1
|
Gurevich M, Zilkha-Falb R, Sherman J, Usdin M, Raposo C, Craveiro L, Sonis P, Magalashvili D, Menascu S, Dolev M, Achiron A. Machine learning-based prediction of disease progression in primary progressive multiple sclerosis. Brain Commun 2025; 7:fcae427. [PMID: 39781330 PMCID: PMC11707605 DOI: 10.1093/braincomms/fcae427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/19/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
Primary progressive multiple sclerosis (PPMS) affects 10-15% of multiple sclerosis patients and presents significant variability in the rate of disability progression. Identifying key biological features and patients at higher risk for fast progression is crucial to develop and optimize treatment strategies. Peripheral blood cell transcriptome has the potential to provide valuable information to predict patients' outcomes. In this study, we utilized a machine learning framework applied to the baseline blood transcriptional profiles and brain MRI radiological enumerations to develop prognostic models. These models aim to identify PPMS patients likely to experience significant disease progression and who could benefit from early treatment intervention. RNA-sequence analysis was performed on total RNA extracted from peripheral blood mononuclear cells of PPMS patients in the placebo arm of the ORATORIO clinical trial (NCT01412333), using Illumina NovaSeq S2. Cross-validation algorithms from Partek Genome Suite (www.partek.com) were applied to predict disability progression and brain volume loss over 120 weeks. For disability progression prediction, we analysed blood RNA samples from 135 PPMS patients (61 females and 74 males) with a mean ± standard error age of 44.0 ± 0.7 years, disease duration of 5.9 ± 0.32 years and a median baseline Expanded Disability Status Scale (EDSS) score of 4.3 (range 3.5-6.5). Over the 120-week study, 39.3% (53/135) of patients reached the disability progression end-point, with an average EDSS score increase of 1.3 ± 0.16. For brain volume loss prediction, blood RNA samples from 94 PPMS patients (41 females and 53 males), mean ± standard error age of 43.7 ± 0.7 years and a median baseline EDSS of 4.0 (range 3.0-6.5) were used. Sixty-seven per cent (63/94) experienced significant brain volume loss. For the prediction of disability progression, we developed a two-level procedure. In the first level, a 10-gene predictor achieved a classification accuracy of 70.9 ± 4.5% in identifying patients reaching the disability end-point within 120 weeks. In the second level, a four-gene classifier distinguished between fast and slow disability progression with a 506-day cut-off, achieving 74.1 ± 5.2% accuracy. For brain volume loss prediction, a 12-gene classifier reached an accuracy of 70.2 ± 6.7%, which improved to 74.1 ± 5.2% when combined with baseline brain MRI measurements. In conclusion, our study demonstrates that blood transcriptome data, alone or combined with baseline brain MRI metrics, can effectively predict disability progression and brain volume loss in PPMS patients.
Collapse
Affiliation(s)
- Michael Gurevich
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan 5262, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv 6139601, Israel
| | - Rina Zilkha-Falb
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan 5262, Israel
| | - Jia Sherman
- Research & Development, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Maxime Usdin
- Research & Development, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Catarina Raposo
- Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Basel 4070, Switzerland
| | - Licinio Craveiro
- Roche Innovation Center Basel, Hoffmann-La Roche Ltd., Basel 4070, Switzerland
| | - Polina Sonis
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan 5262, Israel
| | | | - Shay Menascu
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan 5262, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv 6139601, Israel
| | - Mark Dolev
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan 5262, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv 6139601, Israel
| | - Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan 5262, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv 6139601, Israel
| |
Collapse
|
2
|
Brial F, Puel G, Gonzalez L, Russick J, Auld D, Lathrop M, Poirier R, Matsuda F, Gauguier D. Stimulation of insulin secretion induced by low 4-cresol dose involves the RPS6KA3 signalling pathway. PLoS One 2024; 19:e0310370. [PMID: 39446839 PMCID: PMC11500888 DOI: 10.1371/journal.pone.0310370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/29/2024] [Indexed: 10/26/2024] Open
Abstract
4-cresol (4-methylphenol, p-cresol) is a xenobiotic substance negatively correlated with type 2 diabetes and associated with health improvement in preclinical models of diabetes. We aimed at refining our understanding of the physiological role of this metabolite and identifying potential signalling mechanisms. Functional studies revealed that 4-cresol does not deteriorate insulin sensitivity in human primary adipocytes and exhibits an additive effect to that of insulin on insulin sensitivity in mouse C2C12 myoblasts. Experiments in mouse isolated islets showed that 4-cresol potentiates glucose induced insulin secretion. We demonstrated the absence of off target effects of 4-cresol on a panel of 44 pharmacological compounds. Screening large panels of 241 G protein-coupled receptors (GPCRs) and 468 kinases identified binding of 4-cresol only to TNK1, EIF2AK4 (GCN2) and RPS6KA3 (RSK2), a kinase strongly expressed in human and rat pancreatic islets. Islet expression of RPS6KA3 is reduced in spontaneously diabetic rats chronically treated with 4-cresol and Rps6ka3 deficient mice exhibit reduction in both body weight and fasting glycemia, modest improvement in glycemic control and enhanced insulin release in vivo. Similar to low doses of 4-cresol, incubation of isolated rat islets with low concentrations of the RPS6KA3 inhibitor BIX 02565 stimulates both glucose induced insulin secretion and β-cell proliferation. These results provide further information on the role of low 4-cresol doses in the regulation of insulin secretion.
Collapse
Affiliation(s)
- François Brial
- Université Paris Cité, INSERM U1132 Biologie de l’os et du cartilage (BIOSCAR), Paris, France
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Laurine Gonzalez
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| | - Jules Russick
- Université Paris Cité, INSERM UMR 1124, Paris, France
| | - Daniel Auld
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, Canada
- Metabolica Drug Discovery Inc., Montreal, QC, Canada
| | - Mark Lathrop
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, Canada
| | - Roseline Poirier
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS, Saclay, France
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Dominique Gauguier
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Université Paris Cité, INSERM UMR 1124, Paris, France
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Nawarathnage S, Tseng YJ, Soleimani S, Smith T, Pedroza Romo MJ, Abiodun WO, Egbert CM, Madhusanka D, Bunn D, Woods B, Tsubaki E, Stewart C, Brown S, Doukov T, Andersen JL, Moody JD. Fusion crystallization reveals the behavior of both the 1TEL crystallization chaperone and the TNK1 UBA domain. Structure 2023; 31:1589-1603.e6. [PMID: 37776857 PMCID: PMC10843481 DOI: 10.1016/j.str.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 09/04/2023] [Indexed: 10/02/2023]
Abstract
Human thirty-eight-negative kinase-1 (TNK1) is implicated in cancer progression. The TNK1 ubiquitin-associated (UBA) domain binds polyubiquitin and plays a regulatory role in TNK1 activity and stability. No experimentally determined molecular structure of this unusual UBA domain is available. We fused the UBA domain to the 1TEL variant of the translocation ETS leukemia protein sterile alpha motif (TELSAM) crystallization chaperone and obtained crystals diffracting as far as 1.53 Å. GG and GSGG linkers allowed the UBA to reproducibly find a productive binding mode against its host 1TEL polymer and crystallize at protein concentrations as low as 0.2 mg/mL. Our studies support a mechanism of 1TEL fusion crystallization and show that 1TEL fusion crystals require fewer crystal contacts than traditional protein crystals. Modeling and experimental validation suggest the UBA domain may be selective for both the length and linkages of polyubiquitin chains.
Collapse
Affiliation(s)
| | - Yi Jie Tseng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Sara Soleimani
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Tobin Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Maria J Pedroza Romo
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Wisdom O Abiodun
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Christina M Egbert
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA; Fritz B. Burns Cancer Research Laboratory, Brigham Young University, Provo, UT, USA
| | - Deshan Madhusanka
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA; Fritz B. Burns Cancer Research Laboratory, Brigham Young University, Provo, UT, USA
| | - Derick Bunn
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Bridger Woods
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Evan Tsubaki
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Cameron Stewart
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Seth Brown
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Tzanko Doukov
- Macromolecular Crystallography Group, Structural Molecular Biology Resource, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, USA
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA; Fritz B. Burns Cancer Research Laboratory, Brigham Young University, Provo, UT, USA.
| | - James D Moody
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
4
|
Nawarathnage S, Tseng YJ, Soleimani S, Smith T, Romo MJP, Abiodun WO, Egbert CM, Madhusanka D, Bunn D, Woods B, Tsubaki E, Stewart C, Brown S, Doukov T, Andersen JL, Moody JD. Fusion crystallization reveals the behavior of both the 1TEL crystallization chaperone and the TNK1 UBA domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544429. [PMID: 37398013 PMCID: PMC10312729 DOI: 10.1101/2023.06.14.544429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Human thirty-eight-negative kinase-1 (TNK1) is implicated in cancer progression. The TNK1-UBA domain binds polyubiquitin and plays a regulatory role in TNK1 activity and stability. Sequence analysis suggests an unusual architecture for the TNK1 UBA domain, but an experimentally-validated molecular structure is undetermined. To gain insight into TNK1 regulation, we fused the UBA domain to the 1TEL crystallization chaperone and obtained crystals diffracting as far as 1.53 Å. A 1TEL search model enabled solution of the X-ray phases. GG and GSGG linkers allowed the UBA to reproducibly find a productive binding mode against its host 1TEL polymer and to crystallize at protein concentrations as low as 0.1 mg/mL. Our studies support a mechanism of TELSAM fusion crystallization and show that TELSAM fusion crystals require fewer crystal contacts than traditional protein crystals. Modeling and experimental validation suggest the UBA domain may be selective for both the length and linkages of polyubiquitin chains.
Collapse
Affiliation(s)
- Supeshala Nawarathnage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
- These authors contributed equally to this work
| | - Yi Jie Tseng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
- These authors contributed equally to this work
| | - Sara Soleimani
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
- These authors contributed equally to this work
| | - Tobin Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Maria J Pedroza Romo
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Wisdom Oshireku Abiodun
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Christina M. Egbert
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Deshan Madhusanka
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Derick Bunn
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Bridger Woods
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Evan Tsubaki
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Cameron Stewart
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Seth Brown
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Tzanko Doukov
- Macromolecular Crystallography Group, Structural Molecular Biology Resource, Stanford Synchrotron Radiation Lightsource, Menlo Park, California, United States of America
| | - Joshua L. Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - James D. Moody
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
5
|
The noncatalytic regions of the tyrosine kinase Tnk1 are important for activity and substrate specificity. J Biol Chem 2022; 298:102664. [PMID: 36334623 DOI: 10.1016/j.jbc.2022.102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
Human Tnk1 (thirty-eight negative kinase 1) is a member of the Ack family of nonreceptor tyrosine kinases. Tnk1 contains a sterile alpha motif, a tyrosine kinase catalytic domain, an SH3 (Src homology 3) domain, and a large C-terminal region that contains a ubiquitin association domain. However, specific physiological roles for Tnk1 have not been characterized in depth. Here, we expressed and purified Tnk1 from Sf9 insect cells and established an in vitro assay system using a peptide substrate derived from the Wiskott-Aldrich Syndrome Protein (WASP). By Tnk1 expression in mammalian cells, we found that the N-terminal SAM domain is important for self-association and kinase activity. We also studied a fusion protein, originally discovered in a Hodgkin's Lymphoma cell line, that contains an unrelated sequence from the C17ORF61 gene fused to the C-terminus of Tnk1. Cells expressing the fusion protein showed increased tyrosine phosphorylation of cellular substrates relative to cells expressing WT Tnk1. A truncated Tnk1 construct (residues 1-465) also showed enhanced phosphorylation, indicating that the C17ORF61 sequence was dispensable for the effect. Additionally, in vitro kinase assays with the WASP peptide substrate showed no increase in intrinsic Tnk1 activity in C-terminally truncated constructs, suggesting that the truncations did not simply remove an autoinhibitory element. Fluorescence microscopy experiments demonstrated that the C-terminus of Tnk1 plays an important role in the subcellular localization of the kinase. Taken together, our data suggest that the noncatalytic regions of Tnk1 play important roles in governing activity and substrate phosphorylation.
Collapse
|
6
|
Tyrosine kinase nonreceptor 1 (TNK1) knockdown ameliorates hemorrhage shock-induced kidney injury via inhibiting macrophage M1 polarization. 3 Biotech 2021; 11:501. [PMID: 34881164 DOI: 10.1007/s13205-021-03042-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022] Open
Abstract
Hemorrhage shock (HS) is a major threat to patients with trauma and spontaneous bleeding, resulting in multi-organ failure including the kidney. Tyrosine kinase nonreceptor 1 (TNK1) has been shown to be upregulated in the kidney of experimental HS and patients with severe trauma. The study aims to investigate the role of TNK1 and the underlying mechanism in HS-induced kidney injury. A model of HS was established with femoral artery bloodletting, followed by resuscitation in Sprague-Dawley rats. Renal expression of TNK1 was abnormally induced by HS in rats. Knockdown of TNK1 alleviated HS-induced cell apoptosis and the level of proinflammatory cytokines (TNF-α, IL-6 and IL-1β) in the kidney. The expression of M1 macrophage markers (CD86 and iNOS) and the activation of STAT1 were inhibited by TNK1 knockdown in HS rats. In vitro, human monocyte THP-1 cells were treated with 20 ng/mL interferon-gamma plus 100 ng/mL lipopolysaccharide to induce M1 polarization. TNK1 knockdown exerted inhibitory effect on macrophage M1 polarization, M1-type inflammatory cytokine production and STAT1 activation in THP-1 cells. In conclusion, downregulation of TNK1 alleviates HS-induced kidney injury by suppressing macrophage M1 polarization, inflammation and kidney cell apoptosis, in which the deactivation of STAT1 signaling may be involved.
Collapse
|
7
|
TNK1 is a ubiquitin-binding and 14-3-3-regulated kinase that can be targeted to block tumor growth. Nat Commun 2021; 12:5337. [PMID: 34504101 PMCID: PMC8429728 DOI: 10.1038/s41467-021-25622-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
TNK1 is a non-receptor tyrosine kinase with poorly understood biological function and regulation. Here, we identify TNK1 dependencies in primary human cancers. We also discover a MARK-mediated phosphorylation on TNK1 at S502 that promotes an interaction between TNK1 and 14-3-3, which sequesters TNK1 and inhibits its kinase activity. Conversely, the release of TNK1 from 14-3-3 allows TNK1 to cluster in ubiquitin-rich puncta and become active. Active TNK1 induces growth factor-independent proliferation of lymphoid cells in cell culture and mouse models. One unusual feature of TNK1 is a ubiquitin-association domain (UBA) on its C-terminus. Here, we characterize the TNK1 UBA, which has high affinity for poly-ubiquitin. Point mutations that disrupt ubiquitin binding inhibit TNK1 activity. These data suggest a mechanism in which TNK1 toggles between 14-3-3-bound (inactive) and ubiquitin-bound (active) states. Finally, we identify a TNK1 inhibitor, TP-5801, which shows nanomolar potency against TNK1-transformed cells and suppresses tumor growth in vivo.
Collapse
|
8
|
Vogrinc D, Goričar K, Dolžan V. Genetic Variability in Molecular Pathways Implicated in Alzheimer's Disease: A Comprehensive Review. Front Aging Neurosci 2021; 13:646901. [PMID: 33815092 PMCID: PMC8012500 DOI: 10.3389/fnagi.2021.646901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease, affecting a significant part of the population. The majority of AD cases occur in the elderly with a typical age of onset of the disease above 65 years. AD presents a major burden for the healthcare system and since population is rapidly aging, the burden of the disease will increase in the future. However, no effective drug treatment for a full-blown disease has been developed to date. The genetic background of AD is extensively studied; numerous genome-wide association studies (GWAS) identified significant genes associated with increased risk of AD development. This review summarizes more than 100 risk loci. Many of them may serve as biomarkers of AD progression, even in the preclinical stage of the disease. Furthermore, we used GWAS data to identify key pathways of AD pathogenesis: cellular processes, metabolic processes, biological regulation, localization, transport, regulation of cellular processes, and neurological system processes. Gene clustering into molecular pathways can provide background for identification of novel molecular targets and may support the development of tailored and personalized treatment of AD.
Collapse
Affiliation(s)
| | | | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Liu Y, Du H, Wang S, Lv Y, Deng H, Chang K, Zhou P, Hu C. Grass carp (Ctenopharyngodon idella) TNK1 modulates JAK-STAT signaling through phosphorylating STAT1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103951. [PMID: 33253749 DOI: 10.1016/j.dci.2020.103951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
TNK1 (thirty-eight-negative kinase 1) belongs to the ACK (Activated Cdc42 Kinases) family of intracellular non-receptor tyrosine kinases that usually acts as an important regulator in cytokine receptor-mediated intracellular signal transduction pathways. JAK-STAT signal pathway acts as a key point in cellular proliferation, differentiation and immunomodulatory. Mammalian TNK1 is involved in antiviral immunity and activation of growth factors. However, TNK1 has rarely been studied in fish. To evaluate the role of fish TNK1 in JAK-STAT pathway, we cloned the full-length cDNA sequence of grass carp (Ctenopharyngodon idella) TNK1 (CiTNK1). CiTNK1 protein consists of N-terminal Tyrkc (tyrosine kinase) domain, C-terminal SH3 (Src homology 3) domain and Pro-rich domain. Phylogenetic analysis showed that CiTNK1 has a closer relationship with Danio rerio TNK1. The expression and phosphorylation of CiTNK1 in grass carp tissues and cells was increased under poly(I:C) stimulation. Subcellular localization and co-immunoprecipitation indicated that CiTNK1 is targeted in the cytoplasm and interacts with grass carp STAT1 (CiSTAT1). Co-transfection of CiTNK1 and CiSTAT1 into cells facilitated the expression of IFN I. This is because that the presence of CiTNK1 enhanced the phosphorylation of CiSTAT1 and causes activation of CiSTAT1. Our results revealed that TNK1 can potentiate the phosphorylation of STAT1 and then regulates JAK-STAT pathway to trigger IFN I expression in fish.
Collapse
Affiliation(s)
- Yapeng Liu
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hailing Du
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shanghong Wang
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yangfeng Lv
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hang Deng
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Kaile Chang
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Pengcheng Zhou
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- College of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
10
|
Zeman T, Balcar VJ, Cahová K, Janoutová J, Janout V, Lochman J, Šerý O. Polymorphism rs11867353 of Tyrosine Kinase Non-Receptor 1 (TNK1) Gene Is a Novel Genetic Marker for Alzheimer's Disease. Mol Neurobiol 2020; 58:996-1005. [PMID: 33070267 DOI: 10.1007/s12035-020-02153-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
Several single-nucleotide polymorphisms (SNPs) and rare variants of non-receptor tyrosine kinase 1 gene (TNK1) have been associated with Alzheimer's disease (AD). To date, none of the associations have proven to be of practical importance in predicting the risk of AD either because the evidence is not conclusive, or the risk alleles occur at very low frequency. In the present study, we are evaluating the associations between rs11867353 polymorphism of TNK1 gene and both AD and mild cognitive impairment (MCI) in a group of 1656 persons. While the association with AD was found to be highly statistically significant (p < 0.0001 for the risk genotype CC), no statistically significant association with MCI could be established. Possible explanation of the apparent discrepancy could be rapid progression of MCI to AD in persons with the CC genotype. Additional findings of the study are statistically significant associations of rs11867353 polymorphism with body mass index, body weight, and body height. The patients with AD and CC genotype had significantly lower values of body mass index and body weight compared with patients with other genotypes. The main outcome of the study is the finding of a previously never described association between the rs11867353 polymorphism of the TNK1 gene and AD. The rs11867353 polymorphism has a potential to become a significant genetic marker when predicting the risk of AD.
Collapse
Affiliation(s)
- Tomáš Zeman
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic
| | - Vladimir J Balcar
- Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kamila Cahová
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jana Janoutová
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Vladimír Janout
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Jan Lochman
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic.,Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Omar Šerý
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic. .,Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
11
|
Halbgebauer R, Karasu E, Braun CK, Palmer A, Braumüller S, Schultze A, Schäfer F, Bückle S, Eigner A, Wachter U, Radermacher P, Resuello RRG, Tuplano JV, Nilsson Ekdahl K, Nilsson B, Armacki M, Kleger A, Seufferlein T, Kalbitz M, Gebhard F, Lambris JD, van Griensven M, Huber-Lang M. Thirty-Eight-Negative Kinase 1 Is a Mediator of Acute Kidney Injury in Experimental and Clinical Traumatic Hemorrhagic Shock. Front Immunol 2020; 11:2081. [PMID: 32983160 PMCID: PMC7479097 DOI: 10.3389/fimmu.2020.02081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
Trauma represents a major socioeconomic burden worldwide. After a severe injury, hemorrhagic shock (HS) as a frequent concomitant aspect is a central driver of systemic inflammation and organ damage. The kidney is often strongly affected by traumatic-HS, and acute kidney injury (AKI) poses the patient at great risk for adverse outcome. Recently, thirty-eight-negative kinase 1 (TNK1) was proposed to play a detrimental role in organ damage after trauma/HS. Therefore, we aimed to assess the role of TNK1 in HS-induced kidney injury in a murine and a post hoc analysis of a non-human primate model of HS comparable to the clinical situation. Mice and non-human primates underwent resuscitated HS at 30 mmHg for 60 min. 5 h after the induction of shock, animals were assessed for systemic inflammation and TNK1 expression in the kidney. In vitro, murine distal convoluted tubule cells were stimulated with inflammatory mediators to gain mechanistic insights into the role of TNK1 in kidney dysfunction. In a translational approach, we investigated blood drawn from either healthy volunteers or severely injured patients at different time points after trauma (from arrival at the emergency room and at fixed time intervals until 10 days post injury; identifier: NCT02682550, https://clinicaltrials.gov/ct2/show/NCT02682550). A pronounced inflammatory response, as seen by increased IL-6 plasma levels as well as early signs of AKI, were observed in mice, non-human primates, and humans after trauma/HS. TNK1 was found in the plasma early after trauma-HS in trauma patients. Renal TNK1 expression was significantly increased in mice and non-human primates after HS, and these effects with concomitant induction of apoptosis were blocked by therapeutic inhibition of complement C3 activation in non-human primates. Mechanistically, in vitro data suggested that IL-6 rather than C3 cleavage products induced upregulation of TNK1 and impaired barrier function in renal epithelial cells. In conclusion, these data indicate that C3 inhibition in vivo may inhibit an excessive inflammatory response and mediator release, thereby indirectly neutralizing TNK1 as a potent driver of organ damage. In future studies, we will address the therapeutic potential of direct TNK1 inhibition in the context of severe tissue trauma with different degrees of additional HS.
Collapse
Affiliation(s)
- Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Ebru Karasu
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Christian K Braun
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany.,Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Annette Palmer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Sonja Braumüller
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Anke Schultze
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Fabian Schäfer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Sarah Bückle
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Alica Eigner
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Ulrich Wachter
- Institute for Anesthesiological Pathophysiology and Process Development, University of Ulm, Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Development, University of Ulm, Ulm, Germany
| | | | - Joel V Tuplano
- Simian Conservation Breeding and Research Center, Makati, Philippines
| | - Kristina Nilsson Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Milena Armacki
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University Hospital Ulm, Ulm, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University Hospital Ulm, Ulm, Germany
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Martijn van Griensven
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, Netherlands
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
12
|
Zhou Q, Verne GN. Intestinal hyperpermeability: a gateway to multi-organ failure? J Clin Invest 2018; 128:4764-4766. [PMID: 30320605 DOI: 10.1172/jci124366] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In critically ill patients, disruption of intestinal epithelial cell function occurs due to exposure of the epithelium to toxic internal and external inflammatory stimuli, which are key factors that trigger sepsis and multi-organ dysfunction syndrome (MODS). A greater understanding of how trauma and gut failure lead to sepsis and progression to MODS is much needed. In this issue of the JCI, Armacki and colleagues identify mechanisms by which thirty-eight-negative kinase 1 (TNK1) promotes the progression from intestinal apoptosis and gut failure to bacterial translocation, sepsis, and MODS. Moreover, the results of this study suggest TNK1 as a potential therapeutic target to prevent sepsis and MODS.
Collapse
Affiliation(s)
- QiQi Zhou
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Malcom Randall VA Medical Center, Research Service, Gainesville, Florida, USA
| | - G Nicholas Verne
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
13
|
Armacki M, Trugenberger AK, Ellwanger AK, Eiseler T, Schwerdt C, Bettac L, Langgartner D, Azoitei N, Halbgebauer R, Groß R, Barth T, Lechel A, Walter BM, Kraus JM, Wiegreffe C, Grimm J, Scheffold A, Schneider MR, Peuker K, Zeißig S, Britsch S, Rose-John S, Vettorazzi S, Wolf E, Tannapfel A, Steinestel K, Reber SO, Walther P, Kestler HA, Radermacher P, Barth TF, Huber-Lang M, Kleger A, Seufferlein T. Thirty-eight-negative kinase 1 mediates trauma-induced intestinal injury and multi-organ failure. J Clin Invest 2018; 128:5056-5072. [PMID: 30320600 DOI: 10.1172/jci97912] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
Dysregulated intestinal epithelial apoptosis initiates gut injury, alters the intestinal barrier, and can facilitate bacterial translocation leading to a systemic inflammatory response syndrome (SIRS) and/or multi-organ dysfunction syndrome (MODS). A variety of gastrointestinal disorders, including inflammatory bowel disease, have been linked to intestinal apoptosis. Similarly, intestinal hyperpermeability and gut failure occur in critically ill patients, putting the gut at the center of SIRS pathology. Regulation of apoptosis and immune-modulatory functions have been ascribed to Thirty-eight-negative kinase 1 (TNK1), whose activity is regulated merely by expression. We investigated the effect of TNK1 on intestinal integrity and its role in MODS. TNK1 expression induced crypt-specific apoptosis, leading to bacterial translocation, subsequent septic shock, and early death. Mechanistically, TNK1 expression in vivo resulted in STAT3 phosphorylation, nuclear translocation of p65, and release of IL-6 and TNF-α. A TNF-α neutralizing antibody partially blocked development of intestinal damage. Conversely, gut-specific deletion of TNK1 protected the intestinal mucosa from experimental colitis and prevented cytokine release in the gut. Finally, TNK1 was found to be deregulated in the gut in murine and porcine trauma models and human inflammatory bowel disease. Thus, TNK1 might be a target during MODS to prevent damage in several organs, notably the gut.
Collapse
Affiliation(s)
- Milena Armacki
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | | - Ann K Ellwanger
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Christiane Schwerdt
- Waldkrankenhaus "Rudolph Elle" Eisenberg, Lehrstuhl für Orthopädie Uniklinik Jena, Jena, Germany
| | - Lucas Bettac
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, and
| | - Ninel Azoitei
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Rüdiger Groß
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Tabea Barth
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Benjamin M Walter
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | | | | | | - Annika Scheffold
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | | - Kenneth Peuker
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Sebastian Zeißig
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | | | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | | | | | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, and
| | - Paul Walther
- Central Facility for Electron Microscopy, University of Ulm, Ulm, Germany
| | | | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | | | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
14
|
Siveen KS, Prabhu KS, Achkar IW, Kuttikrishnan S, Shyam S, Khan AQ, Merhi M, Dermime S, Uddin S. Role of Non Receptor Tyrosine Kinases in Hematological Malignances and its Targeting by Natural Products. Mol Cancer 2018; 17:31. [PMID: 29455667 PMCID: PMC5817858 DOI: 10.1186/s12943-018-0788-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Tyrosine kinases belong to a family of enzymes that mediate the movement of the phosphate group to tyrosine residues of target protein, thus transmitting signals from the cell surface to cytoplasmic proteins and the nucleus to regulate physiological processes. Non-receptor tyrosine kinases (NRTK) are a sub-group of tyrosine kinases, which can relay intracellular signals originating from extracellular receptor. NRTKs can regulate a huge array of cellular functions such as cell survival, division/propagation and adhesion, gene expression, immune response, etc. NRTKs exhibit considerable variability in their structural make up, having a shared kinase domain and commonly possessing many other domains such as SH2, SH3 which are protein-protein interacting domains. Recent studies show that NRTKs are mutated in several hematological malignancies, including lymphomas, leukemias and myelomas, leading to aberrant activation. It can be due to point mutations which are intragenic changes or by fusion of genes leading to chromosome translocation. Mutations that lead to constitutive kinase activity result in the formation of oncogenes, such as Abl, Fes, Src, etc. Therefore, specific kinase inhibitors have been sought after to target mutated kinases. A number of compounds have since been discovered, which have shown to inhibit the activity of NRTKs, which are remarkably well tolerated. This review covers the role of various NRTKs in the development of hematological cancers, including their deregulation, genetic alterations, aberrant activation and associated mutations. In addition, it also looks at the recent advances in the development of novel natural compounds that can target NRTKs and perhaps in combination with other forms of therapy can show great promise for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Kodappully S. Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Iman W. Achkar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Sunitha Shyam
- Medical Research Center, Hamad Medical Corporation, Doha, State of Qatar
| | - Abdul Q. Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, State of Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, State of Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| |
Collapse
|
15
|
Seripa D, Panza F, Paroni G, D'Onofrio G, Bisceglia P, Gravina C, Urbano M, Lozupone M, Solfrizzi V, Bizzarro A, Boccardi V, Piccininni C, Daniele A, Logroscino G, Mecocci P, Masullo C, Greco A. Role of CLU, PICALM, and TNK1 Genotypes in Aging With and Without Alzheimer's Disease. Mol Neurobiol 2017. [PMID: 28631188 DOI: 10.1007/s12035-017-0547-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Healthy and impaired cognitive aging may be associated to different prevalences of single-nucleotide polymorphisms (SNPs). In a multicenter case-control association study, we studied the SNPs rs11136000 (clusterin, CLU), rs541458 (phosphatidylinositol binding clatrin assembly protein, PICALM), and rs1554948 (transcription factor A, and tyrosine kinase, non-receptor, 1, TNK1) according to the three age groups 50-65 years (group 1), 66-80 years (group 2), and 80+ years (group 3) in 569 older subjects without cognitive impairment (NoCI) and 520 Alzheimer's disease (AD) patients. In NoCI subjects, a regression analysis suggested a relationship between age and TNK1 genotypes, with the TNK1-A/A genotype frequency that increased with higher age, and resulting in a different distribution of the TNK1-A allele. In AD patients, a regression analysis suggested a relationship between age and PICALM genotypes and TNK1 genotypes, with the PICALM-T/C and TNK1-A/A genotype frequencies that decreased with increasing age. A resulting difference in the distribution of PICALM-C allele and TNK1-A allele was also observed. The TNK1-A allele was overrepresented in NoCI subjects than in AD patients in age groups 2 and 3. These results confirmed after adjustment for apolipoprotein E polymorphism, which suggested a different role of PICALM and TNK1 in healthy and impaired cognitive aging. More studies, however, are needed to confirm the observed associations.
Collapse
Affiliation(s)
- Davide Seripa
- Complex Structure of Geriatrics, Research Laboratory, Department of Medical Sciences, I.R.C.C.S. Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Foggia, Italy.
| | - Francesco Panza
- Complex Structure of Geriatrics, Research Laboratory, Department of Medical Sciences, I.R.C.C.S. Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Foggia, Italy. .,Unit of Neurodegenerative Disease, Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of "BariAldo Moro", Bari, Italy. .,Unit of Neurodegenerative Disease, Department of Clinical Research in Neurology, University of Bari "Aldo Moro" at "Pia Fondazione Card. G. Panico", Tricase, Lecce, Italy. .,Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy.
| | - Giulia Paroni
- Complex Structure of Geriatrics, Research Laboratory, Department of Medical Sciences, I.R.C.C.S. Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Grazia D'Onofrio
- Complex Structure of Geriatrics, Research Laboratory, Department of Medical Sciences, I.R.C.C.S. Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Paola Bisceglia
- Complex Structure of Geriatrics, Research Laboratory, Department of Medical Sciences, I.R.C.C.S. Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Carolina Gravina
- Complex Structure of Geriatrics, Research Laboratory, Department of Medical Sciences, I.R.C.C.S. Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Maria Urbano
- Complex Structure of Geriatrics, Research Laboratory, Department of Medical Sciences, I.R.C.C.S. Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Madia Lozupone
- Unit of Neurodegenerative Disease, Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of "BariAldo Moro", Bari, Italy
| | - Vincenzo Solfrizzi
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari Aldo Moro, Bari, Italy
| | | | - Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Chiara Piccininni
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Giancarlo Logroscino
- Unit of Neurodegenerative Disease, Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of "BariAldo Moro", Bari, Italy.,Unit of Neurodegenerative Disease, Department of Clinical Research in Neurology, University of Bari "Aldo Moro" at "Pia Fondazione Card. G. Panico", Tricase, Lecce, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Carlo Masullo
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Antonio Greco
- Complex Structure of Geriatrics, Research Laboratory, Department of Medical Sciences, I.R.C.C.S. Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Foggia, Italy
| |
Collapse
|
16
|
He Z, Zhang D, Renton AE, Li B, Zhao L, Wang GT, Goate AM, Mayeux R, Leal SM. The Rare-Variant Generalized Disequilibrium Test for Association Analysis of Nuclear and Extended Pedigrees with Application to Alzheimer Disease WGS Data. Am J Hum Genet 2017; 100:193-204. [PMID: 28065470 PMCID: PMC5294711 DOI: 10.1016/j.ajhg.2016.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/06/2016] [Indexed: 01/10/2023] Open
Abstract
Whole-genome and exome sequence data can be cost-effectively generated for the detection of rare-variant (RV) associations in families. Causal variants that aggregate in families usually have larger effect sizes than those found in sporadic cases, so family-based designs can be a more powerful approach than population-based designs. Moreover, some family-based designs are robust to confounding due to population admixture or substructure. We developed a RV extension of the generalized disequilibrium test (GDT) to analyze sequence data obtained from nuclear and extended families. The GDT utilizes genotype differences of all discordant relative pairs to assess associations within a family, and the RV extension combines the single-variant GDT statistic over a genomic region of interest. The RV-GDT has increased power by efficiently incorporating information beyond first-degree relatives and allows for the inclusion of covariates. Using simulated genetic data, we demonstrated that the RV-GDT method has well-controlled type I error rates, even when applied to admixed populations and populations with substructure. It is more powerful than existing family-based RV association methods, particularly for the analysis of extended pedigrees and pedigrees with missing data. We analyzed whole-genome sequence data from families affected by Alzheimer disease to illustrate the application of the RV-GDT. Given the capability of the RV-GDT to adequately control for population admixture or substructure and analyze pedigrees with missing genotype data and its superior power over other family-based methods, it is an effective tool for elucidating the involvement of RVs in the etiology of complex traits.
Collapse
Affiliation(s)
- Zongxiao He
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Di Zhang
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alan E. Renton
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Biao Li
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Linhai Zhao
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gao T. Wang
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alison M. Goate
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Richard Mayeux
- Department of Neurology, Taub Institute on Alzheimer’s Disease and the Aging Brain and Gertrude H. Sergievsky Center, Columbia University, New York, NY 10027, USA
| | - Suzanne M. Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Corresponding author
| |
Collapse
|
17
|
So J, Pasculescu A, Dai AY, Williton K, James A, Nguyen V, Creixell P, Schoof EM, Sinclair J, Barrios-Rodiles M, Gu J, Krizus A, Williams R, Olhovsky M, Dennis JW, Wrana JL, Linding R, Jorgensen C, Pawson T, Colwill K. Integrative analysis of kinase networks in TRAIL-induced apoptosis provides a source of potential targets for combination therapy. Sci Signal 2015; 8:rs3. [PMID: 25852190 DOI: 10.1126/scisignal.2005700] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an endogenous secreted peptide and, in preclinical studies, preferentially induces apoptosis in tumor cells rather than in normal cells. The acquisition of resistance in cells exposed to TRAIL or its mimics limits their clinical efficacy. Because kinases are intimately involved in the regulation of apoptosis, we systematically characterized kinases involved in TRAIL signaling. Using RNA interference (RNAi) loss-of-function and cDNA overexpression screens, we identified 169 protein kinases that influenced the dynamics of TRAIL-induced apoptosis in the colon adenocarcinoma cell line DLD-1. We classified the kinases as sensitizers or resistors or modulators, depending on the effect that knockdown and overexpression had on TRAIL-induced apoptosis. Two of these kinases that were classified as resistors were PX domain-containing serine/threonine kinase (PXK) and AP2-associated kinase 1 (AAK1), which promote receptor endocytosis and may enable cells to resist TRAIL-induced apoptosis by enhancing endocytosis of the TRAIL receptors. We assembled protein interaction maps using mass spectrometry-based protein interaction analysis and quantitative phosphoproteomics. With these protein interaction maps, we modeled information flow through the networks and identified apoptosis-modifying kinases that are highly connected to regulated substrates downstream of TRAIL. The results of this analysis provide a resource of potential targets for the development of TRAIL combination therapies to selectively kill cancer cells.
Collapse
Affiliation(s)
- Jonathan So
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Adrian Pasculescu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Anna Y Dai
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Kelly Williton
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Andrew James
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Vivian Nguyen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Pau Creixell
- Cellular Signal Integration Group (C-SIG), Technical University of Denmark (DTU), DK-2800 Lyngby, Denmark
| | - Erwin M Schoof
- Cellular Signal Integration Group (C-SIG), Technical University of Denmark (DTU), DK-2800 Lyngby, Denmark
| | - John Sinclair
- Cell Communication Team, The Institute of Cancer Research, London SW3 6JB, UK
| | - Miriam Barrios-Rodiles
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Jun Gu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Aldis Krizus
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Ryan Williams
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Marina Olhovsky
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - James W Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Rune Linding
- Cellular Signal Integration Group (C-SIG), Technical University of Denmark (DTU), DK-2800 Lyngby, Denmark. Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), DK-2200 Copenhagen, Denmark.
| | - Claus Jorgensen
- Cell Communication Team, The Institute of Cancer Research, London SW3 6JB, UK.
| | - Tony Pawson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| |
Collapse
|
18
|
Intra-cellular tyrosine kinase. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
19
|
Tuohimaa P, Wang JH, Khan S, Kuuslahti M, Qian K, Manninen T, Auvinen P, Vihinen M, Lou YR. Gene expression profiles in human and mouse primary cells provide new insights into the differential actions of vitamin D3 metabolites. PLoS One 2013; 8:e75338. [PMID: 24116037 PMCID: PMC3792969 DOI: 10.1371/journal.pone.0075338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/12/2013] [Indexed: 01/08/2023] Open
Abstract
1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) had earlier been regarded as the only active hormone. The newly identified actions of 25-hydroxyvitamin D3 (25(OH)D3) and 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) broadened the vitamin D3 endocrine system, however, the current data are fragmented and a systematic understanding is lacking. Here we performed the first systematic study of global gene expression to clarify their similarities and differences. Three metabolites at physiologically comparable levels were utilized to treat human and mouse fibroblasts prior to DNA microarray analyses. Human primary prostate stromal P29SN cells (hP29SN), which convert 25(OH)D3 into 1α,25(OH)2D3 by 1α-hydroxylase (encoded by the gene CYP27B1), displayed regulation of 164, 171, and 175 genes by treatment with 1α,25(OH)2D3, 25(OH)D3, and 24R,25(OH)2D3, respectively. Mouse primary Cyp27b1 knockout fibroblasts (mCyp27b1−/−), which lack 1α-hydroxylation, displayed regulation of 619, 469, and 66 genes using the same respective treatments. The number of shared genes regulated by two metabolites is much lower in hP29SN than in mCyp27b1−/−. By using DAVID Functional Annotation Bioinformatics Microarray Analysis tools and Ingenuity Pathways Analysis, we identified the agonistic regulation of calcium homeostasis and bone remodeling between 1α,25(OH)2D3 and 25(OH)D3 and unique non-classical actions of each metabolite in physiological and pathological processes, including cell cycle, keratinocyte differentiation, amyotrophic lateral sclerosis signaling, gene transcription, immunomodulation, epigenetics, cell differentiation, and membrane protein expression. In conclusion, there are three distinct vitamin D3 hormones with clearly different biological activities. This study presents a new conceptual insight into the vitamin D3 endocrine system, which may guide the strategic use of vitamin D3 in disease prevention and treatment.
Collapse
Affiliation(s)
- Pentti Tuohimaa
- Department of Anatomy, Medical School, University of Tampere, Tampere, Finland
- Department of Clinical Chemistry, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Jing-Huan Wang
- Department of Anatomy, Medical School, University of Tampere, Tampere, Finland
- Tampere Graduate School in Biomedicine and Biotechnology, University of Tampere, Tampere, Finland
- Drug Discovery Graduate School, University of Turku, Turku, Finland
| | - Sofia Khan
- Institute of Biomedical Technology and BioMediTech, University of Tampere, Tampere, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Marianne Kuuslahti
- Department of Anatomy, Medical School, University of Tampere, Tampere, Finland
| | - Kui Qian
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tommi Manninen
- Department of Cell Biology, Medical School, University of Tampere, Tampere, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mauno Vihinen
- Institute of Biomedical Technology and BioMediTech, University of Tampere, Tampere, Finland
- Institute of Experimental Medical Science, Lund University, Lund, Sweden
- Tampere University Hospital, Tampere, Finland
| | - Yan-Ru Lou
- Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
20
|
Dkhil MA, Al-Quraishy S, Delic D, Abdel-Baki AA, Wunderlich F. Testosterone-induced persistent susceptibility to Plasmodium chabaudi malaria: long-term changes of lincRNA and mRNA expression in the spleen. Steroids 2013; 78:220-7. [PMID: 23123741 DOI: 10.1016/j.steroids.2012.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 10/01/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
Testosterone (T) is known to induce persistent susceptibility to blood-stage malaria of Plasmodium chabaudi in otherwise resistant female C57BL/6 mice, which is associated with permanent changes in mRNA expression of the liver. Here, we investigate the spleen as the major effector against blood-stage malaria for any possible T-induced long-term effects on lincRNA and mRNA expression. Female C57BL/6 mice were treated with T for 3 weeks, then T was withdrawn for 12 weeks before challenging with P. chabaudi. LincRNA and mRNA expression was examined after 12 weeks of T-withdrawal and after subsequent infections using Agilent whole mouse genome oligo microarrays. Our data show for the first time long-term effects of T on lincRNA expression evidenced directly as persistent changes after T-withdrawal for 12 weeks and indirectly as altered responsiveness of expression to P. chabaudi infections. There are 3 lincRNA-species upregulated and 10 lincRNAs downregulated by more than 2-fold (p<0.01). In addition, 11 and 10 mRNAs are persistently up- and downregulated by T, respectively. These changes remain not sustained during infections at peak parasitemia, when 15 other lincRNAs and 9 other mRNAs exhibit an altered expression. The only exception is the Tnk1-mRNA encoding the non-receptor tyrosine kinase 1 that is persistently downregulated by 0.34-fold after T-withdrawal and that becomes upregulated by 5.9-fold upon infection at peak parasitemia, suggesting an involvement of tyrosine phosphorylation by Tnk1 in mediating long-term effects of T in the spleen. The T-induced changes in splenic mRNA expression are totally different to those previously observed in the liver. Collectively, our data support the view that T induces long-term organ-specific changes in both lincRNA and mRNA expression, that presumably contribute to organ-specific dysfunctions upon infection with blood-stage malaria of P. chabaudi.
Collapse
Affiliation(s)
- Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | |
Collapse
|
21
|
Bertram L, Tanzi RE. The genetics of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:79-100. [PMID: 22482448 DOI: 10.1016/b978-0-12-385883-2.00008-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic factors play a major role in determining a person's risk to develop Alzheimer's disease (AD). Rare mutations transmitted in a Mendelian fashion within affected families, for example, APP, PSEN1, and PSEN2, cause AD. In the absence of mutations in these genes, disease risk is largely determined by common polymorphisms that, in concert with each other and nongenetic risk factors, modestly impact risk for AD (e.g., the ε4-allele in APOE). Recent genome-wide screening approaches have revealed several additional AD susceptibility loci and more are likely to be discovered over the coming years. In this chapter, we review the current state of AD genetics research with a particular focus on loci that now can be considered established disease genes. In addition to reviewing the potential pathogenic relevance of these genes, we provide an outlook into the future of AD genetics research based on recent advances in high-throughput sequencing technologies.
Collapse
Affiliation(s)
- Lars Bertram
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | |
Collapse
|
22
|
Olgiati P, Politis AM, Papadimitriou GN, De Ronchi D, Serretti A. Genetics of late-onset Alzheimer's disease: update from the alzgene database and analysis of shared pathways. Int J Alzheimers Dis 2011; 2011:832379. [PMID: 22191060 PMCID: PMC3235576 DOI: 10.4061/2011/832379] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 09/21/2011] [Indexed: 12/13/2022] Open
Abstract
The genetics of late-onset Alzheimer's disease (LOAD) has taken impressive steps forwards in the last few years. To date, more than six-hundred genes have been linked to the disorder. However, only a minority of them are supported by a sufficient level of evidence. This review focused on such genes and analyzed shared biological pathways. Genetic markers were selected from a web-based collection (Alzgene). For each SNP in the database, it was possible to perform a meta-analysis. The quality of studies was assessed using criteria such as size of research samples, heterogeneity across studies, and protection from publication bias. This produced a list of 15 top-rated genes: APOE, CLU, PICALM, EXOC3L2, BIN1, CR1, SORL1, TNK1, IL8, LDLR, CST3, CHRNB2, SORCS1, TNF, and CCR2. A systematic analysis of gene ontology terms associated with each marker showed that most genes were implicated in cholesterol metabolism, intracellular transport of beta-amyloid precursor, and autophagy of damaged organelles. Moreover, the impact of these genes on complement cascade and cytokine production highlights the role of inflammatory response in AD pathogenesis. Gene-gene and gene-environment interactions are prominent issues in AD genetics, but they are not specifically featured in the Alzgene database.
Collapse
Affiliation(s)
- Paolo Olgiati
- Institute of Psychiatry, University of Bologna, Viale Carlo Pepoli 5, 40123 Bologna, Italy
| | | | | | | | | |
Collapse
|
23
|
Lierman E, Van Miegroet H, Beullens E, Cools J. Identification of protein tyrosine kinases with oncogenic potential using a retroviral insertion mutagenesis screen. Haematologica 2011; 94:1440-4. [PMID: 19794087 DOI: 10.3324/haematol.2009.007328] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine kinases form a large family of signaling proteins implicated in both normal and malignant cell signaling. The aim of this study was to identify protein tyro-sine kinases that can transform hematopoietic cells to growth factor independent proliferation when constitutively activated by homodimerization. We used a modified retroviral insertion mutagenesis screen with a retroviral vector containing the homodimerization domain of ETV6 followed by an artificial splice donor site. Integration of this retroviral vector within a gene of the host genome would generate a fusion transcript containing the dimerization domain and part of the disrupted gene. Using this strategy with the IL3 dependent Ba/F3 cell line, we identified 8 different protein tyrosine kinases (Abl1, Fgfr1, Hck, Jak2, Lck, Mertk, Mst1r, Tnk1) that transformed the cells. These results characterize HCK, MERTK, MST1R and TNK1 as potential oncogenes and describe a method to identify gain-of-function fusion genes using a retroviral insertion screen.
Collapse
Affiliation(s)
- Els Lierman
- Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
| | | | | | | |
Collapse
|
24
|
Henderson MC, Gonzales IM, Arora S, Choudhary A, Trent JM, Von Hoff DD, Mousses S, Azorsa DO. High-throughput RNAi screening identifies a role for TNK1 in growth and survival of pancreatic cancer cells. Mol Cancer Res 2011; 9:724-32. [PMID: 21536687 DOI: 10.1158/1541-7786.mcr-10-0436] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
To identify novel targets in pancreatic cancer cells, we used high-throughput RNAi (HT-RNAi) to select genes that, when silenced, would decrease viability of pancreatic cancer cells. The HT-RNAi screen involved reverse transfecting the pancreatic cancer cell line BxPC3 with a siRNA library targeting 572 kinases. From replicate screens, approximately 32 kinases were designated as hits, of which 22 kinase targets were selected for confirmation and validation. One kinase identified as a hit from this screen was tyrosine kinase nonreceptor 1 (TNK1), a kinase previously identified as having tumor suppressor-like properties in embryonic stem cells. Silencing of TNK1 with siRNA showed reduced proliferation in a panel of pancreatic cancer cell lines. Furthermore, we showed that silencing of TNK1 led to increased apoptosis through a caspase-dependent pathway and that targeting TNK1 with siRNA can synergize with gemcitabine treatment. Despite previous reports that TNK1 affects Ras and NF-κB signaling, we did not find similar correlations with these pathways in pancreatic cancer cells. Our results suggest that TNK1 in pancreatic cancer cells does not possess the same tumor suppressor properties seen in embryonic cells but seems to be involved in growth and survival. The application of functional genomics by using HT-RNAi screens has allowed us to identify TNK1 as a growth-associated kinase in pancreatic cancer cells.
Collapse
Affiliation(s)
- Meredith C Henderson
- Clinical Translational Research Division, Translational Genomics Research Institute, Scottsdale, AZ 85259, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Regulation of ack-family nonreceptor tyrosine kinases. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:742372. [PMID: 21637378 PMCID: PMC3101793 DOI: 10.1155/2011/742372] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/13/2011] [Indexed: 01/17/2023]
Abstract
Ack family non-receptor tyrosine kinases are unique with regard to their domain composition and regulatory properties. Human Ack1 (activated Cdc42-associated kinase) is ubiquitously expressed and is activated by signals that include growth factors and integrin-mediated cell adhesion. Stimulation leads to Ack1 autophosphorylation and to phosphorylation of additional residues in the C-terminus. The N-terminal SAM domain is required for full activation. Ack1 exerts some of its effects via protein-protein interactions that are independent of its kinase activity. In the basal state, Ack1 activity is suppressed by an intramolecular interaction between the catalytic domain and the C-terminal region. Inappropriate Ack1 activation and signaling has been implicated in the development, progression, and metastasis of several forms of cancer. Thus, there is increasing interest in Ack1 as a drug target, and studies of the regulatory properties of the enzyme may reveal features that can be exploited in inhibitor design.
Collapse
|
26
|
Gu TL, Cherry J, Tucker M, Wu J, Reeves C, Polakiewicz RD. Identification of activated Tnk1 kinase in Hodgkin's lymphoma. Leukemia 2010; 24:861-5. [PMID: 20090780 DOI: 10.1038/leu.2009.293] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Bertram L, Tanzi RE. Genome-wide association studies in Alzheimer's disease. Hum Mol Genet 2009; 18:R137-45. [PMID: 19808789 DOI: 10.1093/hmg/ddp406] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genome-wide association studies (GWAS) have gained considerable momentum over the last couple of years for the identification of novel complex disease genes. In the field of Alzheimer's disease (AD), there are currently eight published and two provisionally reported GWAS, highlighting over two dozen novel potential susceptibility loci beyond the well-established APOE association. On the basis of the data available at the time of this writing, the most compelling novel GWAS signal has been observed in GAB2 (GRB2-associated binding protein 2), followed by less consistently replicated signals in galanin-like peptide (GALP), piggyBac transposable element derived 1 (PGBD1), tyrosine kinase, non-receptor 1 (TNK1). Furthermore, consistent replication has been recently announced for CLU (clusterin, also known as apolipoprotein J). Finally, there are at least three replicated loci in hitherto uncharacterized genomic intervals on chromosomes 14q32.13, 14q31.2 and 6q24.1 likely implicating the existence of novel AD genes in these regions. In this review, we will discuss the characteristics and potential relevance to pathogenesis of the outcomes of all currently available GWAS in AD. A particular emphasis will be laid on findings with independent data in favor of the original association.
Collapse
Affiliation(s)
- Lars Bertram
- Neuropsychiatric Genetics Group, Max-Planck Institute for Molecular Genetics, Berlin, Germany.
| | | |
Collapse
|
28
|
Functional characterization of the murine Tnk1 promoter. Gene 2009; 444:1-9. [PMID: 19481140 DOI: 10.1016/j.gene.2009.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/05/2009] [Accepted: 05/12/2009] [Indexed: 12/31/2022]
Abstract
Tnk1/Kos1 is a non-receptor protein tyrosine kinase found to be a tumor suppressor. It negatively regulates cell growth by indirectly suppressing Ras activity. We identified and characterized the critical cis-elements required for Tnk1/Kos1's promoter activity. Results indicate that the murine Tnk1 promoter lacks a conventional TATA, CAAT or initiator element (Inr) but contains multiple transcription start sites. Transcription is initiated by a TATA-like element composed of an AT rich sequence at -30 (30 bp upstream) from the major transcription start site and an Inr-like element that overlaps the multiple start sites. Deletion analysis of the m-Tnk1 promoter reveals the presence of both positive (-25 to -151) and negative (-151 to -1201) regulatory regions. The three GC boxes which bind Sp1 and Sp3 with high affinity, an AP2 site (that overlaps with an AML1 site) and a MED1 site comprise the necessary cis-elements of the proximal promoter required for both constitutive and inducible Tnk1/Kos1 expression. Importantly, results reveal that cellular stress reverses the repression of Tnk1/Kos1 and induces its expression through increased high affinity interactions between nuclear proteins Sp1, Sp3, AP2 and MED1 for the m-Tnk1 promoter. These findings provide a mechanism by which the m-Tnk1 promoter can be dynamically regulated during normal growth.
Collapse
|
29
|
Hoare S, Hoare K, Reinhard MK, Lee YJ, Oh SP, May WS. Tnk1/Kos1 knockout mice develop spontaneous tumors. Cancer Res 2008; 68:8723-32. [PMID: 18974114 DOI: 10.1158/0008-5472.can-08-1467] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tnk1/Kos1 is a non-receptor protein tyrosine kinase implicated in negatively regulating cell growth in a mechanism requiring its intrinsic catalytic activity. Tnk1/Kos1 null mice were created by homologous recombination by deleting the catalytic domain. Both Tnk1(+/-) and Tnk1(-/-) mice develop spontaneous tumors, including lymphomas and carcinomas, at high rates [27% (14 of 52) and 43% (12 of 28), respectively]. Tnk1/Kos1 expression is silenced in tumors that develop in Tnk1(+/-) mice but not in adjacent uninvolved tissue, and silencing occurs in association with Tnk1 promoter hypermethylation. Tissues and murine embryonic fibroblasts derived from Tnk1/Kos1-null mice exhibit proportionally higher levels of basal and epidermal growth factor-stimulated Ras activation that results from increased Ras-guanine exchange factor (GEF) activity. Mechanistically, Tnk1/Kos1 can directly tyrosine phosphorylate growth factor receptor binding protein 2 (Grb2), which promotes disruption of the Grb2-Sos1 complex that mediates growth factor-induced Ras activation, providing dynamic regulation of Ras GEF activity with suppression of Ras. Thus, Tnk1/Kos1 is a tumor suppressor that functions to down-regulate Ras activity.
Collapse
Affiliation(s)
- Sarasija Hoare
- Department of Medicine, University of Florida Shands Cancer Center, Gainesville, Florida 32610-3633, USA
| | | | | | | | | | | |
Collapse
|