1
|
Cheng CY, Chuang WC, Lin CP, Li CH, Chang HY, Wu WJ, Wu MF, Ko JL. Endoglin as a predictive biomarker for pemetrexed sensitivity in non-small-cell lung cancer: a cellular study. Cancer Chemother Pharmacol 2025; 95:20. [PMID: 39792181 DOI: 10.1007/s00280-024-04734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVE Based on our previous research, which demonstrated that elevated plasma endoglin (ENG) levels in lung cancer patients were associated with a better prognosis, increased sensitivity to pemetrexed, and enhanced tumor suppression, this study aims to validate these findings at the cellular level. The focus is on membrane and extracellular ENG and their influence on drug response and tumor cell behavior in non-small cell lung cancer (NSCLC) cells. METHODS The correlation between ENG expression and pemetrexed-induced cytotoxicity in eight human non-squamous subtype NSCLC cell lines was analyzed. ENG in A549 and H1975 cells was knocked down using shRNA. MTT assay, cell cycle assay, western blot analysis, and boyden chamber assay were used to detect the effect of ENG on pemetrexed-induced cytotoxicity, cell cycle distribution, and cell migration. RESULTS The expression of membrane ENG was positively correlated with pemetrexed-induced cytotoxicity in human NSCLC cells. Compared to pemetrexed-sensitive A549 cells, the A549/a400 (pemetrexed-resistant subline) cells exhibited a reduced accumulation of cells in the S phase, making them less susceptible to cell death. ENG knockdown also alleviated pemetrexed-induced S phase arrest and regulated G1/S phase-related proteins (p53, p21, CDK2, and Cyclin A). Additionally, co-treatment with recombinant ENG enhanced pemetrexed-induced migration inhibition in the sensitive cel1 line and cytotoxicity in the resistance cell line. CONCLUSION The present results strengthened our prior clinical findings, showing that higher membrane ENG expression enhances pemetrexed-induced cytotoxicity and S phase arrest, which may involve the ENG-p21 pathway. Additionally, microenvironmental ENG enhanced the anti-migration of pemetrexed. These findings highlight the potential of ENG as a biomarker and therapeutic target, opening new avenues to improve the outcomes of non-squamous cell NSCLC treatment.
Collapse
Affiliation(s)
- Ching-Yuan Cheng
- Division of Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, Changhua, 500209, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Yunlin Christian Hospital, Yunlin, 648106, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Wen-Chen Chuang
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
- Institute of Medicine, Chung-Shan Medical University, Taichung, 40201, Taiwan
| | - Ching-Pin Lin
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan
| | - Che-Hsing Li
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hui-Yi Chang
- Institute of Medicine, Chung-Shan Medical University, Taichung, 40201, Taiwan
| | - Wen-Jun Wu
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
- Institute of Medicine, Chung-Shan Medical University, Taichung, 40201, Taiwan
| | - Ming-Fang Wu
- Institute of Medicine, Chung-Shan Medical University, Taichung, 40201, Taiwan.
- Divisions of Medical Oncology and Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan.
- CSMU Lung Cancer Research Center, Chung Shan Medical University, Taichung, 40201, Taiwan.
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung-Shan Medical University, Taichung, 40201, Taiwan.
- Divisions of Medical Oncology and Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan.
- CSMU Lung Cancer Research Center, Chung Shan Medical University, Taichung, 40201, Taiwan.
| |
Collapse
|
2
|
Du R, Wen L, Niu M, Zhao L, Guan X, Yang J, Zhang C, Liu H. Activin receptors in human cancer: Functions, mechanisms, and potential clinical applications. Biochem Pharmacol 2024; 222:116061. [PMID: 38369212 DOI: 10.1016/j.bcp.2024.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Activins are members of the transforming growth factor-β (TGF-β) superfamily and act as key regulators in various physiological processes, such as follicle and embryonic development, as well as in multiple human diseases, including cancer. They have been established to signal through three type I and two type II serine/threonine kinase receptors, which, upon ligand binding, form a final signal-transducing receptor complex that activates downstream signaling and governs gene expression. Recent research highlighted the dysregulation of the expression or activity of activin receptors in multiple human cancers and their critical involvement in cancer progression. Furthermore, expression levels of activin receptors have been associated with clinicopathological features and patient outcomes across different cancers. However, there is currently a paucity of comprehensive systematic reviews of activin receptors in cancer. Thus, this review aimed to consolidate existing knowledge concerning activin receptors, with a primary emphasis on their signaling cascade and emerging biological functions, regulatory mechanisms, and potential clinical applications in human cancers in order to provide novel perspectives on cancer prognosis and targeted therapy.
Collapse
Affiliation(s)
- Ruochen Du
- First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Department of Laboratory Animal Center, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Liqi Wen
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Liting Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Jiao Yang
- Department of Anatomy, the Basic Medical School of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China.
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Department of Cell Biology and Genetics, the Basic Medical School of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China.
| |
Collapse
|
3
|
Nagar G, Mittal P, Gupta SRR, Pahuja M, Sanger M, Mishra R, Singh A, Singh IK. Multi-omics therapeutic perspective on ACVR1 gene: from genetic alterations to potential targeting. Brief Funct Genomics 2022; 22:123-142. [PMID: 36003055 DOI: 10.1093/bfgp/elac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Activin A receptor type I (ACVR1), a transmembrane serine/threonine kinase, belongs to the transforming growth factor-β superfamily, which signals via phosphorylating the downstream effectors and SMAD transcription factors. Its central role in several biological processes and intracellular signaling is well known. Genetic variation in ACVR1 has been associated with a rare disease, fibrodysplasia ossificans progressive, and its somatic alteration is reported in rare cancer diffuse intrinsic pontine glioma. Furthermore, altered expression or variation of ACVR1 is associated with multiple pathologies such as polycystic ovary syndrome, congenital heart defects, diffuse idiopathic skeletal hyperostosis, posterior fossa ependymoma and other malignancies. Recent advancements have witnessed ACVR1 as a potential pharmacological target, and divergent promising approaches for its therapeutic targeting have been explored. This review highlights the structural and functional characteristics of receptor ACVR1, associated signaling pathways, genetic variants in several diseases and cancers, protein-protein interaction, gene expression, regulatory miRNA prediction and potential therapeutic targeting approaches. The comprehensive knowledge will offer new horizons and insights into future strategies harnessing its therapeutic potential.
Collapse
|
4
|
Nalairndran G, Chung I, Abdul Razack AH, Chung FF, Hii L, Lim W, Looi CK, Mai C, Leong C. Inhibition of Janus Kinase 1 synergizes docetaxel sensitivity in prostate cancer cells. J Cell Mol Med 2021; 25:8187-8200. [PMID: 34322995 PMCID: PMC8419172 DOI: 10.1111/jcmm.16684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/21/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PCa) is the second most common malignancy and is the fifth leading cause of cancer mortality among men globally. Docetaxel-based therapy remains the first-line treatment for metastatic castration-resistant prostate cancer. However, dose-limiting toxicity including neutropenia, myelosuppression and neurotoxicity is the major reason for docetaxel dose reductions and fewer cycles administered, despite a recent study showing a clear survival benefit with increased total number of docetaxel cycles in PCa patients. Although previous studies have attempted to improve the efficacy and reduce docetaxel toxicity through drug combination, no drug has yet demonstrated improved overall survival in clinical trial, highlighting the challenges of improving the activity of docetaxel monotherapy in PCa. Herein, we identified 15 lethality hits for which inhibition could enhance docetaxel sensitivity in PCa cells via a high-throughput kinome-wide loss-of-function screen. Further drug-gene interactions analyses identified Janus kinase 1 (JAK1) as a viable druggable target with existing experimental inhibitors and FDA-approved drugs. We demonstrated that depletion of endogenous JAK1 enhanced docetaxel-induced apoptosis in PCa cells. Furthermore, inhibition of JAK1/2 by baricitinib and ruxolitinib synergizes docetaxel sensitivity in both androgen receptor (AR)-negative DU145 and PC3 cells, but not in the AR-positive LNCaP cells. In contrast, no synergistic effects were observed in cells treated with JAK2-specific inhibitor, fedratinib, suggesting that the synergistic effects are mainly mediated through JAK1 inhibition. In conclusion, the combination therapy with JAK1 inhibitors and docetaxel could be a useful therapeutic strategy in the treatment of prostate cancers.
Collapse
Affiliation(s)
- Geetha Nalairndran
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Ivy Chung
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- University of Malaya Cancer Research InstituteFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | | | - Felicia Fei‐Lei Chung
- Mechanisms of Carcinogenesis Section (MCA)Epigenetics Group (EGE)International Agency for Research on Cancer World Health OrganizationLyon CEDEX 08France
| | - Ling‐Wei Hii
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
- School of Postgraduate StudiesInternational Medical UniversityKuala LumpurMalaysia
| | - Wei‐Meng Lim
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Chin King Looi
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of Postgraduate StudiesInternational Medical UniversityKuala LumpurMalaysia
| | - Chun‐Wai Mai
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterDepartment of UrologyRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Chee‐Onn Leong
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| |
Collapse
|
5
|
Endoglin in the Spotlight to Treat Cancer. Int J Mol Sci 2021; 22:ijms22063186. [PMID: 33804796 PMCID: PMC8003971 DOI: 10.3390/ijms22063186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
A spotlight has been shone on endoglin in recent years due to that fact of its potential to serve as both a reliable disease biomarker and a therapeutic target. Indeed, endoglin has now been assigned many roles in both physiological and pathological processes. From a molecular point of view, endoglin mainly acts as a co-receptor in the canonical TGFβ pathway, but also it may be shed and released from the membrane, giving rise to the soluble form, which also plays important roles in cell signaling. In cancer, in particular, endoglin may contribute to either an oncogenic or a non-oncogenic phenotype depending on the cell context. The fact that endoglin is expressed by neoplastic and non-neoplastic cells within the tumor microenvironment suggests new possibilities for targeted therapies. Here, we aimed to review and discuss the many roles played by endoglin in different tumor types, as well as the strong evidence provided by pre-clinical and clinical studies that supports the therapeutic targeting of endoglin as a novel clinical strategy.
Collapse
|
6
|
Karki A, Berlow NE, Kim JA, Hulleman E, Liu Q, Michalek JE, Keller C. Receptor-driven invasion profiles in diffuse intrinsic pontine glioma. Neurooncol Adv 2021; 3:vdab039. [PMID: 34013206 PMCID: PMC8117434 DOI: 10.1093/noajnl/vdab039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Diffuse intrinsic pontine glioma (DIPG) is a devastating pediatric cancer with unmet clinical need. DIPG is invasive in nature, where tumor cells interweave into the fiber nerve tracts of the pons making the tumor unresectable. Accordingly, novel approaches in combating the disease are of utmost importance and receptor-driven cell invasion in the context of DIPG is under-researched area. Here, we investigated the impact on cell invasion mediated by PLEXINB1, PLEXINB2, platelet growth factor receptor (PDGFR)α, PDGFRβ, epithelial growth factor receptor (EGFR), activin receptor 1 (ACVR1), chemokine receptor 4 (CXCR4), and NOTCH1. Methods We used previously published RNA-sequencing data to measure gene expression of selected receptors in DIPG tumor tissue versus matched normal tissue controls (n = 18). We assessed protein expression of the corresponding genes using DIPG cell culture models. Then, we performed cell viability and cell invasion assays of DIPG cells stimulated with chemoattractants/ligands. Results RNA-sequencing data showed increased gene expression of receptor genes such as PLEXINB2, PDGFRα, EGFR, ACVR1, CXCR4, and NOTCH1 in DIPG tumors compared to the control tissues. Representative DIPG cell lines demonstrated correspondingly increased protein expression levels of these genes. Cell viability assays showed minimal effects of growth factors/chemokines on tumor cell growth in most instances. Recombinant SEMA4C, SEM4D, PDGF-AA, PDGF-BB, ACVA, CXCL12, and DLL4 ligand stimulation altered invasion in DIPG cells. Conclusions We show that no single growth factor-ligand pair universally induces DIPG cell invasion. However, our results reveal a potential to create a composite of cytokines or anti-cytokines to modulate DIPG cell invasion.
Collapse
Affiliation(s)
- Anju Karki
- Children's Cancer Therapy Development Institute, Beaverton, Oregon, USA
| | - Noah E Berlow
- Children's Cancer Therapy Development Institute, Beaverton, Oregon, USA
| | - Jin-Ah Kim
- Children's Cancer Therapy Development Institute, Beaverton, Oregon, USA
| | - Esther Hulleman
- Department of Pediatric Oncology/Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht,The Netherlands
| | - Qianqian Liu
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Joel E Michalek
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, Oregon, USA
| |
Collapse
|
7
|
Valer JA, Sánchez-de-Diego C, Pimenta-Lopes C, Rosa JL, Ventura F. ACVR1 Function in Health and Disease. Cells 2019; 8:cells8111366. [PMID: 31683698 PMCID: PMC6912516 DOI: 10.3390/cells8111366] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Activin A receptor type I (ACVR1) encodes for a bone morphogenetic protein type I receptor of the TGFβ receptor superfamily. It is involved in a wide variety of biological processes, including bone, heart, cartilage, nervous, and reproductive system development and regulation. Moreover, ACVR1 has been extensively studied for its causal role in fibrodysplasia ossificans progressiva (FOP), a rare genetic disorder characterised by progressive heterotopic ossification. ACVR1 is linked to different pathologies, including cardiac malformations and alterations in the reproductive system. More recently, ACVR1 has been experimentally validated as a cancer driver gene in diffuse intrinsic pontine glioma (DIPG), a malignant childhood brainstem glioma, and its function is being studied in other cancer types. Here, we review ACVR1 receptor function and signalling in physiological and pathological processes and its regulation according to cell type and mutational status. Learning from different functions and alterations linked to ACVR1 is a key step in the development of interdisciplinary research towards the identification of novel treatments for these pathologies.
Collapse
Affiliation(s)
- José Antonio Valer
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Cristina Sánchez-de-Diego
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Carolina Pimenta-Lopes
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| |
Collapse
|
8
|
Katagiri T, Tsukamoto S, Kuratani M. Heterotopic bone induction via BMP signaling: Potential therapeutic targets for fibrodysplasia ossificans progressiva. Bone 2018; 109:241-250. [PMID: 28754575 DOI: 10.1016/j.bone.2017.07.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/22/2022]
Abstract
More than 50years ago, Marshal M. Urist detected "heterotopic bone-inducing activity" in demineralized bone matrix. This unique activity was referred to as "bone morphogenetic protein (BMP)" because it was sensitive to trypsin digestion. Purification of the bone-inducing activity from demineralized bone matrix using a bone-inducing assay in vivo indicated that the original "BMP" consisted of a mixture of new members of the transforming growth factor-β (TGF-β) family. The establishment of new in vitro assay systems that reflect the bone-inducing activity of BMPs in vivo have revealed the functional receptors and downstream effectors of BMPs. Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder characterized by progressive heterotopic bone formation in soft tissues similar to the event induced by the transplantation of BMPs in skeletal muscle. In patients with FOP, genetic mutations have been identified in the ACVR1 gene, which encodes the BMP receptor ALK2. The mutations in ALK2 associated with FOP are hypersensitive to type II receptor kinases. Recently, activin A, a non-osteogenic member of the TGF-β family, was identified as the ligand of the mutant ALK2 in FOP, and various types of signaling inhibitors for mutant ALK2 are currently under development to establish effective treatments for FOP.
Collapse
Affiliation(s)
- Takenobu Katagiri
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan; Project of Clinical and Basic Research for FOP, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.
| | - Sho Tsukamoto
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan; Project of Clinical and Basic Research for FOP, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Mai Kuratani
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| |
Collapse
|
9
|
Astrologo L, Zoni E, Karkampouna S, Gray PC, Klima I, Grosjean J, Goumans MJ, Hawinkels LJAC, van der Pluijm G, Spahn M, Thalmann GN, Ten Dijke P, Kruithof-de Julio M. ALK1Fc Suppresses the Human Prostate Cancer Growth in in Vitro and in Vivo Preclinical Models. Front Cell Dev Biol 2017; 5:104. [PMID: 29259971 PMCID: PMC5723291 DOI: 10.3389/fcell.2017.00104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer is the second most common cancer in men and lethality is normally associated with the consequences of metastasis rather than the primary tumor. Therefore, targeting the molecular pathways that underlie dissemination of primary tumor cells and the formation of metastases has a great clinical value. Bone morphogenetic proteins (BMPs) play a critical role in tumor progression and this study focuses on the role of BMP9- Activin receptor-Like Kinase 1 and 2 (ALK1 and ALK2) axis in prostate cancer. In order to study the effect of BMP9 in vitro and in vivo on cancer cells and tumor growth, we used a soluble chimeric protein consisting of the ALK1 extracellular domain (ECD) fused to human Fc (ALK1Fc) that prevents binding of BMP9 to its cell surface receptors and thereby blocks its ability to activate downstream signaling. ALK1Fc sequesters BMP9 and the closely related BMP10 while preserving the activation of ALK1 and ALK2 through other ligands. We show that ALK1Fc acts in vitro to decrease BMP9-mediated signaling and proliferation of prostate cancer cells with tumor initiating and metastatic potential. In line with these observations, we demonstrate that ALK1Fc also reduces tumor cell proliferation and tumor growth in vivo in an orthotopic transplantation model, as well as in the human patient derived xenograft BM18. Furthermore, we also provide evidence for crosstalk between BMP9 and NOTCH and find that ALK1Fc inhibits NOTCH signaling in human prostate cancer cells and blocks the induction of the NOTCH target Aldehyde dehydrogenase member ALDH1A1, which is a clinically relevant marker associated with poor survival and advanced-stage prostate cancer. Our study provides the first demonstration that ALK1Fc inhibits prostate cancer progression, identifying BMP9 as a putative therapeutic target and ALK1Fc as a potential therapy. Altogether, these findings support the validity of ongoing clinical development of drugs blocking ALK1 and ALK2 receptor activity.
Collapse
Affiliation(s)
- Letizia Astrologo
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Eugenio Zoni
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Urology, Leiden University Medical Centre, Leiden, Netherlands
| | - Sofia Karkampouna
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| | - Peter C Gray
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Irena Klima
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Joël Grosjean
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Marie J Goumans
- Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| | - Lukas J A C Hawinkels
- Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands.,Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, Netherlands
| | | | - Martin Spahn
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - George N Thalmann
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| | - Marianna Kruithof-de Julio
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Urology, Leiden University Medical Centre, Leiden, Netherlands.,Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
10
|
Rose M, Meurer SK, Kloten V, Weiskirchen R, Denecke B, Antonopoulos W, Deckert M, Knüchel R, Dahl E. ITIH5 induces a shift in TGF-β superfamily signaling involving Endoglin and reduces risk for breast cancer metastasis and tumor death. Mol Carcinog 2017; 57:167-181. [PMID: 28940371 DOI: 10.1002/mc.22742] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/07/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
ITIH5 has been proposed being a novel tumor suppressor in various tumor entities including breast cancer. Recently, ITIH5 was furthermore identified as metastasis suppressor gene in pancreatic carcinoma. In this study we aimed to specify the impact of ITIH5 on metastasis in breast cancer. Therefore, DNA methylation of ITIH5 promoter regions was assessed in breast cancer metastases using the TCGA portal and methylation-specific PCR (MSP). We reveal that the ITIH5 upstream promoter region is particularly responsible for ITIH5 gene inactivation predicting shorter survival of patients. Notably, methylation of this upstream ITIH5 promoter region was associated with disease progression, for example, abundantly found in distant metastases. In vitro, stably ITIH5-overexpressing MDA-MB-231 breast cancer clones were used to analyze cell invasion and to identify novel ITIH5-downstream targets. Indeed, ITIH5 re-expression suppresses invasive growth of MDA-MB-231 breast cancer cells while modulating expression of genes involved in metastasis including Endoglin (ENG), an accessory TGF-β receptor, which was furthermore co-expressed with ITIH5 in primary breast tumors. By performing in vitro stimulation of TGF-β signaling using TGF-β1 and BMP-2 we show that ITIH5 triggered a TGF-β superfamily signaling switch contributing to downregulation of targets like Id1, known to endorse metastasis. Moreover, ITIH5 predicts longer overall survival (OS) only in those breast tumors that feature high ENG expression or inversely regulated ID1 suggesting a clinical and functional impact of an ITIH5-ENG axis for breast cancer progression. Hence, we provide evidence that ITIH5 may represent a novel modulator of TGF-β superfamily signaling involved in suppressing breast cancer metastasis.
Collapse
Affiliation(s)
- Michael Rose
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Vera Kloten
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Bernd Denecke
- IZKF Aachen, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Wiebke Antonopoulos
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Martina Deckert
- Department of Neuropathology, University of Cologne, Cologne, Germany
| | - Ruth Knüchel
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Edgar Dahl
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Opławski M, Michalski M, Witek A, Michalski B, Zmarzły N, Jęda-Golonka A, Styblińska M, Gola J, Kasprzyk-Żyszczyńska M, Mazurek U, Plewka A. Identification of a gene expression profile associated with the regulation of angiogenesis in endometrial cancer. Mol Med Rep 2017; 16:2547-2555. [PMID: 28656251 PMCID: PMC5547990 DOI: 10.3892/mmr.2017.6868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
The publication of the human genome sequence provided direction in the search for novel diagnostic and therapeutic methods for the treatment of human diseases. The aim of the present study was to investigate the hypothesis that the expression profile of genes involved in the regulation of angiogenesis may be a marker in endometrial cancer that facilitates the diagnosis and prognosis of patients, as well as the identification of novel therapeutic targets. The current study included 36 patients with grade (G) 1 to 3 endometrial cancer, and a control group of patients consisting of females that qualified for the removal of the uterus. Out of these, 28 samples (control, 3; G1, 7; G2, 12; and G3, 6) were selected for microarray analysis. Molecular analysis of the endometrial samples involved the extraction of total RNA, purification of the obtained extracts and subsequent analysis of the gene expression profiles using an oligonucleotide microarray technique (GeneChip® Human Genome U133A plates). The results indicated that the mRNA expression profile of genes involved in the regulation of angiogenesis varies depending on the degree of histological differentiation of endometrial adenocarcinoma. Similar results were obtained from descriptive statistics characterizing the expression profile of 691 mRNAs associated with the regulation of angiogenesis in the groups of patients with endometrial adenocarcinoma. In addition, the results of the present study indicated that neuropilin2 (NRP2) may serve an important role in the activity of endothelial cells, and may affect vascular endothelial growth factor, and potentially plexins and integrins via regulation of their functions. An understanding of how these proteins interact remains to be determined; however, elucidating these interactions may provide an explanation for the mechanisms underlying angiogenesis. In conclusion, the results of the present study suggest that NRP2 may be a valuable target for investigation in future pharmacological studies involving angiogenesis in endometrial cancer.
Collapse
Affiliation(s)
- Marcin Opławski
- Department of Proteomics, School of Pharmacy, Division of Medical Analytics, Medical University of Silesia, Sosnowiec 41‑200, Poland
| | - Mateusz Michalski
- Department of Gynecological Oncology, Gynecology and Obstetrics, Regional Railway Hospital, Katowice 40‑760, Poland
| | - Andrzej Witek
- Department of Gynecology, Obstetrics and Oncologic Gynecology, Medical University of Silesia, Katowice 40‑752, Poland
| | - Bogdan Michalski
- Department of Oncological Gynaecology, School of Health Sciences, Medical University of Silesia, Katowice 40‑752, Poland
| | - Nikola Zmarzły
- Department of Molecular Biology, School of Pharmacy, Division of Medical Analytics, Medical University of Silesia, Sosnowiec 41‑200, Poland
| | - Agnieszka Jęda-Golonka
- Department of Gynecological Oncology, Gynecology and Obstetrics, Regional Railway Hospital, Katowice 40‑760, Poland
| | - Maria Styblińska
- Department of Molecular Biology, School of Pharmacy, Division of Medical Analytics, Medical University of Silesia, Sosnowiec 41‑200, Poland
| | - Joanna Gola
- Department of Molecular Biology, School of Pharmacy, Division of Medical Analytics, Medical University of Silesia, Sosnowiec 41‑200, Poland
| | - Małgorzata Kasprzyk-Żyszczyńska
- Department of Proteomics, School of Pharmacy, Division of Medical Analytics, Medical University of Silesia, Sosnowiec 41‑200, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, School of Pharmacy, Division of Medical Analytics, Medical University of Silesia, Sosnowiec 41‑200, Poland
| | - Andrzej Plewka
- Department of Proteomics, School of Pharmacy, Division of Medical Analytics, Medical University of Silesia, Sosnowiec 41‑200, Poland
| |
Collapse
|
12
|
Qu F, Zheng J, Gan W, Lian H, He H, Li W, Yuan T, Yang Y, Li X, Ji C, Yan X, Xu L, Guo H. MiR-199a-3p suppresses proliferation and invasion of prostate cancer cells by targeting Smad1. Oncotarget 2017; 8:52465-52473. [PMID: 28881744 PMCID: PMC5581043 DOI: 10.18632/oncotarget.17191] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES This study was intended to analyze effects of miR-199a-3p and Smad1 on proliferation, migration and invasion of prostate cancer (PCa) cells. RESULTS MiR-199a-3p was significantly decreased in PCa tissues in comparison to that in adjacent normal tissues (P < 0.05). Over-expressed miR-199a-3p markedly suppressed proliferation and invasion of PCa cells (P < 0.05). MiR-199a-3p was negatively correlated with Smad1 expression, and overexpression of Smad1 could antagonize the effects of miR-199a-3p on PCa cells. MATERIALS AND METHODS The PCa tissues and their adjacent normal tissues were collected from 54 PCa patients. Expressions of miR-199a-3p and Smad1 mRNA in tissues and cells were evaluated with real-time quantitative polymerase chain reaction (RT-qPCR), and immunohistochemistry assay was used to detect Smad1 protein expressions. The target relationship between miR-199a-3p and Smad1 was assessed by luciferase reporter assay. The PCa cell lines (i.e. PC-3 cells) were transfected with miR-199a-3p mimics and Smad1-cDNA. MTT and Transwell assays were applied to detect proliferative, migratory and invasive abilities of PCa cells. CONCLUSIONS MiR-199a-3p suppressed proliferation and invasion of PCa cells by targeting Smad1.
Collapse
Affiliation(s)
- Feng Qu
- Department of Urology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.,Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jinyu Zheng
- Department of Pathology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Weidong Gan
- Department of Urology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.,Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Huibo Lian
- Department of Urology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.,Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Hua He
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Wuping Li
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA.,Department of Lymphoma, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, China
| | - Tian Yuan
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Yaling Yang
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Xiaogong Li
- Department of Urology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Changwei Ji
- Department of Urology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.,Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiang Yan
- Department of Urology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.,Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Linfeng Xu
- Department of Urology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.,Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Hongqian Guo
- Department of Urology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.,Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
13
|
Martinović Ž, Kovač D, Martinović C. Recurrences in stage II rectal carcinoma after curative resection alone: from the viewpoint of angiogenesis. World J Surg Oncol 2016; 14:122. [PMID: 27102733 PMCID: PMC4840965 DOI: 10.1186/s12957-016-0877-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 04/15/2016] [Indexed: 12/12/2022] Open
Abstract
Background Angiogenesis plays a pivotal role in malignant tumor progression. The count of blood microvessels of the tumor has been recognized as an indicator of malignant potential of the tumors and provides the ability to predict tumors recurrence. The role endoglin in the Dukes B rectal cancer is still unexplored. The aims of this study were to examine immunohistochemical expression of endoglin in resected rectal cancer and investigate the relationship of tumor recurrence and other clinicopathological variables to the endoglin-assessed microvessel density of the tumor tissue and distal resection margins. Methods The study included 95 primary rectal adenocarcinomas, corresponding to 95 distal and 95 proximal resection margin specimens from surgical resection samples. Tumor specimens were paraffin embedded, and immunohistochemical staining for the CD105 endothelial antigen was performed to count CD105-MVD. For exact measurement of the CD105-MVD used, a computer-integrated system Alphelys Spot Browser 2 was used. Results The MVD was significantly higher in the tumor samples compared with the distal resection margins (p < 0.0001) and the proximal resection margins (p < 0.0001). There was no significant difference in the MVD between distal and proximal resection margins (p = 0.147). The type of surgical resection was a significant factor for determining the recurrence of tumors (p = 0.0104). There was no significant effect of patients’ age, gender, tumor location, grade of differentiation, histological tumor type, and the size and depth of tumor invasion on the recurrence of the tumor. The recurrence rate was significantly higher in the low CD105-MVD group of patients than in the high CD105-MVD group of patients (log rank test, p = 0.0406). Result of the multivariate analysis showed that the type of surgery (p = 0.0086), MVD tumors (p = 0.0385), and MVD of proximal resection margin (p = 0.0218) were the independent prognostic factors for the recurrent tumors. Conclusions CD105-assessed MVD could help to identify patients with more aggressive disease and increased risk of developing tumor recurrence after surgical treatment in stage II rectal cancer (RC).
Collapse
Affiliation(s)
- Željko Martinović
- Department of Surgery, Croatian Hospital "Dr. Fra Mato Nikolić", 72 276, Nova Bila, Bosnia and Herzegovina.
| | - Dražen Kovač
- Department of Pathology, School of Medicine, University of Rijeka, 51 000, Rijeka, Croatia
| | - Cvita Martinović
- Department of Internal Medicine, Croatian Hospital "Dr. Fra Mato Nikolić", 72 276, Nova Bila, Bosnia and Herzegovina
| |
Collapse
|
14
|
Small bowel adenocarcinoma arising in a patient with hereditary hemorrhagic telangiectasia: A case report. Oncol Lett 2016; 11:2137-2139. [PMID: 26998137 DOI: 10.3892/ol.2016.4173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 10/21/2015] [Indexed: 11/05/2022] Open
Abstract
Patients with hereditary hemorrhagic telangiectasia (HHT) are reportedly at a lower overall risk of malignancies, and small bowel adenocarcinoma (SBA) arising in a HHT patient is extremely rare. In this study, the case of a 37-year-old female with HHT who developed a poorly differentiated jejunal adenocarcinoma five years after ileocecal resection for multiple colonic adenomas is presented. The patient underwent curative resection of the cancer invading the ileum and the mesentery of the transverse colon, but had to overcome critical complications perioperatively, stemming from HHT-associated peripheral capillary dilatation and arteriovenous malformation, including nosebleeds and possible infusion-induced air embolism through pulmonary shunts. The patient subsequently received adjuvant chemotherapy including capecitabine and oxaliplatin for 6 months, and currently remains alive without any evidence of recurrence 12 months after the second surgery. This patient with SBA was an instructive case demonstrating the necessity of careful attention during major surgery in HHT.
Collapse
|
15
|
Endoglin overexpression mediates gastric cancer peritoneal dissemination by inducing mesothelial cell senescence. Hum Pathol 2016; 51:114-23. [PMID: 27067789 DOI: 10.1016/j.humpath.2015.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 01/08/2023]
Abstract
Peritoneal dissemination (PD), which is highly frequent in gastric cancer (GC) patients, is the main cause of death in advanced GC. Senescence of human peritoneal mesothelial cells (HPMC) may contribute to GC peritoneal dissemination (GCPD). In this study of 126 patients, we investigated the association between Endoglin expression in GC peritoneum and the clinicopathological features. The prognosis of patients was evaluated according to Endoglin and ID1 expression. In vitro, GC cell (GCC)-HPMC coculture was established. Endoglin and ID1 expression was evaluated by Western blot. Cell cycle and HPMC senescence were analyzed after harvesting HPMC from the coculture. GCC adhesion and invasion to HPMC were also assayed. Our results showed that positive staining of Endoglin (38%) was associated with a higher TNM stage and higher incidence of GCPD (both P < .05). Kaplan-Meier analysis showed that the patients who were Endoglin positive had a shorter survival time compared with Endoglin-negative patients (P = .02). Using the HPMC and GCC adherence and invasion assay, we demonstrated that transforming growth factor beta 1 (TGF-β)1-induced HPMC senescence was attenuated by silencing the Endoglin expression, which also prevented GCC attachment and invasion. Our study indicated a positive correlation between Endoglin overexpression and GCPD. Up-regulated Endoglin expression induced HPMC senescence via TGF-β1 pathway. The findings suggest that Endoglin-induced HPMC senescence may contribute to peritoneal dissemination of GCCs.
Collapse
|
16
|
Romero D, Al-Shareef Z, Gorroño-Etxebarria I, Atkins S, Turrell F, Chhetri J, Bengoa-Vergniory N, Zenzmaier C, Berger P, Waxman J, Kypta R. Dickkopf-3 regulates prostate epithelial cell acinar morphogenesis and prostate cancer cell invasion by limiting TGF-β-dependent activation of matrix metalloproteases. Carcinogenesis 2015; 37:18-29. [DOI: 10.1093/carcin/bgv153] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/19/2015] [Indexed: 11/13/2022] Open
|
17
|
O'Leary K, Shia A, Cavicchioli F, Haley V, Comino A, Merlano M, Mauri F, Walter K, Lackner M, Wischnewsky MB, Crook T, Lo Nigro C, Schmid P. Identification of Endoglin as an epigenetically regulated tumour-suppressor gene in lung cancer. Br J Cancer 2015; 113:970-8. [PMID: 26325105 PMCID: PMC4578092 DOI: 10.1038/bjc.2015.302] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/17/2015] [Accepted: 07/29/2015] [Indexed: 12/25/2022] Open
Abstract
Background: The transforming growth factor-beta (TGF- β) pathway has been implicated in proliferation, migration and invasion of various cancers. Endoglin is a TGF-β accessory receptor that modulates signalling. We identified Endoglin as an epigenetically silenced tumour-suppressor gene in lung cancer by means of a genome-wide screening approach, then sought to characterise its effect on lung cancer progression. Methods: Methylation microarray and RNA sequencing were carried out on lung cancer cell lines. Epigenetic silencing of Endoglin was confirmed by methylation and expression analyses. An expression vector and a 20-gene expression panel were used to evaluate Endoglin function. Pyrosequencing was carried out on two independent cohorts comprising 112 and 202 NSCLC cases, respectively, and the impact of Endoglin methylation on overall survival (OS) was evaluated. Results: Methylation in the promoter region resulted in silencing of Endoglin, which could be reactivated by demethylation. Increased invasion coupled with altered EMT marker expression was observed in cell lines with an epithelial-like, but not those with a mesenchymal-like, profile when Endoglin was absent. Methylation was associated with decreased OS in stage I but not in stages II–III disease. Conclusions: We show that Endoglin is a common target of epigenetic silencing in lung cancer. We reveal a link between Endoglin silencing and EMT progression that might be associated with decreased survival in stage I disease.
Collapse
Affiliation(s)
- K O'Leary
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9RY, UK
| | - A Shia
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9RY, UK.,Barts Cancer Institute, Queen Mary University of London, Old Anatomy Building, Charterhouse Square, London EC1M 6BQ, UK
| | - F Cavicchioli
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9RY, UK
| | - V Haley
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9RY, UK
| | - A Comino
- Pathology Department, S. Croce General Hospital, via Coppino 26, 12100, Cuneo, Italy
| | - M Merlano
- Medical Oncology, Oncology Department, S. Croce General Hospital, via Carle 25, 12100, Cuneo, Italy
| | - F Mauri
- Department of Histopathology, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| | - K Walter
- Oncology Biomarker Development, Genentech, Inc., 550 Grandview Boulevard, South San Francisco, CA 94080, USA
| | - M Lackner
- Oncology Biomarker Development, Genentech, Inc., 550 Grandview Boulevard, South San Francisco, CA 94080, USA
| | - M B Wischnewsky
- eScience Lab, Department of Biomathematics, University of Bremen, Bremen 28359, Germany
| | - T Crook
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital And Medical School, Dundee DD1 9SY, UK
| | - C Lo Nigro
- Laboratory of Cancer Genetics and Translational Oncology, Oncology Department, S. Croce Genreal Hospital, via Carle 25, Cuneo 12100, Italy
| | - P Schmid
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9RY, UK.,Barts Cancer Institute, Queen Mary University of London, Old Anatomy Building, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
18
|
Prognostic Significance of Microvessel Density Determining by Endoglin in Stage II Rectal Carcinoma: A Retrospective Analysis. Gastroenterol Res Pract 2015; 2015:504179. [PMID: 26089870 PMCID: PMC4454763 DOI: 10.1155/2015/504179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/24/2015] [Accepted: 05/04/2015] [Indexed: 02/07/2023] Open
Abstract
Background. The role of endoglin in the Dukes B rectal cancer is still unexplored. The aim of this study was to examine the expression of endoglin (CD105) in resected rectal cancer and to evaluate the relationship between microvessels density (MVD), clinicopathological factors, and survival rates. Methods. The study included 95 primary rectal adenocarcinomas, corresponding to 67 adjacent and 73 distant normal mucosa specimens from surgical resection samples. Tumor specimens were paraffin-embedded and immunohistochemical staining for the CD105 endothelial antigen was performed to count CD105-MVD. For exact measurement of the CD105-MVD used a computer-integrated system Alphelys Spot Browser 2 was used. Results. The intratumoral CD105-MVD was significantly higher compared with corresponding adjacent mucosa (P < 0.0001) and distant mucosa specimens (P < 0.0001). There was no significant difference in the CD105-MVD according to patients age, gender, tumor location, grade of differentiation, histological type, depth of tumor invasion, and tumor size. The overall survival rate was significantly higher in the low CD105-MVD group of patients than in the high CD105-MVD group of patients (log-rank test, P = 0.0406). Conclusion. CD105-assessed MVD could help to identify patients with possibility of poor survival in the group of stage II RC.
Collapse
|
19
|
Voll EA, Ogden IM, Pavese JM, Huang X, Xu L, Jovanovic BD, Bergan RC. Heat shock protein 27 regulates human prostate cancer cell motility and metastatic progression. Oncotarget 2015; 5:2648-63. [PMID: 24798191 PMCID: PMC4058034 DOI: 10.18632/oncotarget.1917] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prostate cancer (PCa) is the most common form of cancer in American men. Mortality from PCa is caused by the movement of cancer cells from the primary organ to form metastatic tumors at distant sites. Heat shock protein 27 (HSP27) is known to increase human PCa cell invasion and its overexpression is associated with metastatic disease. The role of HSP27 in driving PCa cell movement from the prostate to distant metastatic sites is unknown. Increased HSP27 expression increased metastasis as well as primary tumor mass. In vitro studies further examined the mechanism of HSP27-induced metastatic behavior. HSP27 did not affect cell detachment, adhesion, or migration, but did increase cell invasion. Cell invasion was dependent upon matrix metalloproteinase 2 (MMP-2), whose expression was increased by HSP27. In vivo, HSP27 induced commensurate changes in MMP-2 expression in tumors. These findings demonstrate that HSP27 drives metastatic spread of cancer cells from the prostate to distant sites, does so across a continuum of expression levels, and identifies HSP27-driven increases in MMP-2 expression as functionally relevant. These findings add to prior studies demonstrating that HSP27 increases PCa cell motility, growth and survival. Together, they demonstrate that HSP27 plays an important role in PCa progression.
Collapse
Affiliation(s)
- Eric A Voll
- Department of Medicine, Northwestern University, 303 E Superior, Chicago, IL
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Targeting prostate cancer metastasis has very high therapeutic potential. Prostate cancer is the second most common cause of cancer death among men in the USA, and death results from the development of metastatic disease. In order to metastasize, cancer cells must complete a series of steps that together constitute the metastatic cascade. Each step therefore offers the opportunity for therapeutic targeting. However, practical limitations have served as limiting roadblocks to successfully targeting the metastatic cascade. They include our still-emerging understanding of the underlying biology, as well as the fact that many of the dysregulated processes have critical functionality in otherwise normal cells. We provide a discussion of the underlying biology, as it relates to therapeutic targeting. Therapeutic inroads are rapidly being made, and we present a series of case studies to highlight key points. Finally, future perspectives related to drug discovery for antimetastatic agents are discussed.
Collapse
|
21
|
Pavese JM, Krishna SN, Bergan RC. Genistein inhibits human prostate cancer cell detachment, invasion, and metastasis. Am J Clin Nutr 2014; 100 Suppl 1:431S-6S. [PMID: 24871471 PMCID: PMC4144112 DOI: 10.3945/ajcn.113.071290] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer in men in the United States and the second leading cause of cancer death. Death is not caused by the primary tumor but rather by the formation of distinct metastatic tumors. Therefore, prevention of metastasis is of utmost importance. The natural product genistein, found in high amounts in soy products, has been implicated in preventing PCa formation and metastasis in men who consume high amounts of soy. In vitro studies and in vivo rodent models that used human PCa cells, as well as prospective human clinical trials, provide a mechanistic explanation directly supporting genistein as an antimetastatic agent. Specifically, our group showed that genistein inhibits cell detachment, protease production, cell invasion, and human PCa metastasis at concentrations achieved in humans with dietary intake. Finally, phase I and phase II clinical trials conducted by us and others showed that concentrations of genistein associated with antimetastatic efficacy in preclinical models are achievable in humans, and treatment with genistein inhibits pathways that regulate metastatic transformation in human prostate tissue.
Collapse
Affiliation(s)
- Janet M Pavese
- From the Department of Medicine (JMP, SNK, and RCB), the Robert H Lurie Cancer Center (RCB), and the Center for Molecular Innovation and Drug Discovery (RCB), Northwestern University, Chicago, IL
| | - Sankar N Krishna
- From the Department of Medicine (JMP, SNK, and RCB), the Robert H Lurie Cancer Center (RCB), and the Center for Molecular Innovation and Drug Discovery (RCB), Northwestern University, Chicago, IL
| | - Raymond C Bergan
- From the Department of Medicine (JMP, SNK, and RCB), the Robert H Lurie Cancer Center (RCB), and the Center for Molecular Innovation and Drug Discovery (RCB), Northwestern University, Chicago, IL
| |
Collapse
|
22
|
Tobar N, Avalos MC, Méndez N, Smith PC, Bernabeu C, Quintanilla M, Martínez J. Soluble MMP-14 produced by bone marrow-derived stromal cells sheds epithelial endoglin modulating the migratory properties of human breast cancer cells. Carcinogenesis 2014; 35:1770-9. [PMID: 24618373 DOI: 10.1093/carcin/bgu061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It has been proposed that epithelial cells can acquire invasive properties through exposure to paracrine signals originated from mesenchymal cells within the tumor microenvironment. Transforming growth factor-β (TGF-β) has been revealed as an active factor that mediates the epithelial-stroma cross-talk that facilitates cell invasion and metastasis. TGF-β signaling is modulated by the coreceptor Endoglin (Eng), which shows a tumor suppressor activity in epithelial cells and regulates the ALK1-Smad1,5,8 as well as the ALK5-Smad2,3 signaling pathways. In the current work, we present evidence showing that cell surface Eng abundance in epithelial MCF-7 breast cancer cells is inversely related with cell motility. Shedding of Eng in MCF-7 cell surface by soluble matrix metalloproteinase-14 (MMP-14) derived from the HS-5 bone-marrow-derived cell line induces a motile epithelial phenotype. On the other hand, restoration of full-length Eng expression blocks the stromal stimulus on migration. Processing of surface Eng by stromal factors was demonstrated by biotin-neutravidin labeling of cell surface proteins and this processing generated a shift in TGF-β signaling through the activation of Smad2,3 pathway. Stromal MMP-14 abundance was stimulated by TGF-β secreted by MCF-7 cells acting in a paracrine manner. In turn, the stromal proteolytic activity of soluble MMP-14, by inducing Eng shedding, promoted malignant progression. From these data, and due to the capacity of TGF-β to regulate malignancy in epithelial cancer, we propose that stromal-dependent epithelial Eng shedding constitutes a putative mechanism that exerts an environmental control of cell malignancy.
Collapse
Affiliation(s)
- Nicolás Tobar
- Laboratorio de Biología Celular, INTA, Universidad de Chile, Santiago 7830490, Chile, Laboratorio de Fisiología Periodontal, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain and Instituto de Investigaciones Biomédicas Alberto Sols, CSIC, 28029 Madrid, Spain
| | - M Celeste Avalos
- Laboratorio de Biología Celular, INTA, Universidad de Chile, Santiago 7830490, Chile, Laboratorio de Fisiología Periodontal, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain and Instituto de Investigaciones Biomédicas Alberto Sols, CSIC, 28029 Madrid, Spain
| | - Nicolás Méndez
- Laboratorio de Biología Celular, INTA, Universidad de Chile, Santiago 7830490, Chile, Laboratorio de Fisiología Periodontal, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain and Instituto de Investigaciones Biomédicas Alberto Sols, CSIC, 28029 Madrid, Spain
| | - Patricio C Smith
- Laboratorio de Fisiología Periodontal, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain and
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC, 28029 Madrid, Spain
| | - Jorge Martínez
- Laboratorio de Biología Celular, INTA, Universidad de Chile, Santiago 7830490, Chile, Laboratorio de Fisiología Periodontal, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain and Instituto de Investigaciones Biomédicas Alberto Sols, CSIC, 28029 Madrid, Spain
| |
Collapse
|
23
|
Felgueiras J, Silva JV, Fardilha M. Prostate cancer: the need for biomarkers and new therapeutic targets. J Zhejiang Univ Sci B 2014; 15:16-42. [PMID: 24390742 PMCID: PMC3891116 DOI: 10.1631/jzus.b1300106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/08/2013] [Indexed: 12/16/2022]
Abstract
Prostate cancer (PCa) incidence and mortality have decreased in recent years. Nonetheless, it remains one of the most prevalent cancers in men, being a disquieting cause of men's death worldwide. Changes in many cell signaling pathways have a predominant role in the onset, development, and progression of the disease. These include prominent pathways involved in the growth, apoptosis, and angiogenesis of the normal prostate gland, such as androgen and estrogen signaling, and other growth factor signaling pathways. Understanding the foundations of PCa is leading to the discovery of key molecules that could be used to improve patient management. The ideal scenario would be to have a panel of molecules, preferably detectable in body fluids, that are specific and sensitive biomarkers for PCa. In the early stages, androgen deprivation is the gold standard therapy. However, as the cancer progresses, it eventually becomes independent of androgens, and hormonal therapy fails. For this reason, androgen-independent PCa is still a major therapeutic challenge. By disrupting specific protein interactions or manipulating the expression of some key molecules, it might be possible to regulate tumor growth and metastasis formation, avoiding the systemic side effects of current therapies. Clinical trials are already underway to assess the efficacy of molecules specially designed to target key proteins or protein interactions. In this review, we address that recent progress made towards understanding PCa development and the molecular pathways underlying this pathology. We also discuss relevant molecular markers for the management of PCa and new therapeutic challenges.
Collapse
|
24
|
Duarte CW, Murray K, Lucas FL, Fairfield K, Miller H, Brooks P, Vary CPH. Improved survival outcomes in cancer patients with hereditary hemorrhagic telangiectasia. Cancer Epidemiol Biomarkers Prev 2014; 23:117-125. [PMID: 24192008 PMCID: PMC3947104 DOI: 10.1158/1055-9965.epi-13-0665] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by deficiency in endoglin, an angiogenic protein. The net effect of endoglin expression on cancer outcomes from animal studies has proven controversial. We evaluated whether reduced systemic endoglin levels, expected in patients diagnosed with HHT, impacted clinical outcomes for cancer. METHODS A retrospective cohort analysis using Surveillance, Epidemiology, and End Results-Medicare was conducted to evaluate the effect of HHT on survival among patients diagnosed with breast, colorectal, lung, or prostate cancer between 2000 and 2007 (n = 540,520). We generated Kaplan-Meier survival curves and Cox models to compare the effect of HHT on all-cause survival for a composite of the four cancers, and separate models by cancer, adjusting for demographic variables, cancer type, cancer stage, and comorbidities. RESULTS All-cause survival analysis for a composite of the four cancers showed an adjusted HR of 0.69 [95% confidence interval (CI) of 0.51-0.91; P = 0.009] for HHT, indicating significantly improved survival outcome. When stratified by cancer type, HHT diagnosis showed a significant protective effect among breast cancer patients with an adjusted HR of 0.31 (95% CI, 0.13-0.75; P = 0.009). CONCLUSIONS There was a significant association between HHT and improved survival outcome for a composite of patients with breast, prostate, colorectal, and lung cancer, and in analysis stratified by cancer, the association was significant for HHT patients with breast cancer. IMPACT This study supports the hypothesis that systemically educed endoglin expression is associated with improved survival outcome in multiple cancers, and suggests that anti-endoglin antibody therapy may have broad-based application.
Collapse
Affiliation(s)
- Christine W Duarte
- The Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04062
| | - Kimberly Murray
- The Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04062
| | - F Lee Lucas
- The Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04062
| | - Kathleen Fairfield
- The Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04062
| | - Heather Miller
- The Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04062
| | - Peter Brooks
- The Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04062
| | - Calvin P H Vary
- The Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04062
| |
Collapse
|
25
|
Kershaw RM, Siddiqui YH, Roberts D, Jayaraman PS, Gaston K. PRH/HHex inhibits the migration of breast and prostate epithelial cells through direct transcriptional regulation of Endoglin. Oncogene 2013; 33:5592-600. [PMID: 24240683 DOI: 10.1038/onc.2013.496] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/19/2013] [Accepted: 10/11/2013] [Indexed: 12/16/2022]
Abstract
PRH/HHex (proline-rich homeodomain protein) is a transcription factor that controls cell proliferation and cell differentiation in a variety of tissues. Aberrant subcellular localisation of PRH is associated with breast cancer and thyroid cancer. Further, in blast crisis chronic myeloid leukaemia, and a subset of acute myeloid leukaemias, PRH is aberrantly localised and its activity is downregulated. Here we show that PRH is involved in the regulation of cell migration and cancer cell invasion. We show for the first time that PRH is expressed in prostate cells and that a decrease in PRH protein levels increases the migration of normal prostate epithelial cells. We show that a decrease in PRH protein levels also increases the migration of normal breast epithelial cells. Conversely, PRH overexpression inhibits cell migration and cell invasion by PC3 and DU145 prostate cancer cells and MDA-MB-231 breast cancer cells. Previous work has shown that the transforming growth factor-β co-receptor Endoglin inhibits the migration of prostate and breast cancer cells. Here we show that PRH can bind to the Endoglin promoter in immortalised prostate and breast cells. PRH overexpression in these cells results in increased Endoglin protein expression, whereas PRH knockdown results in decreased Endoglin protein expression. Moreover, we demonstrate that Endoglin overexpression abrogates the increased migration shown by PRH knockdown cells. Our data suggest that PRH controls the migration of multiple epithelial cell lineages in part at least through the direct transcriptional regulation of Endoglin. We discuss these results in terms of the functions of PRH in normal cells and the mislocalisation of PRH seen in multiple cancer cell types.
Collapse
Affiliation(s)
- R M Kershaw
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| | - Y H Siddiqui
- School of Biochemistry, University Walk, University of Bristol, Bristol, UK
| | - D Roberts
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| | - P-S Jayaraman
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| | - K Gaston
- School of Biochemistry, University Walk, University of Bristol, Bristol, UK
| |
Collapse
|
26
|
Pavese J, Ogden IM, Bergan RC. An orthotopic murine model of human prostate cancer metastasis. J Vis Exp 2013:e50873. [PMID: 24084571 PMCID: PMC3814297 DOI: 10.3791/50873] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Our laboratory has developed a novel orthotopic implantation model of human prostate cancer (PCa). As PCa death is not due to the primary tumor, but rather the formation of distinct metastasis, the ability to effectively model this progression pre-clinically is of high value. In this model, cells are directly implanted into the ventral lobe of the prostate in Balb/c athymic mice, and allowed to progress for 4-6 weeks. At experiment termination, several distinct endpoints can be measured, such as size and molecular characterization of the primary tumor, the presence and quantification of circulating tumor cells in the blood and bone marrow, and formation of metastasis to the lung. In addition to a variety of endpoints, this model provides a picture of a cells ability to invade and escape the primary organ, enter and survive in the circulatory system, and implant and grow in a secondary site. This model has been used effectively to measure metastatic response to both changes in protein expression as well as to response to small molecule therapeutics, in a short turnaround time.
Collapse
|
27
|
Chakhachiro ZI, Zuo Z, Aladily TN, Kantarjian HM, Cortes JE, Alayed K, Nguyen MH, Medeiros LJ, Bueso-Ramos C. CD105 (endoglin) is highly overexpressed in a subset of cases of acute myeloid leukemias. Am J Clin Pathol 2013; 140:370-8. [PMID: 23955456 DOI: 10.1309/ajcpg8xh7zonakxk] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES To assess CD105 (endoglin) expression in 119 acute myeloid leukemia (AML) and 13 control cases using immunohistochemistry. METHODS CD105 expression was assessed retrospectively by using immunohistochemistry in bone marrow specimens. RESULTS CD105 was strongly and diffusely positive in all 9 (100%) AMLs with t(15;17)(q24.1;q21.2), 2 (100%) AMLs with t(8;21)(q22;q22), 1 (100%) AML with t(6;9)(p23;q34), 7 (28%) of 25 AMLs with myelodysplasia-related changes, 1 (33%) of 3 therapy-related AMLs, 3 (16%) of 19 AMLs unclassifiable, 1 (14%) of 7 AMLs with inv(16)(p13.1q22), and 5 (11%) of 45 AMLs not otherwise specified. Uninvolved bone marrow in these cases showed no CD105 expression by erythroid precursors, megakaryocytes, or endothelial or stromal cells. Two of 13 control bone marrow specimens showed partial CD105 positivity in myeloid cells. In 21 strongly CD105+ AML cases tested for the IDH2 mutation, 9 (42%) were mutated (P = .004). CONCLUSIONS These data suggest that CD105 could be a therapeutic target in a subset of patients with AML.
Collapse
Affiliation(s)
- Zaher I Chakhachiro
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 072, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Breen MJ, Moran DM, Liu W, Huang X, Vary CPH, Bergan RC. Endoglin-mediated suppression of prostate cancer invasion is regulated by activin and bone morphogenetic protein type II receptors. PLoS One 2013; 8:e72407. [PMID: 23967299 PMCID: PMC3742533 DOI: 10.1371/journal.pone.0072407] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 07/15/2013] [Indexed: 12/25/2022] Open
Abstract
Mortality from prostate cancer (PCa) is due to the formation of metastatic disease. Understanding how that process is regulated is therefore critical. We previously demonstrated that endoglin, a type III transforming growth factor β (TGFβ) superfamily receptor, suppresses human PCa cell invasion and metastasis. Endoglin-mediated suppression of invasion was also shown by us to be dependent upon the type I TGFβ receptor, activin receptor-like kinase 2 (ALK2), and the downstream effector, Smad1. In this study we demonstrate for the first time that two type II TGFβ receptors are required for endoglin-mediated suppression of invasion: activin A receptor type IIA (ActRIIA) and bone morphogenetic protein receptor type II (BMPRII). Downstream signaling through these receptors is predominantly mediated by Smad1. ActRIIA stimulates Smad1 activation in a kinase-dependent manner, and this is required for suppression of invasion. In contrast BMPRII regulates Smad1 in a biphasic manner, promoting Smad1 signaling through its kinase domain but suppressing it through its cytoplasmic tail. BMPRII’s Smad1-regulatory effects are dependent upon its expression level. Further, its ability to suppress invasion is independent of either kinase function or tail domain. We demonstrate that ActRIIA and BMPRII physically interact, and that each also interacts with endoglin. The current findings demonstrate that both BMPRII and ActRIIA are necessary for endoglin-mediated suppression of human PCa cell invasion, that they have differential effects on Smad1 signaling, that they make separate contributions to regulation of invasion, and that they functionally and physically interact.
Collapse
Affiliation(s)
- Michael J. Breen
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Diarmuid M. Moran
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Wenzhe Liu
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Xiaoke Huang
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Calvin P. H. Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Raymond C. Bergan
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois, United States of America
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
29
|
Lin YH, Huang YH, Wu MH, Wu SM, Chi HC, Liao CJ, Chen CY, Tseng YH, Tsai CY, Tsai MM, Lin KH. Thyroid hormone suppresses cell proliferation through endoglin-mediated promotion of p21 stability. Oncogene 2013; 32:3904-14. [PMID: 23376845 DOI: 10.1038/onc.2013.5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 11/02/2012] [Accepted: 12/09/2012] [Indexed: 01/02/2023]
Abstract
Hypothyroidism has been associated with significantly elevated risk for hepatocellular carcinoma (HCC), although the precise underlying mechanisms remain unknown at present. Thyroid hormone (T3) and its receptor (TR) are involved in metabolism and growth. Endoglin is a T3/TR candidate target gene identified from our previous studies. Here, we demonstrated that T3 positively regulates endoglin mRNA and protein levels, both in vitro and in vivo. The thyroid hormone response elements of endoglin were identified at positions -2114/-2004 and -2032/-1973 of the promoter region using the electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Endoglin was downregulated in the subgroups of HCC patients and significantly associated with histology grade (negative association, P=0.001), and this expression level was significantly associated with TRα1 in these HCC patients. Our results clearly indicate that p21 is involved in T3-mediated suppression of cell proliferation. Knock down of endoglin expression in HCC cells facilitated p21 polyubiquitination and promoted cell proliferation in the presence of T3. The data collectively suggest that T3/TR signaling suppresses cell proliferation by upregulating endoglin, in turn, affecting p21 stability. The results indicate that endoglin has a suppressor role to inhibit cell proliferation in HCC cell lines.
Collapse
Affiliation(s)
- Y-H Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Paauwe M, ten Dijke P, Hawinkels LJAC. Endoglin for tumor imaging and targeted cancer therapy. Expert Opin Ther Targets 2013; 17:421-35. [PMID: 23327677 DOI: 10.1517/14728222.2013.758716] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Although cancer treatment has evolved substantially in the past decades, cancer-related mortality rates are still increasing. Therapies targeting tumor angiogenesis, crucial for the growth of solid tumors, mainly target vascular endothelial growth factor (VEGF) and have been clinically applied during the last decade. However, these therapies have not met high expectations, which were based on therapeutic efficacy in animal models. This can partly be explained by the upregulation of alternative angiogenic pathways. Therefore, additional therapies targeting other pro-angiogenic pathways are needed. AREAS COVERED The transforming growth factor (TGF)-β signaling pathway plays an important role in (tumor) angiogenesis. Therefore, components of this pathway are interesting candidates for anti-angiogenic therapy. Endoglin, a co-receptor for various TGF-β family members, is specifically overexpressed in tumor vessels and endoglin expression is associated with metastasis and patient survival. Therefore, endoglin might be a good candidate for anti-angiogenic therapy. In this review, we discuss the potential of using endoglin to target the tumor vasculature for imaging and therapeutic purposes. EXPERT OPINION Considering the promising results from various in vitro studies, in vivo animal models and the first clinical trial targeting endoglin, we are convinced that endoglin is a valuable tool for the diagnosis, visualization and ultimately treatment of solid cancers.
Collapse
Affiliation(s)
- Madelon Paauwe
- Cancer Genomics Centre Netherlands and Centre for BioMedical Genetics, Department of Molecular Cell Biology, Leiden University Medical Center, Building-2, S1-P, PO-box 9600, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
31
|
Progesterone receptor activates Msx2 expression by downregulating TNAP/Akp2 and activating the Bmp pathway in EpH4 mouse mammary epithelial cells. PLoS One 2012; 7:e34058. [PMID: 22457812 PMCID: PMC3310875 DOI: 10.1371/journal.pone.0034058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 02/27/2012] [Indexed: 11/19/2022] Open
Abstract
Previously we demonstrated that EpH4 mouse mammary epithelial cells induced the homeobox transcription factor Msx2 either when transfected with the progesterone receptor (PR) or when treated with Bmp2/4. Msx2 upregulation was unaffected by Wnt inhibitors s-FRP or Dkk1, but was inhibited by the Bmp antagonist Noggin. We therefore hypothesized that PR signaling to Msx2 acts through the Bmp receptor pathway. Herein, we confirm that transcripts for Alk2/ActR1A, a non-canonical BmpR Type I, are upregulated in mammary epithelial cells overexpressing PR (EpH4-PR). Increased phosphorylation of Smads 1,5, 8, known substrates for Alk2 and other BmpR Type I proteins, was observed as was their translocation to the nucleus in EpH4-PR cells. Analysis also showed that Tissue Non-Specific Alkaline Phosphatase (TNAP/Akp2) was also found to be downregulated in EpH4-PR cells. When an Akp2 promoter-reporter construct containing a ½PRE site was transfected into EpH4-PR cells, its expression was downregulated. Moreover, siRNA mediated knockdown of Akp2 increased both Alk2 and Msx2 expression. Collectively these data suggest that PR inhibition of Akp2 results in increased Alk2 activity, increased phosphorylation of Smads 1,5,8, and ultimately upregulation of Msx2. These studies imply that re-activation of the Akp2 gene could be helpful in downregulating aberrant Msx2 expression in PR+ breast cancers.
Collapse
|
32
|
Todorović-Raković N, Milovanović J, Nikolić-Vukosavljević D. TGF-β and its coreceptors in cancerogenesis: an overview. Biomark Med 2011; 5:855-863. [PMID: 22103622 DOI: 10.2217/bmm.11.59] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Besides signaling serine/threonine kinases, such as TGF-β receptors I and II, the TGF-β pathway involves several auxiliary receptors or coreceptors. Recent studies show that these coreceptors, particulary endoglin and β-glycan, have greater significance than previously thought. They regulate the availability of ligands to the key receptors, as well as their interaction and response, which could be variable and context-dependent. Understanding their true mechanism of action is important for delineating the complexity of the entire TGF-β signaling pathway. This is especially important in the context of cancerogenesis, because of therapeutic possibilities to manipulate the TGF-β system.
Collapse
Affiliation(s)
- Nataša Todorović-Raković
- Department of Experimental Oncology, Institute for Oncology & Radiology of Serbia, Pasterova 14, Belgrade, Serbia
| | | | | |
Collapse
|
33
|
Zakrzewski PK, Cygankiewicz AI, Mokrosiński J, Nowacka-Zawisza M, Semczuk A, Rechberger T, Krajewska WM. Expression of endoglin in primary endometrial cancer. Oncology 2011; 81:243-50. [PMID: 22116456 DOI: 10.1159/000334240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/04/2011] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Alterations in the transforming growth factor-β (TGF-β) signaling cascade are engaged in the development of human neoplasms through the deregulation of proliferation, differentiation and migration. However, in endometrial cancer, the role of endoglin, which acts as an accessory receptor in the TGF-β pathway, is still unknown. The aim of our study was the evaluation of endoglin mRNA and protein expression levels in endometrial cancer as compared to normal endometrium. TGF-β(1) and TGF-β type II receptor were involved in the investigation since they directly cooperate with endoglin during signal propagation. Obtained results were correlated with clinicopathological parameters of studied material to determine endoglin contribution to tumor development and progression. METHODS mRNA level assessment was performed using real-time technique, whereas protein expression was determined by ELISA assay. RESULTS The endoglin mRNA level was not significantly altered in cancerous samples as compared to normal tissue, whereas its protein level demonstrated significant upregulation (p < 0.001) associated with increased tumor malignancy, assessed by histological grade and myometrium infiltration. CONCLUSIONS An increase in endoglin protein expression level may interfere with the oncogenic potential of TGF-β(1) and TGF-β type II receptor in endometrial cancer. Correlation of the endoglin level with pronounced cancer malignancy suggests that it may be regarded as a potential prognostic marker of primary endometrial cancer.
Collapse
|
34
|
Xu J, Li CX, Lv JY, Li YS, Xiao Y, Shao TT, Huo X, Li X, Zou Y, Han QL, Li X, Wang LH, Ren H. Prioritizing candidate disease miRNAs by topological features in the miRNA target-dysregulated network: case study of prostate cancer. Mol Cancer Ther 2011; 10:1857-66. [PMID: 21768329 DOI: 10.1158/1535-7163.mct-11-0055] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, microRNAs (miRNA), small noncoding RNAs, have taken center stage in the field of human molecular oncology. However, their roles in tumor biology remain largely unknown. According to the assumption that miRNAs implicated in a specific tumor phenotype will show aberrant regulation of their target genes, we introduce an approach based on the miRNA target-dysregulated network (MTDN) to prioritize novel disease miRNAs. Target genes have predicted binding sites for any miRNA. The MTDN is constructed by combining computational target prediction with miRNA and mRNA expression profiles in tumor and nontumor tissues. Application of the proposed method to prostate cancer reveals that known prostate cancer miRNAs are characterized by a greater number of dysregulations and coregulators and the tendency to coregulate with each other and that they share a higher proportion of targets with other prostate cancer miRNAs. Support vector machine classifier, based on these features and changes in miRNA expression, is constructed and gives an average overall prediction accuracy of 0.8872 in cross-validation tests. The classifier is then applied to miRNAs in the MTDN. Functions enriched by dysregulated targets of novel predicted miRNAs are closely associated with oncogenesis. In addition, predicted cancer miRNAs within families or from different families show combinatorial dysregulation of target genes, as revealed by analysis of the MTDN modular organization. Finally, 3 miRNA target regulations are verified to hold in prostate cancer cells by transfection assays. These results show that the network-centric method could prioritize novel disease miRNAs and model how oncogenic lesions are mediated by miRNAs, providing important insights into tumorigenesis.
Collapse
Affiliation(s)
- Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Activins are the members of transforming growth factor β superfamily and act as secreted proteins; they were originally identified with a reproductive function, acting as endocrine-derived regulators of pituitary follicular stimulating hormone. In recent years, additional functions of activins have been discovered, including a regulatory role during crucial phases of growth, differentiation, and development such as wound healing, tissue repair, and regulation of branching morphogenesis. The functions of activins through activin receptors are pleiotrophic, while involving in the etiology and pathogenesis of a variety of diseases and being cell type-specific, they have been identified as important players in cancer metastasis, immune responses, inflammation, and are most likely involved in cell migration. In this chapter, we highlight the current knowledge of activin signaling and discuss the potential physiological and pathological roles of activins acting on the migration of various cell types.
Collapse
|
36
|
Ambrosio EP, Drigo SA, Bérgamo NA, Rosa FE, Bertonha FB, de Abreu FB, Kowalski LP, Rogatto SR. Recurrent copy number gains of ACVR1 and corresponding transcript overexpression are associated with survival in head and neck squamous cell carcinomas. Histopathology 2011; 59:81-9. [PMID: 21668474 DOI: 10.1111/j.1365-2559.2011.03885.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS This study aimed to evaluate the copy number alteration on 2q24, its association with ACVR1 transcript expression and the prognostic value of these data in head and neck squamous cell carcinomas. METHODS AND RESULTS Twenty-eight samples of squamous cell carcinoma were evaluated by fluorescence in situ hybridization (FISH) using the probes RP11-546J1 (2q24) and RP11-21P18 (internal control). Significant gains at 2q24 were detected in most cases at frequencies varying from 3 to 35%. ACVR1 gains and amplifications were associated with longer overall survival (P = 0.022). ACVR1 mRNA expression analysis in 78 cases revealed overexpression in 44% (34 of 78) of these tumours, suggesting that gene copy number alterations could be involved in gene overexpression. In laryngeal carcinomas, overexpression of ACVR1 mRNA levels was associated with longer overall survival (P = 0.013). Multivariate analysis revealed that ACVR1 is an independent prognostic marker in laryngeal carcinomas (P = 0.012, hazard ratio = 0.165, 95% confidence interval =0.041-0.668). CONCLUSIONS These findings suggest that copy number alterations at 2q24 can be involved in ACVR1 overexpression, which is associated with longer overall survival in laryngeal carcinomas. To our knowledge, this is the first report indicating the relevance of ACVR1 expression in head and neck cancers.
Collapse
Affiliation(s)
- Eliane P Ambrosio
- Institute of Biosciences, UNESP - São Paulo State University, Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tschöp K, Conery AR, Litovchick L, DeCaprio JA, Settleman J, Harlow E, Dyson N. A kinase shRNA screen links LATS2 and the pRB tumor suppressor. Genes Dev 2011; 25:814-30. [PMID: 21498571 PMCID: PMC3078707 DOI: 10.1101/gad.2000211] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 03/07/2011] [Indexed: 01/01/2023]
Abstract
pRB-mediated inhibition of cell proliferation is a complex process that depends on the action of many proteins. However, little is known about the specific pathways that cooperate with the Retinoblastoma protein (pRB) and the variables that influence pRB's ability to arrest tumor cells. Here we describe two shRNA screens that identify kinases that are important for pRB to suppress cell proliferation and pRB-mediated induction of senescence markers. The results reveal an unexpected effect of LATS2, a component of the Hippo pathway, on pRB-induced phenotypes. Partial knockdown of LATS2 strongly suppresses some pRB-induced senescence markers. Further analysis shows that LATS2 cooperates with pRB to promote the silencing of E2F target genes, and that reduced levels of LATS2 lead to defects in the assembly of DREAM (DP, RB [retinoblastoma], E2F, and MuvB) repressor complexes at E2F-regulated promoters. Kinase assays show that LATS2 can phosphorylate DYRK1A, and that it enhances the ability of DYRK1A to phosphorylate the DREAM subunit LIN52. Intriguingly, the LATS2 locus is physically linked with RB1 on 13q, and this region frequently displays loss of heterozygosity in human cancers. Our results reveal a functional connection between the pRB and Hippo tumor suppressor pathways, and suggest that low levels of LATS2 may undermine the ability of pRB to induce a permanent cell cycle arrest in tumor cells.
Collapse
Affiliation(s)
- Katrin Tschöp
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Andrew R. Conery
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Larisa Litovchick
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachustts 02215, USA
| | - James A. DeCaprio
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachustts 02215, USA
| | - Jeffrey Settleman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Ed Harlow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nicholas Dyson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
38
|
Romero D, O'Neill C, Terzic A, Contois L, Young K, Conley BA, Bergan RC, Brooks PC, Vary CPH. Endoglin regulates cancer-stromal cell interactions in prostate tumors. Cancer Res 2011; 71:3482-93. [PMID: 21444673 DOI: 10.1158/0008-5472.can-10-2665] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endoglin is an accessory receptor for TGF-β that has been implicated in prostate cancer cell detachment, migration, and invasiveness. However, the pathophysiologic significance of endoglin with respect to prostate tumorigenesis has yet to be fully established. In this study, we addressed this question by investigation of endoglin-dependent prostate cancer progression in a TRAMP (transgenic adenocarcinoma mouse prostate) mouse model where endoglin was genetically deleted. In this model, endoglin was haploinsufficient such that its allelic deletion slightly increased the frequency of tumorigenesis, yet produced smaller, less vascularized, and less metastatic tumors than TRAMP control tumors. Most strikingly, TRAMP:eng(+/-)-derived tumors lacked the pronounced infiltration of carcinoma-associated fibroblasts (CAF) that characterize TRAMP prostate tumors. Studies in human primary prostate-derived stromal cells (PrSC) confirmed that suppressing endoglin expression decreased cell proliferation, the ability to recruit endothelial cells, and the ability to migrate in response to tumor cell-conditioned medium. We found increased levels of secreted insulin-like growth factor-binding proteins (IGFBP) in the conditioned medium from endoglin-deficient PrSCs and that endoglin-dependent regulation of IGFBP-4 secretion was crucial for stromal cell-conditioned media to stimulate prostate tumor cell growth. Together, our results firmly establish the pathophysiologic involvement of endoglin in prostate cancer progression; furthermore, they show how endoglin acts to support the viability of tumor-infiltrating CAFs in the tumor microenvironment to promote neovascularization and growth.
Collapse
Affiliation(s)
- Diana Romero
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Endoglin (CD105) expression in ovarian serous carcinoma effusions is related to chemotherapy status. Tumour Biol 2011; 32:589-96. [PMID: 21350924 PMCID: PMC3093541 DOI: 10.1007/s13277-011-0157-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 01/10/2011] [Indexed: 11/09/2022] Open
Abstract
Endoglin (CD105), a cell surface co-receptor for transforming growth factor-β, is expressed in proliferating endothelial cells, as well as in cancer cells. We studied endoglin expression and its clinical relevance in effusions, primary tumors, and solid metastatic lesions from women with advanced-stage ovarian serous carcinoma. Endoglin expression was analyzed by immunohistochemistry in effusions (n = 211; 174 peritoneal, 37 pleural). Cellular endoglin staining was analyzed for association with the concentration of soluble endoglin (previously determined by ELISA) in 95 corresponding effusions and analyzed for correlation with clinicopathologic parameters, including survival. Endoglin expression was additionally studied in 34 patient-matched primary tumors and solid metastases. Carcinoma and mesothelial cells expressed endoglin in 95/211 (45%) and 133/211 (63%) effusions, respectively. Carcinoma cell endoglin expression was more frequent in effusions from patients aged ≤60 years (p = 0.048) and in post- compared to prechemotherapy effusions (p = 0.014), whereas mesothelial cell endoglin expression was higher in prechemotherapy effusions (p = 0.021). No association was found between cellular endoglin expression and its soluble effusion concentration. Endoglin was expressed in 17/34 (50%) primary tumors and 19/34 (56%) metastases, with significantly higher percentage of immunostained cells in solid metastases compared to effusions (p = 0.036). Endoglin expression did not correlate with survival. Tumor cell endoglin expression is higher in post- vs. prechemotherapy effusions, whereas the opposite is seen in mesothelial cells. Together with its upregulation in solid metastases, this suggests that the expression and biological role of endoglin may differ between cell populations and change along tumor progression in ovarian carcinoma.
Collapse
|
40
|
Meurer SK, Tihaa L, Borkham-Kamphorst E, Weiskirchen R. Expression and functional analysis of endoglin in isolated liver cells and its involvement in fibrogenic Smad signalling. Cell Signal 2010; 23:683-99. [PMID: 21146604 DOI: 10.1016/j.cellsig.2010.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/29/2010] [Accepted: 12/02/2010] [Indexed: 12/17/2022]
Abstract
Endoglin is an accessory component of the TGF-β-binding receptor complex that differentially modulates TGF-β and BMP responses. The existence of two splice variants L- and S-endoglin which differ in their cytoplasmic domain has already been shown in human and mice. Endoglin is located on the cell surfaces of cultured hepatic stellate cells and transdifferentiated myofibroblasts suggesting that this receptor might be associated with the profibrogenic attributes of these liver cell subpopulations. We now show that endoglin expression is increased in transdifferentiating hepatic stellate cells and in two models of liver fibrosis (i.e. bile duct ligation and carbon tetrachloride model) and further detectable in cultured portal fibroblasts representing another important fibrogenic cell type but not in hepatocytes. In respect to TGF-β1-signalling, we demonstrate that endoglin interacts with and is phosphorylated by TβRII. In hepatic stellate cells, TGF-β1 upregulates endoglin expression most likely via the ALK5 pathway and requires the SP1 transcription factor. We further identified a novel rat splice variant that is structurally and functionally different from that identified in human and mouse. Transient overexpression of endoglin resulted in a strong increase of TGF-β1-driven Smad1/5 phosphorylation and α-smooth muscle actin expression in a hepatic stellate cell line. In supernatants of respective cultures, we could detect the ectodomain of endoglin suggesting that shedding is a further key process involved in the regulation of this surface receptor.
Collapse
Affiliation(s)
- Steffen K Meurer
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, Aachen, Germany.
| | | | | | | |
Collapse
|
41
|
Henry LA, Johnson DA, Sarrió D, Lee S, Quinlan PR, Crook T, Thompson AM, Reis-Filho JS, Isacke CM. Endoglin expression in breast tumor cells suppresses invasion and metastasis and correlates with improved clinical outcome. Oncogene 2010; 30:1046-58. [DOI: 10.1038/onc.2010.488] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Lakshman M, Huang X, Ananthanarayanan V, Jovanovic B, Liu Y, Craft CS, Romero D, Vary CPH, Bergan RC. Endoglin suppresses human prostate cancer metastasis. Clin Exp Metastasis 2010; 28:39-53. [PMID: 20981476 DOI: 10.1007/s10585-010-9356-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/06/2010] [Indexed: 01/04/2023]
Abstract
Endoglin is a transmembrane receptor that suppresses human prostate cancer (PCa) cell invasion. Small molecule therapeutics now being tested in humans can activate endoglin signaling. It is not known whether endoglin can regulate metastatic behavior, PCa tumor growth, nor what signaling pathways are linked to these processes. This study sought to investigate the effect of endoglin on these parameters. We used a murine orthotopic model of human PCa metastasis, designed by us to measure effects at early steps in the metastatic cascade, and implanted PCa cells stably engineered to express differing levels of endoglin. We now extend this model to measure cancer cells circulating in the blood. Progressive endoglin loss led to progressive increases in the number of circulating PCa cells as well as to the formation of soft tissue metastases. Endoglin was known to suppress invasion by activating the Smad1 transcription factor. We now show that it selectively activates specific Smad1-responsive genes, including JUNB, STAT1, and SOX4. Increased tumor growth and increased Ki67 expression in tissue was seen only with complete endoglin loss. By showing that endoglin increased TGFβ-mediated suppression of cell growth in vitro and TGFβ-mediated signaling in tumor tissue, loss of this growth-suppressive pathway appears to be implicated at least in part for the increased size of endoglin-deficient tumors. Endoglin is shown for the first time to suppress cell movement out of primary tumor as well as the formation of distant metastasis. It is also shown to co-regulate tumor growth and metastatic behavior in human PCa.
Collapse
Affiliation(s)
- Minalini Lakshman
- Department of Medicine, Northwestern University Medical School, Lurie 6-105, 303 E. Superior Street, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Santibanez JF, Pérez-Gómez E, Fernandez-L A, Garrido-Martin EM, Carnero A, Malumbres M, Vary CPH, Quintanilla M, Bernabéu C. The TGF-beta co-receptor endoglin modulates the expression and transforming potential of H-Ras. Carcinogenesis 2010; 31:2145-54. [PMID: 20884686 DOI: 10.1093/carcin/bgq199] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endoglin is a coreceptor for transforming growth factor-β (TGF-β) that acts as a suppressor of malignancy during mouse skin carcinogenesis. Because in this model system H-Ras activation drives tumor initiation and progression, we have assessed the effects of endoglin on the expression of H-Ras in transformed keratinocytes. We found that TGF-β1 increases the expression of H-Ras at both messenger RNA and protein levels. The TGF-β1-induced H-Ras promoter transactivation was Smad4 independent but mediated by the activation of the TGF-β type I receptor ALK5 and the Ras-mitogen-activated protein kinase (MAPK) pathway. Endoglin attenuated stimulation by TGF-β1 of both MAPK signaling activity and H-Ras gene expression. Moreover, endoglin inhibited the Ras/MAPK pathway in transformed epidermal cells containing an H-Ras oncogene, as evidenced by the levels of Ras-guanosine triphosphate, phospho-MAPK kinase (MEK) and phospho-extracellular signal-regulated kinase (ERK) as well as the expression of c-fos, a MAPK downstream target gene. Interestingly, in spindle carcinoma cells, that have a hyperactivated Ras/MAPK pathway, endoglin inhibited ERK phosphorylation without affecting MEK or Ras activity. The mechanism for this effect is unknown but strongly depends on the endoglin extracellular domain. Because the MAPK pathway is a downstream mediator of the transforming potential of Ras, the effect of endoglin on the oncogenic function of H-Ras was assessed. Endoglin inhibited the transforming capacity of H-Ras(Q61K) and H-Ras(G12V) oncogenes in a NIH3T3 focus formation assay. The ability to interfere with the expression and oncogenic potential of H-Ras provides a new face of the suppressor role exhibited by endoglin in H-Ras-driven carcinogenesis.
Collapse
Affiliation(s)
- Juan F Santibanez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Genistein is a small, biologically active flavonoid that is found in high amounts in soy. This important compound possesses a wide variety of biological activities, but it is best known for its ability to inhibit cancer progression. In particular, genistein has emerged as an important inhibitor of cancer metastasis. Consumption of genistein in the diet has been linked to decreased rates of metastatic cancer in a number of population-based studies. Extensive investigations have been performed to determine the molecular mechanisms underlying genistein's antimetastatic activity, with results indicating that this small molecule has significant inhibitory activity at nearly every step of the metastatic cascade. Reports have demonstrated that, at high concentrations, genistein can inhibit several proteins involved with primary tumor growth and apoptosis, including the cyclin class of cell cycle regulators and the Akt family of proteins. At lower concentrations that are similar to those achieved through dietary consumption, genistein can inhibit the prometastatic processes of cancer cell detachment, migration, and invasion through a variety of mechanisms, including the transforming growth factor (TGF)-beta signaling pathway. Several in vitro findings have been corroborated in both in vivo animal studies and in early-phase human clinical trials, demonstrating that genistein can both inhibit human cancer metastasis and also modulate markers of metastatic potential in humans, respectively. Herein, we discuss the variety of mechanisms by which genistein regulates individual steps of the metastatic cascade and highlight the potential of this natural product as a promising therapeutic inhibitor of metastasis.
Collapse
Affiliation(s)
- Janet M. Pavese
- Department of Medicine, Northwestern University, Lurie 6-105 303 E. Superior, Chicago, IL 60611 USA
- The Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL USA
| | - Rebecca L. Farmer
- Department of Medicine, Northwestern University, Lurie 6-105 303 E. Superior, Chicago, IL 60611 USA
- The Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL USA
- Center for Drug Discovery and Chemical Biology, Northwestern University, Chicago, IL USA
| | - Raymond C. Bergan
- Department of Medicine, Northwestern University, Lurie 6-105 303 E. Superior, Chicago, IL 60611 USA
- The Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL USA
- Center for Drug Discovery and Chemical Biology, Northwestern University, Chicago, IL USA
| |
Collapse
|
45
|
Burke JP, Watson RWG, Mulsow JJ, Docherty NG, Coffey JC, O'Connell PR. Endoglin negatively regulates transforming growth factor beta1-induced profibrotic responses in intestinal fibroblasts. Br J Surg 2010; 97:892-901. [PMID: 20473999 DOI: 10.1002/bjs.6996] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Fibroblasts isolated from strictures in Crohn's disease (CD) exhibit reduced responsiveness to stimulation with transforming growth factor (TGF) beta1. TGF-beta1, acting through the smad pathway, is critical to fibroblast-mediated intestinal fibrosis. The membrane glycoprotein, endoglin, is a negative regulator of TGF-beta1. METHODS Intestinal fibroblasts were cultured from seromuscular biopsies of patients undergoing intestinal resection for CD strictures or from control patients. Endoglin expression was assessed using confocal microscopy, flow cytometry and western blot. The effect of small interfering (si) RNA-mediated knockdown and plasmid-mediated overexpression of endoglin on fibroblast responsiveness to TGF-beta1 was assessed by examining smad phosphorylation, smad binding element (SBE) promoter activity, connective tissue growth factor (CTGF) expression and ability to contract collagen. RESULTS Crohn's stricture fibroblasts expressed increased constitutive cell-surface and whole-cell endoglin relative to control cells. Endoglin co-localized with filamentous actin. Fibroblasts treated with siRNA directed against endoglin exhibited enhanced TGF-beta1-mediated smad-3 phosphorylation, and collagen contraction. Cells transfected with an endoglin plasmid did not respond to TGF-beta1 by exhibiting SBE promoter activity or producing CTGF. CONCLUSION Fibroblasts from strictures in CD express increased constitutive endoglin. Endoglin is a negative regulator of TGF-beta1 signalling in the intestinal fibroblast, modulating smad-3 phosphorylation, SBE promoter activity, CTGF production and collagen contraction.
Collapse
Affiliation(s)
- J P Burke
- Department of Surgery, St Vincent's University Hospital, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
46
|
Romero D, Terzic A, Conley BA, Craft CS, Jovanovic B, Bergan RC, Vary CPH. Endoglin phosphorylation by ALK2 contributes to the regulation of prostate cancer cell migration. Carcinogenesis 2009; 31:359-66. [PMID: 19736306 DOI: 10.1093/carcin/bgp217] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endoglin, a transmembrane glycoprotein that acts as a transforming growth factor-beta (TGF-beta) coreceptor, is downregulated in PC3-M metastatic prostate cancer cells. When restored, endoglin expression in PC3-M cells inhibits cell migration in vitro and attenuates the tumorigenicity of PC3-M cells in SCID mice, though the mechanism of endoglin regulation of migration in prostate cancer cells is not known. The current study indicates that endoglin is phosphorylated on cytosolic domain threonine residues by the TGF-beta type I receptors ALK2 and ALK5 in prostate cancer cells. Importantly, in the presence of constitutively active ALK2, endoglin did not inhibit cell migration, suggesting that endoglin phosphorylation regulated PC3-M cell migration. Therefore, our results suggest that endoglin phosphorylation is a mechanism with relevant functional consequences in prostate cancer cells. These data demonstrate for the first time that TGF-beta receptor-mediated phosphorylation of endoglin is a Smad-independent mechanism involved in the regulation of prostate cancer cell migration.
Collapse
Affiliation(s)
- Diana Romero
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Xu L, Ding Y, Catalona WJ, Yang XJ, Anderson WF, Jovanovic B, Wellman K, Killmer J, Huang X, Scheidt KA, Montgomery RB, Bergan RC. MEK4 function, genistein treatment, and invasion of human prostate cancer cells. J Natl Cancer Inst 2009; 101:1141-55. [PMID: 19638505 DOI: 10.1093/jnci/djp227] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dietary intake of genistein by patients with prostate cancer has been associated with decreased metastasis and mortality. Genistein blocks activation of p38 mitogen-activated protein kinase and thus inhibits matrix metalloproteinase-2 (MMP-2) expression and cell invasion in cultured cells and inhibits metastasis of human prostate cancer cells in mice. We investigated the target for genistein in prostate cancer cells. METHODS Prostate cell lines PC3-M, PC3, 1532NPTX, 1542NPTX, 1532CPTX, and 1542CPTX were used. All cell lines were transiently transfected with a constitutively active mitogen-activated protein kinase kinase 4 (MEK4) expression vector (to increase MEK4 expression), small interfering RNA against MEK4 (to decrease MEK4 expression), or corresponding control constructs. Cell invasion was assessed by a Boyden chamber assay. Gene expression was assessed by a quantitative reverse transcription-polymerase chain reaction. Protein expression was assessed by Western blot analysis. Modeller and AutoDock programs were used for modeling of the structure of MEK4 protein and ligand docking, respectively. MMP-2 transcript levels were assessed in normal prostate epithelial cells from 24 patients with prostate cancer from a phase II randomized trial comparing genistein treatment with no treatment. Statistical significance required a P value of .050 or less. All statistical tests were two-sided. RESULTS Overexpression of MEK4 increased MMP-2 expression and cell invasion in all six cell lines. Decreased MEK4 expression had the opposite effects. Modeling showed that genistein bound to the active site of MEK4. Genistein inhibited MEK4 kinase activity with a half maximal inhibitory concentration of 0.40 microM (95% confidence interval [CI] = 0.36 to 0.45 muM). The MMP-2 transcript level in normal prostate epithelial cells was statistically significantly higher in the untreated group (100%) than in the genistein-treated group (24%; difference = 76%, 95% CI = 38% to 115%; P = .045). CONCLUSIONS We identified MEK4 as a proinvasion protein in six human prostate cancer cell lines and the target for genistein. We showed, to our knowledge for the first time, that genistein treatment, compared with no treatment, was associated with decreased levels of MMP-2 transcripts in normal prostate cells from prostate cancer-containing tissue.
Collapse
Affiliation(s)
- Li Xu
- Department of Medicine, Robert H. Lurie Cancer Center and Center for Drug Discovery and Chemical Biology of Northwestern University, Chicago, IL60610, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bernabeu C, Lopez-Novoa JM, Quintanilla M. The emerging role of TGF-beta superfamily coreceptors in cancer. Biochim Biophys Acta Mol Basis Dis 2009; 1792:954-73. [PMID: 19607914 DOI: 10.1016/j.bbadis.2009.07.003] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 07/02/2009] [Accepted: 07/06/2009] [Indexed: 12/23/2022]
Abstract
The transforming growth factor beta (TGF-beta) signaling pathway plays a key role in different physiological processes such as development, cellular proliferation, extracellular matrix synthesis, angiogenesis or immune responses and its deregulation may result in tumor development. The TGF-beta coreceptors endoglin and betaglycan are emerging as modulators of the TGF-beta response with important roles in cancer. Endoglin is highly expressed in the tumor-associated vascular endothelium with prognostic significance in selected neoplasias and with potential to be a prime vascular target for antiangiogenic cancer therapy. On the other hand, the expression of endoglin and betaglycan in tumor cells themselves appears to play an important role in the progression of cancer, influencing cell proliferation, motility, invasiveness and tumorigenicity. In addition, experiments in vitro and in vivo in which endoglin or betaglycan expression is modulated have provided evidence that they act as tumor suppressors. The purpose of this review was to highlight the potential of membrane and soluble forms of the endoglin and betaglycan proteins as molecular targets in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Carmelo Bernabeu
- Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28040 Madrid, Spain.
| | | | | |
Collapse
|
49
|
Schnaper HW, Jandeska S, Runyan CE, Hubchak SC, Basu RK, Curley JF, Smith RD, Hayashida T. TGF-beta signal transduction in chronic kidney disease. Front Biosci (Landmark Ed) 2009; 14:2448-65. [PMID: 19273211 DOI: 10.2741/3389] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transforming growth factor (TGF)-beta is a central stimulus of the events leading to chronic progressive kidney disease, having been implicated in the regulation of cell proliferation, hypertrophy, apoptosis and fibrogenesis. The fact that it mediates these varied events suggests that multiple mechanisms play a role in determining the outcome of TGF-beta signaling. Regulation begins with the availability and activation of TGF-beta and continues through receptor expression and localization, control of the TGF-beta family-specific Smad signaling proteins, and interaction of the Smads with multiple signaling pathways extending into the nucleus. Studies of these mechanisms in kidney cells and in whole-animal experimental models, reviewed here, are beginning to provide insight into the role of TGF-beta in the pathogenesis of renal dysfunction and its potential treatment.
Collapse
Affiliation(s)
- H William Schnaper
- Division of Kidney Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave.; Chicago, IL 60611-3008, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wong VCL, Chan PL, Bernabeu C, Law S, Wang LD, Li JL, Tsao SW, Srivastava G, Lung ML. Identification of an invasion and tumor-suppressing gene,Endoglin(ENG), silenced by both epigenetic inactivation and allelic loss in esophageal squamous cell carcinoma. Int J Cancer 2008; 123:2816-23. [DOI: 10.1002/ijc.23882] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|