1
|
Neale DA, Morris JC, Verrills NM, Ammit AJ. Understanding the regulatory landscape of protein phosphatase 2A (PP2A): Pharmacological modulators and potential therapeutics. Pharmacol Ther 2025; 269:108834. [PMID: 40023321 DOI: 10.1016/j.pharmthera.2025.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase with a diverse and integral role in cellular signalling pathways. Consequently, its dysfunction is frequently observed in disease states such as cancer, inflammation and Alzheimer's disease. A growing understanding of both PP2A and its endogenous regulatory proteins has presented numerous targets for therapeutic intervention. This provides important context for the dynamic control and dysregulation of PP2A function in disease states. Understanding the intricate regulation of PP2A signalling in disease has resulted in the development of novel pharmacological agents aimed at restoring cellular homeostasis. Herein we review the structure and function of PP2A together with pharmacological modulators, both endogenous (proteins) and exogenous (small molecules and peptides), with relevance to targeting PP2A as a future pharmacotherapeutic strategy.
Collapse
Affiliation(s)
- David A Neale
- School of Chemistry, UNSW Sydney, NSW 2052, Australia
| | | | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW 2308, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, Macquarie University, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
2
|
Kajimura Y, Dong S, Tessari A, Orlacchio A, Thoms A, Cufaro MC, Di Marco F, Amari F, Chen M, Soliman SHA, Rizzotto L, Zhang L, Sunilkumar D, Amann JM, Carbone DP, Ahmed A, Fiermonte G, Freitas MA, Lodi A, Del Boccio P, Tessarollo L, Palmieri D, Coppola V. An in vivo "turning model" reveals new RanBP9 interactions in lung macrophages. Cell Death Discov 2025; 11:171. [PMID: 40223093 PMCID: PMC11994786 DOI: 10.1038/s41420-025-02456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
The biological functions of the scaffold protein Ran Binding Protein 9 (RanBP9) remain elusive in macrophages or any other cell type where this protein is expressed together with its CTLH (C-terminal to LisH) complex partners. We have engineered a new mouse model, named RanBP9-TurnX, where RanBP9 fused to three copies of the HA tag (RanBP9-3xHA) can be turned into RanBP9-V5 tagged upon Cre-mediated recombination. We created this model to enable stringent biochemical studies at cell type specific level throughout the entire organism. Here, we have used this tool crossed with LysM-Cre transgenic mice to identify RanBP9 interactions in lung macrophages. We show that RanBP9-V5 and RanBP9-3xHA can be both co-immunoprecipitated with the known members of the CTLH complex from the same whole lung lysates. However, more than ninety percent of the proteins pulled down by RanBP9-V5 differ from those pulled-down by RanBP9-HA. The lung RanBP9-V5 associated proteome includes previously unknown interactions with macrophage-specific proteins as well as with players of the innate immune response, DNA damage response, metabolism, and mitochondrial function. This work provides the first lung specific RanBP9-associated interactome in physiological conditions and reveals that RanBP9 and the CTLH complex could be key regulators of macrophage bioenergetics and immune functions.
Collapse
Affiliation(s)
- Yasuko Kajimura
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Division of Hematology, Diabetes, Metabolism and Endocrinology, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Shuxin Dong
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, 78723, USA
| | - Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Oncology Unit, AULSS 5 Polesana, Rovigo, Italy
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Alexandra Thoms
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Pelotonia Summer Fellow, Kenyon College, CAMELOT Program, Gambier, OH, USA
| | - Maria Concetta Cufaro
- Analytical Biochemistry and Proteomics Research Unit, CAST (Center for Advanced Studies and Technology), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Federica Di Marco
- Analytical Biochemistry and Proteomics Research Unit, CAST (Center for Advanced Studies and Technology), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Foued Amari
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Min Chen
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Shimaa H A Soliman
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Lara Rizzotto
- Gene Editing Shared Resource, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Liwen Zhang
- Proteomic Shared Resource, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Damu Sunilkumar
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Joseph M Amann
- Division of Medical Oncology, Ohio State Wexner Medical Center, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - David P Carbone
- Division of Medical Oncology, Ohio State Wexner Medical Center, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Amer Ahmed
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125, Bari, Italy
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnology and Environment, University of Bari, 70125, Bari, Italy
| | - Mike A Freitas
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Proteomic Shared Resource, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX, 78723, USA
| | - Piero Del Boccio
- Analytical Biochemistry and Proteomics Research Unit, CAST (Center for Advanced Studies and Technology), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, NCI/Center for Cancer Research, NIH, Frederick, MD, 21702, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Gene Editing Shared Resource, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Gao J, You T, Liu J, Yang L, Liu Y, Wang Y. TIPRL, a Potential Double-edge Molecule to be Targeted and Re-targeted Toward Cancer. Cell Biochem Biophys 2024; 82:1681-1691. [PMID: 38888871 DOI: 10.1007/s12013-024-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
The target of rapamycin (TOR) proteins exhibits phylogenetic conservation across various species, ranging from yeast to humans, and are classified as members of the phosphatidylinositol kinase (PIK)-related kinase family. Multiple serine/threonine (Ser/Thr) protein phosphatases (PP)2A, PP4, and PP6, have been recognized as constituents of the TOR signaling pathway in mammalian cells. The protein known as TOR signaling pathway regulator-like (TIPRL) functions as a regulatory agent by impeding the activity of the catalytic subunits of PP2A. Various cellular contexts have been postulated for TIPRL, encompassing the regulation of mechanistic target of rapamycin (mTOR) signaling, inhibition of apoptosis and biogenesis, and recycling of PP2A. According to reports, there has been an observed increase in TIPRL levels in several types of carcinomas, such as non-small-cell lung carcinoma (NSCLC) and hepatocellular carcinomas (HCC). This review aims to comprehensively examine the significance of the Tor pathway in regulating apoptosis and proliferation of cancer cells, with a specific focus on the role of TOR signaling and TIPRL in cancer.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmacy, Zibo Central Hospital, Zibo, 255036, China
| | - Tiantian You
- Department of Pharmacy, Zibo Central Hospital, Zibo, 255036, China
| | - Jiao Liu
- Department of Pharmacy, Zibo Central Hospital, Zibo, 255036, China
| | - Lili Yang
- Department of Pharmacy, Zibo Central Hospital, Zibo, 255036, China
| | - Yan Liu
- Department of Pharmacy, Zibo Central Hospital, Zibo, 255036, China
| | - Yanyan Wang
- Department of Pharmacy, Zibo Central Hospital, Zibo, 255036, China.
| |
Collapse
|
4
|
Song I, Jeong Y, Yun JK, Lee J, Yang H, Park Y, Kim S, Hong S, Lee PC, Lee GD, Jang S. TIPRL Regulates Stemness and Survival in Lung Cancer Stem Cells through CaMKK2-CaMK4-CREB Feedback Loop Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406309. [PMID: 39076120 PMCID: PMC11423089 DOI: 10.1002/advs.202406309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Indexed: 07/31/2024]
Abstract
Frequent recurrence and metastasis caused by cancer stem cells (CSCs) are major challenges in lung cancer treatment. Therefore, identifying and characterizing specific CSC targets are crucial for the success of prospective targeted therapies. In this study, it is found that upregulated TOR Signaling Pathway Regulator-Like (TIPRL) in lung CSCs causes sustained activation of the calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) signaling pathway by binding to CaMKK2, thereby maintaining stemness and survival. CaMKK2-mediated activation of CaM kinase 4 (CaMK4) leads to phosphorylation of cAMP response element-binding protein (CREB) at Ser129 and Ser133, which is necessary for its maximum activation and the downstream constitutive expression of its target genes (Bcl2 and HMG20A). TIPRL depletion sensitizes lung CSCs to afatinib-induced cell death and reduces distal metastasis of lung cancer in vivo. It is determined that CREB activates the transcription of TIPRL in lung CSCs. The positive feedback loop consisting of CREB and TIPRL induces the sustained activation of the CaMKK2-CaMK4-CREB axis as a driving force and upregulates the expression of stemness- and survival-related genes, promoting tumorigenesis in patients with lung cancer. Thus, TIPRL and the CaMKK2 signaling axis may be promising targets for overcoming drug resistance and reducing metastasis in lung cancer.
Collapse
Affiliation(s)
- In‐Sung Song
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Yu‐Jeong Jeong
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Jae Kwang Yun
- Department of Thoracic and Cardiovascular SurgeryAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Jimin Lee
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Hae‐Jun Yang
- Futuristic Animal Resource & Research CenterKorea Research Institute of Bioscience and BiotechnologyChungchenongbuk‐do28116Republic of Korea
| | - Young‐Ho Park
- Futuristic Animal Resource & Research CenterKorea Research Institute of Bioscience and BiotechnologyChungchenongbuk‐do28116Republic of Korea
- Department of Functional GenomicsKRIBBSchool of BioscienceKorea University of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Sun‐Uk Kim
- Futuristic Animal Resource & Research CenterKorea Research Institute of Bioscience and BiotechnologyChungchenongbuk‐do28116Republic of Korea
- Department of Functional GenomicsKRIBBSchool of BioscienceKorea University of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Seung‐Mo Hong
- Department of PathologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Peter C.W. Lee
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Geun Dong Lee
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| | - Sung‐Wuk Jang
- Department of Biochemistry and Molecular BiologyBrain Korea 21 ProjectAsan Medical CenterUniversity of Ulsan College of MedicineSeoul138‐736Republic of Korea
| |
Collapse
|
5
|
Cokelaere C, Dok R, Cortesi EE, Zhao P, Sablina A, Nuyts S, Derua R, Janssens V. TIPRL1 and its ATM-dependent phosphorylation promote radiotherapy resistance in head and neck cancer. Cell Oncol (Dordr) 2024; 47:793-818. [PMID: 37971644 DOI: 10.1007/s13402-023-00895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE TIPRL1 (target of rapamycin signaling pathway regulator-like 1) is a known interactor and inhibitor of protein phosphatases PP2A, PP4 and PP6 - all pleiotropic modulators of the DNA Damage Response (DDR). Here, we investigated the role of TIPRL1 in the radiotherapy (RT) response of Head and Neck Squamous Cell Carcinoma (HNSCC). METHODS TIPRL1 mRNA (cBioportal) and protein expression (immunohistochemistry) in HNSCC samples were linked with clinical patient data. TIPRL1-depleted HNSCC cells were generated by CRISPR/Cas9 editing, and effects on colony growth, micronuclei formation (microscopy), cell cycle (flow cytometry), DDR signaling (immunoblots) and proteome (mass spectrometry) following RT were assessed. Mass spectrometry was used for TIPRL1 phosphorylation and interactomics analysis in irradiated cells. RESULTS TIPRL1 expression was increased in tumor versus non-tumor tissue, with high tumoral TIPRL1 expression associating with lower locoregional control and decreased survival of RT-treated patients. TIPRL1 deletion in HNSCC cells resulted in increased RT sensitivity, a faster but prolonged cell cycle arrest, increased micronuclei formation and an altered proteome-wide DDR. Upon irradiation, ATM phosphorylates TIPRL1 at Ser265. A non-phospho Ser265Ala mutant could not rescue the increased radiosensitivity phenotype of TIPRL1-depleted cells. While binding to PP2A-like phosphatases was confirmed, DNA-dependent protein kinase (DNA-PKcs), RAD51 recombinase and nucleosomal histones were identified as novel TIPRL1 interactors. Histone binding, although stimulated by RT, was adversely affected by TIPRL1 Ser265 phosphorylation. CONCLUSIONS Our findings underscore a clinically relevant role for TIPRL1 and its ATM-dependent phosphorylation in RT resistance through modulation of the DDR, highlighting its potential as a new HNSCC predictive marker and therapeutic target.
Collapse
Affiliation(s)
- Célie Cokelaere
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
| | - Rüveyda Dok
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Emanuela E Cortesi
- Translational Cell & Tissue Research, Department of Imaging & Pathology, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Peihua Zhao
- VIB Laboratory of Mechanisms of Cell Transformation, Department of Oncology, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Anna Sablina
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
- VIB Laboratory of Mechanisms of Cell Transformation, Department of Oncology, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Sandra Nuyts
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
- SybioMA, Proteomics Core Facility, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000, Leuven, Belgium.
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium.
| |
Collapse
|
6
|
Kajimura Y, Tessari A, Orlacchio A, Thoms A, Cufaro MC, Marco FD, Amari F, Chen M, Soliman SHA, Rizzotto L, Zhang L, Amann J, Carbone DP, Ahmed A, Fiermonte G, Freitas M, Lodi A, Boccio PD, Palmieri D, Coppola V. An in vivo "turning model" reveals new RanBP9 interactions in lung macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595416. [PMID: 38826292 PMCID: PMC11142189 DOI: 10.1101/2024.05.22.595416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The biological functions of the scaffold protein Ran Binding Protein 9 (RanBP9) remain elusive in macrophages or any other cell type where this protein is expressed together with its CTLH (C-terminal to LisH) complex partners. We have engineered a new mouse model, named RanBP9-TurnX, where RanBP9 fused to three copies of the HA tag (RanBP9-3xHA) can be turned into RanBP9-V5 tagged upon Cre-mediated recombination. We created this model to enable stringent biochemical studies at cell type specific level throughout the entire organism. Here, we have used this tool crossed with LysM-Cre transgenic mice to identify RanBP9 interactions in lung macrophages. We show that RanBP9-V5 and RanBP9-3xHA can be both co-immunoprecipitated with the known members of the CTLH complex from the same whole lung lysates. However, more than ninety percent of the proteins pulled down by RanBP9-V5 differ from those pulled-down by RanBP9-HA. The lung RanBP9-V5 associated proteome includes previously unknown interactions with macrophage-specific proteins as well as with players of the innate immune response, DNA damage response, metabolism, and mitochondrial function. This work provides the first lung specific RanBP9-associated interactome in physiological conditions and reveals that RanBP9 and the CTLH complex could be key regulators of macrophage bioenergetics and immune functions.
Collapse
|
7
|
Saini LK, Bheri M, Pandey GK. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:307-370. [PMID: 36858740 DOI: 10.1016/bs.apcsb.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein phosphorylation is a vital reversible post-translational modification. This process is established by two classes of enzymes: protein kinases and protein phosphatases. Protein kinases phosphorylate proteins while protein phosphatases dephosphorylate phosphorylated proteins, thus, functioning as 'critical regulators' in signaling pathways. The eukaryotic protein phosphatases are classified as phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine (Ser)/threonine (Thr) specific phosphatases (STPs) that dephosphorylate Ser and Thr residues. The PTP family dephosphorylates Tyr residues while dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. The composition of these enzymes as well as their substrate specificity are important determinants of their functional significance in a number of cellular processes and stress responses. Their role in animal systems is well-understood and characterized. The functional characterization of protein phosphatases has been extensively covered in plants, although the comprehension of their mechanistic basis is an ongoing pursuit. The nature of their interactions with other key players in the signaling process is vital to our understanding. The substrates or targets determine their potential as well as magnitude of the impact they have on signaling pathways. In this article, we exclusively overview the various substrates of protein phosphatases in plant signaling pathways, which are a critical determinant of the outcome of various developmental and stress stimuli.
Collapse
Affiliation(s)
- Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
8
|
Haanen TJ, O'Connor CM, Narla G. Biased holoenzyme assembly of protein phosphatase 2A (PP2A): From cancer to small molecules. J Biol Chem 2022; 298:102656. [PMID: 36328247 PMCID: PMC9707111 DOI: 10.1016/j.jbc.2022.102656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a family of serine threonine phosphatases responsible for regulating protein phosphorylation, thus opposing the activity of cellular kinases. PP2A is composed of a catalytic subunit (PP2A Cα/β) and scaffolding subunit (PP2A Aα/β) and various substrate-directing B regulatory subunits. PP2A biogenesis is regulated at multiple levels. For example, the sequestration of the free catalytic subunit during the process of biogenesis avoids promiscuous phosphatase activity. Posttranslational modifications of PP2A C direct PP2A heterotrimeric formation. Additionally, PP2A functions as a haploinsufficient tumor suppressor, where attenuated PP2A enzymatic activity creates a permissive environment for oncogenic transformation. Recent work studying PP2A in cancer showed that its role in tumorigenesis is more nuanced, with some holoenzymes being tumor suppressive, while others are required for oncogenic transformation. In cancer biology, PP2A function is modulated through various mechanisms including the displacement of specific B regulatory subunits by DNA tumor viral antigens, by recurrent mutations, and through loss of carboxymethyl-sensitive heterotrimeric complexes. In aggregate, these alterations bias PP2A activity away from its tumor suppressive functions and toward oncogenic ones. From a therapeutic perspective, molecular glues and disruptors present opportunities for both the selective stabilization of tumor-suppressive holoenzymes and disruption of holoenzymes that are pro-oncogenic. Collectively, these approaches represent an attractive cancer therapy for a wide range of tumor types. This review will discuss the mechanisms by which PP2A holoenzyme formation is dysregulated in cancer and the current therapies that are aimed at biasing heterotrimer formation of PP2A for the treatment of cancer.
Collapse
Affiliation(s)
- Terrance J Haanen
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Caitlin M O'Connor
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
9
|
Sun J, Yang M, Zhao W, Wang F, Yang L, Tan C, Hu T, Zhu H, Zhao G. Research progress on the relationship between the TOR signaling pathway regulator, epigenetics, and tumor development. Front Genet 2022; 13:1006936. [PMID: 36212146 PMCID: PMC9539685 DOI: 10.3389/fgene.2022.1006936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Almost all cellular activities depend on protein folding, signaling complex assembly/disassembly, and epigenetic regulation. One of the most important regulatory mechanisms responsible for controlling these cellular processes is dynamic protein phosphorylation/dephosphorylation. Alterations in phosphorylation networks have major consequences in the form of disorders, including cancer. Many signaling cascades, including the target of rapamycin (TOR) signaling, are important participants in the cell cycle, and dysregulation in their phosphorylation/dephosphorylation status has been linked to malignancies. As a TOR signaling regulator, protein phosphatase 2A (PP2A) is responsible for most of the phosphatase activities inside the cells. On the other hand, TOR signaling pathway regulator (TIPRL) is an essential PP2A inhibitory protein. Many other physiological roles have also been suggested for TIPRL, such as modulation of TOR pathways, apoptosis, and cell proliferation. It is also reported that TIPRL was increased in various carcinomas, including non-small-cell lung carcinoma (NSCLC) and hepatocellular carcinomas (HCC). Considering the function of PP2A as a tumor suppressor and also the effect of the TIPRL/PP2A axis on apoptosis and proliferation of cancer cells, this review aims to provide a complete view of the role of TIPRL in cancer development in addition to describing TIPRL/PP2A axis and its epigenetic regulation.
Collapse
Affiliation(s)
- Jiaen Sun
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Minglei Yang
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Weidi Zhao
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Fajiu Wang
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Liangwei Yang
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Chuntao Tan
- Department of Cardiac and Vascular Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Tianjun Hu
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Huangkai Zhu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- *Correspondence: Huangkai Zhu, ; Guofang Zhao,
| | - Guofang Zhao
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- *Correspondence: Huangkai Zhu, ; Guofang Zhao,
| |
Collapse
|
10
|
Jun SY, Yoon HR, Yoon JY, Jeon SJ, Lee JJ, Halder D, Kim JM, Kim NS. The Human TOR Signaling Regulator Is the Key Indicator of Liver Cancer Patients' Overall Survival: TIPRL/LC3/CD133/CD44 as Potential Biomarkers for Early Liver Cancers. Cancers (Basel) 2021; 13:2925. [PMID: 34208132 PMCID: PMC8230774 DOI: 10.3390/cancers13122925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Recently, we reported the involvement of TIPRL/LC3/CD133 in liver cancer aggressiveness. This study assessed the human TOR signaling regulator (TIPRL)/microtubule-associated light chain 3 (LC3)/prominin-1 (CD133)/cluster of differentiation 44 (CD44) as potential diagnostic and prognostic biomarkers for early liver cancer. For the assessment, we stained tissues of human liver disease/cancer with antibodies against TIPRL/LC3/CD133/CD44/CD46, followed by confocal observation. The roles of TIPRL/LC3/CD133/CD44/CD46 in liver normal and cancer cell lines were determined by in vitro studies. We analyzed the prognostic and diagnostic potentials of TIPRL/LC3/CD133/CD44/CD46 using the receiver-operating characteristic curve, a Kaplan-Meier and uni-/multi-Cox analyses. TIPRL and LC3 were upregulated in tissues of HCCs and adult hepatocytes-derived liver diseases while downregulated in iCCA. Intriguingly, TIPRL levels were found to be critically associated with liver cancer patients' survivability, and TIPRL is the key player in liver cancer cell proliferation and viability via stemness and self-renewal induction. Furthermore, we demonstrate that TIPRL/LC3/CD133 have shown prominent efficiency for diagnosing patients with grade 1 iCCA. TIPRL/LC3/CD133/CD44 have also provided excellent potential for prognosticating patients with grade 1 iCCA and grade 1 HCCs, together with demonstrating that TIPRL/LC3/CD133/CD44 are, either individually or in conjunction, potential biomarkers for early liver cancer.
Collapse
Affiliation(s)
- Soo Young Jun
- Medical Genomics Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea; (S.Y.J.); (J.-Y.Y.); (S.-J.J.); (J.-J.L.); (D.H.)
- Rare-Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science & Technology, Daejeon 34113, Korea
| | - Hyang Ran Yoon
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea;
| | - Ji-Yong Yoon
- Medical Genomics Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea; (S.Y.J.); (J.-Y.Y.); (S.-J.J.); (J.-J.L.); (D.H.)
- Rare-Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea
| | - Su-Jin Jeon
- Medical Genomics Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea; (S.Y.J.); (J.-Y.Y.); (S.-J.J.); (J.-J.L.); (D.H.)
- Rare-Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science & Technology, Daejeon 34113, Korea
| | - Jeong-Ju Lee
- Medical Genomics Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea; (S.Y.J.); (J.-Y.Y.); (S.-J.J.); (J.-J.L.); (D.H.)
- Rare-Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea
| | - Debasish Halder
- Medical Genomics Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea; (S.Y.J.); (J.-Y.Y.); (S.-J.J.); (J.-J.L.); (D.H.)
- Rare-Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea
| | - Jin-Man Kim
- Department of Pathology, Chungnam National University College of Medicine, Chungnam National University Hospital, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Korea;
| | - Nam-Soon Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea; (S.Y.J.); (J.-Y.Y.); (S.-J.J.); (J.-J.L.); (D.H.)
- Rare-Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science & Technology, Daejeon 34113, Korea
| |
Collapse
|
11
|
Ye X, van der Does C, Albers SV. SaUspA, the Universal Stress Protein of Sulfolobus acidocaldarius Stimulates the Activity of the PP2A Phosphatase and Is Involved in Growth at High Salinity. Front Microbiol 2020; 11:598821. [PMID: 33304342 PMCID: PMC7693658 DOI: 10.3389/fmicb.2020.598821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
In Sulfolobus acidocaldarius, the protein phosphatase PP2A plays important regulatory roles in many cellular processes, including cell growth, cell shape and synthesis of the archaellum. A conserved prokaryotic protein, designated as SaUspA, was identified as an interaction partner of the phosphatase PP2A. SaUspA belongs to the universal stress protein (USP) superfamily, members of which are found in bacteria, archaea, plants and invertebrates. Biochemical analysis showed that SaUspA is a homodimeric ATP-binding protein, which also in vitro binds to PP2A. SaUspA did not hydrolyze ATP, but stimulated the phosphatase activity of PP2A and might in this manner affect many other processes. Interestingly, binding of ATP further enhanced SaUspA's interaction with PP2A. In contrast to bacterial usp genes, environmental stress conditions including stationary phase, starvation stress, high salinity stress and UV stress did not stimulate expression of saUspA. Deletion of saUspA led to premature production of the archaellin FlaB in S. acidocaldarius although motility was not affected. The ΔsaUspA mutant showed a significant growth defect under high salinity stress and complementation of ATP-binding deficient mutant SaUspAG97A failed to restore this growth defect. Compared with the wild type strain, its growth or survival was not affected under heavy metal stress and UV stress. To date, this is the first study in which the physiological role of USP homologs in archaea have been reported.
Collapse
Affiliation(s)
- Xing Ye
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Chris van der Does
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Qian B, Liu X, Ye Z, Zhou Q, Liu P, Yin Z, Wang W, Zheng X, Zhang H, Zhang Z. Phosphatase-associated protein MoTip41 interacts with the phosphatase MoPpe1 to mediate crosstalk between TOR and cell wall integrity signalling during infection by the rice blast fungus Magnaporthe oryzae. Environ Microbiol 2020; 23:791-809. [PMID: 32564502 DOI: 10.1111/1462-2920.15136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/26/2022]
Abstract
The type 2A (PP2A) and type 2A-like (PP4 and PP6) serine/threonine phosphatases participate in a variety of cellular processes, such as cell cycle progression, signal transduction and apoptosis. Previously, we reported that the PP6 catalytic subunit MoPpe1, which interacts with and is suppressed by type 2A associated protein of 42 kDa (MoTap42), an essential protein involved in the target of rapamycin (TOR) signalling pathway, has important roles in development, virulence and activation of the cell wall integrity (CWI) pathway in the rice blast fungus Magnaporthe oryzae. Here, we show that Tap42-interacting protein 41 (MoTip41) mediates crosstalk between the TOR and CWI signalling pathways; and participates in the TOR pathway via interaction with MoPpe1, but not MoTap42. The deletion of MoTIP41 resulted in disruption of CWI signalling, autophagy, vegetative growth, appressorium function and plant infection, as well as increased sensitivity to rapamycin. Further investigation revealed that MoTip41 modulates activation of the CWI pathway in response to infection by interfering with the interaction between MoTap42 and MoPpe1. These findings enhance our understanding of how crosstalk between TOR and CWI signalling modulates the development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Bin Qian
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ziyuan Ye
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Qikun Zhou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Peng Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Wenhao Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Luan M, Shi SS, Shi DB, Liu HT, Ma RR, Xu XQ, Sun YJ, Gao P. TIPRL, a Novel Tumor Suppressor, Suppresses Cell Migration, and Invasion Through Regulating AMPK/mTOR Signaling Pathway in Gastric Cancer. Front Oncol 2020; 10:1062. [PMID: 32719745 PMCID: PMC7350861 DOI: 10.3389/fonc.2020.01062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
Invasion and metastasis of gastric cancer after curative resection remain the most common lethal outcomes. However, our current understanding of the molecular mechanism underlying gastric cancer metastasis is far from complete. Herein, we identified TOR signaling pathway regulator (TIPRL) as a novel metastasis suppressor in gastric cancer through genome-wide gene expression profiling analysis using mRNA microarray. Decreased TIPRL expression was detected in clinical gastric cancer specimens, and low TIPRL expression was correlated with more-advanced TNM stage, distant metastasis, and poor clinical outcome. Moreover, TIPRL was identified as a direct target of miR-216a-5p and miR-383-5p. Functional study revealed that re-expression of TIPRL in gastric cancer cell lines suppressed their migratory and invasive capacities, whereas inverse effects were observed in TIPRL-deficient models. Mechanistically, TIPRL downstream effectors and signaling pathways were investigated using mRNA microarray. Gene expression profiling revealed that TIPRL could not modulate the downstream genes at transcriptional levels, thereby implying that the regulation might occur at the post-transcriptional levels. We further demonstrated that TIPRL induced phosphorylation/activation of AMPK, which in turn attenuated phosphorylation of mTOR, p70S6K, and 4E-BP1, thereby leading to inactivation of mTOR signaling and subsequent suppression of cell migration/invasion in gastric cancer. Taken together, TIPRL acts as a novel metastasis suppressor in gastric cancer, at least in part, through regulating AMPK/mTOR signaling, likely representing a promising target for new therapies in gastric cancer.
Collapse
Affiliation(s)
- Meng Luan
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shan-Shan Shi
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Duan-Bo Shi
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Hai-Ting Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ran-Ran Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiao-Qun Xu
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu-Jing Sun
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Peng Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
14
|
TIPRL potentiates survival of lung cancer by inducing autophagy through the eIF2α-ATF4 pathway. Cell Death Dis 2019; 10:959. [PMID: 31862913 PMCID: PMC6925247 DOI: 10.1038/s41419-019-2190-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
Autophagy, an intracellular system of degrading damaged organelles and misfolded proteins, is essential for cancer cell survival. Despite the progress made towards understanding the mechanism, identification of novel autophagy regulators presents a major obstacle in developing anticancer therapies. Here, we examine the association between the TOR signaling pathway regulator-like (TIPRL) protein and autophagy in malignant transformation of tumors. We show that TIPRL upregulation in non-small cell lung cancer (NSCLC) potentiated autophagy activity and enabled autophagic clearance of metabolic and cellular stress, conferring a survival advantage to cancer cells. Importantly, the interaction of TIPRL with eukaryotic initiation factor 2α (eIF2α) led to eIF2α phosphorylation and activation of the eIF2α-ATF4 pathway, thereby inducing autophagy. Conversely, TIPRL depletion increased apoptosis by reducing autophagic clearance, which was markedly enhanced in TIPRL-depleted A549 xenografts treated with 2-deoxy-D-glucose. Overall, the study indicated that TIPRL is a potential regulator of autophagy and an important drug target for lung cancer therapy.
Collapse
|
15
|
Pippa R, Boffo S, Odero MD, Giordano A. Data mining analysis of the PP2A cell cycle axis in mesothelioma patients. J Cell Physiol 2019; 235:5284-5292. [PMID: 31858592 DOI: 10.1002/jcp.29414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
Abstract
Mesothelioma is an aggressive tumor that affects thousands of people every year. The therapeutic options for patients are limited; hence, a better understanding of mesothelioma biology is crucial to improve patient survival. To find new molecular targets and therapeutic strategies related to the protein phosphatase 2A (PP2A) network, we analyzed the gene expression of known PP2A inhibitors in mesothelioma patient samples. Our analysis disclosed a general overexpression of all PP2A-negative regulators in mesothelioma patients. Moreover, the expression of ANP32E and CIP2A genes, increased in 16% and 11% of cases, positively correlates with the ones of all the other PP2A regulators and the ones of the main cyclins and CDKs, suggesting the existence of a feed-forward loop that might contribute to the mesothelioma progression via PP2A inactivation. Overall, our study indicates the existence of a strategic and targetable axis between PP2A inhibitors (ANP32E and CIP2A) and cell cycle regulators (cyclin B2/CDK1) and provides a valuable rationale for using a personalized combinational therapy approach to improve mesothelioma patient survival.
Collapse
Affiliation(s)
- Raffaella Pippa
- Hematology/Oncology Program, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Maria D Odero
- University of Navarra, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain.,CIBERONC Instituto de Salud Carlos III, Madrid, Spain.,Biochemistry and Genetics Department, University of Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Medical Biotechnology University of Siena, Siena, Italy
| |
Collapse
|
16
|
Javadpour P, Dargahi L, Ahmadiani A, Ghasemi R. To be or not to be: PP2A as a dual player in CNS functions, its role in neurodegeneration, and its interaction with brain insulin signaling. Cell Mol Life Sci 2019; 76:2277-2297. [PMID: 30874837 PMCID: PMC11105459 DOI: 10.1007/s00018-019-03063-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/16/2019] [Accepted: 03/07/2019] [Indexed: 12/26/2022]
Abstract
Accumulating evidence has reached the consensus that the balance of phosphorylation state of signaling molecules is a pivotal point in the regulation of cell signaling. Therefore, characterizing elements (kinases-phosphatases) in the phosphorylation balance are at great importance. However, the role of phosphatase enzymes is less investigated than kinase enzymes. PP2A is a member of serine/threonine protein phosphatase that its imbalance has been reported in neurodegenerative diseases. Therefore, we reviewed the superfamily of phosphatases and more specifically PP2A, its regulation, and physiological functions participate in CNS. Thereafter, we discussed the latest findings about PP2A dysregulation in Alzheimer and Parkinson diseases and possible interplay between this phosphatase and insulin signaling pathways. Finally, activating/inhibitory modulators for PP2A activity as well as experimental methods for PP2A study have been reviewed.
Collapse
Affiliation(s)
- Pegah Javadpour
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Elgenaidi IS, Spiers JP. Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: A potential therapeutic target? Pharmacol Ther 2019; 198:68-89. [PMID: 30797822 DOI: 10.1016/j.pharmthera.2019.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Phosphoprotein phosphatases are of growing interest in the pathophysiology of many diseases and are often the neglected partner of protein kinases. One family member, PP2A, accounts for dephosphorylation of ~55-70% of all serine/threonine phosphosites. Interestingly, dysregulation of kinase signalling is a hallmark of many diseases in which an increase in oxidative stress is also noted. With this in mind, we assess the evidence to support oxidative stress-mediated regulation of the PP2A system In this article, we first present an overview of the PP2A system before providing an analysis of the regulation of PP2A by endogenous inhibitors, post translational modification, and miRNA. Next, a detailed critique of data implicating reactive oxygen species, ischaemia, ischaemia-reperfusion, and hypoxia in regulating the PP2A holoenzyme and associated regulators is presented. Finally, the pharmacological targeting of PP2A, its endogenous inhibitors, and enzymes responsible for its post-translational modification are covered. There is extensive evidence that oxidative stress modulates multiple components of the PP2A system, however, most of the data pertains to the catalytic subunit of PP2A. Irrespective of the underlying aetiology, free radical-mediated attenuation of PP2A activity is an emerging theme. However, in many instances, a dichotomy exists, which requires clarification and mechanistic insight. Nevertheless, this raises the possibility that pharmacological activation of PP2A, either through small molecule activators of PP2A or CIP2A/SET antagonists may be beneficial in modulating the cellular response to oxidative stress. A better understanding of which, will have wide ranging implications for cancer, heart disease and inflammatory conditions.
Collapse
Affiliation(s)
- I S Elgenaidi
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland
| | - J P Spiers
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland.
| |
Collapse
|
18
|
Physiologic functions of PP2A: Lessons from genetically modified mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:31-50. [DOI: 10.1016/j.bbamcr.2018.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 01/03/2023]
|
19
|
Genetic association and meta-analysis of a schizophrenia GWAS variant rs10489202 in East Asian populations. Transl Psychiatry 2018; 8:144. [PMID: 30087317 PMCID: PMC6081446 DOI: 10.1038/s41398-018-0211-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/16/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022] Open
Abstract
Previous genome-wide association studies (GWAS) suggest that rs10489202 in the intron of MPC2 (mitochondrial pyruvate carrier 2) is a risk locus for schizophrenia in Han Chinese populations. To validate this discovery, we conducted a replication analysis in an independent case-control sample of Han Chinese ancestry (437 cases and 2031 controls), followed by a meta-analytic investigation in multiple East Asian samples. In the replication analysis, rs10489202 showed marginal association with schizophrenia (two-tailed P = 0.071, OR = 1.192 for T allele); in the meta-analysis using a total of 14,340 cases and 20,349 controls from ten East Asian samples, rs10489202 was genome-wide significantly associated with schizophrenia (two-tailed P = 3.39 × 10-10, OR = 1.161 for T allele, under the fixed-effect model). We then performed an explorative investigation of the association between this SNP and bipolar disorder, as well as a major depressive disorder, and the schizophrenia-predisposing allele was associated with an increased risk of major depressive disorder in East Asians (two-tailed P = 2.49 × 10-2, OR = 1.103 for T allele). Furthermore, expression quantitative trait loci (eQTL) analysis in lymphoblastoid cell lines from East Asian donors (N = 85 subjects) revealed that rs10489202 was specifically and significantly associated with the expression of TIPRL gene (P = 5.67 × 10-4). Taken together, our data add further support for the genetic involvement of this genomic locus in the susceptibility to schizophrenia in East Asian populations, and also provide preliminary evidence for the underlying molecular mechanisms.
Collapse
|
20
|
Schleicher K, Porter M, Ten Have S, Sundaramoorthy R, Porter IM, Swedlow JR. The Ndc80 complex targets Bod1 to human mitotic kinetochores. Open Biol 2018; 7:rsob.170099. [PMID: 29142109 PMCID: PMC5717335 DOI: 10.1098/rsob.170099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022] Open
Abstract
Regulation of protein phosphatase activity by endogenous protein inhibitors is an important mechanism to control protein phosphorylation in cells. We recently identified Biorientation defective 1 (Bod1) as a small protein inhibitor of protein phosphatase 2A containing the B56 regulatory subunit (PP2A-B56). This phosphatase controls the amount of phosphorylation of several kinetochore proteins and thus the establishment of load-bearing chromosome-spindle attachments in time for accurate separation of sister chromatids in mitosis. Like PP2A-B56, Bod1 directly localizes to mitotic kinetochores and is required for correct segregation of mitotic chromosomes. In this report, we have probed the spatio-temporal regulation of Bod1 during mitotic progression. Kinetochore localization of Bod1 increases from nuclear envelope breakdown until metaphase. Phosphorylation of Bod1 at threonine 95 (T95), which increases Bod1's binding to and inhibition of PP2A-B56, peaks in prometaphase when PP2A-B56 localization to kinetochores is highest. We demonstrate here that kinetochore targeting of Bod1 depends on the outer kinetochore protein Ndc80 and not PP2A-B56. Crucially, Bod1 depletion functionally affects Ndc80 phosphorylation at the N-terminal serine 55 (S55), as well as a number of other phosphorylation sites within the outer kinetochore, including Knl1 at serine 24 and 60 (S24, S60), and threonine T943 and T1155 (T943, T1155). Therefore, Ndc80 recruits a phosphatase inhibitor to kinetochores which directly feeds forward to regulate Ndc80, and Knl1 phosphorylation, including sites that mediate the attachment of microtubules to kinetochores.
Collapse
Affiliation(s)
- Katharina Schleicher
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael Porter
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Sara Ten Have
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Iain M Porter
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jason R Swedlow
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
21
|
Punzo P, Ruggiero A, Possenti M, Nurcato R, Costa A, Morelli G, Grillo S, Batelli G. The PP2A-interactor TIP41 modulates ABA responses in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:991-1009. [PMID: 29602224 DOI: 10.1111/tpj.13913] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 05/27/2023]
Abstract
Modulation of growth in response to environmental cues is a fundamental aspect of plant adaptation to abiotic stresses. TIP41 (TAP42 INTERACTING PROTEIN OF 41 kDa) is the Arabidopsis thaliana orthologue of proteins isolated in mammals and yeast that participate in the Target-of-Rapamycin (TOR) pathway, which modifies cell growth in response to nutrient status and environmental conditions. Here, we characterized the function of TIP41 in Arabidopsis. Expression analyses showed that TIP41 is constitutively expressed in vascular tissues, and is induced following long-term exposure to NaCl, polyethylene glycol and abscisic acid (ABA), suggesting a role of TIP41 in adaptation to abiotic stress. Visualization of a fusion protein with yellow fluorescent protein indicated that TIP41 is localized in the cytoplasm and the nucleus. Abolished expression of TIP41 results in smaller plants with a lower number of rosette leaves and lateral roots, and an increased sensitivity to treatments with chemical TOR inhibitors, indicating that TOR signalling is affected in these mutants. In addition, tip41 mutants are hypersensitive to ABA at germination and seedling stage, whereas over-expressing plants show higher tolerance. Several TOR- and ABA-responsive genes are differentially expressed in tip41, including iron homeostasis, senescence and ethylene-associated genes. In yeast and mammals, TIP41 provides a link between the TOR pathway and the protein phosphatase 2A (PP2A), which in plants participates in several ABA-mediated mechanisms. Here, we showed an interaction of TIP41 with the catalytic subunit of PP2A. Taken together, these results offer important insights into the function of Arabidopsis TIP41 in the modulation of plant growth and ABA responses.
Collapse
Affiliation(s)
- Paola Punzo
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Alessandra Ruggiero
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Marco Possenti
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics (CREA-GB), Via Ardeatina 546, 00178, Rome, Italy
| | - Roberta Nurcato
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Antonello Costa
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Giorgio Morelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics (CREA-GB), Via Ardeatina 546, 00178, Rome, Italy
| | - Stefania Grillo
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Giorgia Batelli
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| |
Collapse
|
22
|
Kauko O, Westermarck J. Non-genomic mechanisms of protein phosphatase 2A (PP2A) regulation in cancer. Int J Biochem Cell Biol 2018; 96:157-164. [DOI: 10.1016/j.biocel.2018.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 12/03/2017] [Accepted: 01/09/2018] [Indexed: 02/08/2023]
|
23
|
Protein phosphatase 2ACα gene knock-out results in cortical atrophy through activating hippo cascade in neuronal progenitor cells. Int J Biochem Cell Biol 2018; 95:53-62. [DOI: 10.1016/j.biocel.2017.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/02/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
|
24
|
Salunkhe S, Mishra SV, Nair J, Ghosh S, Choudhary N, Kaur E, Shah S, Patkar K, Anand D, Khattry N, Hasan SK, Dutt S. Inhibition of novel GCN5-ATM axis restricts the onset of acquired drug resistance in leukemia. Int J Cancer 2018; 142:2175-2185. [DOI: 10.1002/ijc.31242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Sameer Salunkhe
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar; Mumbai 400085 India
| | - Saket V. Mishra
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar; Mumbai 400085 India
| | - Jyothi Nair
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar; Mumbai 400085 India
| | - Samadri Ghosh
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Neha Choudhary
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Ekjot Kaur
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar; Mumbai 400085 India
| | - Sanket Shah
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Ketaki Patkar
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Dev Anand
- Department of Medical Oncology; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Navin Khattry
- Department of Medical Oncology; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Syed K. Hasan
- Department of Medical Oncology; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
| | - Shilpee Dutt
- Shilpee Dutt laboratory; Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer; Navi Mumbai 410210 India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar; Mumbai 400085 India
| |
Collapse
|
25
|
Methylation-regulated decommissioning of multimeric PP2A complexes. Nat Commun 2017; 8:2272. [PMID: 29273778 PMCID: PMC5741625 DOI: 10.1038/s41467-017-02405-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/28/2017] [Indexed: 11/09/2022] Open
Abstract
Dynamic assembly/disassembly of signaling complexes are crucial for cellular functions. Specialized latency and activation chaperones control the biogenesis of protein phosphatase 2A (PP2A) holoenzymes that contain a common scaffold and catalytic subunits and a variable regulatory subunit. Here we show that the butterfly-shaped TIPRL (TOR signaling pathway regulator) makes highly integrative multibranching contacts with the PP2A catalytic subunit, selective for the unmethylated tail and perturbing/inactivating the phosphatase active site. TIPRL also makes unusual wobble contacts with the scaffold subunit, allowing TIPRL, but not the overlapping regulatory subunits, to tolerate disease-associated PP2A mutations, resulting in reduced holoenzyme assembly and enhanced inactivation of mutant PP2A. Strikingly, TIPRL and the latency chaperone, α4, coordinate to disassemble active holoenzymes into latent PP2A, strictly controlled by methylation. Our study reveals a mechanism for methylation-responsive inactivation and holoenzyme disassembly, illustrating the complexity of regulation/signaling, dynamic complex disassembly, and disease mutations in cancer and intellectual disability.
Collapse
|
26
|
Functions of protein phosphatase-6 in NF-κB signaling and in lymphocytes. Biochem Soc Trans 2017; 45:693-701. [PMID: 28620030 PMCID: PMC5473023 DOI: 10.1042/bst20160169] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
Abstract
Protein phosphatase-6 (PP6) is a member of the PPP family of Ser/Thr phosphatases involved in intracellular signaling. PP6 is conserved among all eukaryotes, and genetics in model organisms indicates it has non-redundant functions relative to other PPP phosphatases. PP6 functions in association with conserved SAPS subunits and, in vertebrate species, forms heterotrimers with Ankrd subunits. Multiple studies have demonstrated how PP6 exerts negative control at different steps of nuclear factor kappaB signaling. Expression of PP6 catalytic subunit and the PPP6R1 subunit is especially high in hematopoietic cells and lymphoid tissues. Recent efforts at conditionally knocking out genes for PP6c or PP6R1 (SAPS1) have revealed distinctive effects on development of and signaling in lymphocytes.
Collapse
|
27
|
Eleftheriadou O, Boguslavskyi A, Longman MR, Cowan J, Francois A, Heads RJ, Wadzinski BE, Ryan A, Shattock MJ, Snabaitis AK. Expression and regulation of type 2A protein phosphatases and alpha4 signalling in cardiac health and hypertrophy. Basic Res Cardiol 2017; 112:37. [PMID: 28526910 PMCID: PMC5438423 DOI: 10.1007/s00395-017-0625-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/02/2017] [Indexed: 01/25/2023]
Abstract
Cardiac physiology and hypertrophy are regulated by the phosphorylation status of many proteins, which is partly controlled by a poorly defined type 2A protein phosphatase-alpha4 intracellular signalling axis. Quantitative PCR analysis revealed that mRNA levels of the type 2A catalytic subunits were differentially expressed in H9c2 cardiomyocytes (PP2ACβ > PP2ACα > PP4C > PP6C), NRVM (PP2ACβ > PP2ACα = PP4C = PP6C), and adult rat ventricular myocytes (PP2ACα > PP2ACβ > PP6C > PP4C). Western analysis confirmed that all type 2A catalytic subunits were expressed in H9c2 cardiomyocytes; however, PP4C protein was absent in adult myocytes and only detectable following 26S proteasome inhibition. Short-term knockdown of alpha4 protein expression attenuated expression of all type 2A catalytic subunits. Pressure overload-induced left ventricular (LV) hypertrophy was associated with an increase in both PP2AC and alpha4 protein expression. Although PP6C expression was unchanged, expression of PP6C regulatory subunits (1) Sit4-associated protein 1 (SAP1) and (2) ankyrin repeat domain (ANKRD) 28 and 44 proteins was elevated, whereas SAP2 expression was reduced in hypertrophied LV tissue. Co-immunoprecipitation studies demonstrated that the interaction between alpha4 and PP2AC or PP6C subunits was either unchanged or reduced in hypertrophied LV tissue, respectively. Phosphorylation status of phospholemman (Ser63 and Ser68) was significantly increased by knockdown of PP2ACα, PP2ACβ, or PP4C protein expression. DNA damage assessed by histone H2A.X phosphorylation (γH2A.X) in hypertrophied tissue remained unchanged. However, exposure of cardiomyocytes to H2O2 increased levels of γH2A.X which was unaffected by knockdown of PP6C expression, but was abolished by the short-term knockdown of alpha4 expression. This study illustrates the significance and altered activity of the type 2A protein phosphatase-alpha4 complex in healthy and hypertrophied myocardium.
Collapse
Affiliation(s)
- Olga Eleftheriadou
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK
| | - Andrii Boguslavskyi
- Cardiovascular Division, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | - Michael R Longman
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK
| | - Jonathan Cowan
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK
| | - Asvi Francois
- Cardiovascular Division, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | - Richard J Heads
- Cardiovascular Division, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | - Brian E Wadzinski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Ali Ryan
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK
| | - Michael J Shattock
- Cardiovascular Division, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | - Andrew K Snabaitis
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK.
| |
Collapse
|
28
|
Park JY, Juhnn YS. cAMP signaling increases histone deacetylase 8 expression via the Epac2-Rap1A-Akt pathway in H1299 lung cancer cells. Exp Mol Med 2017; 49:e297. [PMID: 28232663 PMCID: PMC5336561 DOI: 10.1038/emm.2016.152] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/16/2022] Open
Abstract
This study was performed to investigate the signaling pathway that mediates cyclic AMP (cAMP)-induced inhibition of histone deacetylase 8 (HDAC8) degradation, and the effect and underlying mechanisms of the resulting increase in HDAC8 expression on cisplatin-induced apoptosis in lung cancer cells. cAMP signaling increased HDAC8 expression via a protein kinase A (PKA)-independent pathway in H1299 non-small cell lung cancer cells. However, treatment with a selective activator of an exchange protein that was activated by cAMP (Epac) increased HDAC8 expression, and Epac2 inhibition abolished the isoproterenol (ISO)-induced increase in HDAC8 expression. ISO and the Epac activator activated Rap1, and Rap1A activation increased HDAC8 expression; moreover, inhibition of Rap1A with a dominant negative Rap1A or by shRNA-mediated knockdown abolished the ISO-induced increase in HDAC8 expression. Activation of cAMP signaling and Rap1A decreased the activating phosphorylation of Akt. Akt inhibition with a pharmacological inhibitor or expression of a dominant negative Akt inhibited the MKK4/JNK pathway and increased HDAC8 expression. The Akt inhibitor-induced increase in HDAC8 expression was abolished by pretreatment with proteasomal or lysosomal inhibitors. The ISO treatment increased cisplatin-induced apoptosis, which was abolished by HDAC8 knockdown. Exogenous HDAC8 expression increased cisplatin-induced apoptosis and decreased TIPRL expression, and the knockdown of TIPRL increased the apoptosis of cisplatin-treated cells. The ISO treatment decreased cisplatin-induced transcription of the TIPRL gene in a HDAC8-dependent manner. In conclusion, the Epac–Rap1–Akt pathway mediates cAMP signaling-induced inhibition of JNK-dependent HDAC8 degradation, and the resulting HDAC8 increase augments cisplatin-induced apoptosis by repressing TIPRL expression in H1299 lung cancer cells.
Collapse
Affiliation(s)
- Ji-Yeon Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yong-Sung Juhnn
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
PTEN Activation by DNA Damage Induces Protective Autophagy in Response to Cucurbitacin B in Hepatocellular Carcinoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4313204. [PMID: 28042385 PMCID: PMC5155108 DOI: 10.1155/2016/4313204] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 01/11/2023]
Abstract
Cucurbitacin B (Cuc B), a natural product, induced both protective autophagy and DNA damage mediated by ROS while the detailed mechanisms remain unclear. This study explored the mechanism of Cuc B-induced DNA damage and autophagy. Cuc B decreased cell viability in concentration- and time-dependent manners. Cuc B caused long comet tails and increased expression of γ-H2AX, phosphorylation of ATM/ATR, and Chk1/Chk2. Cuc B induced autophagy as evidenced by monodansylcadaverine (MDC) staining, increased expression of LC3II, phosphorylated ULK1, and decreased expression of phosphorylated AKT, mTOR. Cuc B induced apoptosis mediated by Bcl-2 family proteins and caspase activation. Furthermore, Cuc B induced ROS formation, which was inhibited by N-acetyl-L-cysteine (NAC). NAC pretreatment dramatically reversed Cuc B-induced DNA damage, autophagy, and apoptosis. Cuc B-induced apoptosis was reversed by NAC but enhanced by 3-methyladenine (3-MA), chloroquine (CQ), and silencing phosphatase and tensin homolog (PTEN). 3-MA and CQ showed no effect on Cuc B-induced DNA damage. In addition, Cuc B increased PTEN phosphorylation and silence PTEN restored Cuc B-induced autophagic protein expressions without affecting DNA damage. In summary, Cuc B induced DNA damage, apoptosis, and protective autophagy mediated by ROS. PTEN activation in response to DNA damage bridged DNA damage and prosurvival autophagy.
Collapse
|
30
|
Fan L, Liu MH, Guo M, Hu CX, Yan ZW, Chen J, Chen GQ, Huang Y. FAM122A, a new endogenous inhibitor of protein phosphatase 2A. Oncotarget 2016; 7:63887-63900. [PMID: 27588481 PMCID: PMC5325411 DOI: 10.18632/oncotarget.11698] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/24/2016] [Indexed: 01/19/2023] Open
Abstract
The regulation of the ubiquitously expressed protein phosphatase 2A (PP2A) is essential for various cellular functions such as cell proliferation, transformation, and fate determination. In this study, we demonstrate that the highly conserved protein in mammals, designated FAM122A, directly interacts with PP2A-Aα and B55α rather than B56α subunits, and inhibits the phosphatase activity of PP2A-Aα/B55α/Cα complex. Further, FAM122A potentiates the degradation of catalytic subunit PP2A-Cα with the increased poly-ubiquitination. In agreement, FAM122A silencing inhibits while its overexpression enhances cell growth and colony-forming ability. Collectively, we identify FAM122A as a new endogenous PP2A inhibitor and its physiological and pathophysiological significances warrant to be further investigated.
Collapse
Affiliation(s)
- Li Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Man-Hua Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Meng Guo
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chuan-Xi Hu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhao-Wen Yan
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
31
|
Crystal structure of the human Tip41 orthologue, TIPRL, reveals a novel fold and a binding site for the PP2Ac C-terminus. Sci Rep 2016; 6:30813. [PMID: 27489114 PMCID: PMC4973239 DOI: 10.1038/srep30813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/08/2016] [Indexed: 11/25/2022] Open
Abstract
TOR signaling pathway regulator-like (TIPRL) is a regulatory protein which inhibits the catalytic subunits of Type 2A phosphatases. Several cellular contexts have been proposed for TIPRL, such as regulation of mTOR signaling, inhibition of apoptosis and biogenesis and recycling of PP2A, however, the underlying molecular mechanism is still poorly understood. We have solved the crystal structure of human TIPRL at 2.15 Å resolution. The structure is a novel fold organized around a central core of antiparallel beta-sheet, showing an N-terminal α/β region at one of its surfaces and a conserved cleft at the opposite surface. Inside this cleft, we found a peptide derived from TEV-mediated cleavage of the affinity tag. We show by mutagenesis, pulldown and hydrogen/deuterium exchange mass spectrometry that this peptide is a mimic for the conserved C-terminal tail of PP2A, an important region of the phosphatase which regulates holoenzyme assembly, and TIPRL preferentially binds the unmodified version of the PP2A-tail mimetic peptide DYFL compared to its tyrosine-phosphorylated version. A docking model of the TIPRL-PP2Ac complex suggests that TIPRL blocks the phosphatase’s active site, providing a structural framework for the function of TIPRL in PP2A inhibition.
Collapse
|
32
|
Haesen D, Abbasi Asbagh L, Derua R, Hubert A, Schrauwen S, Hoorne Y, Amant F, Waelkens E, Sablina A, Janssens V. Recurrent PPP2R1A Mutations in Uterine Cancer Act through a Dominant-Negative Mechanism to Promote Malignant Cell Growth. Cancer Res 2016; 76:5719-5731. [PMID: 27485451 DOI: 10.1158/0008-5472.can-15-3342] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/14/2016] [Indexed: 11/16/2022]
Abstract
Somatic missense mutations in the Ser/Thr protein phosphatase 2A (PP2A) Aα scaffold subunit gene PPP2R1A are among the few genomic alterations that occur frequently in serous endometrial carcinoma (EC) and carcinosarcoma, two clinically aggressive subtypes of uterine cancer with few therapeutic options. Previous studies reported that cancer-associated Aα mutants exhibit defects in binding to other PP2A subunits and contribute to cancer development by a mechanism of haploinsufficiency. Here we report on the functional significance of the most recurrent PPP2R1A mutations in human EC, which cluster in Aα HEAT repeats 5 and 7. Beyond predicted loss-of-function effects on the formation of a subset of PP2A holoenzymes, we discovered that Aα mutants behave in a dominant-negative manner due to gain-of-function interactions with the PP2A inhibitor TIPRL1. Dominant-negative Aα mutants retain binding to specific subunits of the B56/B' family and form substrate trapping complexes with impaired phosphatase activity via increased recruitment of TIPRL1. Accordingly, overexpression of the Aα mutants in EC cells harboring wild-type PPP2R1A increased anchorage-independent growth and tumor formation, and triggered hyperphosphorylation of oncogenic PP2A-B56/B' substrates in the GSK3β, Akt, and mTOR/p70S6K signaling pathways. TIPRL1 silencing restored GSK3β phosphorylation and rescued the EC cell growth advantage. Our results reveal how PPP2R1A mutations affect PP2A function and oncogenic signaling, illuminating the genetic basis for serous EC development and its potential control by rationally targeted therapies. Cancer Res; 76(19); 5719-31. ©2016 AACR.
Collapse
Affiliation(s)
- Dorien Haesen
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Layka Abbasi Asbagh
- VIB Center for the Biology of Disease, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Antoine Hubert
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefanie Schrauwen
- Laboratory of Gynaecological Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Yana Hoorne
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frédéric Amant
- Laboratory of Gynaecological Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Anna Sablina
- VIB Center for the Biology of Disease, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
33
|
Khatlani T, Pradhan S, Da Q, Shaw T, Buchman VL, Cruz MA, Vijayan KV. A Novel Interaction of the Catalytic Subunit of Protein Phosphatase 2A with the Adaptor Protein CIN85 Suppresses Phosphatase Activity and Facilitates Platelet Outside-in αIIbβ3 Integrin Signaling. J Biol Chem 2016; 291:17360-8. [PMID: 27334924 DOI: 10.1074/jbc.m115.704296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 11/06/2022] Open
Abstract
The transduction of signals generated by protein kinases and phosphatases are critical for the ability of integrin αIIbβ3 to support stable platelet adhesion and thrombus formation. Unlike kinases, it remains unclear how serine/threonine phosphatases engage the signaling networks that are initiated following integrin ligation. Because protein-protein interactions form the backbone of signal transduction, we searched for proteins that interact with the catalytic subunit of protein phosphatase 2A (PP2Ac). In a yeast two-hybrid study, we identified a novel interaction between PP2Ac and an adaptor protein CIN85 (Cbl-interacting protein of 85 kDa). Truncation and alanine mutagenesis studies revealed that PP2Ac binds to the P3 block ((396)PAIPPKKPRP(405)) of the proline-rich region in CIN85. The interaction of purified PP2Ac with CIN85 suppressed phosphatase activity. Human embryonal kidney 293 αIIbβ3 cells overexpressing a CIN85 P3 mutant, which cannot support PP2Ac binding, displayed decreased adhesion to immobilized fibrinogen. Platelets contain the ∼85 kDa CIN85 protein along with the PP2Ac-CIN85 complex. A myristylated cell-permeable peptide derived from residues 395-407 of CIN85 protein (P3 peptide) disrupted the platelet PP2Ac-CIN85 complex and decreased αIIbβ3 signaling dependent functions such as platelet spreading on fibrinogen and thrombin-mediated fibrin clot retraction. In a phospho-profiling study P3 peptide treated platelets also displayed decreased phosphorylation of several signaling proteins including Src and GSK3β. Taken together, these data support a role for the novel PP2Ac-CIN85 complex in supporting integrin-dependent platelet function by dampening the phosphatase activity.
Collapse
Affiliation(s)
| | | | - Qi Da
- From the Departments of Medicine
| | | | - Vladimir L Buchman
- the School of Biosciences, Cardiff University, Wales CF10 3AX, United Kingdom
| | - Miguel A Cruz
- From the Departments of Medicine, Pediatrics, and Molecular Physiology and Biophysics, Baylor College of Medicine and Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, Texas 77030 and
| | - K Vinod Vijayan
- From the Departments of Medicine, Pediatrics, and Molecular Physiology and Biophysics, Baylor College of Medicine and Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, Texas 77030 and
| |
Collapse
|
34
|
LeNoue-Newton ML, Wadzinski BE, Spiller BW. The three Type 2A protein phosphatases, PP2Ac, PP4c and PP6c, are differentially regulated by Alpha4. Biochem Biophys Res Commun 2016; 475:64-9. [PMID: 27169767 PMCID: PMC6484841 DOI: 10.1016/j.bbrc.2016.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 11/24/2022]
Abstract
Alpha4 is a non-canonical regulatory subunit of Type 2A protein phosphatases that interacts directly with the phosphatase catalytic subunits (PP2Ac, PP4c, and PP6c) and is upregulated in a variety of cancers. Alpha4 modulates phosphatase expression levels and activity, but the molecular mechanism of this regulation is unclear, and the extent to which the various Type 2A catalytic subunits associate with Alpha4 is also unknown. To determine the relative fractions of the Type 2A catalytic subunits associated with Alpha4, we conducted Alpha4 immunodepletion experiments in HEK293T cells and found that a significant fraction of total PP6c is associated with Alpha4, whereas a minimal fraction of total PP2Ac is associated with Alpha4. To facilitate studies of phosphatases in the presence of mutant or null Alpha4 alleles, we developed a facile and rapid method to simultaneously knockdown and rescue Alpha4 in tissue culture cells. This approach has the advantage that levels of endogenous Alpha4 are dramatically reduced by shRNA expression thereby simplifying interpretation of mutant phenotypes. We used this system to show that knockdown of Alpha4 preferentially impacts the expression of PP4c and PP6c compared to expression levels of PP2Ac.
Collapse
Affiliation(s)
| | - Brian E Wadzinski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Benjamin W Spiller
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
35
|
Feng J, Duan Y, Sun W, Qin Y, Zhuang Z, Zhu D, Sun X, Jiang L. CaTip41 regulates protein phosphatase 2A activity, CaRad53 deactivation and the recovery of DNA damage-induced filamentation to yeast form in Candida albicans. FEMS Yeast Res 2016; 16:fow009. [PMID: 26851402 DOI: 10.1093/femsyr/fow009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
Phosphorylation and dephosphorylation of the checkpoint kinase CaRad53 is crucial for fungal cells in response to genotoxic stresses. The protein phosphatase 2A (PP2A) CaPph3/CaPsy2 phosphatase complex is involved in CaRad53 dephosphorylation in Candida albicans. In view of the role of ScTip41/ScTap42 in regulating PP2A phosphatases in Saccharomyces cerevisiae, we have explored the function of CaTip41 in C. albicans. Here, we show that CaTIP41 is a functional ortholog of ScTIP41 in the sensitivity of S. cerevisiae cells to rapamycin. Deletion of CaTIP41 causes C. albicans cells to be sensitive to DNA damaging agents, methylmethane sulfonate (MMS) and cisplatin, and resistant to both rapamycin and caffeine. Accordingly, expression of CaTip41 increases in response to MMS and cisplatin. In addition, C. albicans cells lacking CaTIP41 show a delay in the recovery from MMS-induced filamentation to yeast form, decreased PP2A activity and a defect in deactivation of CaRad53 during recovery from DNA damage. Through yeast two-hybrid assay we show that CaTip41 interacts with either CaPph3, CaPsy2 or CaTap42. Therefore, CaTip41 plays regulatory roles in both the CaRad53 deactivation during recovery from DNA damage and the target of rapamycin signaling pathway.
Collapse
Affiliation(s)
- Jinrong Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Wei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yongwei Qin
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Zhong Zhuang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Linghuo Jiang
- The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
36
|
Abstract
Protein phosphatase 2A (PP2A) plays a critical multi-faceted role in the regulation of the cell cycle. It is known to dephosphorylate over 300 substrates involved in the cell cycle, regulating almost all major pathways and cell cycle checkpoints. PP2A is involved in such diverse processes by the formation of structurally distinct families of holoenzymes, which are regulated spatially and temporally by specific regulators. Here, we review the involvement of PP2A in the regulation of three cell signaling pathways: wnt, mTOR and MAP kinase, as well as the G1→S transition, DNA synthesis and mitotic initiation. These processes are all crucial for proper cell survival and proliferation and are often deregulated in cancer and other diseases.
Collapse
Affiliation(s)
- Nathan Wlodarchak
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| | - Yongna Xing
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
37
|
TIPRL Inhibits Protein Phosphatase 4 Activity and Promotes H2AX Phosphorylation in the DNA Damage Response. PLoS One 2015; 10:e0145938. [PMID: 26717153 PMCID: PMC4696667 DOI: 10.1371/journal.pone.0145938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/10/2015] [Indexed: 11/19/2022] Open
Abstract
Despite advances in our understanding of protein kinase regulation in the DNA damage response, the mechanism that controls protein phosphatase activity in this pathway is unclear. Unlike kinases, the activity and specificity of serine/threonine phosphatases is governed largely by their associated proteins. Here we show that Tip41-like protein (TIPRL), an evolutionarily conserved binding protein for PP2A-family phosphatases, is a negative regulator of protein phosphatase 4 (PP4). Knockdown of TIPRL resulted in increased PP4 phosphatase activity and formation of the active PP4-C/PP4R2 complex known to dephosphorylate γ-H2AX. Thus, overexpression of TIPRL promotes phosphorylation of H2AX, and increases γ-H2AX positive foci in response to DNA damage, whereas knockdown of TIPRL inhibits γ-H2AX phosphorylation. In correlation with γ-H2AX levels, we found that TIPRL overexpression promotes cell death in response to genotoxic stress, and knockdown of TIPRL protects cells from genotoxic agents. Taken together, these data demonstrate that TIPRL inhibits PP4 activity to allow for H2AX phosphorylation and the subsequent DNA damage response.
Collapse
|
38
|
Haesen D, Sents W, Lemaire K, Hoorne Y, Janssens V. The Basic Biology of PP2A in Hematologic Cells and Malignancies. Front Oncol 2014; 4:347. [PMID: 25566494 PMCID: PMC4263090 DOI: 10.3389/fonc.2014.00347] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/20/2014] [Indexed: 12/30/2022] Open
Abstract
Reversible protein phosphorylation plays a crucial role in regulating cell signaling. In normal cells, phosphoregulation is tightly controlled by a network of protein kinases counterbalanced by several protein phosphatases. Deregulation of this delicate balance is widely recognized as a central mechanism by which cells escape external and internal self-limiting signals, eventually resulting in malignant transformation. A large fraction of hematologic malignancies is characterized by constitutive or unrestrained activation of oncogenic kinases. This is in part achieved by activating mutations, chromosomal rearrangements, or constitutive activation of upstream kinase regulators, in part by inactivation of their anti-oncogenic phosphatase counterparts. Protein phosphatase 2A (PP2A) represents a large family of cellular serine/threonine phosphatases with suspected tumor suppressive functions. In this review, we highlight our current knowledge about the complex structure and biology of these phosphatases in hematologic cells, thereby providing the rationale behind their diverse signaling functions. Eventually, this basic knowledge is a key to truly understand the tumor suppressive role of PP2A in leukemogenesis and to allow further rational development of therapeutic strategies targeting PP2A.
Collapse
Affiliation(s)
- Dorien Haesen
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Ward Sents
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Katleen Lemaire
- Gene Expression Unit, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Yana Hoorne
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven , Leuven , Belgium
| |
Collapse
|
39
|
Hwang JH, Jiang T, Kulkarni S, Faure N, Schaffhausen BS. Protein phosphatase 2A isoforms utilizing Aβ scaffolds regulate differentiation through control of Akt protein. J Biol Chem 2013; 288:32064-73. [PMID: 24052256 DOI: 10.1074/jbc.m113.497644] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2A (PP2A) regulates almost all cell signaling pathways. It consists of a scaffolding A subunit to which a catalytic C subunit and one of many regulatory B subunits bind. Of the more than 80 PP2A isoforms, 10% use Aβ as a scaffold. This study demonstrates the isoform-specific function of the A scaffold subunits. Polyomaviruses have shown the importance of phosphotyrosine, PI3K, and p53 in transformation. Comparisons of polyoma and SV40 small T antigens implicate Aβ in the control of differentiation. Knockdown of Aβ enhanced differentiation. Akt signaling regulated differentiation; its activation or inhibition promoted or blocked it, respectively. Aβ bound Akt. Enhancement of PP2A Aβ/Akt interaction by polyoma small T antigen increased turnover of Akt Ser-473 phosphorylation. Conversely, knockdown of Aβ promoted Akt activity and reduced turnover of phosphate at Ser-473 of Akt. These data provide new insight into the regulation of Akt, a protein of extreme importance in cancer. Furthermore, our results suggest that the role for Aβ in differentiation and perhaps tumor suppression may lie partly in its ability to negatively regulate Akt.
Collapse
Affiliation(s)
- Justin H Hwang
- From the Department of Developmental, Molecular & Chemical Biology
| | | | | | | | | |
Collapse
|
40
|
Nakashima A, Tanimura-Ito K, Oshiro N, Eguchi S, Miyamoto T, Momonami A, Kamada S, Yonezawa K, Kikkawa U. A positive role of mammalian Tip41-like protein, TIPRL, in the amino-acid dependent mTORC1-signaling pathway through interaction with PP2A. FEBS Lett 2013; 587:2924-9. [DOI: 10.1016/j.febslet.2013.07.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 12/25/2022]
|
41
|
Su YW, Chen YP, Chen MY, Reth M, Tan TH. The serine/threonine phosphatase PP4 is required for pro-B cell development through its promotion of immunoglobulin VDJ recombination. PLoS One 2013; 8:e68804. [PMID: 23874770 PMCID: PMC3712940 DOI: 10.1371/journal.pone.0068804] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/31/2013] [Indexed: 12/15/2022] Open
Abstract
PP4 phosphatase regulates a number of crucial processes but the role of PP4 in B cells has never been reported. We generated B cell-specific pp4 knockout mice and have identified an essential role for PP4 in B cell development. Deficiency of PP4 in B lineage cells leads to a strong reduction in pre-B cell numbers, an absence in immature B cells, and a complete loss of mature B cells. In PP4-deficient pro-B cells, immunoglobulin (Ig) DJ(H) recombination is impaired and Ig µ heavy chain expression is greatly decreased. In addition, PP4-deficient pro-B cells show an increase of DNA double-strand breaks at Ig loci. Consistent with their reduced numbers, residual PP4-deficient pre-B cells accumulate in the G1 phase, exhibit excessive DNA damage, and undergo increased apoptosis. Overexpression of transgenic Ig in PP4-deficient mice rescues the defect in B cell development such that the animals have normal numbers of IgM(+) B cells. Our study therefore reveals a novel function for PP4 in pro-B cell development through its promotion of V(H)DJ(H) recombination.
Collapse
Affiliation(s)
- Yu-Wen Su
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
| | | | | | | | | |
Collapse
|
42
|
Zhou L, Le Roux G, Ducrot C, Chédin S, Labarre J, Riva M, Carles C. Repression of class I transcription by cadmium is mediated by the protein phosphatase 2A. Nucleic Acids Res 2013; 41:6087-6097. [PMID: 23640330 PMCID: PMC3695495 DOI: 10.1093/nar/gkt335] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 11/24/2022] Open
Abstract
Toxic metals are part of our environment, and undue exposure to them leads to a variety of pathologies. In response, most organisms adapt their metabolism and have evolved systems to limit this toxicity and to acquire tolerance. Ribosome biosynthesis being central for protein synthesis, we analyzed in yeast the effects of a moderate concentration of cadmium (Cd(2+)) on Pol I transcription that represents >60% of the transcriptional activity of the cells. We show that Cd(2+) rapidly and drastically shuts down the expression of the 35S rRNA. Repression does not result from a poisoning of any of the components of the class I transcriptional machinery by Cd(2+), but rather involves a protein phosphatase 2A (PP2A)-dependent cellular signaling pathway that targets the formation/dissociation of the Pol I-Rrn3 complex. We also show that Pol I transcription is repressed by other toxic metals, such as Ag(+) and Hg(2+), which likewise perturb the Pol I-Rrn3 complex, but through PP2A-independent mechanisms. Taken together, our results point to a central role for the Pol I-Rrn3 complex as molecular switch for regulating Pol I transcription in response to toxic metals.
Collapse
Affiliation(s)
- Lei Zhou
- CEA, iBiTecS, F-91191 Gif-sur-Yvette cedex, France, CNRS, FRE 3377, F-91191 Gif-sur-Yvette, France and Université Paris-Sud, FRE 3377, F-91191 Gif-sur-Yvette, France
| | - Gwenaëlle Le Roux
- CEA, iBiTecS, F-91191 Gif-sur-Yvette cedex, France, CNRS, FRE 3377, F-91191 Gif-sur-Yvette, France and Université Paris-Sud, FRE 3377, F-91191 Gif-sur-Yvette, France
| | - Cécile Ducrot
- CEA, iBiTecS, F-91191 Gif-sur-Yvette cedex, France, CNRS, FRE 3377, F-91191 Gif-sur-Yvette, France and Université Paris-Sud, FRE 3377, F-91191 Gif-sur-Yvette, France
| | - Stéphane Chédin
- CEA, iBiTecS, F-91191 Gif-sur-Yvette cedex, France, CNRS, FRE 3377, F-91191 Gif-sur-Yvette, France and Université Paris-Sud, FRE 3377, F-91191 Gif-sur-Yvette, France
| | - Jean Labarre
- CEA, iBiTecS, F-91191 Gif-sur-Yvette cedex, France, CNRS, FRE 3377, F-91191 Gif-sur-Yvette, France and Université Paris-Sud, FRE 3377, F-91191 Gif-sur-Yvette, France
| | - Michel Riva
- CEA, iBiTecS, F-91191 Gif-sur-Yvette cedex, France, CNRS, FRE 3377, F-91191 Gif-sur-Yvette, France and Université Paris-Sud, FRE 3377, F-91191 Gif-sur-Yvette, France
| | - Christophe Carles
- CEA, iBiTecS, F-91191 Gif-sur-Yvette cedex, France, CNRS, FRE 3377, F-91191 Gif-sur-Yvette, France and Université Paris-Sud, FRE 3377, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
43
|
Abstract
Protein phosphatase 2A (PP2A), one of the main serine-threonine phosphatases in mammalian cells, maintains cell homoeostasis by counteracting most of the kinase-driven intracellular signalling pathways. Unrestrained activation of oncogenic kinases together with inhibition of tumour suppressors is often required for development of cancer. PP2A has been shown to be genetically altered or functionally inactivated in many solid cancers and leukaemias, and is therefore a tumour suppressor. For example, the phosphatase activity of PP2A is suppressed in chronic myeloid leukaemia and other malignancies characterised by aberrant activity of oncogenic kinases. Preclinical studies show that pharmacological restoration of PP2A tumour-suppressor activity by PP2A-activating drugs (eg, FTY720) effectively antagonises cancer development and progression. Here, we discuss PP2A as a druggable tumour suppressor in view of the possible introduction of PP2A-activating drugs into anticancer therapeutic protocols.
Collapse
Affiliation(s)
- Danilo Perrotti
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, and Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210-2207, USA.
| | | |
Collapse
|
44
|
Seshacharyulu P, Pandey P, Datta K, Batra SK. Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett 2013; 335:9-18. [PMID: 23454242 DOI: 10.1016/j.canlet.2013.02.036] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/10/2013] [Accepted: 02/13/2013] [Indexed: 12/28/2022]
Abstract
Protein Phosphatase 2A (PP2A) is an important and ubiquitously expressed serine threonine phosphatase and regulates the function by dephosphorylating many critical cellular molecules like Akt, p53, c-Myc and β-catenin. It plays a critical role in cellular processes, such as cell proliferation, signal transduction and apoptosis. Structurally, it is multifarious as it is composed of catalytic, scaffold and regulatory subunits. The catalytic and scaffold subunits have two isoforms and the regulatory subunit has four different families containing different isoforms. The regulatory subunit is the most diverse with temporal and spatial specificity. PP2A undergoes post-translational modifications (i.e. phosphorylation and methylation), which in turn, regulates its enzymatic activity. Aberrant expression, mutations and somatic alterations of the PP2A scaffold and regulatory subunits have been observed in various human malignancies, including lung, breast, skin and colon cancer, highlighting its role as a 'tumor suppressor'. This review is focused on the structural complexity of serine/threonine phosphatase PP2A and summarizes its expression pattern in cancer. Additionally, the PP2A interacting and regulatory proteins and substrates are also discussed. Finally, the mouse models developed to understand the biological role of PP2A subunits in an in vivo model system are also reviewed in this article.
Collapse
Affiliation(s)
- Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | | | | | |
Collapse
|
45
|
Abstract
Protein phosphatases of the type 2A family (PP2A) represent a major fraction of cellular Ser/Thr phosphatase activity in any given human tissue. In this review, we describe how the holoenzymic nature of PP2A and the existence of several distinct PP2A composing subunits allow for the generation of multiple structurally and functionally different PP2A complexes, explaining why PP2A is involved in the regulation of so many diverse cell biological and physiological processes. Moreover, in human disease, most notably in several cancers and Alzheimer's Disease, PP2A expression and/or activity have been found significantly decreased, underscoring its important functions as a major tumor suppressor and tau phosphatase. Hence, several recent preclinical studies have demonstrated that pharmacological restoration of PP2A activity, as well as pharmacological PP2A inhibition, under certain conditions, may be of significant future therapeutic value.
Collapse
|
46
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
47
|
Sents W, Ivanova E, Lambrecht C, Haesen D, Janssens V. The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity. FEBS J 2012; 280:644-61. [PMID: 22443683 DOI: 10.1111/j.1742-4658.2012.08579.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protein phosphatase type 2A (PP2A) enzymes constitute a large family of Ser/Thr phosphatases with multiple functions in cellular signaling and physiology. The composition of heterotrimeric PP2A holoenzymes, resulting from the combinatorial assembly of a catalytic C subunit, a structural A subunit, and regulatory B-type subunit, provides the essential determinants for substrate specificity, subcellular targeting, and fine-tuning of phosphatase activity, largely explaining why PP2A is functionally involved in so many diverse physiological processes, sometimes in seemingly opposing ways. In this review, we highlight how PP2A holoenzyme biogenesis and enzymatic activity are controlled by a sophisticatedly coordinated network of five PP2A modulators, consisting of α4, phosphatase 2A phosphatase activator (PTPA), leucine carboxyl methyl transferase 1 (LCMT1), PP2A methyl esterase 1 (PME-1) and, potentially, target of rapamycin signaling pathway regulator-like 1 (TIPRL1), which serve to prevent promiscuous phosphatase activity until the holoenzyme is completely assembled. Likewise, these modulators may come into play when PP2A holoenzymes are disassembled following particular cellular stresses. Malfunctioning of these cellular control mechanisms contributes to human disease. The potential therapeutic benefits or pitfalls of interfering with these regulatory mechanisms will be briefly discussed.
Collapse
Affiliation(s)
- Ward Sents
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
48
|
Finelli P, Sirchia SM, Masciadri M, Crippa M, Recalcati MP, Rusconi D, Giardino D, Monti L, Cogliati F, Faravelli F, Natacci F, Zoccante L, Bernardina BD, Russo S, Larizza L. Juxtaposition of heterochromatic and euchromatic regions by chromosomal translocation mediates a heterochromatic long-range position effect associated with a severe neurological phenotype. Mol Cytogenet 2012; 5:16. [PMID: 22475481 PMCID: PMC3395859 DOI: 10.1186/1755-8166-5-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/04/2012] [Indexed: 11/11/2022] Open
Abstract
Background The term "position effect" is used when the expression of a gene is deleteriously affected by an alteration in its chromosomal environment even though the integrity of the protein coding sequences is maintained. We describe a patient affected by epilepsy and severe neurodevelopment delay carrying a balanced translocation t(15;16)(p11.2;q12.1)dn that we assume caused a position effect as a result of the accidental juxtaposition of heterochromatin in the euchromatic region. Results FISH mapped the translocation breakpoints (bkps) to 15p11.2 within satellite III and the 16q12.1 euchromatic band within the ITFG1 gene. The expression of the genes located on both sides of the translocation were tested by means of real-time PCR and three, all located on der(16), were found to be variously perturbed: the euchromatic gene NETO2/BTCL2 was silenced, whereas VPS35 and SHCBP1, located within the major heterochromatic block of chromosome 16q11.2, were over-expressed. Pyrosequencing and chromatin immunoprecipitation of NETO2/BTCL2 and VPS35 confirmed the expression findings. Interphase FISH analysis showed that der(16) localised to regions occupied by the beta satellite heterochromatic blocks more frequently than der(15). Conclusions To the best of our knowledge, this is the first report of a heterochromatic position effect in humans caused by the juxtaposition of euchromatin/heterochromatin as a result of chromosomal rearrangement. The overall results are fully in keeping with the observations in Drosophila and suggest the occurrence of a human heterochromatin position effect associated with the nuclear repositioning of the der(16) and its causative role in the patient's syndromic phenotype.
Collapse
Affiliation(s)
- Palma Finelli
- Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Cusano Milanino 20095, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Migueleti DLS, Smetana JHC, Nunes HF, Kobarg J, Zanchin NIT. Identification and characterization of an alternatively spliced isoform of the human protein phosphatase 2Aα catalytic subunit. J Biol Chem 2011; 287:4853-62. [PMID: 22167190 DOI: 10.1074/jbc.m111.283341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PP2A is the main serine/threonine-specific phosphatase in animal cells. The active phosphatase has been described as a holoenzyme consisting of a catalytic, a scaffolding, and a variable regulatory subunit, all encoded by multiple genes, allowing for the assembly of more than 70 different holoenzymes. The catalytic subunit can also interact with α4, TIPRL (TIP41, TOR signaling pathway regulator-like), the methyl-transferase LCMT-1, and the methyl-esterase PME-1. Here, we report that the gene encoding the catalytic subunit PP2Acα can generate two mRNA types, the standard mRNA and a shorter isoform, lacking exon 5, which we termed PP2Acα2. Higher levels of the PP2Acα2 mRNA, equivalent to the level of the longer PP2Acα mRNA, were detected in peripheral blood mononuclear cells that were left to rest for 24 h. After this time, the peripheral blood mononuclear cells are still viable and the PP2Acα2 mRNA decreases soon after they are transferred to culture medium, showing that generation of the shorter isoform depends on the incubation conditions. FLAG-tagged PP2Acα2 expressed in HEK293 is catalytically inactive. It displays a specific interaction profile with enhanced binding to the α4 regulatory subunit, but no binding to the scaffolding subunit and PME-1. Consistently, α4 out-competes PME-1 and LCMT-1 for binding to both PP2Acα isoforms in pulldown assays. Together with molecular modeling studies, this suggests that all three regulators share a common binding surface on the catalytic subunit. Our findings add important new insights into the complex mechanisms of PP2A regulation.
Collapse
Affiliation(s)
- Deivid L S Migueleti
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Rua Giuseppe Máximo Scolfaro 10.000, C.P.6192, 13084-971 Campinas, SãoPaulo, Brazil
| | | | | | | | | |
Collapse
|
50
|
|