1
|
Grossmannova K, Belvoncikova P, Puzderova B, Simko V, Csaderova L, Pastorek J, Barathova M. Carbonic anhydrase IX downregulation linked to disruption of HIF-1, NFκB and STAT3 pathways as a new mechanism of ibuprofen anti-cancer effect. PLoS One 2025; 20:e0323635. [PMID: 40408503 PMCID: PMC12101644 DOI: 10.1371/journal.pone.0323635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/10/2025] [Indexed: 05/25/2025] Open
Abstract
Numerous studies have highlighted the anti-cancer effects of nonsteroidal anti-inflammatory drugs (NSAIDs), although the underlying mechanisms remain unclear. This study focuses on elucidating the impact of the NSAID ibuprofen (IBU) on cancer cells exposed to hypoxia, as the hypoxic microenvironment significantly influences tumor progression, metastatic potential, and therapy resistance. Given that carbonic anhydrase IX (CA IX) is a key hypoxia-associated protein and a promising therapeutic target due to its tumor-specific expression, we primarily examined the impact of IBU on CA IX and the transcription factors regulating CA IX expression. We found that IBU downregulates expression and protein level of CA IX in hypoxic colon carcinoma and head and neck cancer cells, resulting in a reduction of membranous CA IX. To elucidate the mechanism of this phenomenon, we analyzed the key CA IX-regulating transcription factor HIF-1 and found decreased levels of the HIF-1α subunit in IBU-treated cells, leading to its impaired binding to the CA9 promotor. Analysis of another transcription factor involved in CA IX expression, NFκB, showed suppressed NFκB pathway under IBU treatment. Moreover, we demonstrated IBU-mediated induction in apoptosis in cancer cells, as well as a decrease in their ability to migrate. Our study is the first to demonstrate that ibuprofen downregulates carbonic anhydrase IX expression in hypoxic colon and head and neck tumor cells by decreasing HIF-1α levels. Additionally, ibuprofen impairs key transcription factors NFκB and STAT3, leading to reduced adaptation to hypoxic stress, decreased tumor cell viability, and migration. This indicates its potential as a therapeutic agent in combination therapy for colon carcinoma or head and neck cancer.
Collapse
Affiliation(s)
- Katarina Grossmannova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Belvoncikova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Puzderova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Simko
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Csaderova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Monika Barathova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
2
|
Miliński M, Staś M, Rok J, Beberok A, Wrześniok D. The effect of sulindac on redox homeostasis and apoptosis-related proteins in melanotic and amelanotic cells. Pharmacol Rep 2023; 75:995-1004. [PMID: 37195561 PMCID: PMC10374796 DOI: 10.1007/s43440-023-00493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs have been shown to inhibit the development of induced neoplasms. Our previous research demonstrated that the cytotoxicity of sulindac against melanoma cells is comparable to dacarbazine, the drug used in chemotherapy. The aim of this study was to investigate the mechanism of sulindac cytotoxicity on COLO 829 and C32 cell lines. METHODS The influence of sundilac on the activity of selected enzymes of the antioxidant system (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)) and the content of hydrogen peroxide as well as the level of proteins initiating (p53, Bax) and inhibiting (Bcl-2) apoptosis were measured in melanoma cells. RESULTS In melanotic melanoma cells, sulindac increased the activity of SOD and the content of H2O2 but decreased the activity of CAT and GPx. The level of p53 and Bax proteins rose but the content of Bcl-2 protein was lowered. Similar results were observed for dacarbazine. In amelanotic melanoma cells, sulindac did not cause an increase in the activity of measured enzymes or any significant changes in the level of apoptotic proteins. CONCLUSION The cytotoxic effect of sulindac in the COLO 829 cell line is connected to disturbed redox homeostasis by changing the activity of SOD, CAT, GPx, and level of H2O2. Sulindac also induces apoptosis by changing the ratio of the pro-apoptotic/anti-apoptotic protein. The presented studies indicate the possibility of developing target therapy against melanotic melanoma using sulindac.
Collapse
Affiliation(s)
- Maciej Miliński
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland.
| | - Monika Staś
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, School of Pharmacy With the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, School of Pharmacy With the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, School of Pharmacy With the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland
| |
Collapse
|
3
|
Rashid G, Khan NA, Elsori D, Rehman A, Tanzeelah, Ahmad H, Maryam H, Rais A, Usmani MS, Babker AM, Kamal MA, Hafez W. Non-steroidal anti-inflammatory drugs and biomarkers: A new paradigm in colorectal cancer. Front Med (Lausanne) 2023; 10:1130710. [PMID: 36950511 PMCID: PMC10025514 DOI: 10.3389/fmed.2023.1130710] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Colorectal cancer is a sporadic, hereditary, or familial based disease in its origin, caused due to diverse set of mutations in large intestinal epithelial cells. Colorectal cancer (CRC) is a common and deadly disease that accounts for the 4th worldwide highly variable malignancy. For the early detection of CRC, the most common predictive biomarker found endogenously are KRAS and ctDNA/cfDNA along with SEPT9 methylated DNA. Early detection and screening for CRC are necessary and multiple methods can be employed to screen and perform early diagnosis of CRC. Colonoscopy, an invasive method is most prevalent for diagnosing CRC or confirming the positive result as compared to other screening methods whereas several non-invasive techniques such as molecular analysis of breath, urine, blood, and stool can also be performed for early detection. Interestingly, widely used medicines known as non-steroidal anti-inflammatory drugs (NSAIDs) to reduce pain and inflammation have reported chemopreventive impact on gastrointestinal malignancies, especially CRC in several epidemiological and preclinical types of research. NSAID acts by inhibiting two cyclooxygenase enzymes, thereby preventing the synthesis of prostaglandins (PGs) and causing NSAID-induced apoptosis and growth inhibition in CRC cells. This review paper majorly focuses on the diversity of natural and synthetic biomarkers and various techniques for the early detection of CRC. An approach toward current advancement in CRC detection techniques and the role of NSAIDs in CRC chemoprevention has been explored systematically. Several prominent governing mechanisms of the anti-cancer effects of NSAIDs and their synergistic effect with statins for an effective chemopreventive measure have also been discussed in this review paper.
Collapse
Affiliation(s)
- Gowhar Rashid
- Department of Amity Medical School, Amity University, Gurugram, India
| | - Nihad Ashraf Khan
- Department of Biosciences, Jamia Millia Islamia, Central University, New Delhi, India
| | - Deena Elsori
- Faculty of Resillience, Deans Office Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Andleeb Rehman
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Tanzeelah
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Haleema Ahmad
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, India
| | - Humaira Maryam
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, India
| | - Amaan Rais
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, India
| | - Mohd Salik Usmani
- The Department of Surgery, Faculty of Medicine, JNMCH, AMU, Uttar Pradesh, India
| | - Asaad Ma Babker
- Department of Medical Laboratory Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Wael Hafez
- Department of Internal Medicine, NMC Royal Hospital, Abu Dhabi, United Arab Emirates
- The Medical Research Division, Department of Internal Medicine, The National Research Center, Ad Doqi, Egypt
| |
Collapse
|
4
|
The Effect of Low Doses of Acetylsalicylic Acid on the Occurrence of Rectal Aberrant Crypt Foci. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121767. [PMID: 36556972 PMCID: PMC9788241 DOI: 10.3390/medicina58121767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Background and Objectives: Aberrant crypt foci (ACF) are one of the earliest putative preneoplastic and, in some cases, neoplastic lesions in human colons. Many studies have confirmed the reduction of ACFs and colorectal adenomas after treatment with acetylsalicylic acid (ASA) commonly referred to as ASA; however, the minimum effective dose of ASA and the duration of use has not been fully elucidated. The objective of our study was to assess the significance of low dose ASA (75-mg internally once daily) to study the chemopreventive effect of ASA in ACF and adenomas development in patients taking this drug for a minimum period of 10 years. Materials and Methods: Colonoscopy, combined with rectal mucosa staining with 0.25% methylene blue, was performed on 131 patients. The number of rectal ACF in the colon was divided into three groups: ACF < 5; ACF 5−10; and ACF > 10. Patients were divided into two groups: the “With ASA” group (the study group subjects taking ASA 75-mg daily for 10 years); and “Without ASA” group (control group subjects not taking ASA chronically). The incidence of different types of rectal ACF and colorectal polyps in both groups of subjects was analysed and ascertained. Results: Normal ACF was found in 12.3% in the study group vs. 87.7% control group, hyperplastic 22.4% vs. 77.6%, dysplastic 25% vs. 75%, mixed 0% vs. 100%. Treatment with ASA affects the occurrence of colorectal adenomas. The amount of dysplastic ACFs was lower in the study group than in the control group. The increase in dysplastic ACFs decreases with age in both groups, with the increase greater in those not taking ASA. Conclusions: Patients who take persistent, chronic (>10 years) low doses of ASA have a lower total number of all types of rectal ACFs and adenomas compared to the control group.
Collapse
|
5
|
Thoms HC, Stark LA. The NF-κB Nucleolar Stress Response Pathway. Biomedicines 2021; 9:biomedicines9091082. [PMID: 34572268 PMCID: PMC8471347 DOI: 10.3390/biomedicines9091082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022] Open
Abstract
The nuclear organelle, the nucleolus, plays a critical role in stress response and the regulation of cellular homeostasis. P53 as a downstream effector of nucleolar stress is well defined. However, new data suggests that NF-κB also acts downstream of nucleolar stress to regulate cell growth and death. In this review, we will provide insight into the NF-κB nucleolar stress response pathway. We will discuss apoptosis mediated by nucleolar sequestration of RelA and new data demonstrating a role for p62 (sequestosome (SQSTM1)) in this process. We will also discuss activation of NF-κB signalling by degradation of the RNA polymerase I (PolI) complex component, transcription initiation factor-IA (TIF-IA (RRN3)), and contexts where TIF-IA-NF-κB signalling may be important. Finally, we will discuss how this pathway is targeted by aspirin to mediate apoptosis of colon cancer cells.
Collapse
|
6
|
PSMB4 inhibits cardiomyocyte apoptosis via activating NF-κB signaling pathway during myocardial ischemia/reperfusion injury. J Mol Histol 2021; 52:693-703. [PMID: 33954843 DOI: 10.1007/s10735-021-09977-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/22/2021] [Indexed: 01/16/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury induces cardiomyocyte apoptosis to deteriorate heart function. Thus, how to inhibit cardiomyocyte apoptosis is the focus of recent researches. Proteasome family member PSMB4 (proteasome subunit beta type-4) promotes cell survival. The relationship between PSMB4 and cardiomyocyte apoptosis during myocardial I/R is unknown. In this study, PSMB4 expression increased in rat myocardial I/R model, positively correlated with cleaved caspase-3 expression, negatively correlated with Bcl-2 expression. In vitro, neonatal ventricle cardiomyocyte hypoxia/reoxygenation (H/R) model was constructed to mimic myocardial I/R. PSMB4 silence promoted cardiomyocyte apoptosis and IκBα expression, inhibited the activation of NF-κB. On the contrary, PSMB4 overexpession inhibited cardiomyocyte apoptosis and IκBα expression, promoted the activation of NF-κB. Additionally, PSMB4-IκBα interaction was identified, suggesting that PSMB4 might participate in the proteasome dependent degradation of IκBα. The data indicates that PSMB4 inhibits cardiomyocyte apoptosis via activating NF-κB signaling pathway during myocardial I/R, which can supply novel molecular target for the treatment of ischemic heart disease.
Collapse
|
7
|
Fuentes J, de Camargo AC, Atala E, Gotteland M, Olea-Azar C, Speisky H. Quercetin Oxidation Metabolite Present in Onion Peel Protects Caco-2 Cells against the Oxidative Stress, NF-kB Activation, and Loss of Epithelial Barrier Function Induced by NSAIDs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2157-2167. [PMID: 33591188 DOI: 10.1021/acs.jafc.0c07085] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The potential of 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone (BZF), a quercetin oxidation metabolite, and that of a BZF-rich onion peel aqueous extract (OAE) to protect Caco-2 monolayers against the oxidative stress (OS) and an increased permeability (IP) induced by five nonsteroidal anti-inflammatory drugs (NSAIDs) (indomethacin, diclofenac, piroxicam, ibuprofen, and metamizole) were investigated. Under identical OS conditions, the NSAIDs substantially differed in their ability to induce an IP and/or NF-kB activation. The OAE (100 nM BZF) protected in identical magnitude (84-86%) against OS but in a highly dissimilar manner against the IP (18-73%). While all NSAIDs activated NF-kB, the OAE prevented only that induced by indomethacin. Results reveal that the IP has no direct relationship with the OS and that with the exception of indomethacin, the prevention of NSAIDs-induced OS and/or NF-kB activation plays no fundamental role in the IP-protecting effect of OAE. These results warrant the in vivo evaluation of OAE against indomethacin-induced loss of intestinal barrier function.
Collapse
Affiliation(s)
- Jocelyn Fuentes
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Elías Atala
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Martín Gotteland
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Claudio Olea-Azar
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380000, Chile
| | - Hernán Speisky
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| |
Collapse
|
8
|
Lobb IT, Morin P, Martin K, Thoms HC, Wills JC, Lleshi X, Olsen KCF, Duncan RR, Stark LA. A Role for the Autophagic Receptor, SQSTM1/p62, in Trafficking NF-κB/RelA to Nucleolar Aggresomes. Mol Cancer Res 2020; 19:274-287. [PMID: 33097627 DOI: 10.1158/1541-7786.mcr-20-0336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022]
Abstract
Elevated NF-κB activity is a contributory factor in many hematologic and solid malignancies. Nucleolar sequestration of NF-κB/RelA represses this elevated activity and mediates apoptosis of cancer cells. Here, we set out to understand the mechanisms that control the nuclear/nucleolar distribution of RelA and other regulatory proteins, so that agents can be developed that specifically target these proteins to the organelle. We demonstrate that RelA accumulates in intranucleolar aggresomes in response to specific stresses. We also demonstrate that the autophagy receptor, SQSTM1/p62, accumulates alongside RelA in these nucleolar aggresomes. This accumulation is not a consequence of inhibited autophagy. Indeed, our data suggest nucleolar and autophagosomal accumulation of p62 are in active competition. We identify a conserved motif at the N-terminus of p62 that is essential for nucleoplasmic-to-nucleolar transport of the protein. Furthermore, using a dominant-negative mutant deleted for this nucleolar localization signal (NoLS), we demonstrate a role for p62 in trafficking RelA and other aggresome-related proteins to nucleoli, to induce apoptosis. Together, these data identify a novel role for p62 in trafficking nuclear proteins to nucleolar aggresomes under conditions of cell stress, thus maintaining cellular homeostasis. They also provide invaluable information on the mechanisms that regulate the nuclear/nucleolar distribution of RelA that could be exploited for therapeutic purpose. IMPLICATIONS: The data open up avenues for the development of a unique class of therapeutic agents that act by targeting RelA and other aberrantly active proteins to nucleoli, thus killing cancer cells.
Collapse
Affiliation(s)
- Ian T Lobb
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | - Pierre Morin
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | - Kirsty Martin
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, Scotland
| | - Hazel C Thoms
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | | | - Xhordi Lleshi
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | - Karl C F Olsen
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | - Rory R Duncan
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, Scotland
| | - Lesley A Stark
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland.
| |
Collapse
|
9
|
Das M, Goswami U, Bhattacharyya S, Kandimalla R, Chattopadhyay A, Ghosh SS. Integration of a Nonsteroidal Anti-Inflammatory Drug with Luminescent Copper for in Vivo Cancer Therapy in a Mouse Model. ACS APPLIED BIO MATERIALS 2020; 3:227-238. [DOI: 10.1021/acsabm.9b00751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Madhumita Das
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Guwahati Neurological Research Centre (GNRC) Medical Lab, North Guwahati 781031, India
| | - Upashi Goswami
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Srirupa Bhattacharyya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Raghuram Kandimalla
- Institute of Advance Study of Science and Technology, Guwahati 781035, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
10
|
Fei Q, Du MY, Qian LX, Chen HB, Chen J, Zhu HM, Tian XK, Jiang N, Gu JJ, He X, Yin L. Feedback loop in miR-449b-3p/ADAM17/NF-κB promotes metastasis in nasopharyngeal carcinoma. Cancer Med 2019; 8:6049-6063. [PMID: 31433128 PMCID: PMC6792493 DOI: 10.1002/cam4.2469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
An emerging body of evidence has promoted the understanding of the role of microRNAs (miRNAs) in tumorigenesis and progression, but the mediating function of miRNAs in nasopharyngeal carcinoma (NPC) development remains poorly elucidated. In this study, miR‐449b‐3p was downregulated in NPC specimens (P < .001) and cells (P < .05). Cytological and animal experiments provided evidence that miR‐449b‐3p inhibited NPC metastasis in vitro and in vivo. Disintegrin and metalloproteinase 17 (ADAM17) was revealed as a direct target of miR‐449b‐3p. Rescue experiments suggested that the downregulation of ADAM17 in the miR‐449b‐3p knockdown cells partially reversed the inhibition of cell invasion and migration. Luciferase reporter assay, chromatin immunoprecipitation assay, and Western blot analysis showed that ADAM17 could suppress the promoter activity and expression of miR‐449b‐3p by inducing NF‐κB transcriptional activity. In conclusion, our study provided new insights into the underlying mechanism of the invasion and metastasis of NPC. The novel miR‐449b‐3p/ADAM17/NF‐κB feedback loop could be a target for the clinical treatment of NPC.
Collapse
Affiliation(s)
- Qian Fei
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China.,The Fourth Clinical School of Nanjing Medical University, Nanjing, China
| | - Ming-Yu Du
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Lu-Xi Qian
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China.,The Fourth Clinical School of Nanjing Medical University, Nanjing, China
| | - Han-Bo Chen
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China.,The Fourth Clinical School of Nanjing Medical University, Nanjing, China
| | - Jie Chen
- Xuzhou Medical University, Xuzhou, China
| | - Hong-Ming Zhu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | | | - Ning Jiang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jia-Jia Gu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xia He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China.,The Fourth Clinical School of Nanjing Medical University, Nanjing, China
| | - Li Yin
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China.,The Fourth Clinical School of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Chen J, Stark LA. Insights into the Relationship between Nucleolar Stress and the NF-κB Pathway. Trends Genet 2019; 35:768-780. [PMID: 31434627 DOI: 10.1016/j.tig.2019.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
The nuclear organelle the nucleolus and the transcription factor nuclear factor of κ-light-chain-enhancer of activated B cells (NF-κB) are both central to the control of cellular homeostasis, dysregulated in common diseases and implicated in the ageing process. Until recently, it was believed that they acted independently to regulate homeostasis in health and disease. However, there is an emerging body of evidence suggesting that nucleoli and NF-κB signalling converge at multiple levels. Here we will review current understanding of this crosstalk. We will discuss activation of the NF-κB pathway by nucleolar stress and induction of apoptosis by nucleolar sequestration of NF-κB/RelA. We will also discuss the role of TIF-IA, COMMD1, and nucleophosmin, which are key players in this crosstalk, and the therapeutic relevance, particularly with respect to the antitumour effects of aspirin.
Collapse
Affiliation(s)
- Jingyu Chen
- University of Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, Scotland EH4 2XU, UK
| | - Lesley A Stark
- University of Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, Scotland EH4 2XU, UK.
| |
Collapse
|
12
|
Crosstalk between NF-κB and Nucleoli in the Regulation of Cellular Homeostasis. Cells 2018; 7:cells7100157. [PMID: 30301139 PMCID: PMC6210184 DOI: 10.3390/cells7100157] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022] Open
Abstract
Nucleoli are emerging as key sensors of cellular stress and regulators of the downstream consequences on proliferation, metabolism, senescence, and apoptosis. NF-κB signalling is activated in response to a similar plethora of stresses, which leads to modulation of cell growth and death programs. While nucleolar and NF-κB pathways are distinct, it is increasingly apparent that they converge at multiple levels. Exposure of cells to certain insults causes a specific type of nucleolar stress that is characterised by degradation of the PolI complex component, TIF-IA, and increased nucleolar size. Recent studies have shown that this atypical nucleolar stress lies upstream of cytosolic IκB degradation and NF-κB nuclear translocation. Under these stress conditions, the RelA component of NF-κB accumulates within functionally altered nucleoli to trigger a nucleophosmin dependent, apoptotic pathway. In this review, we will discuss these points of crosstalk and their relevance to anti-tumour mechanism of aspirin and small molecule CDK4 inhibitors. We will also briefly the discuss how crosstalk between nucleoli and NF-κB signalling may be more broadly relevant to the regulation of cellular homeostasis and how it may be exploited for therapeutic purpose.
Collapse
|
13
|
Prescott JA, Cook SJ. Targeting IKKβ in Cancer: Challenges and Opportunities for the Therapeutic Utilisation of IKKβ Inhibitors. Cells 2018; 7:cells7090115. [PMID: 30142927 PMCID: PMC6162708 DOI: 10.3390/cells7090115] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 02/08/2023] Open
Abstract
Deregulated NF-κB signalling is implicated in the pathogenesis of numerous human inflammatory disorders and malignancies. Consequently, the NF-κB pathway has attracted attention as an attractive therapeutic target for drug discovery. As the primary, druggable mediator of canonical NF-κB signalling the IKKβ protein kinase has been the historical focus of drug development pipelines. Thousands of compounds with activity against IKKβ have been characterised, with many demonstrating promising efficacy in pre-clinical models of cancer and inflammatory disease. However, severe on-target toxicities and other safety concerns associated with systemic IKKβ inhibition have thus far prevented the clinical approval of any IKKβ inhibitors. This review will discuss the potential reasons for the lack of clinical success of IKKβ inhibitors to date, the challenges associated with their therapeutic use, realistic opportunities for their future utilisation, and the alternative strategies to inhibit NF-κB signalling that may overcome some of the limitations associated with IKKβ inhibition.
Collapse
Affiliation(s)
- Jack A Prescott
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
14
|
Cadherin 6 is activated by Epstein-Barr virus LMP1 to mediate EMT and metastasis as an interplay node of multiple pathways in nasopharyngeal carcinoma. Oncogenesis 2017; 6:402. [PMID: 29284791 PMCID: PMC5865538 DOI: 10.1038/s41389-017-0005-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/23/2017] [Accepted: 10/01/2017] [Indexed: 12/14/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy, which is notorious among head-and-neck cancers with its metastatic feature. Epstein–Barr virus (EBV) infection plays a fundamental role in NPC development with the mechanism is not well understood. Here we demonstrate that EBV oncoprotein LMP1 drives EMT and metastasis of NPC by reactivating the adhesion molecule, cadherin 6 (CDH6), which normally occurs in embryogenesis with unknown role in NPC. CDH6 was found to be upregulated in LMP1-positive NPC tissues, and was identified as a target of the epithelium-specific miR-203. LMP1-activated NF-κB transcriptionally repressed the miR-203 expression by binding to the promoter region of miR-203 gene. CDH6 activation in turn induced EMT and promoted metastasis in NPC. CDH6 depletion, NF-κB inhibitor and miR-203 overexpression were able to impair the EMT effects. The miR-203 downregulation in NPC tissues was strongly associated with metastasis clinically. The CDH6 activator, Runt-related transcription factor 2 (RUNX2), was also activated by EBV in the event. For both CDH6 and RUNX2 are components at TGF-β downstream, CDH6 became a node protein for the interplay of multiple signalings including NF-κB and TGF-β. Therefore, the switch-on of miR-203 was important for nasopharyngeal epithelial cells to maintain normal phenotype. This study demonstrates that EBV has evolved sophisticated strategies by driving epithelial cells to obtain malignant features, particularly in NPC metastasis, providing novel biomarkers for the therapy and prognosis of EBV-associated NPC.
Collapse
|
15
|
Russo R, De Caro C, Avallone B, Magliocca S, Nieddu M, Boatto G, Troiano R, Cuomo R, Cirillo C, Avagliano C, Cristiano C, La Rana G, Sarnelli G, Calignano A, Rimoli MG. Ketogal: A Derivative Ketorolac Molecule with Minor Ulcerogenic and Renal Toxicity. Front Pharmacol 2017; 8:757. [PMID: 29163153 PMCID: PMC5681857 DOI: 10.3389/fphar.2017.00757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022] Open
Abstract
Ketorolac is a powerful non-steroidal anti-inflammatory drug (NSAID), with a great analgesic activity, present on the Italian market since 1991. Despite the excellent therapeutic activity, the chronic use of ketorolac has long been limited owing to the high incidence of gastrointestinal and kidney side events. In our previous study, we demonstrated that ketorolac-galactose conjugate (ketogal), synthesized and tested in a single-dose study, was able to reduce ulcerogenicity, while preserving the high pharmacological efficacy of its parent drug. In this paper, in order to verify the suitability of this compound, for repeated administration, ex vivo experiments on naïve mice were performed. Mice were treated for 5 or 7 days with the highest doses of two drugs (ketorolac 10 mg/kg and ketogal 16.3 mg/kg), and the expression of both gastric COX-1 and PGsyn was evaluated. Results showed that oral ketorolac treatment significantly reduced both enzymes; surprisingly, oral treatment with ketogal did not produce significant variation in the expression of the two constitutive enzymes. Moreover, histological experiments on stomach and kidneys clearly indicated that repeated administration of ketogal induced lower toxicity than ketorolac. At same time, in vivo results clearly showed that both ketorolac and ketogal had a similar therapeutic activity in a model of inflammation and in pain perception. These effects were accompanied by the reduction of enzyme expression such as COX-2 and iNOS, and by the modulation of levels of nuclear NF-κB and cytosolic IκB-α in the inflamed paws. These very encouraging results demonstrate for the first time that ketogal could represent a valid and novel therapeutic alternative to the ketorolac and might pave the way for clinical studies.
Collapse
Affiliation(s)
- Roberto Russo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Carmen De Caro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.,Science of Health Department, School of Medicine, Magna Graecia University, Catanzaro, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Maria Nieddu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Gianpiero Boatto
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Roberta Troiano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rosario Cuomo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Carla Cirillo
- Laboratory for Enteric Neuroscience, KU Leuven, Leuven, Belgium
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Claudia Cristiano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Giovanna La Rana
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Maria G Rimoli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Chen J, Stark LA. Aspirin Prevention of Colorectal Cancer: Focus on NF-κB Signalling and the Nucleolus. Biomedicines 2017; 5:biomedicines5030043. [PMID: 28718829 PMCID: PMC5618301 DOI: 10.3390/biomedicines5030043] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
Overwhelming evidence indicates that aspirin and related non-steroidal anti-inflammatory drugs (NSAIDs) have anti-tumour activity and the potential to prevent cancer, particularly colorectal cancer. However, the mechanisms underlying this effect remain hypothetical. Dysregulation of the nuclear factor-kappaB (NF-κB) transcription factor is a common event in many cancer types which contributes to tumour initiation and progression by driving expression of pro-proliferative/anti-apoptotic genes. In this review, we will focus on the current knowledge regarding NSAID effects on the NF-κB signalling pathway in pre-cancerous and cancerous lesions, and the evidence that these effects contribute to the anti-tumour activity of the agents. The nuclear organelle, the nucleolus, is emerging as a central regulator of transcription factor activity and cell growth and death. Nucleolar function is dysregulated in the majority of cancers which promotes cancer growth through direct and indirect mechanisms. Hence, this organelle is emerging as a promising target for novel therapeutic agents. Here, we will also discuss evidence for crosstalk between the NF-κB pathway and nucleoli, the role that this cross-talk has in the anti-tumour effects of NSAIDs and ways forward to exploit this crosstalk for therapeutic purpose.
Collapse
Affiliation(s)
- Jingyu Chen
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Rd., Edinburgh, Scotland EH4 2XU, UK.
| | - Lesley A Stark
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Rd., Edinburgh, Scotland EH4 2XU, UK.
| |
Collapse
|
17
|
Farrag AM. Synthesis and Biological Evaluation of Novel Indomethacin Derivatives as Potential Anti-Colon Cancer Agents. Arch Pharm (Weinheim) 2016; 349:904-914. [PMID: 27862196 DOI: 10.1002/ardp.201600238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022]
Abstract
The molecular structure of indomethacin was used as a starting scaffold for the synthesis of 20 novel analogs and to study their effects on the proliferation of three human colon cancer cell lines, HCT-116, HT-29, and Caco-2, by MTT assay. The synthesized indomethacin analogs were characterized on the basis of IR, 1 H NMR, 13 C NMR, mass spectral data, and elemental analysis results. Cytotoxicity assay results showed that the indomethacin amide analog 2 was the most potent anticancer agent (IC50 = 0.78, 0.09, and 0.0127 μg/mL) against the three colon cancer cell lines, respectively, being more potent than the standard 5-fluorouracil (IC50 = 1.8, 0.75, and 5.45 μg/mL). Interestingly, the indomethacin oxazin analog 3 and the indomethacin amide analog 8 displayed very potent anticancer activity against the HCT-116 cell line with IC50 = 0.421 and 0.27 μg/mL, respectively, much better than the reference (IC50 = 1.8 μg/mL). Additionally, analogs 3, 4b, 11, 12c, and 13a exhibited excellent antitumor activity against Caco-2 cells, with IC50 ranging from 1.5 to 4.5 μg/mL. Furthermore, analogs 2 and 8 were additionally examined for their effect on the cell cycle of HCT-116 and HT-29 cells, respectively, using flow cytometric analysis. Analog 2 arrested the cell cycle of HT-29 cells at the S phase, while 8 was found to arrest the cell cycle of HCT-116 cells at the G0/G1 phase.
Collapse
Affiliation(s)
- Amel Mostafa Farrag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
18
|
Rocca J, Manin S, Hulin A, Aissat A, Verbecq-Morlot W, Prulière-Escabasse V, Wohlhuter-Haddad A, Epaud R, Fanen P, Tarze A. New use for an old drug: COX-independent anti-inflammatory effects of sulindac in models of cystic fibrosis. Br J Pharmacol 2016; 173:1728-41. [PMID: 26894321 PMCID: PMC4867744 DOI: 10.1111/bph.13464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 01/14/2023] Open
Abstract
Background and Purpose Pulmonary disease is the main cause of morbidity and mortality in cystic fibrosis (CF) patients due to exacerbated inflammation. To date, the only anti‐inflammatory drug available to CF patients is high‐dose ibuprofen, which can slow pulmonary disease progression, but whose cyclooxygenase‐dependent digestive adverse effects limit its clinical use. Here we have tested sulindac, another non‐steroidal anti‐inflammatory drug with an undefined anti‐inflammatory effect in CF airway epithelial cells. Experimental Approach Using in vitro and in vivo models, we NF‐κB activity and IL‐8 secretion. In HeLa‐F508del cells, we performed luciferase reporter gene assays in order to measure i) IL‐8 promoter activity, and ii) the activity of synthetic promoter containing NF‐κB responsive elements. We quantified IL‐8 secretion in airway epithelial CFBE cells cultured at an air‐liquid interface and in a mouse model of CF. Key Results Sulindac inhibited the transcriptional activity of NF‐κB and decreased IL‐8 transcription and secretion in TNF‐α stimulated CF cells via a cyclooxygenase‐independent mechanism. This effect was confirmed in vivo in a mouse model of CF induced by intra‐tracheal instillation of LPS, with a significant decrease of the induction of mRNA for MIP‐2, following treatment with sulindac. Conclusion and Implications Overall, sulindac decrease lung inflammation by a mechanism independent of cycolooxygenase. This drug could be beneficially employed in CF.
Collapse
Affiliation(s)
- Jérémy Rocca
- Inserm, U955, Equipe 5, Créteil, France.,Université Paris Est, UPEC, Créteil, France.,DHU Ageing-Thorax-Vessel-Blood, Créteil, France
| | - Sylvie Manin
- Inserm, U955, Equipe 5, Créteil, France.,DHU Ageing-Thorax-Vessel-Blood, Créteil, France
| | - Anne Hulin
- DHU Ageing-Thorax-Vessel-Blood, Créteil, France
| | - Abdel Aissat
- Inserm, U955, Equipe 5, Créteil, France.,Université Paris Est, UPEC, Créteil, France.,DHU Ageing-Thorax-Vessel-Blood, Créteil, France.,AP-HP, Hôpital H. Mondor-A. Chenevier, Pôle de Biologie, Créteil, France
| | - Wilfried Verbecq-Morlot
- Université Paris Est, UPEC, Créteil, France.,DHU Ageing-Thorax-Vessel-Blood, Créteil, France
| | - Virginie Prulière-Escabasse
- Inserm, U955, Equipe 5, Créteil, France.,Université Paris Est, UPEC, Créteil, France.,DHU Ageing-Thorax-Vessel-Blood, Créteil, France.,CHIC, service d'ORL, Créteil, France
| | | | - Ralph Epaud
- Inserm, U955, Equipe 5, Créteil, France.,Université Paris Est, UPEC, Créteil, France.,DHU Ageing-Thorax-Vessel-Blood, Créteil, France
| | - Pascale Fanen
- Inserm, U955, Equipe 5, Créteil, France.,Université Paris Est, UPEC, Créteil, France.,DHU Ageing-Thorax-Vessel-Blood, Créteil, France.,AP-HP, Hôpital H. Mondor-A. Chenevier, Pôle de Biologie, Créteil, France
| | - Agathe Tarze
- Inserm, U955, Equipe 5, Créteil, France.,Université Paris Est, UPEC, Créteil, France.,DHU Ageing-Thorax-Vessel-Blood, Créteil, France
| |
Collapse
|
19
|
Yin T, Wang G, Ye T, Wang Y. Sulindac, a non-steroidal anti-inflammatory drug, mediates breast cancer inhibition as an immune modulator. Sci Rep 2016; 6:19534. [PMID: 26777116 PMCID: PMC4725989 DOI: 10.1038/srep19534] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023] Open
Abstract
The cooperation of adaptive immunity with pharmacologic therapy influences cancer progression. Though non-steroidal anti-inflammatory drugs (NSAIDs) have a long history of cancer prevention, it is unclear whether adaptive immune system affects the action of those drugs. In present study, we revealed a novel immunological mechanism of sulindac. Our data showed that sulindac had substantial efficacy as a single agent against 4T1 murine breast cancer and prolonged the survival of tumor-bearing mice. However, in the athymic nude mice, sulindac treatment was ineffective. Further in vivo T cell subsets depletion experiments showed that CD8+ T lymphocytes deficiency reversed the anti-tumor effect of sulindac. In addition, sulindac significantly reduced M2 macrophages recruitment, cancer-related inflammation and tumor angiogenesis. Our results advance our understanding of the mechanisms of NSAIDs, and more importantly, this will provide insight into rational drug design or antitumor immunotherapy.
Collapse
Affiliation(s)
- Tao Yin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China
| | - Guoping Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China
| | - Yongsheng Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China
| |
Collapse
|
20
|
Bundscherer A, Malsy M, Bitzinger D, Graf BM. [Interaction of anesthetics and analgesics with tumor cells]. Anaesthesist 2014; 63:313-25. [PMID: 24584840 DOI: 10.1007/s00101-014-2310-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The results of preclinical and clinical studies indicate that the perioperative period is a vulnerable period for cancer progression and metastasis. The risk of cancer cell dissemination is enhanced by the combination of surgical manipulation and perioperative immunosuppression. Whether the oncological outcome of cancer patients can be influenced by the choice of anesthetic techniques is still a matter of debate. This review summarizes the molecular characteristics of cancer and interaction of anesthetic and analgesic drugs with cancer cells.
Collapse
Affiliation(s)
- A Bundscherer
- Klinik für Anästhesiologie, Universitätsklinikum Regensburg, Franz Josef Strauß Allee 11, 93053, Regensburg, Deutschland,
| | | | | | | |
Collapse
|
21
|
O'Hara A, Simpson J, Morin P, Loveridge CJ, Williams AC, Novo SM, Stark LA. p300-mediated acetylation of COMMD1 regulates its stability, and the ubiquitylation and nucleolar translocation of the RelA NF-κB subunit. J Cell Sci 2014; 127:3659-65. [PMID: 25074812 PMCID: PMC4150058 DOI: 10.1242/jcs.149328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/20/2014] [Indexed: 12/02/2022] Open
Abstract
Nucleolar sequestration of the RelA subunit of nuclear factor (NF)-κB is an important mechanism for regulating NF-κB transcriptional activity. Ubiquitylation, facilitated by COMMD1 (also known as MURR1), acts as a crucial nucleolar-targeting signal for RelA, but how this ubiquitylation is regulated, and how it differs from cytokine-mediated ubiquitylation, which causes proteasomal degradation of RelA, is poorly understood. Here, we report a new role for p300 (also known as EP300) in controlling stimulus-specific ubiquitylation of RelA, through modulation of COMMD1. We show that p300 is required for stress-mediated ubiquitylation and nucleolar translocation of RelA, but that this effect is indirect. We also demonstrate that COMMD1 is acetylated by p300 and that acetylation protects COMMD1 from XIAP-mediated proteosomal degradation. Furthermore, we demonstrate that COMMD1 acetylation is enhanced by aspirin-mediated stress, and that this acetylation is absolutely required for the protein to bind RelA under these conditions. In contrast, tumour necrosis factor (TNF) has no effect on COMMD1 acetylation. Finally, we demonstrate these findings have relevance in a whole tissue setting. These data offer a new paradigm for the regulation of NF-κB transcriptional activity, and the multiple other pathways controlled by COMMD1.
Collapse
Affiliation(s)
- Andrew O'Hara
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - James Simpson
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Pierre Morin
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Carolyn J Loveridge
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Ann C Williams
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TH, UK
| | - Sonia M Novo
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Lesley A Stark
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
22
|
Claudius AK, Kankipati CS, Kilari RS, Hassan S, Guest K, Russell ST, Perry CJ, Stark LA, Nicholl ID. Identification of aspirin analogues that repress NF-κB signalling and demonstrate anti-proliferative activity towards colorectal cancer in vitro and in vivo. Oncol Rep 2014; 32:1670-80. [PMID: 25109257 DOI: 10.3892/or.2014.3373] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/26/2014] [Indexed: 11/06/2022] Open
Abstract
Substantial evidence indicates that aspirin and related non-steroidal anti-inflammatory drugs (NSAIDs) have potential as chemopreventative/therapeutic agents. However, these agents cannot be universally recommended for prevention purposes due to their potential side-effect profiles. Here, we compared the growth inhibitory and mechanistic activity of aspirin to two novel analogues, diaspirin (DiA) and fumaryl diaspirin (F-DiA). We found that the aspirin analogues inhibited cell proliferation and induced apoptosis of colorectal cancer cells at significantly lower doses than aspirin. Similar to aspirin, we found that an early response to the analogues was a reduction in levels of cyclin D1 and stimulation of the NF-κB pathway. This stimulation was associated with a significant reduction in basal levels of NF-κB transcriptional activity, in keeping with previous data for aspirin. However, in contrast to aspirin, DiA and F-DiA activity was not associated with nucleolar accumulation of RelA. For all assays, F-DiA had a more rapid and significant effect than DiA, identifying this agent as particularly active against colorectal cancer. Using a syngeneic colorectal tumour model in mice, we found that, while both agents significantly inhibited tumour growth in vivo, this effect was particularly pronounced for F-DiA. These data identify two compounds that are active against colorectal cancer in vitro and in vivo. They also identify a potential mechanism of action of these agents and shed light on the chemical structures that may be important for the antitumour effects of aspirin.
Collapse
Affiliation(s)
- Ann-Katrin Claudius
- Edinburgh Cancer Research Centre and MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Chandra S Kankipati
- The Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Rajagopal S Kilari
- The Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Sadiya Hassan
- The Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Kerry Guest
- Life and Health Sciences, Aston Triangle, Aston University, Birmingham B4 7ET, UK
| | - Steven T Russell
- Life and Health Sciences, Aston Triangle, Aston University, Birmingham B4 7ET, UK
| | - Chris J Perry
- The Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Lesley A Stark
- Edinburgh Cancer Research Centre and MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Iain D Nicholl
- The Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| |
Collapse
|
23
|
Zheng Q, Zhang Y, Ren Y, Wu Y, Yang S, Zhang Y, Chen H, Li W, Zhu Y. Antiproliferative and apoptotic effects of indomethacin on human retinoblastoma cell line Y79 and the involvement of β-catenin, nuclear factor-κB and Akt signaling pathways. Ophthalmic Res 2013; 51:109-15. [PMID: 24355977 DOI: 10.1159/000355844] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/23/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND To determine in vitro if indomethacin inhibits proliferation and induces apoptosis in human retinoblastoma cell line Y79, and to explore possibly involved signaling pathways. METHODS The human retinoblastoma cell line Y79 was cultured with indomethacin at various concentrations (0, 25, 50, 100, 200 and 400 µmol/l). The effect of indomethacin on cell proliferation and apoptosis was examined by the Cell Counting Kit-8 and TUNEL test, respectively. The mRNA level of survivin, β-catenin and Bcl-2 was detected by RT-PCR. The protein level of survivin was measured by ELISA. Western blot was used to analyze β-catenin, nuclear factor (NF)-κB/p65, phosphorylated Akt (pAkt) and total Akt (tAkt) expression in cultured cells. RESULTS Indomethacin treatment inhibits proliferation (at concentrations from 25 to 400 µmol/l) and induces apoptosis (at concentrations from 100 to 400 µmol/l) of human retinoblastoma cell line Y79 in a dose-dependent manner. RT-PCR showed that the mRNA expression of Bcl-2 (F = 20.497; p < 0.001) and of β-catenin (F = 14.835; p < 0.001) was significantly different among the treated groups. Survivin mRNA levels remained steady, but its protein levels decreased significantly as measured by ELISA (F = 67.633; p < 0.001). Western blot analysis showed a dose-dependent downregulation of β-catenin (F = 37.411; p < 0.001), NF-κB/p65 (F = 16.302; p < 0.001) and of pAkt (F = 27.700; p < 0.001) after indomethacin treatment, while tAkt protein expression was steady among the groups. CONCLUSIONS Treatment with indomethacin can potently suppress proliferation and induce apoptosis in the retinoblastoma Y79 cell line. Wnt/β-catenin, NF-κB and Akt/PKB pathways might be implicated in the process.
Collapse
|
24
|
Indomethacin-enhanced anticancer effect of arsenic trioxide in A549 cell line: involvement of apoptosis and phospho-ERK and p38 MAPK pathways. BIOMED RESEARCH INTERNATIONAL 2013; 2013:237543. [PMID: 24312908 PMCID: PMC3842073 DOI: 10.1155/2013/237543] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/21/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Focusing on novel drug combinations that target different pathways especially apoptosis and MAPK could be a rationale for combination therapy in successful treatment of lung cancer. Concurrent use of cyclooxygenase (COX) inhibitors with arsenic trioxide (ATO) might be a possible treatment option. METHODS Cytotoxicity of ATO, dexamethasone (Dex), celecoxib (Cel), and Indomethacin (Indo) individually or in combination was determined at 24, 48, and 72 hrs in A549 lung cancer cells. The COX-2 gene and protein expression, MAPK pathway proteins, and caspase-3 activity were studied for the most cytotoxic combinations. RESULTS The IC50s of ATO and Indo were 68.7 μmol/L and 396.5 μmol/L, respectively. Treatment of cells with combinations of clinically relevant concentrations of ATO and Indo resulted in greater growth inhibition and apoptosis induction than did either agent alone. Caspase-3 activity was considerably high in the presence of ATO and Indo but showed no difference in single or combination use. Phosphorylation of p38 and ERK1/2 was remarkable in the concurrent presence of both drugs. CONCLUSIONS Combination therapy with ATO and Indo exerted a very potent in vitro cytotoxic effect against A549 lung cancer cells. Activation of ERK and p38 pathways might be the mechanism of higher cytotoxic effect of ATO-Indo combination.
Collapse
|
25
|
Fuchs CS, Ogino S. Aspirin therapy for colorectal cancer with PIK3CA mutation: simply complex! J Clin Oncol 2013; 31:4358-61. [PMID: 24166520 DOI: 10.1200/jco.2013.52.0080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
26
|
Sulindac activates NF-κB signaling in colon cancer cells. Cell Commun Signal 2013; 11:73. [PMID: 24083678 PMCID: PMC3896984 DOI: 10.1186/1478-811x-11-73] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/25/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The non-steroidal anti-inflammatory drug (NSAID) sulindac has shown efficacy in preventing colorectal cancer. This potent anti-tumorigenic effect is mediated through multiple cellular pathways but is also accompanied by gastrointestinal side effects, such as colon inflammation. We have recently shown that sulindac can cause up-regulation of pro-inflammatory factors in the mouse colon mucosa. The aim of this study was to determine the signaling pathways that mediate the transcriptional activation of pro-inflammatory cytokines in colon cancer epithelial cells treated with sulindac sulfide. RESULTS We found that sulindac sulfide increased NF-κB signaling in HCT-15, HCT116, SW480 and SW620 cells, although the level of induction varied between cell lines. The drug caused a decrease in IκBα levels and an increase of p65(RelA) binding to the NF-κB DNA response element. It induced expression of IL-8, ICAM1 and A20, which was inhibited by the NF-κB inhibitor PDTC. Sulindac sulfide also induced activation of the AP-1 transcription factor, which co-operated with NF-κB in up-regulating IL-8. Up-regulation of NF-κB genes was most prominent in conditions where only a subset of cells was undergoing apoptosis. In TNFα stimulated conditions the drug treatment inhibited phosphorylation on IκBα (Ser 32) which is consistent with previous studies and indicates that sulindac sulfide can inhibit TNFα-induced NF-κB activation. Sulindac-induced upregulation of NF-κB target genes occurred early in the proximal colon of mice given a diet containing sulindac for one week. CONCLUSIONS This study shows for the first time that sulindac sulfide can induce pro-inflammatory NF-κB and AP-1 signaling as well as apoptosis in the same experimental conditions. Therefore, these results provide insights into the effect of sulindac on pro-inflammatory signaling pathways, as well as contribute to a better understanding of the mechanism of sulindac-induced gastrointestinal side effects.
Collapse
|
27
|
Stolfi C, De Simone V, Pallone F, Monteleone G. Mechanisms of action of non-steroidal anti-inflammatory drugs (NSAIDs) and mesalazine in the chemoprevention of colorectal cancer. Int J Mol Sci 2013; 14:17972-85. [PMID: 24005861 PMCID: PMC3794763 DOI: 10.3390/ijms140917972] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 08/19/2013] [Accepted: 08/23/2013] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant neoplasm worldwide. Although conclusive evidence is still lacking, epidemiologic studies suggest that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) has chemopreventive properties against CRC. Similarly, regular consumption of mesalazine, a drug structurally related to NSAIDs, seems to reduce the risk of CRC in patients with ulcerative colitis. These observations are supported by a large body of experimental data showing the ability of such drugs to inhibit multiple pathways that sustain colon carcinogenesis. This review summarizes the current information on the molecular mechanisms by which NSAIDs and mesalazine could interfere with CRC cell growth and survival.
Collapse
Affiliation(s)
- Carmine Stolfi
- Authors to whom correspondence should be addressed; E-Mails: (C.S.); (G.M.); Tel.: +39-06-7259-6158 (C.S. & G.M.); Fax: +39-06-7259-6391 (C.S. & G.M.)
| | | | | | - Giovanni Monteleone
- Authors to whom correspondence should be addressed; E-Mails: (C.S.); (G.M.); Tel.: +39-06-7259-6158 (C.S. & G.M.); Fax: +39-06-7259-6391 (C.S. & G.M.)
| |
Collapse
|
28
|
Stolfi C, De Simone V, Pallone F, Monteleone G. Mechanisms of action of non-steroidal anti-inflammatory drugs (NSAIDs) and mesalazine in the chemoprevention of colorectal cancer. Int J Mol Sci 2013. [PMID: 24005861 DOI: 10.3390/jims140917972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant neoplasm worldwide. Although conclusive evidence is still lacking, epidemiologic studies suggest that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) has chemopreventive properties against CRC. Similarly, regular consumption of mesalazine, a drug structurally related to NSAIDs, seems to reduce the risk of CRC in patients with ulcerative colitis. These observations are supported by a large body of experimental data showing the ability of such drugs to inhibit multiple pathways that sustain colon carcinogenesis. This review summarizes the current information on the molecular mechanisms by which NSAIDs and mesalazine could interfere with CRC cell growth and survival.
Collapse
Affiliation(s)
- Carmine Stolfi
- Department of Systems Medicine, University of Tor Vergata, Via Montpellier 1, Rome 00133, Italy.
| | | | | | | |
Collapse
|
29
|
Pickard AJ, Bierbach U. The cell's nucleolus: an emerging target for chemotherapeutic intervention. ChemMedChem 2013; 8:1441-9. [PMID: 23881648 PMCID: PMC3893319 DOI: 10.1002/cmdc.201300262] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Indexed: 01/01/2023]
Abstract
The transient nucleolus plays a central role in the up-regulated synthesis of ribosomal RNA (rRNA) to sustain ribosome biogenesis, a hallmark of aberrant cell growth. This function, in conjunction with its unique pathohistological features in malignant cells and its ability to mediate apoptosis, renders this sub-nuclear structure a potential target for chemotherapeutic agents. In this Minireview, structurally and functionally diverse small molecules are discussed that have been reported to either interact with the nucleolus directly or perturb its function indirectly by acting on its dynamic components. These molecules include all major classes of nucleic-acid-targeted agents, antimetabolites, kinase inhibitors, anti-inflammatory drugs, natural product antibiotics, oligopeptides, as well as nanoparticles. Together, these molecules are invaluable probes of structure and function of the nucleolus. They also provide a unique opportunity to develop novel strategies for more selective and therefore better-tolerated chemotherapeutic intervention. In this regard, inhibition of RNA polymerase-I-mediated rRNA synthesis appears to be a promising mechanism for killing cancer cells. The recent development of molecules targeted at G-quadruplex-forming rRNA gene sequences, which are currently undergoing clinical trials, seems to attest to the success of this approach.
Collapse
Affiliation(s)
- Amanda J. Pickard
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109 (USA)
| | - Ulrich Bierbach
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109 (USA)
| |
Collapse
|
30
|
Howe LR, Subbaramaiah K, Hudis CA, Dannenberg AJ. Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer Res 2013; 19:6074-83. [PMID: 23958744 DOI: 10.1158/1078-0432.ccr-12-2603] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The increasing rate of obesity worldwide is predicted to be associated with a surge in diseases. Notably, obesity has been linked to approximately 20% of cancer cases in the United States; obesity is associated with both increased risk and worse outcomes after diagnosis. Altered levels of circulating factors are strongly implicated, including insulin, insulin-like growth factor 1, leptin, adiponectin, and interleukin-6 (IL-6). In addition, increasing attention has focused on the consequences of local adipose inflammation. Inflammatory foci characterized by crown-like structures consisting of dead adipocytes encircled by macrophages occur in white adipose depots, including the breast tissue, of most overweight and obese women. Saturated fatty acids, released as a consequence of obesity-associated lipolysis, induce macrophage activation via Toll-like receptor 4, thereby stimulating NF-κB signaling. This, in turn, activates transcription of proinflammatory genes including COX-2, IL-6, IL-1β, and TNFα. Elevated levels of proinflammatory mediators cause both local and systemic effects. Of particular relevance with regard to breast cancer is increased transcription of the CYP19 gene encoding aromatase, the rate-limiting enzyme for estrogen synthesis. Notably, this obesity-inflammation-aromatase axis provides a plausible explanation for increased rates of postmenopausal, hormone receptor-positive breast cancer associated with obesity and hence may offer targets for interventions to attenuate risk or improve prognosis. Potential approaches include weight reduction, exercise, and suppression of obesity-driven signaling pathways using pharmaceutical or dietary agents. A key future goal is to identify biomarkers that accurately report adipose inflammation, both for identification of at-risk individuals and to assess the efficacy of interventions. Clin Cancer Res; 19(22); 6074-83. ©2013 AACR.
Collapse
Affiliation(s)
- Louise R Howe
- Authors' Affiliations: Departments of Cell & Developmental Biology and Medicine, Weill Cornell Medical College; and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | | | | |
Collapse
|
31
|
Wu WK, Wang XJ, Cheng AS, Luo MX, Ng SS, To KF, Chan FK, Cho CH, Sung JJ, Yu J. Dysregulation and crosstalk of cellular signaling pathways in colon carcinogenesis. Crit Rev Oncol Hematol 2013; 86:251-77. [PMID: 23287077 DOI: 10.1016/j.critrevonc.2012.11.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 11/07/2012] [Accepted: 11/27/2012] [Indexed: 02/06/2023] Open
|
32
|
Silvestri I, Cattarino S, Aglianò A, Nicolazzo C, Scarpa S, Salciccia S, Frati L, Gentile V, Sciarra A. Effect of Serenoa repens (Permixon®) on the expression of inflammation-related genes: analysis in primary cell cultures of human prostate carcinoma. JOURNAL OF INFLAMMATION-LONDON 2013; 10:11. [PMID: 23497174 PMCID: PMC3653817 DOI: 10.1186/1476-9255-10-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/22/2013] [Indexed: 11/10/2022]
Abstract
Background To analyze the expression at basal level of inflammation-related cytokines and chemokines and the activation status of the NF-κB pathway, together with the proliferation and apoptosis indexes in two widely used in vitro tumor models, the androgen-dependent human Prostate Cancer (PC) cell line LNCaP and the androgen-independent PC3 , and in primary cultures of human PC cells. To assess in these models and primary cultures, the effects of Serenoa repens (LSESr, Permixon®) on proliferation/apoptosis ratio, inflammation-related genes expression and NF-κB pathway activation. Methods The expression of IL-6, CCL-5, CCL-2, COX-1, COX-2, iNOS inflammation-related genes has been evaluated at the mRNA level in two in vitro human PC models (LNCaP and PC3 cell lines) and in 40 independent human prostatic primary cultures obtained from PC patients undergoing radical prostatectomy. Tissue fragments were collected from both PC lesions and normal hyperplastic tissue counterparts for each case. All cultures were treated with two different amounts of Permixon® (44 and 88 μg/ml) for different time points (16, 24, 48 and 72 hours), depending on the cell type and the assay; the expression of inflammation-related genes, cell growth (proliferation/apoptosis ratio) and NF-κB activation has been analyzed in treated and untreated cells by means of semi-quantitative RNA-PCR, cell proliferation and immunofluorescence respectively. Results We detected a significant reduction (p <0.001) in PC and normal cells proliferation due to Permixon ® treatment. This result was related to an increase of the apoptotic activity showed by an increase in the number of anti-caspase-3 fluorescent cells. Almost all the inflammation-related genes (IL-6, CCL-5, CCL-2, COX-2 and iNOS) were expressed at the basal level in in vitro cultured cells and primary cultures and down-regulated by Permixon® treatment. This treatment interfered with NF-kB activation, detecting by the translocation of more than 30% of NF-κB p65 subunit to the nucleus. Conclusions The present study confirms the expression of inflammatory pattern in PC. We showed the effect of Permixon® on down-regulation of inflammatory-related genes in cell lines and in primary cultures. The inhibitory effect of Permixon® on cell growth could be partly associated to the down-regulation of inflammatory-related genes and to the activation of NF-κB pathway in prostate tissue.
Collapse
Affiliation(s)
- Ida Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - AnnaMaria Aglianò
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Nicolazzo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Susanna Scarpa
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Luigi Frati
- Department of Experimental Medicine and Pathology, Sapienza University of Rome, Rome, Italy
| | | | - Alessandro Sciarra
- Department of Urology, Sapienza University of Rome, Rome, Italy ; Prostate Unit - Department Urology, University Sapienza, Viale Policlinico 155, 00161, Rome, Italy
| |
Collapse
|
33
|
The non-steroidal anti-inflammatory drug indomethacin activates the eIF2α kinase PKR, causing a translational block in human colorectal cancer cells. Biochem J 2012; 443:379-86. [DOI: 10.1042/bj20111236] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The NSAID (non-steroidal anti-inflammatory drug) indomethacin, a cyclo-oxygenase-1 and -2 inhibitor with anti-inflammatory and analgesic properties, is known to possess anticancer activity against CRC (colorectal cancer) and other malignancies in humans; however, the mechanism underlying the anticancer action remains elusive. In the present study we show that indomethacin selectively activates the dsRNA (double-stranded RNA)-dependent protein kinase PKR in a cyclo-oxygenase-independent manner, causing rapid phosphorylation of eIF2α (the α-subunit of eukaryotic translation initiation factor 2) and inhibiting protein synthesis in colorectal carcinoma and other types of cancer cells. The PKR-mediated translational block was followed by inhibition of CRC cell proliferation and apoptosis induction. Indomethacin did not affect the activity of the eIF2α kinases PERK (PKR-like endoplasmic reticulum-resident kinase), GCN2 (general control non-derepressible-2) and HRI (haem-regulated inhibitor kinase), and induced eIF2α phosphorylation in PERK-knockout and GCN2-knockout cells, but not in PKR-knockout cells or in human PKR-silenced CRC cells, identifying PKR as a selective target for indomethacin-induced translational inhibition. The fact that indomethacin induced PKR activity in vitro, an effect reversed by the PKR inhibitor 2-aminopurine, suggests a direct effect of the drug in kinase activation. The results of the present study identify PKR as a novel target of indomethacin, suggesting new scenarios on the molecular mechanisms underlying the pleiotropic activity of this traditional NSAID.
Collapse
|
34
|
Abstract
Cellular senescence-inhibited gene (CSIG) protein, a nucleolar protein with a ribosomal L1 domain in its N-terminus, can exert non-ribosomal functions to regulate biological processes, such as cellular senescence. Here, we describe a previously unknown function for CSIG: promotion of apoptosis in response to ultraviolet (UV) irradiation-induced CSIG upregulation. We identified p33ING1 as a binding partner that interacts with CSIG. After UV irradiation, p33ING1 increases its protein expression, translocates into the nucleolus and binds CSIG. p33ING1 requires its nucleolar targeting sequence region to interact with CSIG and enhance CSIG protein stability, which is essential for activation of downstream effectors, Bcl-2-associated X protein, to promote apoptosis. Thus, our data imply that p33ING1–CSIG axis functions as a novel pro-apoptotic regulator in response to DNA damage.
Collapse
|
35
|
Khandelwal N, Simpson J, Taylor G, Rafique S, Whitehouse A, Hiscox J, Stark LA. Nucleolar NF-κB/RelA mediates apoptosis by causing cytoplasmic relocalization of nucleophosmin. Cell Death Differ 2011; 18:1889-903. [PMID: 21660047 PMCID: PMC3214916 DOI: 10.1038/cdd.2011.79] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/28/2011] [Accepted: 04/28/2011] [Indexed: 12/16/2022] Open
Abstract
In a number of contexts, and particularly in response to cellular stress, stimulation of the NF-kappaB (NF-κB) pathway promotes apoptosis. One mechanism underlying this pro-apoptotic activity is nucleolar sequestration of RelA, which is reported to cause cell death by repressing NF-κB-driven transcription. Here, we identify a novel and distinct nucleolar activity of RelA that induces apoptosis. We demonstrate, using a viral nucleolar localization signal (NoLS)-RelA fusion protein, that direct targeting of RelA to the nucleolus mediates apoptosis, independent of NF-κB transcriptional activity. We demonstrate a requirement for nucleophosmin (NPM, B23.1) in this apoptotic effect, and the apoptotic effect of stress-induced nucleolar RelA. We show by multiple approaches that nucleolar translocation of RelA is causally involved in the relocalization of NPM from the nucleolus to the cytoplasm and that RelA-induced cytoplasmic NPM mediates apoptosis by facilitating the mitochondrial accumulation of BAX. These data uncover a novel stress-response pathway and mechanism by which RelA promotes apoptosis, independent of its effects on NF-κB transcriptional activity. These findings are relevant to the design of novel anticancer agents that target RelA to this compartment.
Collapse
Affiliation(s)
- N Khandelwal
- University of Edinburgh Cancer Research Centre and MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, Scotland EH4 2XU, UK
| | - J Simpson
- University of Edinburgh Cancer Research Centre and MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, Scotland EH4 2XU, UK
| | - G Taylor
- University of Edinburgh Cancer Research Centre and MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, Scotland EH4 2XU, UK
| | - S Rafique
- University of Edinburgh Cancer Research Centre and MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, Scotland EH4 2XU, UK
| | - A Whitehouse
- Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, Institute for Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - J Hiscox
- Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, Institute for Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - L A Stark
- University of Edinburgh Cancer Research Centre and MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, Scotland EH4 2XU, UK
| |
Collapse
|
36
|
Schrör K. Pharmacology and cellular/molecular mechanisms of action of aspirin and non-aspirin NSAIDs in colorectal cancer. Best Pract Res Clin Gastroenterol 2011; 25:473-84. [PMID: 22122764 DOI: 10.1016/j.bpg.2011.10.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/12/2011] [Accepted: 10/27/2011] [Indexed: 01/31/2023]
Abstract
Colorectal cancer (CRC) and colorectal adenomas have in common a dysfunctional adenomatous polyposis coli suppressor gene (APC). This allows for activation of the oncogenic Wnt/β-catenin pathway, resulting in cytosolic accumulation of β-catenin, its translocation to the nucleus and action as a cofactor for stimulation of gene transcription. Pharmacological approaches of CRC-chemoprevention are focused to prevention of this β-catenin-mediated oncogenic signalling. Among upregulated genes in tumour tissue is COX-2 which synthesises large amounts of PGE(2). PGE(2) inhibits apoptosis, acts proinflammatory and immunosuppressive and stimulates tumour angiogenesis and proliferation. In addition, COX-2 causes oxidation (activation) of cocarcinogens. Aspirin and non-aspirin NSAIDs inhibit COX-2, subsequent PGE(2) formation and action by transcriptional and non-transcriptional mechanisms. These also include inhibition of generation of sphingosine-1-phosphate, an amplifier of these reactions and stimulation of NSAID-induced gene (NAG-1) which acts as an inhibitor. Aspirin additionally acetylates COX-2, resulting in generation of 'aspirin-triggered' lipoxins (ATL), a new class of anti-inflammatory/antitumour compounds. COX-1 inhibition might also contribute to antitumour effects of aspirin, for example at low-dose aspirin. Experimental evidence suggests additional COX independent actions of aspirin and non-aspirin NSAIDs on oncogenic signalling. This includes modifications of transcription factors (NFκB), induction of apoptosis and DNA stabilization. In comparison to non-aspirin NSAIDs (sulindac, indomethacin) and coxibs (celecoxib), aspirin has the advantage of concomitant antiplatelet effects while NSAIDs rather have a thrombogenic potential. Though these actions of aspirin have to be balanced against an increased bleeding tendency, aspirin is currently the most attractive candidate for clinical CRC chemoprevention. Open questions, such as dose, (minimum) duration of treatment and the individual risk/benefit ratio are subjects of prospective randomized trials which are underway.
Collapse
Affiliation(s)
- Karsten Schrör
- Institut für Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universität Düsseldorf, Universitätsklinikum, Moorenstraße 5, Düsseldorf, Germany.
| |
Collapse
|
37
|
Stępnik M, Ferlińska M, Smok-Pieniążek A, Gradecka-Meesters D, Arkusz J, Stańczyk M. Sulindac and its metabolites: Sulindac sulfide and sulindac sulfone enhance cytotoxic effects of arsenic trioxide on leukemic cell lines. Toxicol In Vitro 2011; 25:1075-84. [DOI: 10.1016/j.tiv.2011.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 03/10/2011] [Accepted: 04/07/2011] [Indexed: 12/21/2022]
|
38
|
Brady RRW, Loveridge CJ, Dunlop MG, Stark LA. c-Src dependency of NSAID-induced effects on NF-κB-mediated apoptosis in colorectal cancer cells. Carcinogenesis 2011; 32:1069-77. [PMID: 21551129 DOI: 10.1093/carcin/bgr077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Long-term aspirin or related non-steroidal anti-inflammatory drugs (NSAIDs) ingestion can protect against colorectal cancer (CRC). NSAIDs have a pro-apoptotic activity and we have shown that stimulation of the nuclear factor-kappaB (NF-κB) pathway is a key component of this pro-apoptotic effect. However, the upstream pathways have yet to be fully elucidated. Here, we demonstrate that aspirin activates the c-Src tyrosine kinase pathway in CRC cells. We show that c-Src activation occurs in a time- and dose-dependent manner, preceding aspirin-mediated degradation of IκBα, nuclear/nucleolar translocation of NF-κB/RelA and induction of apoptosis. Furthermore, inhibition of c-Src activity, by chemical inhibition or expression of a kinase dead form of the protein abrogates aspirin-mediated degradation of IκBα, nuclear translocation of RelA and apoptosis, suggesting a causal link. Expression of constitutively active c-Src mimics aspirin-induced stimulation of the NF-κB pathway. The NSAIDs sulindac, sulindac sulphone and indomethacin all similarly activate a c-Src-dependent NF-κB and apoptotic response. These data provide compelling evidence that c-Src is an upstream mediator of aspirin/NSAID effects on NF-κB signalling and apoptosis in CRC cells and have relevance to the development of future chemotherapeutic/chemopreventative agents.
Collapse
Affiliation(s)
- Richard R W Brady
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| | | | | | | |
Collapse
|
39
|
Greenspan EJ, Madigan JP, Boardman LA, Rosenberg DW. Ibuprofen inhibits activation of nuclear {beta}-catenin in human colon adenomas and induces the phosphorylation of GSK-3{beta}. Cancer Prev Res (Phila) 2011; 4:161-71. [PMID: 21205744 PMCID: PMC3078769 DOI: 10.1158/1940-6207.capr-10-0021] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nonselective cyclooxygenase (COX) inhibitors target many of the same cancer-associated molecular pathways as COX-2-specific inhibitors. Although these nonsteroidal anti-inflammatory drugs (NSAIDs) are often associated with gastrointestinal toxicity, there is renewed interest in their use as colorectal cancer (CRC) chemopreventive agents due to the adverse side effects associated with long-term use of selective COX-2 inhibitors. In this study, we investigated the effects of long-term use (up to 25 years) of NSAIDs (ibuprofen or aspirin) on adenoma pathology and β-catenin-mediated signaling in sporadic human colon adenomas. Although NSAID use did not impact overall adenoma size or degree of dysplasia, it did cause a significant inhibition of nuclear β-catenin localization, which correlated with suppression of cyclin D1 expression. To further elucidate the effect of these agents in regulating β-catenin, we treated SW480 colon cancer cells with a panel of NSAIDs and determined their effects on β-catenin levels and cellular localization. In agreement with our in vivo results, both S-ibuprofen and aspirin were found to decrease total levels of β-catenin while increasing its phosphorylation. In addition, S-ibuprofen induced both degradation of IκBα and nuclear localization of NF-κB. Despite its nuclear localization, however, the activation of the NF-κB target genes, Bcl-2, survivin, and cyclin D1, was suppressed. This reduction in NF-κB transcriptional activity may be due to increased phosphorylation of GSK-3β following S-ibuprofen treatment. These data suggest that ibuprofen can effectively target both the Wnt/β-catenin and NF-κB pathways, and potentially uncovers a novel mechanism through which NSAIDS may exert their chemopreventive efficacy.
Collapse
Affiliation(s)
- Emily J. Greenspan
- Center for Molecular Medicine, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
| | - James P. Madigan
- Center for Molecular Medicine, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
| | - Lisa A. Boardman
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN
| | - Daniel W. Rosenberg
- Center for Molecular Medicine, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
40
|
Arlt A, Müerköster SS, Schäfer H. Targeting apoptosis pathways in pancreatic cancer. Cancer Lett 2010; 332:346-58. [PMID: 21078544 DOI: 10.1016/j.canlet.2010.10.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 10/06/2010] [Accepted: 10/20/2010] [Indexed: 01/07/2023]
Abstract
Pancreatic cancer - here in particular pancreatic ductal adenocarcinoma (PDAC) - is still a highly therapy refractory disease. Amongst the mechanisms by which PDAC cells could escape any non-surgical therapy, anti-apoptotic protection seems to be the most relevant one. PDAC cells have acquired resistance to apoptotic stimuli such as death ligands (FasL, TRAIL) or anti-cancer drugs (gemcitabine) by a great number of molecular alterations either disrupting an apoptosis inducing signal or counteracting the execution of apoptosis. Thus, PDAC cells exhibit alterations in the EGFR/MAPK/Ras/raf1-, PI3K/Akt-, TRAIL/TRAF2-, or IKK/NF-κB pathway accompanied by deregulations in the expression of apoptosis regulators such as cIAP, Bcl2, XIAP or survivin. Along with protection against apoptosis, PDAC cells also overexpress histone deacetylases (HDACs) giving rise to epigenetic patterns of chemoresistance and to acetylation of other regulatory proteins, as well. With respect to the multitude of anti-apoptotic pathways, a great number of molecular targets might be of high potential in novel therapy strategies. Thus, natural compounds as well as novel synthetic drugs are considered to be used in single or combined therapy of PDAC. A number of proteasome and HDAC inhibitors or selective inhibitors of IKK, EGFR, Akt and mTOR have been widely explored in preclinical settings and clinical studies. Even though these early studies encouraged an application in a clinical setting, most of the trials have been rather disappointing yet. Thus, new molecular targets and novel concepts of combination therapies need to get access into clinical trials - either in neoadjuvant/adjuvant or in palliative treatments.
Collapse
Affiliation(s)
- Alexander Arlt
- Laboratory of Molecular Gastroenterology and Hepatology, Dept. of Internal Medicine 1, UKSH-Campus Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany
| | | | | |
Collapse
|
41
|
Ettarh R, Cullen A, Calamai A. NSAIDs and Cell Proliferation in Colorectal Cancer. Pharmaceuticals (Basel) 2010; 3:2007-2021. [PMID: 27713339 PMCID: PMC4036654 DOI: 10.3390/ph3072007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/17/2010] [Accepted: 06/22/2010] [Indexed: 12/21/2022] Open
Abstract
Colon cancer is common worldwide and accounts for significant morbidity and mortality in patients. Fortunately, epidemiological studies have demonstrated that continuous therapy with NSAIDs offers real promise of chemoprevention and adjunct therapy for colon cancer patients. Tumour growth is the result of complex regulation that determines the balance between cell proliferation and cell death. How NSAIDs affect this balance is important for understanding and improving treatment strategies and drug effectiveness. NSAIDs inhibit proliferation and impair the growth of colon cancer cell lines when tested in culture in vitro and many NSAIDs also prevent tumorigenesis and reduce tumour growth in animal models and in patients, but the relationship to inhibition of tumour cell proliferation is less convincing, principally due to gaps in the available data. High concentrations of NSAIDs are required in vitro to achieve cancer cell inhibition and growth retardation at varying time-points following treatment. However, the results from studies with colon cancer cell xenografts are promising and, together with better comparative data on anti-proliferative NSAID concentrations and doses (for in vitro and in vivo administration), could provide more information to improve our understanding of the relationships between these agents, dose and dosing regimen, and cellular environment.
Collapse
Affiliation(s)
- Raj Ettarh
- School of Medicine & Medical Science, University College Dublin, C206 Health Sciences Building, Belfield, Dublin 4, Ireland.
| | - Anthony Cullen
- School of Medicine & Medical Science, University College Dublin, C206 Health Sciences Building, Belfield, Dublin 4, Ireland.
| | - Alvise Calamai
- School of Medicine & Medical Science, University College Dublin, C206 Health Sciences Building, Belfield, Dublin 4, Ireland.
| |
Collapse
|
42
|
Wei L, Ding D, Salvi R. Salicylate-induced degeneration of cochlea spiral ganglion neurons-apoptosis signaling. Neuroscience 2010; 168:288-99. [PMID: 20298761 PMCID: PMC2873118 DOI: 10.1016/j.neuroscience.2010.03.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 03/06/2010] [Accepted: 03/08/2010] [Indexed: 12/23/2022]
Abstract
Aspirin, whose active ingredient is sodium salicylate, is the most widely used drug worldwide, but it is not recommended for children because it may cause Reye's syndrome. High doses of salicylate also induce temporary hearing loss and tinnitus; while these disorders are believed to disappear when treatment is discontinued some data suggest that prolonged treatment may be neurotoxic. To investigate its ototoxicity, immature, postnatal day 3 rat cochlear organotypic cultures were treated with salicylate. Salicylate did not damage the sensory hair cells, but instead damaged the spiral ganglion neurons (SGN) and their peripheral fibers in a dose-dependent manner. The cross-sectional area of SGN decreased from 205 microm(2) in controls to 143, 116, and 91 microm(2) in cultures treated with 1, 3, or 5 mM salicylate, respectively. Morphological changes and caspase upregulation were indicative of caspase-mediated apoptosis. A quantitative RT-PCR apoptosis array identified a subset of genes up- or down regulated by salicylate. Eight genes showed a biologically relevant change (P<0.05, > or =2 fold change) after 3 h treatment with salicylate; seven genes (Tp53, Birc3, Tnfrsf5, Casp7, Nfkb1, Fas, Lta, Tnfsf10) were upregulated and one gene (Pycard) was downregulated. After 6 h treatment, only one gene (Nol3) was upregulated and two genes were downregulated (Cideb and Lhx4) while after 12 h treatment, two genes (Il10, Gadd45a) were upregulated and 4 (Prok2, Card10, Ltbr, Dapk1) were downregulated. High doses of salicylate in a physiologically relevant range can induce caspase-mediated cell death in immature SGN; changes in the expression of apoptotic genes particularly among members of the tumor necrosis factor (TNF) family appear to play an important role in the degeneration.
Collapse
Affiliation(s)
- L Wei
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
43
|
Greenhough A, Wallam CA, Hicks DJ, Moorghen M, Williams AC, Paraskeva C. The proapoptotic BH3-only protein Bim is downregulated in a subset of colorectal cancers and is repressed by antiapoptotic COX-2/PGE(2) signalling in colorectal adenoma cells. Oncogene 2010; 29:3398-410. [PMID: 20348947 PMCID: PMC2883743 DOI: 10.1038/onc.2010.94] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 12/15/2022]
Abstract
Overexpression of cyclooxygenase-2 (COX-2) and elevated levels of its enzymatic product prostaglandin E2 (PGE(2)) occur in the majority of colorectal cancers and have important roles in colorectal tumorigenesis. However, despite the established prosurvival role of PGE(2) in cancer, the underlying mechanisms are not fully understood. Here, we have shown that PGE(2) suppresses apoptosis via repression of the proapoptotic BH3-only protein Bim in human colorectal adenoma cells. Repression of Bim expression was dependent upon PGE(2)-mediated activation of the Raf-MEK-ERK1/2 pathway, which promoted Bim phosphorylation and proteasomal degradation. Reduction of Bim expression using RNA interference reduced spontaneous apoptosis in adenoma cells and abrogated PGE(2)-dependent apoptosis suppression. Treatment of COX-2-expressing colorectal carcinoma cells with COX-2-selective NSAIDs-induced Bim expression, suggesting that Bim repression via PGE(2) signalling may be opposed by COX-2 inhibition. Examination of Bim expression in two established in vitro models of the adenoma-carcinoma sequence revealed that downregulation of Bim expression was associated with tumour progression towards an anchorage-independent phenotype. Finally, immunohistochemical analyses revealed that Bim expression is markedly reduced in approximately 40% of human colorectal carcinomas in vivo. These observations highlight the COX-2/PGE(2) pathway as an important negative regulator of Bim expression in colorectal tumours and suggest that Bim repression may be an important step during colorectal cancer tumorigenesis.
Collapse
|
44
|
Martin JE, Le Leu RK, Hu Y, Young GP. R-flurbiprofen suppresses distal nonmucin-producing colorectal tumors in azoxymethane-treated rats, without suppressing eicosanoid production. Am J Physiol Gastrointest Liver Physiol 2010; 298:G860-4. [PMID: 20338924 DOI: 10.1152/ajpgi.00330.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Toxicity and gastrointestinal side effects limits the use of nonsteroidal anti-inflammatory drugs (NSAIDs) as agents to prevent colorectal cancer. These undesirable effects appear to be related to the inhibition of cyclooxygenase-associated pathways. Using the azoxymethane (AOM)-rat model of carcinogenesis, we aimed to test the potency of a low-toxicity R-flurbiprofen and whether NSAIDs have differing effects on regional tumor subtypes. Groups of 50 rats were gavaged 6 days a week with drug. After 1 and 2 wk on drug, rats were given intraperitoneal injection of AOM (15 mg/kg body wt). Groups were controls, sulindac (nonselective cyclooxygenase inhibitor) 5 and 20 mg/kg body wt per day, and R-flurbiprofen 30 mg/kg body wt per day. Tumor location, size, and histological subtype (either mucinous or nonmucinous) were recorded after 30 wk. The incidence of colon tumors was significantly reduced in the sulindac 20 mg (P < 0.001) and the R-flurbiprofen groups (P < 0.03) compared with the control group. The sulindac 20 mg and R-flurbiprofen groups also showed a reduced number of distal colon tumors (P < 0.03), whereas proximal tumors were not affected. Tumors only of the nonmucinous subtype were significantly reduced with the sulindac 20 mg and R-flurbiprofen groups (P < 0.001). Tumor size was not significantly different between all groups. Only the sulindac 20 mg group showed a reduced colonic prostaglandin E2 concentration. The sulindac groups showed a dose-dependant reduction in body weight gain (P < 0.001). In conclusion, R-flurbiprofen at a dose of 30 mg/kg body wt per day was well tolerated by the animals and, along with sulindac at 30 mg/day body wt, showed protection against the development of colon cancer in the rat-AOM model.
Collapse
Affiliation(s)
- Jonathan E Martin
- Flinders Ctr. for Cancer Prevention and Control, Flinders Univ., South Australia, 5042
| | | | | | | |
Collapse
|
45
|
Thoms HC, Loveridge CJ, Simpson J, Clipson A, Reinhardt K, Dunlop MG, Stark LA. Nucleolar targeting of RelA(p65) is regulated by COMMD1-dependent ubiquitination. Cancer Res 2010; 70:139-49. [PMID: 20048074 DOI: 10.1158/0008-5472.can-09-1397] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stimulation of the NF-kappaB pathway can have proapoptotic or antiapoptotic consequences, and one mechanism that determines the outcome is the nuclear distribution of RelA. Certain stress stimuli induce nucleolar accumulation of RelA thereby mediating apoptosis, whereas others induce nucleoplasmic accumulation and inhibition of apoptosis. Here we investigated the mechanisms that regulate the nuclear distribution of RelA, specifically, the role of the ubiquitin/proteasome system. We found that stress-induced nucleolar translocation of RelA is preceded by ubiquitination of the protein. We also found that chemical proteasome inhibitors induce the ubiquitination and nucleolar translocation of RelA and that this is required for the apoptotic response to these agents. We show that the RelA nucleolar localization signal (amino acids 27-30) is a critical domain for ubiquitination of the protein but that the lysine residue within this motif is not a direct target. We show that RelA binds COMMD1, the rate-limiting component of the RelA ubiquitin ligase complex, in response to stress. Furthermore, we show that overexpression of COMMD1 promotes stress-mediated nucleolar targeting of RelA, whereas knockdown of COMMD1 blocks this effect, causing RelA to remain in the nucleoplasm. These data identify a new role for COMMD1 in regulating the nuclear/nucleolar distribution of RelA and suggest that ubiquitination acts as a signal for transport of RelA to the nucleolus. These findings have relevance to the design of chemopreventative/anticancer agents that act by targeting RelA to the nucleolar compartment.
Collapse
Affiliation(s)
- Hazel C Thoms
- Colon Cancer Genetics Group, University of Edinburgh Cancer Research Centre and MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
46
|
Rayburn ER, Ezell SJ, Zhang R. Anti-Inflammatory Agents for Cancer Therapy. MOLECULAR AND CELLULAR PHARMACOLOGY 2009; 1:29-43. [PMID: 20333321 PMCID: PMC2843097 DOI: 10.4255/mcpharmacol.09.05] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation is closely linked to cancer, and many anti-cancer agents are also used to treat inflammatory diseases, such as rheumatoid arthritis. Moreover, chronic inflammation increases the risk for various cancers, indicating that eliminating inflammation may represent a valid strategy for cancer prevention and therapy. This article explores the relationship between inflammation and cancer with an emphasis on epidemiological evidence, summarizes the current use of anti-inflammatory agents for cancer prevention and therapy, and describes the mechanisms underlying the anti-cancer effects of anti-inflammatory agents. Since monotherapy is generally insufficient for treating cancer, the combined use of anti-inflammatory agents and conventional cancer therapy is also a focal point in discussion. In addition, we also briefly describe future directions that should be explored for anti-cancer anti-inflammatory agents.
Collapse
Affiliation(s)
- Elizabeth R. Rayburn
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, Alabama
- Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scharri J. Ezell
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ruiwen Zhang
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, Alabama
- Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|