting conditions. These results indicate that DANA is a glucose-dependent potentiator of insulin secretion. The sialidase inhibitor may be useful for anti-diabetic treatment with a low risk of hypoglycemia.
Collapse
Affiliation(s)
- Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| | - Yuka Fujita
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Sumika Shimba
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Mako Shiratori
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Toshiaki Sawatani
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Tadamune Otsubo
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, 737-0112, Japan
| | - Kiyoshi Ikeda
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, 737-0112, Japan
| | - Hiroaki Kanazawa
- Department of Functional Anatomy, School of Nursing, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yasuyo Mikami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Risa Sekita
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Taeko Miyagi
- Miyagi Cancer Center Research Institute, Natori, 981-1293, Japan
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
13
|
Machala M, Procházková J, Hofmanová J, Králiková L, Slavík J, Tylichová Z, Ovesná P, Kozubík A, Vondráček J. Colon Cancer and Perturbations of the Sphingolipid Metabolism. Int J Mol Sci 2019; 20:E6051. [PMID: 31801289 PMCID: PMC6929044 DOI: 10.3390/ijms20236051] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
The development and progression of colorectal cancer (CRC), a major cause of cancer-related death in the western world, is accompanied with alterations of sphingolipid (SL) composition in colon tumors. A number of enzymes involved in the SL metabolism have been found to be deregulated in human colon tumors, in experimental rodent studies, and in human colon cancer cells in vitro. Therefore, the enzymatic pathways that modulate SL levels have received a significant attention, due to their possible contribution to CRC development, or as potential therapeutic targets. Many of these enzymes are associated with an increased sphingosine-1-phosphate/ceramide ratio, which is in turn linked with increased colon cancer cell survival, proliferation and cancer progression. Nevertheless, more attention should also be paid to the more complex SLs, including specific glycosphingolipids, such as lactosylceramides, which can be also deregulated during CRC development. In this review, we focus on the potential roles of individual SLs/SL metabolism enzymes in colon cancer, as well as on the pros and cons of employing the current in vitro models of colon cancer cells for lipidomic studies investigating the SL metabolism in CRC.
Collapse
Affiliation(s)
- Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (J.P.); (L.K.); (J.S.)
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (J.P.); (L.K.); (J.S.)
| | - Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
| | - Lucie Králiková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (J.P.); (L.K.); (J.S.)
| | - Josef Slavík
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (J.P.); (L.K.); (J.S.)
| | - Zuzana Tylichová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
| | - Petra Ovesná
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Poštovská 68/3, 60200 Brno, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
| |
Collapse
|
14
|
Rybak A, Zarzecki M, Golabiewska E, Niechoda A, Holownia A. Sialidase Attenuates Epidermal Growth Factor Response and Abolishes Antiproliferative Effects of Erlotinib in A549Alveolar Epithelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1153:55-61. [PMID: 30729434 DOI: 10.1007/5584_2018_329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Erlotinib is a widely used, reversible tyrosine kinase inhibitor (TKI), targeting pro-proliferative signaling of epidermal growth factor receptor (EGFR). The drug is approved for the first-line treatment of patients with metastatic non-small cell lung cancer with EGFR mutations. Extracellular glycans can affect EGFR expression, dimerization, phosphorylation, and EGF binding. In this study we investigated the effects of EGF and erlotinib on the cell cycle of naive and sialidase (alpha-neuraminidase)-pretreated human A549 alveolar epithelial cells. A549 cells were labeled with propidium iodide, and fractions of cells in different phases of cycle were quantified by flow cytometry. We found that neither did desialilation nor EGF, as well as erlotinib treatment, increase the number of damaged cells (subG0/G1 cell fraction), while erlotinib did significantly increase the number of G0/G1 cells and decrease S + G2/M cell fractions. In naive cells, EGF increased proliferating cell numbers by more than 40%, and this effect was blocked by erlotinib. In desialylated cells, however, proliferation was significantly decreased by about 29%, and EGF and erlotinib did not exert significant effects. We conclude that changes in alveolar epithelial cell membrane glycosylation may affect function of growth-promoting receptors and erlotinib effectiveness.
Collapse
Affiliation(s)
- A Rybak
- Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland.
| | - M Zarzecki
- Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - E Golabiewska
- Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - A Niechoda
- Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - A Holownia
- Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
15
|
Ferreira IG, Pucci M, Venturi G, Malagolini N, Chiricolo M, Dall'Olio F. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling. Int J Mol Sci 2018; 19:ijms19020580. [PMID: 29462882 PMCID: PMC5855802 DOI: 10.3390/ijms19020580] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1) by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2) through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3) by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.
Collapse
Affiliation(s)
- Inês Gomes Ferreira
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Michela Pucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Mariella Chiricolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
16
|
Groux-Degroote S, Rodríguez-Walker M, Dewald JH, Daniotti JL, Delannoy P. Gangliosides in Cancer Cell Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:197-227. [DOI: 10.1016/bs.pmbts.2017.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Biological and Pathological Roles of Ganglioside Sialidases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:121-150. [DOI: 10.1016/bs.pmbts.2017.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Abstract
Tumor-associated gangliosides play important roles in regulation of signal transduction induced by growth-factor receptors including EGFR, FGFR, HGF and PDGFR in a specific microdomain called glycosynapse in the cancer cell membranes, and in interaction with glycan recognition molecules involved in cell adhesion and immune regulation including selectins and siglecs. As the genes involved in the synthesis and degradation of tumor-associated gangliosides were identified, biological functions became clearer from the experimental results employing forced overexpression and/or knockdown/knockout of the genes. Studies on the regulatory mechanisms for their expression also achieved great advancements. Epigenetic silencing of glycan-related genes is a dominant mechanism in glycan alteration at early stages of carcinogenesis. Development of hypoxia resistance involving activation of a transcription factor HIF, and acquisition of cancer stem cell-like characteristics through epithelial-mesenchymal transition are important mechanisms for glycan modulations in the later stages of cancer progression. In the initial stages of studies, the gangliosides which specifically appear in cancers attracted attention under the name of tumor-associated gangliosides. However, it became apparent that not only the cancer-associated gangliosides but also the normal gangliosides present in nonmalignant cells and tissues perform important biological functions, and some of them tend to disappear in cancer cells resulting in the loss of the physiological functions, and this sometimes facilitates progression of cancers.
Collapse
|
19
|
Kaminuma O, Katoh S, Miyagi T, Watanabe N, Kitamura N, Nishimura T, Saeki M, Mori A, Hiroi T. Contribution of neuraminidase 3 to the differentiation of induced regulatory T cells. Genes Cells 2017; 23:112-116. [PMID: 29271120 DOI: 10.1111/gtc.12553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/26/2017] [Indexed: 01/21/2023]
Abstract
Neuraminidase family enzymes that hydrolyze the terminal sialic acid linkage in biomolecules are involved in various immune responses. We previously showed that Th1 and Th2 cells differentially express several neuraminidases. Herein, the expression of neuraminidases in induced regulatory T (iTreg) cells was investigated in comparison with that in other T-cell subsets. Contrary to the tendency toward higher neuraminidase 1 mRNA expression in in vitro-differentiated Th2 cells, compared to Th1, Th17 and iTreg cells, we observed significantly higher expression of neuraminidase 3 (Neu3) in iTreg cells. Furthermore, the expression of Neu3 in FoxP3+ CD62L- spleen cells was higher than that in FoxP3+ CD62L+ and FoxP3- cells. Lentiviral expression of Neu3 in naïve CD4+ T cells during the stimulation culture led to upregulation of FoxP3 expression. On the basis of these findings, we conclude that Neu3 contributes to the differentiation of iTreg cells by upregulation of FoxP3.
Collapse
Affiliation(s)
- Osamu Kaminuma
- Center for Life Science Research, University of Yamanashi, Chuo, Yamanashi, Japan.,Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Clinical Research Center for Allergy and Rheumatology, National Sagamihara Hospital, Sagamihara, Japan.,Bioresource Center, RIKEN, Tsukuba, Japan
| | - Shigeki Katoh
- Department of Respiratory Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Taeko Miyagi
- Miyagi Cancer Center Research Institute, Natori, Japan
| | - Nobumasa Watanabe
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Noriko Kitamura
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomoe Nishimura
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mayumi Saeki
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Bioresource Center, RIKEN, Tsukuba, Japan
| | - Akio Mori
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Clinical Research Center for Allergy and Rheumatology, National Sagamihara Hospital, Sagamihara, Japan
| | - Takachika Hiroi
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
20
|
Forcella M, Oldani M, Epistolio S, Freguia S, Monti E, Fusi P, Frattini M. Non-small cell lung cancer (NSCLC), EGFR downstream pathway activation and TKI targeted therapies sensitivity: Effect of the plasma membrane-associated NEU3. PLoS One 2017; 12:e0187289. [PMID: 29088281 PMCID: PMC5663482 DOI: 10.1371/journal.pone.0187289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 10/17/2017] [Indexed: 11/30/2022] Open
Abstract
Adenocarcinoma of Non-Small Cell Lung Cancer (NSCLC) is a severe disease. Patients carrying EGFR mutations may benefit from EGFR targeted therapies (e.g.: gefitinib). Recently, it has been shown that sialidase NEU3 directly interacts and regulates EGFR. In this work, we investigate the effect of sialidase NEU3 overexpression on EGFR pathways activation and EGFR targeted therapies sensitivity, in a series of lung cancer cell lines. NEU3 overexpression, forced after transfection, does not affect NSCLC cell viability. We demonstrate that NEU3 overexpression stimulates the ERK pathway but this activation is completely abolished by gefitinib treatment. The Akt pathway is also hyper-activated upon NEU3 overexpression, but gefitinib is able only to decrease, and not to abolish, such activation. These findings indicate that NEU3 can act directly on the ERK pathway through EGFR and both directly and indirectly with respect to EGFR on the Akt pathway. Furthermore, we provide evidence that a healthy mucosa cell line (with EGFR wild-type gene sequence) is slightly sensitive to gefitinib, especially in the presence of NEU3 overexpression, thus hypothesizing that NEU3 overexpressing patients may benefit from EGFR targeted therapies also in absence of EGFR point mutations. Overall, the expression of NEU3 may be a novel diagnostic marker in NSCLC because, by its ability to stimulate EGFR downstream pathways with direct and indirect mechanisms, it may help in the identification of patients who can profit from EGFR targeted therapies in absence of EGFR activating mutations or from new combinations of EGFR and Akt inhibitors.
Collapse
Affiliation(s)
- Matilde Forcella
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Monica Oldani
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Samantha Epistolio
- Laboratory of Molecular Pathology, Institute of Pathology, Locarno, Switzerland
| | - Stefania Freguia
- Laboratory of Molecular Pathology, Institute of Pathology, Locarno, Switzerland
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- * E-mail: (EM); (MF)
| | - Paola Fusi
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Milo Frattini
- Laboratory of Molecular Pathology, Institute of Pathology, Locarno, Switzerland
- * E-mail: (EM); (MF)
| |
Collapse
|
21
|
Paolini L, Orizio F, Busatto S, Radeghieri A, Bresciani R, Bergese P, Monti E. Exosomes Secreted by HeLa Cells Shuttle on Their Surface the Plasma Membrane-Associated Sialidase NEU3. Biochemistry 2017; 56:6401-6408. [PMID: 29039925 DOI: 10.1021/acs.biochem.7b00665] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sialidases are glycohydrolases that remove terminal sialic acid residues from oligosaccharides, glycolipids, and glycoproteins. The plasma membrane-associated sialidase NEU3 is involved in the fine-tuning of sialic acid-containing glycans directly on the cell surface and plays relevant roles in important biological phenomena such as cell differentiation, molecular recognition, and cancer transformation. Extracellular vesicles are membranous structures with a diameter of 0.03-1 μm released by cells and can be detected in blood, urine, and culture media. Among extracellular vesicles, exosomes play roles in intercellular communication and maintenance of several physiological and pathological conditions, including cancer, and could represent a useful diagnostic tool for personalized nanomedicine approaches. Using inducible expression of the murine form of NEU3 in HeLa cells, a study of the association of the enzyme with exosomes released in the culture media has been performed. Briefly, NEU3 is associated with highly purified exosomes and localizes on the external leaflet of these nanovesicles, as demonstrated by enzyme activity measurements, Western blot analysis, and dot blot analysis using specific protein markers. On the basis of these results, it is plausible that NEU3 activity on exosome glycans enhances the dynamic biological behavior of these small extracellular vesicles by modifying the negative charge and steric hindrance of their glycocalyx. The presence of NEU3 on the exosomal surface could represent a useful marker for the detection of these nanovesicles and a tool for improving our understanding of the biology of these important extracellular carriers in physiological and pathological conditions.
Collapse
Affiliation(s)
- Lucia Paolini
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| | - Flavia Orizio
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| | - Sara Busatto
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| |
Collapse
|
22
|
Sialidase NEU3 defines invasive potential of human glioblastoma cells by regulating calpain-mediated proteolysis of focal adhesion proteins. Biochim Biophys Acta Gen Subj 2017; 1861:2778-2788. [PMID: 28760640 DOI: 10.1016/j.bbagen.2017.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Glioblastoma multiforme is one of the most malignant tumors of the human central nervous system characterized by high degree of invasiveness. Focusing on this invasive nature, we investigated whether ganglioside-specific sialidase NEU3 might be involved, because gangliosides are major components of brain tissues, and cell surface sialic acids, as target residues of sialidase catalysis, are thought to be closely related to cell invasion. METHODS NEU3 mRNA levels of human glioblastoma specimens were evaluated by quantitative RT-PCR. Human glioblastoma cell lines, U251, A172, and T98G were used for cell invasion and migration by transwell and cell scratching assay. The molecules involved in the signaling cascade were investigated by western blot and immunofluorescent microscopy. RESULTS NEU3 expression was down-regulated in human glioblastoma specimens. In the human glioblastoma cell lines, NEU3 overexpression reduced invasion and migration by promoting the assembly of focal adhesions through reduced calpain-dependent proteolysis, but NEU3 silencing resulted in accelerating cell invasion via disassembly of focal adhesions. In NEU3-silenced cells, elevation of calpain activity and GM3 accumulation were observed, as results of reduced sialidase hydrolysis, localization of calpain and GM3 at the cell lamellipodium being demonstrated by immunofluorescence microscopy. CONCLUSION Sialidase NEU3 was found to exert a great influence on cell invasion in regulation of calpain activity and focal adhesion disassembly and consequent invasive potential of glioblastoma cells. GENERAL SIGNIFICANCE This first demonstration of sialidase involvement in invasive potential of gliolastoma cells may point to NEU3 as an attractive treatment target of human gliomas.
Collapse
|
23
|
N-glycans of growth factor receptors: their role in receptor function and disease implications. Clin Sci (Lond) 2017; 130:1781-92. [PMID: 27612953 DOI: 10.1042/cs20160273] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/08/2016] [Indexed: 11/17/2022]
Abstract
Numerous signal-transduction-related molecules are secreted proteins or membrane proteins, and the mechanism by which these molecules are regulated by glycan chains is a very important issue for developing an understanding of the cellular events that transpire. This review covers the functional regulation of epidermal growth factor receptor (EGFR), ErbB3 and the transforming growth factor β (TGF-β) receptor by N-glycans. This review shows that the N-glycans play important roles in regulating protein conformation and interactions with carbohydrate recognition molecules. These results point to the possibility of a novel strategy for controlling cell signalling and developing novel glycan-based therapeutics.
Collapse
|
24
|
Rodriguez-Walker M, Daniotti JL. Human Sialidase Neu3 is S-Acylated and Behaves Like an Integral Membrane Protein. Sci Rep 2017. [PMID: 28646141 PMCID: PMC5482835 DOI: 10.1038/s41598-017-04488-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Membrane-bound sialidase Neu3 is involved in the catabolism of glycoconjugates, and plays crucial roles in numerous biological processes. Since the mechanism of its association with membranes is still not completely understood, the aim of this work was to provide further information regarding this aspect. Human Neu3 was found to be associated with the plasma membrane and endomembranes, and it was not released from the lipid bilayer under conditions that typically release peripheral membrane proteins. By different experimental approaches, we demonstrated that its C-terminus is exposed to the cytosol while another portion of the protein is exposed to the extracellular space, suggesting that Neu3 possesses the features of a transmembrane protein. However, in silico analysis and homology modeling predicted that the sialidase does not contain any α-helical transmembrane segment and shares the same β-propeller fold typical of viral and bacterial sialidases. Additionally, we found that Neu3 is S-acylated. Since this post-translational modification is restricted to the cytosolic side of membranes, this finding strongly supports the idea that Neu3 may contain a cytosolic-exposed domain. Although it remains to be determined exactly how this sialidase crosses the lipid bilayer, this study provides new insights about membrane association and topology of Neu3.
Collapse
Affiliation(s)
- Macarena Rodriguez-Walker
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Jose L Daniotti
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina.
| |
Collapse
|
25
|
Membrane restructuring following in situ sialidase digestion of gangliosides: Complex model bilayers by synchrotron radiation reflectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:845-851. [DOI: 10.1016/j.bbamem.2017.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/30/2016] [Accepted: 01/08/2017] [Indexed: 12/13/2022]
|
26
|
Piccoli M, Conforti E, Varrica A, Ghiroldi A, Cirillo F, Resmini G, Pluchinotta F, Tettamanti G, Giamberti A, Frigiola A, Anastasia L. NEU3 sialidase role in activating HIF-1α in response to chronic hypoxia in cyanotic congenital heart patients. Int J Cardiol 2017; 230:6-13. [DOI: 10.1016/j.ijcard.2016.12.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
|
27
|
Jaako K, Waniek A, Parik K, Klimaviciusa L, Aonurm-Helm A, Noortoots A, Anier K, Van Elzen R, Gérard M, Lambeir AM, Roßner S, Morawski M, Zharkovsky A. Prolyl endopeptidase is involved in the degradation of neural cell adhesion molecules in vitro. J Cell Sci 2016; 129:3792-3802. [PMID: 27566163 DOI: 10.1242/jcs.181891] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Membrane-associated glycoprotein neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) play an important role in brain plasticity by regulating cell-cell interactions. Here, we demonstrate that the cytosolic serine protease prolyl endopeptidase (PREP) is able to regulate NCAM and PSA-NCAM. Using a SH-SY5Y neuroblastoma cell line with stable overexpression of PREP, we found a remarkable loss of PSA-NCAM, reduced levels of NCAM180 and NCAM140 protein species, and a significant increase in the NCAM immunoreactive band migrating at an apparent molecular weight of 120 kDa in PREP-overexpressing cells. Moreover, increased levels of NCAM fragments were found in the concentrated medium derived from PREP-overexpressing cells. PREP overexpression selectively induced an activation of matrix metalloproteinase-9 (MMP-9), which could be involved in the observed degradation of NCAM, as MMP-9 neutralization reduced the levels of NCAM fragments in cell culture medium. We propose that increased PREP levels promote epidermal growth factor receptor (EGFR) signaling, which in turn activates MMP-9. In conclusion, our findings provide evidence for newly-discovered roles for PREP in mechanisms regulating cellular plasticity through NCAM and PSA-NCAM.
Collapse
Affiliation(s)
- Külli Jaako
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Keiti Parik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Linda Klimaviciusa
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Anu Aonurm-Helm
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Aveli Noortoots
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Kaili Anier
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Roos Van Elzen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp B-2610, Belgium
| | - Melanie Gérard
- Interdisciplinary Research Centre KU Leuven-Kortrijk, Kortrijk B-8500, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp B-2610, Belgium
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Markus Morawski
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| |
Collapse
|
28
|
Takahashi M, Kizuka Y, Ohtsubo K, Gu J, Taniguchi N. Disease-associated glycans on cell surface proteins. Mol Aspects Med 2016; 51:56-70. [PMID: 27131428 DOI: 10.1016/j.mam.2016.04.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/23/2016] [Indexed: 01/02/2023]
Abstract
Most of membrane molecules including cell surface receptors and secreted proteins including ligands are glycoproteins and glycolipids. Therefore, identifying the functional significance of glycans is crucial for developing an understanding of cell signaling and subsequent physiological and pathological cellular events. In particular, the function of N-glycans associated with cell surface receptors has been extensively studied since they are directly involved in controlling cellular functions. In this review, we focus on the roles of glycosyltransferases that are involved in the modification of N-glycans and their target proteins such as epidermal growth factor receptor (EGFR), ErbB3, transforming growth factor β (TGF-β) receptor, T-cell receptors (TCR), β-site APP cleaving enzyme (BACE1), glucose transporter 2 (GLUT2), E-cadherin, and α5β1 integrin in relation to diseases and epithelial-mesenchymal transition (EMT) process. Above of those proteins are subjected to being modified by several glycosyltransferases such as N-acetylglucosaminyltransferase III (GnT-III), N-acetylglucosaminyltransferase IV (GnT-IV), N-acetylglucosaminyltransferase V (GnT-V), α2,6 sialyltransferase 1 (ST6GAL1), and α1,6 fucosyltransferase (Fut8), which are typical N-glycan branching enzymes and play pivotal roles in regulating the function of cell surface receptors in pathological cell signaling.
Collapse
Affiliation(s)
- Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Yasuhiko Kizuka
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Kazuaki Ohtsubo
- Department of Analytical Biochemistry, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsusima, Aobaku, Sendai, Miyagi 981-8558, Japan
| | - Naoyuki Taniguchi
- Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.
| |
Collapse
|
29
|
NEU3 inhibitory effect of naringin suppresses cancer cell growth by attenuation of EGFR signaling through GM3 ganglioside accumulation. Eur J Pharmacol 2016; 782:21-9. [PMID: 27105818 DOI: 10.1016/j.ejphar.2016.04.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 12/28/2022]
Abstract
Naringin, which is one of the flavonoids contained in citrus fruits, is well known to possess various healthy functions to humans. It has been reported that naringin suppresses cancer cell growth in vitro and in vivo, although the underlying mechanisms are not fully understood. Recently, the roles of glycoconjugates, such as gangliosides, in cancer cells have been focused because of their regulatory effects of malignant phenotypes. Here, to clarify the roles of naringin in the negative-regulation of cancer cell growth, the alteration of glycoconjugates induced by naringin exposure and its significance on cell signaling were investigated. Human cancer cells, HeLa and A549, were exposed to various concentrations of naringin. Naringin treatment induced the suppression of cell growth toward HeLa and A549 cells accompanied with an increase of apoptotic cells. In naringin-exposed cells, GM3 ganglioside was drastically increased compared to the GM3 content prior to the treatment. Furthermore, naringin inhibited NEU3 sialidase, a GM3 degrading glycosidase. Similarly, NEU3 inhibition activities were also detected by other flavanone, such as hesperidin and neohesperidin dihydrocalcone, but their aglycones showed less inhibitions. Naringin-treated cancer cells showed suppressed EGFR and ERK phosphorylation levels. These results suggest a novel mechanism of naringin in the suppression of cancer cell growth through the alteration of glycolipids. NEU3 inhibitory effect of naringin induced GM3 accumulation in HeLa and A549 cells, leading the attenuation of EGFR/ERK signaling accompanied with a decrease in cell growth.
Collapse
|
30
|
Shiozaki K, Harasaki Y, Fukuda M, Yoshinaga A, Ryuzono S, Chigwechokha PK, Komatsu M, Miyagi T. Positive regulation of myoblast differentiation by medaka Neu3b sialidase through gangliosides desialylation. Biochimie 2016; 123:65-72. [DOI: 10.1016/j.biochi.2016.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 01/18/2016] [Indexed: 12/17/2022]
|
31
|
Pearce OMT, Läubli H. Sialic acids in cancer biology and immunity. Glycobiology 2015; 26:111-28. [DOI: 10.1093/glycob/cwv097] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
|
32
|
Shiga K, Takahashi K, Sato I, Kato K, Saijo S, Moriya S, Hosono M, Miyagi T. Upregulation of sialidase NEU3 in head and neck squamous cell carcinoma associated with lymph node metastasis. Cancer Sci 2015; 106:1544-53. [PMID: 26470851 PMCID: PMC4714679 DOI: 10.1111/cas.12810] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 11/29/2022] Open
Abstract
Regional lymph node metastasis in head and neck squamous cell carcinoma (HNSCC) is a crucial event for its progression, associated with a high rate of mortality. Sialidase, a key enzyme for the regulation of cellular sialic acids through catalyzing the initial step of degradation of glycoproteins and glycolipids, has been implicated in cancer progression. To facilitate the development of novel treatments for HNSCC, we have investigated whether sialidase is involved in the progression of this cancer. We found plasma membrane‐associated sialidase (NEU3) to be significantly upregulated in tumor compared to non‐tumor tissues; particularly, an increase in its mRNA levels was significantly associated with lymph node metastasis. To understand the mechanisms, we analyzed the NEU3‐mediated effects on the malignant phenotype using squamous carcinoma HSC‐2 and SAS cells. NEU3 promoted cell motility and invasion, accompanied by the increased expression of MMP‐9, whereas NEU3 silencing or the activity‐null mutant did not. NEU3 enhanced phosphorylation of epidermal growth factor receptor (EGFR), and an EGFR inhibitor, AG1478, abrogated the NEU3‐induced MMP9 augmentation. These findings identify NEU3 as a participant in HNSCC progression through the regulation of EGFR signaling and thus as a potential target for inhibiting EGFR‐mediated tumor progression.
Collapse
Affiliation(s)
- Kiyoto Shiga
- Department of Otolaryngology-Head and Neck Surgery, Iwate Medical University, Morioka, Japan.,Department of Head and Neck Surgery, Miyagi Cancer Center, Natori, Japan
| | - Kohta Takahashi
- Division of Cancer Glycosylation Research, Tohoku Pharmaceutical University, Sendai, Japan.,Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Ikuro Sato
- Department of Pathology, Miyagi Cancer Center, Natori, Japan
| | - Kengo Kato
- Department of Head and Neck Surgery, Miyagi Cancer Center, Natori, Japan
| | - Shigeru Saijo
- Department of Head and Neck Surgery, Miyagi Cancer Center, Natori, Japan
| | - Setsuko Moriya
- Division of Cancer Glycosylation Research, Tohoku Pharmaceutical University, Sendai, Japan
| | - Masahiro Hosono
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Taeko Miyagi
- Division of Cancer Glycosylation Research, Tohoku Pharmaceutical University, Sendai, Japan
| |
Collapse
|
33
|
Mozzi A, Forcella M, Riva A, Difrancesco C, Molinari F, Martin V, Papini N, Bernasconi B, Nonnis S, Tedeschi G, Mazzucchelli L, Monti E, Fusi P, Frattini M. NEU3 activity enhances EGFR activation without affecting EGFR expression and acts on its sialylation levels. Glycobiology 2015; 25:855-68. [DOI: 10.1093/glycob/cwv026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/22/2015] [Indexed: 12/31/2022] Open
|
34
|
Takahashi K, Hosono M, Sato I, Hata K, Wada T, Yamaguchi K, Nitta K, Shima H, Miyagi T. Sialidase NEU3 contributes neoplastic potential on colon cancer cells as a key modulator of gangliosides by regulating Wnt signaling. Int J Cancer 2015; 137:1560-73. [PMID: 25810027 DOI: 10.1002/ijc.29527] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/12/2015] [Indexed: 01/01/2023]
Abstract
The plasma membrane-associated sialidase NEU3 is a key enzyme for ganglioside degradation. We previously demonstrated remarkable up-regulation of NEU3 in various human cancers, with augmented malignant properties. Here, we provide evidence of a close link between NEU3 expression and Wnt/β-catenin signaling in colon cancer cells by analyzing tumorigenic potential and cancer stem-like characteristics. NEU3 silencing in HT-29 and HCT116 colon cancer cells resulted in significant decrease in clonogenicity on soft agar and in vivo tumor growth, along with down-regulation of stemness and Wnt-related genes. Analyses further revealed that NEU3 enhanced phosphorylation of the Wnt receptor LRP6 and consequently β-catenin activation by accelerating complex formation with LRP6 and recruitment of GSK3β and Axin, whereas its silencing exerted the opposite effects. NEU3 activity-null mutants failed to demonstrate the activation, indicating the requirement of ganglioside modulation by the sialidase for the effects. Under sphere-forming conditions, when stemness genes are up-regulated, endogenous NEU3 expression was found to be significantly increased, whereas NEU3 silencing suppressed sphere-formation and in vivo tumor incidence in NOD-SCID mice. Increased ability of clonogenicity on soft agar and sphere formation by Wnt stimulation was abrogated by NEU3 silencing. Furthermore, NEU3 was found to regulate phosphorylation of ERK and Akt via EGF receptor and Ras cascades, thought to be additionally required for tumor progression. The results indicate an essential contribution of NEU3 to tumorigenic potential through maintenance of stem-like characteristics of colon cancer cells by regulating Wnt signaling at the receptor level, in addition to tumor progression via Ras/MAPK signaling.
Collapse
Affiliation(s)
- Kohta Takahashi
- Division of Cancer Glycosylation Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai.,Division of Cancer Molecular Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masahiro Hosono
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai
| | - Ikuro Sato
- Division of Pathology, Miyagi Cancer Center Research Institute, Natori
| | - Keiko Hata
- Division of Cancer Glycosylation Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai
| | - Tadashi Wada
- Division of Cancer Glycosylation Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori
| | - Kazuo Nitta
- Division of Cancer Molecular Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hiroshi Shima
- Division of Cancer Molecular Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Taeko Miyagi
- Division of Cancer Glycosylation Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai
| |
Collapse
|
35
|
Yamamoto K, Takahashi K, Shiozaki K, Yamaguchi K, Moriya S, Hosono M, Shima H, Miyagi T. Potentiation of epidermal growth factor-mediated oncogenic transformation by sialidase NEU3 leading to Src activation. PLoS One 2015; 10:e0120578. [PMID: 25803810 PMCID: PMC4372364 DOI: 10.1371/journal.pone.0120578] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/24/2015] [Indexed: 11/18/2022] Open
Abstract
We previously demonstrated that sialidase NEU3, a key glycosidase for ganglioside degradation, is up-regulated in various human cancers, leading to increased cell invasion, motility and survival of cancer cells possibly through activation of EGF signaling. Its up-regulation is also important for promotion of the stage of colorectal carcinogenesis in vivo in human NEU3 transgenic mice treated with azoxymethane for the induction of aberrant crypt foci in the colon mucosa, accompanied by enhanced phosphorylation of EGF receptor (EGFR). To address whether the activation of EGF signaling by the sialidase is associated with oncogenic transformation, we here analyzed the effects of overexpression of NEU3 and EGFR in NIH-3T3 cells. When NEU3 was stably transfected with or without EGFR, it was associated with significant increases in clonogenic growth, clonogenicity on soft agar and in vivo tumor growth in nude mice either with or without the receptor overexpression in the presence of EGF, compared with the levels in their vector controls. Despite the fact that the endogenous level of EGFR is known to be extremely low in these cells, NEU3 significantly enhanced the phosphorylation of Akt and ERK, as well as that of the receptor. The NEU3-mediated activation was largely abrogated by the EGFR inhibitor AG1478 or PD153035, but significant clonogenic growth still remained. NEU3 was then found to activate Src kinase, and the clonogenicity was completely suppressed by an Src inhibitor, PP2. The activity-null mutants failed to activate Src and EGFR, indicating that ganglioside modulation by NEU3 may be necessary for the activation. NEU3 and Src were co-immunoprecipitated with EGFR in NEU3- and EGFR- transfected cells. These findings identify NEU3 as an essential participant in tumorigenesis through the EGFR/Src signaling pathway and a potential target for inhibiting EGFR-mediated tumor progression.
Collapse
Affiliation(s)
- Koji Yamamoto
- Departments of Cancar Glycosylation Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
- Division of Cancer Molecular Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kohta Takahashi
- Departments of Cancar Glycosylation Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Kazuhiro Shiozaki
- Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
| | - Kazunori Yamaguchi
- Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Setsuko Moriya
- Departments of Cancar Glycosylation Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Masahiro Hosono
- Departments of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Hiroshi Shima
- Division of Cancer Molecular Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Taeko Miyagi
- Departments of Cancar Glycosylation Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| |
Collapse
|
36
|
Shiozaki K, Takahashi K, Hosono M, Yamaguchi K, Hata K, Shiozaki M, Bassi R, Prinetti A, Sonnino S, Nitta K, Miyagi T. Phosphatidic acid-mediated activation and translocation to the cell surface of sialidase NEU3, promoting signaling for cell migration. FASEB J 2015; 29:2099-111. [PMID: 25678627 DOI: 10.1096/fj.14-262543] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/11/2015] [Indexed: 11/11/2022]
Abstract
The plasma membrane-associated sialidase NEU3 plays crucial roles in regulation of transmembrane signaling, and its aberrant up-regulation in various cancers contributes to malignancy. However, it remains uncertain how NEU3 is naturally activated and locates to plasma membranes, because of its Triton X-100 requirement for the sialidase activity in vitro and its often changing subcellular location. Among phospholipids examined, we demonstrate that phosphatidic acid (PA) elevates its sialidase activity 4 to 5 times at 50 μM in vitro at neutral pH and promotes translocation to the cell surface and cell migration through Ras-signaling in HeLa and COS-1 cells. NEU3 was found to interact selectively with PA as assessed by phospholipid array, liposome coprecipitation, and ELISA assays and to colocalize with phospholipase D (PLD) 1 in response to epidermal growth factor (EGF) or serum stimulation. Studies using tagged NEU3 fragments with point mutations identified PA- and calmodulin (CaM)-binding sites around the N terminus and confirmed its participation in translocation and catalytic activity. EGF induced PLD1 activation concomitantly with enhanced NEU3 translocation to the cell surface, as assessed by confocal microscopy. These results suggest that interactions of NEU3 with PA produced by PLD1 are important for regulation of transmembrane signaling, this aberrant acceleration probably promoting malignancy in cancers.
Collapse
Affiliation(s)
- Kazuhiro Shiozaki
- *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan; and Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| | - Kohta Takahashi
- *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan; and Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| | - Masahiro Hosono
- *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan; and Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| | - Kazunori Yamaguchi
- *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan; and Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| | - Keiko Hata
- *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan; and Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| | - Momo Shiozaki
- *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan; and Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| | - Rosaria Bassi
- *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan; and Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| | - Alessandro Prinetti
- *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan; and Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| | - Sandro Sonnino
- *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan; and Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| | - Kazuo Nitta
- *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan; and Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| | - Taeko Miyagi
- *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan; and Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, Italy
| |
Collapse
|
37
|
Hakomori SI, Handa K. GM3 and cancer. Glycoconj J 2015; 32:1-8. [DOI: 10.1007/s10719-014-9572-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 01/13/2023]
|
38
|
Plasma Membrane-Associated Sialidase Confers Cancer Initiation, Promotion and Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 842:139-45. [DOI: 10.1007/978-3-319-11280-0_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Albohy A, Richards MR, Cairo CW. Mapping substrate interactions of the human membrane-associated neuraminidase, NEU3, using STD NMR. Glycobiology 2014; 25:284-93. [DOI: 10.1093/glycob/cwu109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
40
|
Shiozaki K, Ryuzono S, Matsushita N, Ikeda A, Takeshita K, Chigwechokha PK, Komatsu M, Miyagi T. Molecular cloning and biochemical characterization of medaka (Oryzias latipes) lysosomal neu4 sialidase. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1461-1472. [PMID: 24744226 DOI: 10.1007/s10695-014-9940-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 04/09/2014] [Indexed: 06/03/2023]
Abstract
Glycoconjugates are known to be involved in many physiological events in vertebrates. Sialidase is one of the glycosidases, which removes sialic acid from glycoconjugates. In mammals, the properties and physiological functions of sialidases have been investigated, while there is little understanding of fish sialidase. Here, to investigate the significance of fish neu4 sialidase, neu4 gene was cloned from medaka brain mRNA and identified. Sialidase-specific motifs (GPG, YRVP and Asp-Box) were well conserved in the medaka neu4 polypeptide. Optimal pH of medaka neu4 sialidase was 4.6, but its activity was sustained even at neutral and weak alkaline pH. The neu4 considerably cleaved sialic acid from 4-methylumbelliferyl-N-acetyl-α-D-neuraminic acid and sialyllactose, but not from ganglioside and fetuin, which are good substrates for human NEU4. neu4 activity was mostly detected in mitochondria/lysosome fraction after biochemical fractionation, and indirect immunofluorescence assays revealed neu4 localization in lysosome in neu4 overexpressed cells. Next, developmental change in medaka neu4 and other sialidase mRNA levels were estimated by real-time PCR. Each sialidases showed different expression patterns in embryonic development: neu4 was up-regulated at late developmental stage in embryo, and neu3a mRNA level was quite high in 0.5 dpf. On the other hand, neu3b expression was drastically increased after hatching, suggesting that each sialidase may play a different role in embryonic development.
Collapse
Affiliation(s)
- Kazuhiro Shiozaki
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimo-arata, Kagoshima, 890-0056, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Bonardi D, Papini N, Pasini M, Dileo L, Orizio F, Monti E, Caimi L, Venerando B, Bresciani R. Sialidase NEU3 dynamically associates to different membrane domains specifically modifying their ganglioside pattern and triggering Akt phosphorylation. PLoS One 2014; 9:e99405. [PMID: 24925219 PMCID: PMC4055604 DOI: 10.1371/journal.pone.0099405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/14/2014] [Indexed: 01/17/2023] Open
Abstract
Lipid rafts are known to regulate several membrane functions such as signaling, trafficking and cellular adhesion. The local enrichment in sphingolipids and cholesterol together with the low protein content allows their separation by density gradient flotation after extraction with non-ionic detergent at low temperature. These structures are also referred to as detergent resistant membranes (DRM). Among sphingolipids, gangliosides play important roles in different biological events, including signal transduction and tumorigenesis. Sialidase NEU3 shows high enzymatic specificity toward gangliosides. Moreover, the enzyme is present both at the cell surface and in endosomal structures and cofractionates with caveolin. Although changes in the expression level of NEU3 have been correlated to different tumors, little is known about the precise distribution of the protein and its ability in modifying the ganglioside composition of DRM and non-DRM, thus regulating intracellular events. By means of inducible expression cell system we found that i) newly synthesized NEU3 is initially associated to non-DRM; ii) at steady state the protein is equally distributed between the two membrane subcompartments, i.e., DRM and non-DRM; iii) NEU3 is degraded via the proteasomal pathway; iv) the enzyme specifically modifies the ganglioside composition of the membrane areas where it resides; and v) NEU3 triggers phosphorylation of Akt, even in absence of exogenously administered EGF. Taken together our data demonstrate that NEU3 regulates the DRM ganglioside content and it can be considered as a modulator of Akt phosphorylation, further supporting the role of this enzyme in cancer and tumorigenesis.
Collapse
Affiliation(s)
- Dario Bonardi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Nadia Papini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Mario Pasini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Loredana Dileo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Flavia Orizio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luigi Caimi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Bruno Venerando
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
42
|
Lillehoj EP, Hyun SW, Feng C, Zhang L, Liu A, Guang W, Nguyen C, Sun W, Luzina IG, Webb TJ, Atamas SP, Passaniti A, Twaddell WS, Puché AC, Wang LX, Cross AS, Goldblum SE. Human airway epithelia express catalytically active NEU3 sialidase. Am J Physiol Lung Cell Mol Physiol 2014; 306:L876-86. [PMID: 24658138 DOI: 10.1152/ajplung.00322.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sialic acids on glycoconjugates play a pivotal role in many biological processes. In the airways, sialylated glycoproteins and glycolipids are strategically positioned on the plasma membranes of epithelia to regulate receptor-ligand, cell-cell, and host-pathogen interactions at the molecular level. We now demonstrate, for the first time, sialidase activity for ganglioside substrates in human airway epithelia. Of the four known mammalian sialidases, NEU3 has a substrate preference for gangliosides and is expressed at mRNA and protein levels at comparable abundance in epithelia derived from human trachea, bronchi, small airways, and alveoli. In small airway and alveolar epithelia, NEU3 protein was immunolocalized to the plasma membrane, cytosolic, and nuclear subcellular fractions. Small interfering RNA-induced silencing of NEU3 expression diminished sialidase activity for a ganglioside substrate by >70%. NEU3 immunostaining of intact human lung tissue could be localized to the superficial epithelia, including the ciliated brush border, as well as to nuclei. However, NEU3 was reduced in subepithelial tissues. These results indicate that human airway epithelia express catalytically active NEU3 sialidase.
Collapse
Affiliation(s)
- Erik P Lillehoj
- Ph.D., Dept. of Pediatrics, Univ. of Maryland School of Medicine, 655 W. Baltimore St., Rm. 13-029, Baltimore, Maryland 21201.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Giussani P, Tringali C, Riboni L, Viani P, Venerando B. Sphingolipids: key regulators of apoptosis and pivotal players in cancer drug resistance. Int J Mol Sci 2014; 15:4356-92. [PMID: 24625663 PMCID: PMC3975402 DOI: 10.3390/ijms15034356] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/07/2014] [Accepted: 02/21/2014] [Indexed: 12/17/2022] Open
Abstract
Drug resistance elicited by cancer cells still constitutes a huge problem that frequently impairs the efficacy of both conventional and novel molecular therapies. Chemotherapy usually acts to induce apoptosis in cancer cells; therefore, the investigation of apoptosis control and of the mechanisms used by cancer cells to evade apoptosis could be translated in an improvement of therapies. Among many tools acquired by cancer cells to this end, the de-regulated synthesis and metabolism of sphingolipids have been well documented. Sphingolipids are known to play many structural and signalling roles in cells, as they are involved in the control of growth, survival, adhesion, and motility. In particular, in order to increase survival, cancer cells: (a) counteract the accumulation of ceramide that is endowed with pro-apoptotic potential and is induced by many drugs; (b) increase the synthesis of sphingosine-1-phosphate and glucosylceramide that are pro-survivals signals; (c) modify the synthesis and the metabolism of complex glycosphingolipids, particularly increasing the levels of modified species of gangliosides such as 9-O acetylated GD3 (αNeu5Ac(2-8)αNeu5Ac(2-3)βGal(1-4)βGlc(1-1)Cer) or N-glycolyl GM3 (αNeu5Ac (2-3)βGal(1-4)βGlc(1-1)Cer) and de-N-acetyl GM3 (NeuNH(2)βGal(1-4)βGlc(1-1)Cer) endowed with anti-apoptotic roles and of globoside Gb3 related to a higher expression of the multidrug resistance gene MDR1. In light of this evidence, the employment of chemical or genetic approaches specifically targeting sphingolipid dysregulations appears a promising tool for the improvement of current chemotherapy efficacy.
Collapse
Affiliation(s)
- Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Bruno Venerando
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| |
Collapse
|
44
|
Lysosomal multienzyme complex: pros and cons of working together. Cell Mol Life Sci 2013; 71:2017-32. [PMID: 24337808 DOI: 10.1007/s00018-013-1538-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 12/31/2022]
Abstract
The ubiquitous distribution of lysosomes and their heterogeneous protein composition reflects the versatility of these organelles in maintaining cell homeostasis and their importance in tissue differentiation and remodeling. In lysosomes, the degradation of complex, macromolecular substrates requires the synergistic action of multiple hydrolases that usually work in a stepwise fashion. This catalytic machinery explains the existence of lysosomal enzyme complexes that can be dynamically assembled and disassembled to efficiently and quickly adapt to the pool of substrates to be processed or degraded, adding extra tiers to the regulation of the individual protein components. An example of such a complex is the one composed of three hydrolases that are ubiquitously but differentially expressed: the serine carboxypeptidase, protective protein/cathepsin A (PPCA), the sialidase, neuraminidase-1 (NEU1), and the glycosidase β-galactosidase (β-GAL). Next to this 'core' complex, the existence of sub-complexes, which may contain additional components, and function at the cell surface or extracellularly, suggests as yet unexplored functions of these enzymes. Here we review how studies of basic biological processes in the mouse models of three lysosomal storage disorders, galactosialidosis, sialidosis, and GM1-gangliosidosis, revealed new and unexpected roles for the three respective affected enzymes, Ppca, Neu1, and β-Gal, that go beyond their canonical degradative activities. These findings have broadened our perspective on their functions and may pave the way for the development of new therapies for these lysosomal storage disorders.
Collapse
|
45
|
Shiozaki K, Takeshita K, Ikeda M, Ikeda A, Harasaki Y, Komatsu M, Yamada S, Yamaguchi K, Miyagi T. Molecular cloning and biochemical characterization of two novel Neu3 sialidases, neu3a and neu3b, from medaka (Oryzias latipes). Biochimie 2013; 95:280-9. [DOI: 10.1016/j.biochi.2012.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/20/2012] [Indexed: 11/26/2022]
|
46
|
Abstract
Alkyne-hinged 3-fluorosialyl fluoride (DFSA) containing an alkyne group was shown to be a mechanism-based target-specific irreversible inhibitor of sialidases. The ester-protected analog DFSA (PDFSA) is a membrane-permeable precursor of DFSA designed to be used in living cells, and it was shown to form covalent adducts with virus, bacteria, and human sialidases. The fluorosialyl-enzyme adduct can be ligated with an azide-annexed biotin via click reaction and detected by the streptavidin-specific reporting signals. Liquid chromatography-mass spectrometry/mass spectrometry analysis on the tryptic peptide fragments indicates that the 3-fluorosialyl moiety modifies tyrosine residues of the sialidases. DFSA was used to demonstrate influenza infection and the diagnosis of the viral susceptibility to the anti-influenza drug oseltamivir acid, whereas PDFSA was used for in situ imaging of the changes of sialidase activity in live cells.
Collapse
|
47
|
The role of the sialic acid in monitoring the evolution of malignant melanoma. From murine models to human research. REV ROMANA MED LAB 2013. [DOI: 10.2478/rrlm-2013-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Tringali C, Lupo B, Silvestri I, Papini N, Anastasia L, Tettamanti G, Venerando B. The plasma membrane sialidase NEU3 regulates the malignancy of renal carcinoma cells by controlling β1 integrin internalization and recycling. J Biol Chem 2012; 287:42835-45. [PMID: 23139422 DOI: 10.1074/jbc.m112.407718] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human plasma membrane sialidase NEU3 is a key enzyme in the catabolism of membrane gangliosides, is crucial in the regulation of cell surface processes, and has been demonstrated to be significantly up-regulated in renal cell carcinomas (RCCs). In this report, we show that NEU3 regulates β1 integrin trafficking in RCC cells by controlling β1 integrin recycling to the plasma membrane and controlling activation of the epidermal growth factor receptor (EGFR) and focal adhesion kinase (FAK)/protein kinase B (AKT) signaling. NEU3 silencing in RCC cells increased the membrane ganglioside content, in particular the GD1a content, and changed the expression of key regulators of the integrin recycling pathway. In addition, NEU3 silencing up-regulated the Ras-related protein RAB25, which directs internalized integrins to lysosomes, and down-regulated the chloride intracellular channel protein 3 (CLIC3), which induces the recycling of internalized integrins to the plasma membrane. In this manner, NEU3 silencing enhanced the caveolar endocytosis of β1 integrin, blocked its recycling and reduced its levels at the plasma membrane, and, consequently, inhibited EGFR and FAK/AKT. These events had the following effects on the behavior of RCC cells: they (a) decreased drug resistance mediated by the block of autophagy and the induction of apoptosis; (b) decreased metastatic potential mediated by down-regulation of the metalloproteinases MMP1 and MMP7; and (c) decreased adhesion to collagen and fibronectin. Therefore, our data identify NEU3 as a key regulator of the β1 integrin-recycling pathway and FAK/AKT signaling and demonstrate its crucial role in RCC malignancy.
Collapse
Affiliation(s)
- Cristina Tringali
- Department of Medical Biotechnology, University of Milan, Segrate, 20090 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
Fanzani A, Zanola A, Faggi F, Papini N, Venerando B, Tettamanti G, Sampaolesi M, Monti E. Implications for the mammalian sialidases in the physiopathology of skeletal muscle. Skelet Muscle 2012; 2:23. [PMID: 23114189 PMCID: PMC3534598 DOI: 10.1186/2044-5040-2-23] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/02/2012] [Indexed: 12/11/2022] Open
Abstract
The family of mammalian sialidases is composed of four distinct versatile enzymes that remove negatively charged terminal sialic acid residues from gangliosides and glycoproteins in different subcellular areas and organelles, including lysosomes, cytosol, plasma membrane and mitochondria. In this review we summarize the growing body of data describing the important role of sialidases in skeletal muscle, a complex apparatus involved in numerous key functions and whose functional integrity can be affected by various conditions, such as aging, chronic diseases, cancer and neuromuscular disorders. In addition to supporting the proper catabolism of glycoconjugates, sialidases can affect different signaling pathways by desialylation of many receptors and modulation of ganglioside content in cell membranes, thus actively participating in myoblast proliferation, differentiation and hypertrophy, insulin responsiveness and skeletal muscle architecture.
Collapse
Affiliation(s)
- Alessandro Fanzani
- Department of Biomedical Sciences and Biotechnologies and Interuniversitary Institute of Myology (IIM), University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hayre JK, Xu G, Borgianni L, Taylor GL, Andrew PW, Docquier JD, Oggioni MR. Optimization of a direct spectrophotometric method to investigate the kinetics and inhibition of sialidases. BMC BIOCHEMISTRY 2012; 13:19. [PMID: 23031230 PMCID: PMC3483245 DOI: 10.1186/1471-2091-13-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 09/25/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUNDS Streptococcus pneumoniae expresses three distinct sialidases, NanA, NanB, and NanC, that are believed to be key virulence factors and thus, potential important drug targets. We previously reported that the three enzymes release different products from sialosides, but could share a common catalytic mechanism before the final step of product formation. However, the kinetic investigations of the three sialidases have not been systematically done thus far, due to the lack of an easy and steady measurement of sialidase reaction rate. RESULTS In this work, we present further kinetic characterization of pneumococcal sialidases by using a direct spectrophotometric method with the chromogenic substrate p-nitrophenyl-N-acetylneuraminic acid (p-NP-Neu5Ac). Using our assay, the measured kinetic parameters of the three purified pneumococcal sialidase, NanA, NanB and NanC, were obtained and were in perfect agreement with the previously published data. The major advantage of this alternative method resides in the direct measurement of the released product, allowing to readily determine of initial reaction rates and record complete hydrolysis time courses. CONCLUSION We developed an accurate, fast and sensitive spectrophotometric method to investigate the kinetics of sialidase-catalyzed reactions. This fast, sensitive, inexpensive and accurate method could benefit the study of the kinetics and inhibition of sialidases in general.
Collapse
Affiliation(s)
- Jasvinder Kaur Hayre
- Dipartimento di Biotecnologie, Università degli Studi di Siena, I-53100, Siena, Italy
| | | | | | | | | | | | | |
Collapse
|