1
|
Beers JL, Hebert MF, Wang J. Transporters and drug secretion into human breast milk. Expert Opin Drug Metab Toxicol 2025; 21:409-428. [PMID: 39893560 PMCID: PMC12002141 DOI: 10.1080/17425255.2025.2461479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/09/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Medication use is highly prevalent in breastfeeding persons, posing potential risks for drug exposure to nursing infants. Transporters in the lactating mammary gland carry pharmacological and toxicological significance, as they can mediate the active transfer of drugs and nutrients into breastmilk. AREAS COVERED In this narrative review, we searched and compiled current knowledge on the transport of drugs in the human mammary gland from literature indexed in PubMed (current as of 25 October 2024), and clinical evidence demonstrating active transport of drugs into milk is provided. In vitro and in vivo models of the mammary gland are outlined in brief and known drug transporters at the blood-milk barrier and their potential relevance to drug concentrations in milk are described in detail. EXPERT OPINION Although clinical data show that membrane transporters mediate the transfer of multiple drugs into breast milk, our ability to predict milk concentrations for these drugs is limited. Improving our understanding of the transporter biology and pharmacology in the mammary gland is crucial for developing models to predict drug concentrations in human milk, which will support clinicians and lactating individuals in making rational decisions to balance the benefits of breastfeeding and the risks of drug exposure to infants.
Collapse
Affiliation(s)
- Jessica L. Beers
- Department of Pharmacy, University of Washington, Seattle, Washington, 98195 USA
- Department of Pharmaceutics, University of Washington, Seattle, Washington, 98195 USA
| | - Mary F. Hebert
- Department of Pharmacy, University of Washington, Seattle, Washington, 98195 USA
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, 98195 USA
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington, 98195 USA
| |
Collapse
|
2
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Human Cytochrome P450 Cancer-Related Metabolic Activities and Gene Polymorphisms: A Review. Cells 2024; 13:1958. [PMID: 39682707 PMCID: PMC11639897 DOI: 10.3390/cells13231958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. FINDINGS In our review article, we discuss recent data evidencing that the same CYP isoform can be involved in both bioactivation and detoxification reactions and convert the same substrate to different products. Conversely, different CYP isoforms can convert the same substrate, xenobiotic or procarcinogen, into either a more or less toxic product. These phenomena depend on the type of catalyzed reaction, substrate, tissue type, and biological species. Since the CYPs involved in bioactivation (CYP3A4, CYP1A1, CYP2D6, and CYP2C8) are primarily expressed in the liver, their metabolites can induce hepatotoxicity and hepatocarcinogenesis. Additionally, we discuss the role of drugs as CYP substrates, inducers, and inhibitors as well as the implication of nuclear receptors, efflux transporters, and drug-drug interactions in anticancer drug resistance. We highlight the molecular mechanisms underlying the development of hormone-sensitive cancers, including breast, ovarian, endometrial, and prostate cancers. Key players in these mechanisms are the 2,3- and 3,4-catechols of estrogens, which are formed by CYP1A1, CYP1A2, and CYP1B1. The catechols can also produce quinones, leading to the formation of toxic protein and DNA adducts that contribute to cancer progression. However, 2-hydroxy- and 4-hydroxy-estrogens and their O-methylated derivatives along with conjugated metabolites play cancer-protective roles. CYP17A1 and CYP11A1, which are involved in the biosynthesis of testosterone precursors, contribute to prostate cancer, whereas conversion of testosterone to 5α-dihydrotestosterone as well as sustained activation and mutation of the androgen receptor are implicated in metastatic castration-resistant prostate cancer (CRPC). CYP enzymatic activities are influenced by CYP gene polymorphisms, although a significant portion of them have no effects. However, CYP polymorphisms can determine poor, intermediate, rapid, and ultrarapid metabolizer genotypes, which can affect cancer and drug susceptibility. Despite limited statistically significant data, associations between CYP polymorphisms and cancer risk, tumor size, and metastatic status among various populations have been demonstrated. CONCLUSIONS The metabolic diversity and dual character of biological effects of CYPs underlie their implications in, preliminarily, hormone-sensitive cancers. Variations in CYP activities and CYP gene polymorphisms are implicated in the interindividual variability in cancer and drug susceptibility. The development of CYP inhibitors provides options for personalized anticancer therapy.
Collapse
Affiliation(s)
| | - Dmitry V. Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Alexander A. Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | | |
Collapse
|
3
|
Bebelman MP, Belicova L, Gralinska E, Jumel T, Lahree A, Sommer S, Shevchenko A, Zatsepin T, Kalaidzidis Y, Vingron M, Zerial M. Hepatocyte differentiation requires anisotropic expansion of bile canaliculi. Development 2024; 151:dev202777. [PMID: 39373104 DOI: 10.1242/dev.202777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
During liver development, bipotential progenitor cells called hepatoblasts differentiate into hepatocytes or cholangiocytes. Hepatocyte differentiation is uniquely associated with multi-axial polarity, enabling the anisotropic expansion of apical lumina between adjacent cells and formation of a three-dimensional network of bile canaliculi. Cholangiocytes, the cells forming the bile ducts, exhibit the vectorial polarity characteristic of epithelial cells. Whether cell polarization feeds back on the gene regulatory pathways governing hepatoblast differentiation is unknown. Here, we used primary mouse hepatoblasts to investigate the contribution of anisotropic apical expansion to hepatocyte differentiation. Silencing of the small GTPase Rab35 caused isotropic lumen expansion and formation of multicellular cysts with the vectorial polarity of cholangiocytes. Gene expression profiling revealed that these cells express reduced levels of hepatocyte markers and upregulate genes associated with cholangiocyte identity. Timecourse RNA sequencing demonstrated that loss of lumen anisotropy precedes these transcriptional changes. Independent alterations in apical lumen morphology induced either by modulation of the subapical actomyosin cortex or by increased intraluminal pressure caused similar transcriptional changes. These findings suggest that cell polarity and lumen morphogenesis feed back to hepatoblast-to-hepatocyte differentiation.
Collapse
Affiliation(s)
- Maarten P Bebelman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Lenka Belicova
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Elzbieta Gralinska
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Tobias Jumel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Aparajita Lahree
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Sarah Sommer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Timofei Zatsepin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
4
|
Monrose M, Holota H, Martinez G, Damon-Soubeyrand C, Thirouard L, Martinot E, Battistelli E, de Haze A, Bravard S, Tamisier C, Caira F, Coutton C, Barbotin AL, Boursier A, Lakhal L, Beaudoin C, Volle DH. Constitutive Androstane Receptor Regulates Germ Cell Homeostasis, Sperm Quality, and Male Fertility via Akt-Foxo1 Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402082. [PMID: 39318179 DOI: 10.1002/advs.202402082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Indexed: 09/26/2024]
Abstract
Male sexual function can be disrupted by exposure to exogenous compounds that cause testicular physiological alterations. The constitutive androstane receptor (Car) is a receptor for both endobiotics and xenobiotics involved in detoxification. However, its role in male fertility, particularly in regard to the reprotoxic effects of environmental pollutants, remains unclear. This study aims to investigate the role of the Car signaling pathway in male fertility. In vivo, in vitro, and pharmacological approaches are utilized in wild-type and Car-deficient mouse models. The results indicate that Car inhibition impaired male fertility due to altered sperm quality, specifically histone retention, which is correlated with an increased percentage of dying offspring in utero. The data highlighted interactions among Car, Akt, Foxo1, and histone acetylation. This study demonstrates that Car is crucial in germ cell homeostasis and male fertility. Further research on the Car signaling pathway is necessary to reveal unidentified causes of altered fertility and understand the harmful impact of environmental molecules on male fertility and offspring health.
Collapse
Affiliation(s)
- Mélusine Monrose
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Hélène Holota
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Guillaume Martinez
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, F-38000, France
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble, F-38000, France
| | - Christelle Damon-Soubeyrand
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Plateform Anipath, Clermont-Ferrand, F-63001, France
| | - Laura Thirouard
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Emmanuelle Martinot
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Edwige Battistelli
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Angélique de Haze
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Stéphanie Bravard
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Plateform Anipath, Clermont-Ferrand, F-63001, France
| | - Christelle Tamisier
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Françoise Caira
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - Charles Coutton
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, F-38000, France
- Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble, F-38000, France
| | - Anne-Laure Barbotin
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, F-59000, France
- Inserm UMR-S 1172, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille, F-59000, France
| | - Angèle Boursier
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, F-59000, France
- Inserm UMR-S 1172, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille, F-59000, France
| | - Laila Lakhal
- INRAe UMR1331, ToxAlim, University of Toulouse, Toulouse, F-31027, France
| | - Claude Beaudoin
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| | - David H Volle
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, Clermont-Ferrand, F-63001, France
| |
Collapse
|
5
|
Murase W, Kubota A, Ikeda-Araki A, Terasaki M, Nakagawa K, Shizu R, Yoshinari K, Kojima H. Effects of perfluorooctanoic acid (PFOA) on gene expression profiles via nuclear receptors in HepaRG cells: Comparative study with in vitro transactivation assays. Toxicology 2023:153577. [PMID: 37302725 DOI: 10.1016/j.tox.2023.153577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA), a synthetic perfluorinated eight-carbon organic chemical, has been reported to induce hepatotoxicity, including increased liver weight, hepatocellular hypertrophy, necrosis, and increased peroxisome proliferation in rodents. Epidemiological studies have demonstrated associations between serum PFOA levels and various adverse effects. In this study, we investigated the gene expression profiles of human HepaRG cells exposed to 10 and 100 μM PFOA for 24h. Treatment with 10 and 100 μM PFOA significantly modulated the expression of 190 genes and 996 genes, respectively. In particular, genes upregulated or downregulated by 100µM PFOA included peroxisome proliferator-activated receptor (PPAR) signaling genes related to lipid metabolism, adipocyte differentiation, and gluconeogenesis. In addition, we identified the "Nuclear receptors-meta pathways" following the activation of other nuclear receptors: constitutive androstane receptor (CAR), pregnane X receptor (PXR) and farnesoid X receptor (FXR), and the transcription factor, nuclear factor E2-related factor 2 (Nrf2). The expression levels of some target genes (CYP4A11, CYP2B6, CYP3A4, CYP7A1, and GPX2) of these nuclear receptors and Nrf2 were confirmed using quantitative reverse transcription polymerase chain reaction. Next, we performed transactivation assays using COS-7 or HEK293 cells to investigate whether these signaling-pathways were activated by the direct effects of PFOA on human PPARα, CAR, PXR, FXR and Nrf2. PFOA activated PPARα in a concentration-dependent manner, but did not activate CAR, PXR, FXR, or Nrf2. Taken together, these results suggest that PFOA affects the hepatic transcriptomic responses of HepaRG cells through direct activation of PPARα and indirect activation of CAR, PXR FXR and Nrf2. Our finding indicates that PPARα activation found in the "Nuclear receptors-meta pathways" functions as a molecular initiating event for PFOA, and indirect activation of alternative nuclear receptors and Nrf2 also provide important molecular mechanisms in PFOA-induced human hepatotoxicity.
Collapse
Affiliation(s)
- Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuko Ikeda-Araki
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Koji Nakagawa
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Ryota Shizu
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kouichi Yoshinari
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| |
Collapse
|
6
|
Men S, Wang H. Phenobarbital in Nuclear Receptor Activation: An Update. Drug Metab Dispos 2023; 51:210-218. [PMID: 36351837 PMCID: PMC9900862 DOI: 10.1124/dmd.122.000859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022] Open
Abstract
Phenobarbital (PB) is a commonly prescribed anti-epileptic drug that can also benefit newborns from hyperbilirubinemia. Being the first drug demonstrating hepatic induction of cytochrome P450 (CYP), PB has since been broadly used as a model compound to study xenobiotic-induced drug metabolism and clearance. Mechanistically, PB-mediated CYP induction is linked to a number of nuclear receptors, such as the constitutive androstane receptor (CAR), pregnane X receptor (PXR), and estrogen receptor α, with CAR being the predominant regulator. Unlike prototypical agonistic ligands, PB-mediated activation of CAR does not involve direct binding with the receptor. Instead, dephosphorylation of threonine 38 in the DNA-binding domain of CAR was delineated as a key signaling event underlying PB-mediated indirect activation of CAR. Further studies revealed that such phosphorylation sites appear to be highly conserved among most human nuclear receptors. Interestingly, while PB is a pan-CAR activator in both animals and humans, PB activates human but not mouse PXR. The species-specific role of PB in gene regulation is a key determinant of its implication in xenobiotic metabolism, drug-drug interactions, energy homeostasis, and cell proliferation. In this review, we summarize the recent progress in our understanding of PB-provoked transactivation of nuclear receptors with a focus on CAR and PXR. SIGNIFICANCE STATEMENT: Extensive studies using PB as a research tool have significantly advanced our understanding of the molecular basis underlying nuclear receptor-mediated drug metabolism, drug-drug interactions, energy homeostasis, and cell proliferation. In particular, CAR has been established as a cell signaling-regulated nuclear receptor in addition to ligand-dependent functionality. This mini-review highlights the mechanisms by which PB transactivates CAR and PXR.
Collapse
Affiliation(s)
- Shuaiqian Men
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (S.M., H.W.)
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (S.M., H.W.)
| |
Collapse
|
7
|
Transcriptome Analysis of Protection by Dendrobium Nobile Alkaloids (DNLA) against Chronic Alcoholic Liver Injury in Mice. Biomedicines 2022; 10:biomedicines10112800. [PMID: 36359319 PMCID: PMC9687597 DOI: 10.3390/biomedicines10112800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Objective: To investigate the protective effects of Dendrobium nobile Lindl. alkaloids (DNLA) against chronic alcoholic liver injury. C57BL/6J mice were fed with the Lieber−DeCarli alcohol diet to induce chronic alcoholic liver injury. DNLA (20 mg/kg/day) was gavaged along with the alcohol diet for 28 days. Liver injury was evaluated by serum enzymes. Triglyceride levels, histopathology, and transcriptome changes were examined by RNA-Seq and qPCR. DNLA decreased serum triglyceride levels in mice receiving alcohol. Hepatocyte degeneration and steatosis were ameliorated by DNLA, as evidenced by H&E and Oil-red O staining. DNLA brought the alcohol-induced aberrant gene expression pattern towards normal. Alcohol induced 787 differentially expressed genes (padj < 0.01). DNLA induced 280 differentially expressed genes to a much less extent. Ingenuity pathway analysis showed that DNLA ameliorated alcohol-induced oxidative stress and xenobiotic metabolism disruption. qPCR verified that DNLA alleviated over-activation of Cyp2a4, Cyp2b10, and Abcc4; attenuated oxidative stress (Hmox1, Gstm3, Nupr1), reduced the expression of Nrf2 genes (Nqo1, Gclc, Vldlr); and rescued some metabolic genes (Insig1, Xbp1, Socs3, Slc10a2). In conclusion, DNLA was effective against alcohol-induced fatty liver disease, and the protection may be attributed to alleviated oxidative stress and restored metabolism homeostasis, probably through modulating nuclear receptor CAR-, PXR-, and Nrf2-mediated gene expression pathways.
Collapse
|
8
|
RNA-Seq Analysis of Protection against Chronic Alcohol Liver Injury by Rosa roxburghii Fruit Juice (Cili) in Mice. Nutrients 2022; 14:nu14091974. [PMID: 35565941 PMCID: PMC9104053 DOI: 10.3390/nu14091974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Rosa roxburghii Tratt. fruit juice (Cili) is used as a medicinal and edible resource in China due to its antioxidant and hypolipidemic potentials. The efficacy of Cili in protecting alcohol-induced liver injury and its underlying mechanism was investigated. C57BL/6J mice received a Lieber-DeCarli liquid diet containing alcohol to produce liver injury. After the mice were adapted gradually to 5% alcohol, Cili (4 mL and 8 mL/kg/day for 4 weeks) were gavaged for treatment. The serum enzyme activities, triglyceride levels, histopathology and Oil-red O staining were examined. The RNA-Seq and qPCR analyses were performed to determine the protection mechanisms. Cili decreased serum and liver triglyceride levels in mice receiving alcohol. Hepatocyte degeneration and steatosis were improved by Cili. The RNA-Seq analyses showed Cili brought the alcohol-induced aberrant gene pattern towards normal. The qPCR analysis verified that over-activation of CAR and PXR (Cyp2a4, Cyp2b10 and Abcc4) was attenuated by Cili. Cili alleviated overexpression of oxidative stress responsive genes (Hmox1, Gsta1, Gstm3, Nqo1, Gclc, Vldlr, and Cdkn1a), and rescued alcohol-downregulated metabolism genes (Angptl8, Slc10a2, Ces3b, Serpina12, C6, and Selenbp2). Overall, Cili was effective against chronic alcohol liver injury, and the mechanisms were associated with decreased oxidative stress, improved lipid metabolism through modulating nuclear receptor CAR-, PXR-and Nrf2-mediated pathways.
Collapse
|
9
|
Dutta M, Lim JJ, Cui JY. Pregnane X Receptor and the Gut-Liver Axis: A Recent Update. Drug Metab Dispos 2022; 50:478-491. [PMID: 34862253 PMCID: PMC11022899 DOI: 10.1124/dmd.121.000415] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/02/2021] [Indexed: 02/04/2023] Open
Abstract
It is well-known that the pregnane X receptor (PXR)/Nr1i2 is a critical xenobiotic-sensing nuclear receptor enriched in liver and intestine and is responsible for drug-drug interactions, due to its versatile ligand binding domain (LBD) and target genes involved in xenobiotic biotransformation. PXR can be modulated by various xenobiotics including pharmaceuticals, nutraceuticals, dietary factors, and environmental chemicals. Microbial metabolites such as certain secondary bile acids (BAs) and the tryptophan metabolite indole-3-propionic acid (IPA) are endogenous PXR activators. Gut microbiome is increasingly recognized as an important regulator for host xenobiotic biotransformation and intermediary metabolism. PXR regulates and is regulated by the gut-liver axis. This review summarizes recent research advancements leveraging pharmaco- and toxico-metagenomic approaches that have redefined the previous understanding of PXR. Key topics covered in this review include: (1) genome-wide investigations on novel PXR-target genes, novel PXR-DNA interaction patterns, and novel PXR-targeted intestinal bacteria; (2) key PXR-modulating activators and suppressors of exogenous and endogenous sources; (3) novel bidirectional interactions between PXR and gut microbiome under physiologic, pathophysiological, pharmacological, and toxicological conditions; and (4) modifying factors of PXR-signaling including species and sex differences and time (age, critical windows of exposure, and circadian rhythm). The review also discusses critical knowledge gaps and important future research topics centering around PXR. SIGNIFICANCE STATEMENT: This review summarizes recent research advancements leveraging O'mics approaches that have redefined the previous understanding of the xenobiotic-sensing nuclear receptor pregnane X receptor (PXR). Key topics include: (1) genome-wide investigations on novel PXR-targeted host genes and intestinal bacteria as well as novel PXR-DNA interaction patterns; (2) key PXR modulators including microbial metabolites under physiological, pathophysiological, pharmacological, and toxicological conditions; and (3) modifying factors including species, sex, and time.
Collapse
Affiliation(s)
- Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
10
|
Su X, Zhang M, Qi H, Gao Y, Yang Y, Yun H, Zhang Q, Yang X, Zhang Y, He J, Fan Y, Wang Y, Guo P, Zhang C, Yang R. Gut microbiota-derived metabolite 3-idoleacetic acid together with LPS induces IL-35 + B cell generation. MICROBIOME 2022; 10:13. [PMID: 35074011 PMCID: PMC8785567 DOI: 10.1186/s40168-021-01205-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/01/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND IL-35-producing Bregs and Treg cells critically regulate chronic illnesses worldwide via mechanisms related to disrupting the gut microbiota composition. However, whether the gut microbiota regulates these IL-35+ cells remains elusive. We herein investigated the regulatory effects of the gut microbiota on IL-35+ cells by using genetically modified mouse models of obesity. RESULTS We first found that gut Reg4 promoted resistance to high-fat diet-induced obesity. Using 16S rRNA sequencing combined with LC-MS (liquid chromatography-mass spectrometry)/MS, we demonstrated that gut Reg4 associated with bacteria such as Lactobacillus promoted the generation of IL-35+ B cells through 3-idoleacetic acid (IAA) in the presence of LPS. HuREG4IECtg mice fed a high-fat diet exhibited marked IL-35+ cell accumulation in not only their adipose tissues but also their colons, whereas decreased IL-35+ cell accumulation was observed in the adipose and colon tissues of Reg4 knockout (KO) mice. We also found that Reg4 mediated HFD-induced obesity resistance via IL-35. Lower levels of IAA were also detected in the peripheral blood of individuals with obesity compared with nonobese subjects. Mechanistically, IAA together with LPS mediated IL-35+ B cells through PXR and TLR4. KO of PXR or TLR4 impaired the generation of IL-35+ B cells. CONCLUSION Together, IAA and LPS induce the generation of IL-35+ B cells through PXR and TLR4. Video Abstract.
Collapse
Affiliation(s)
- Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Minying Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Houbao Qi
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yazheng Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Huan Yun
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Qianjing Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaorong Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yuan Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiangshan He
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yaqi Fan
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yuxue Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Pei Guo
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China.
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Tianjin, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
11
|
Kim IY, Choi B, Park WR, Kim YJ, Kim BE, Mun S, Choi HS, Kim DK. Nuclear receptor HR96 up-regulates cytochrome P450 for insecticide detoxification in Tribolium castaneum. PEST MANAGEMENT SCIENCE 2022; 78:230-239. [PMID: 34472702 DOI: 10.1002/ps.6626] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Red flour beetle, Tribolium castaneum (T. castaneum), is a major agricultural pest that causes significant damage to stored grains and products. Although hormone receptor 96 (HR96) is known to be the single ortholog corresponding to mammalian constitutive androstane receptor and pregnane X receptor, the structural features of Tribolium HR96 (TcHR96) and its role in insecticide-mediated transcription control of cytochrome P450 enzyme genes in T. castaneum have not been elucidated yet. RESULTS We cloned full-length complementary DNA encoding TcHR96 and revealed the role of TcHR96 in transcriptional control of cytochrome P450 enzyme genes. Interestingly, genome-wide transcriptome analysis of HR96-deficient beetles using RNA sequencing showed a positive correlation between TcHR96 and gene transcription of metabolizing enzymes involved in phase I detoxification processes. Moreover, TcHR96 overexpression significantly increased the promoter activity of genes encoding phase I P450 enzymes such as CYP4Q4, CYP4G7, CYP4BR3, and CYP345A1. Chromatin immunoprecipitation analysis showed that TcHR96 could directly bind to the promoter of gene encoding CYP345A1, an enzyme for metabolizing insecticides in T. castaneum. Furthermore, imidacloprid, a neonicotinoid insecticide, significantly increased gene expression of phase I P450 enzymes in old larvae of T. castaneum, which were reversed by TcHR96 knockdown. Finally, TcHR96 knockdown significantly decreased the resistance of old larvae to imidacloprid concomitant with reduction of imidacloprid-mediated phase I P450 enzyme gene expression. CONCLUSION TcHR96 plays a major role in transcriptional control of P450 enzyme for imidacloprid detoxification. Controlling TcHR96 might facilitate the regulation of insecticide tolerance in T. castaneum, thus providing a promising new strategy to manage pest beetle populations. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- In-Young Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Byungyoon Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Woo-Ram Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Yu-Ji Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Bo-Eun Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Seulgi Mun
- Department of Applied Biology, Chonnam National University, Gwangju, South Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
12
|
Rogers RS, Parker A, Vainer PD, Elliott E, Sudbeck D, Parimi K, Peddada VP, Howe PG, D’Ambrosio N, Ruddy G, Stackable K, Carney M, Martin L, Osterholt T, Staudinger JL. The Interface between Cell Signaling Pathways and Pregnane X Receptor. Cells 2021; 10:cells10113262. [PMID: 34831484 PMCID: PMC8617909 DOI: 10.3390/cells10113262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Highly expressed in the enterohepatic system, pregnane X receptor (PXR, NR1I2) is a well-characterized nuclear receptor (NR) that regulates the expression of genes in the liver and intestines that encode key drug metabolizing enzymes and drug transporter proteins in mammals. The net effect of PXR activation is to increase metabolism and clear drugs and xenobiotics from the body, producing a protective effect and mediating clinically significant drug interaction in patients on combination therapy. The complete understanding of PXR biology is thus important for the development of safe and effective therapeutic strategies. Furthermore, PXR activation is now known to specifically transrepress the inflammatory- and nutrient-signaling pathways of gene expression, thereby providing a mechanism for linking these signaling pathways together with enzymatic drug biotransformation pathways in the liver and intestines. Recent research efforts highlight numerous post-translational modifications (PTMs) which significantly influence the biological function of PXR. However, this thrust of research is still in its infancy. In the context of gene-environment interactions, we present a review of the recent literature that implicates PXR PTMs in regulating its clinically relevant biology. We also provide a discussion of how these PTMs likely interface with each other to respond to extracellular cues to appropriately modify PXR activity.
Collapse
Affiliation(s)
- Robert S. Rogers
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Annemarie Parker
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Phill D. Vainer
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Elijah Elliott
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Dakota Sudbeck
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Kaushal Parimi
- Thomas Jefferson Independent Day School, Joplin, MO 64801, USA;
| | - Venkata P. Peddada
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Parker G. Howe
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Nick D’Ambrosio
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Gregory Ruddy
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Kaitlin Stackable
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Megan Carney
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Lauren Martin
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Thomas Osterholt
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Jeff L. Staudinger
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
- Correspondence:
| |
Collapse
|
13
|
Gährs M, Schrenk D. Suppression of apoptotic signaling in rat hepatocytes by non-dioxin-like polychlorinated biphenyls depends on the receptors CAR and PXR. Toxicology 2021; 464:153023. [PMID: 34743025 DOI: 10.1016/j.tox.2021.153023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) represent a sub-group of persistent organic pollutants found in food, environmental samples and human and animal tissues. Promotion of pre-neoplastic lesions in rodent liver has been suggested as an indicator for a possible increased risk of liver cancer in humans exposed to NDL-PCBs. In rodent hepatocytes, suppression of DNA damage-triggered apoptosis is a typical mode of action of liver tumor promoters. Here, we report that NDL-PCBs suppress apoptosis in rat hepatocytes treated in culture with an apoptogenic dose of UV light. Suppression became less pronounced when the constitutive androstane receptor (CAR) and/or the pregnane-X-receptor (PXR) where knocked-out using siRNAs, while knocking-out both receptors led to a full reconstitution of apoptosis. In contrast, suppression of apoptosis by the CAR or PXR activators phenobarbital or dexamethasone were CAR- or PXR-specific. Induction and suppression of apoptosis were paralleled by changes in caspase 3/7, 8 and 9 activities. Our findings indicate that NDL-PCBs can suppress UV-induced apoptosis in rat hepatocytes by activating CAR and PXR. It needs further investigation if these mechanisms of action are also of relevance for human liver.
Collapse
Affiliation(s)
- Maike Gährs
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
14
|
Yevtodiyenko A, Bazhin A, Khodakivskyi P, Godinat A, Budin G, Maric T, Pietramaggiori G, Scherer SS, Kunchulia M, Eppeldauer G, Polyakov SV, Francis KP, Bryan JN, Goun EA. Portable bioluminescent platform for in vivo monitoring of biological processes in non-transgenic animals. Nat Commun 2021; 12:2680. [PMID: 33976191 PMCID: PMC8113525 DOI: 10.1038/s41467-021-22892-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Bioluminescent imaging (BLI) is one of the most powerful and widely used preclinical imaging modalities. However, the current technology relies on the use of transgenic luciferase-expressing cells and animals and therefore can only be applied to a limited number of existing animal models of human disease. Here, we report the development of a “portable bioluminescent” (PBL) technology that overcomes most of the major limitations of traditional BLI. We demonstrate that the PBL method is capable of noninvasive measuring the activity of both extracellular (e.g., dipeptidyl peptidase 4) and intracellular (e.g., cytochrome P450) enzymes in vivo in non-luciferase-expressing mice. Moreover, we successfully utilize PBL technology in dogs and human cadaver, paving the way for the translation of functional BLI to the noninvasive quantification of biological processes in large animals. The PBL methodology can be easily adapted for the noninvasive monitoring of a plethora of diseases across multiple species. Bioluminescence imaging tends to rely on transgenic luciferase-expressing cells and animals. Here the authors report a portable bioluminescent system to non-invasively measure intra- and extracellular enzymes in vivo in non-transgenic animals which do not express luciferase.
Collapse
Affiliation(s)
- Aleksey Yevtodiyenko
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Chemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Arkadiy Bazhin
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Pavlo Khodakivskyi
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Chemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Aurelien Godinat
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Ghyslain Budin
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Tamara Maric
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Giorgio Pietramaggiori
- Plastic and Reconstructive Surgery, Global Plastic Surgery, Lausanne, Switzerland.,Department of Neurosciences, University of Padova, Padova, Italy
| | - Sandra S Scherer
- Plastic and Reconstructive Surgery, Global Plastic Surgery, Lausanne, Switzerland.,Department of Neurosciences, University of Padova, Padova, Italy
| | - Marina Kunchulia
- Institute of Cognitive Neurosciences, Free University of Tbilisi, Tbilisi, Georgia
| | - George Eppeldauer
- National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Sergey V Polyakov
- National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA.,Physics Department, University of Maryland, College Park, MD, USA
| | - Kevin P Francis
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, CA, USA
| | - Jeffrey N Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri-Columbia, Columbia, MO, USA
| | - Elena A Goun
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. .,Department of Chemistry, University of Missouri-Columbia, Columbia, MO, USA.
| |
Collapse
|
15
|
Goedtke L, Sprenger H, Hofmann U, Schmidt FF, Hammer HS, Zanger UM, Poetz O, Seidel A, Braeuning A, Hessel-Pras S. Polycyclic Aromatic Hydrocarbons Activate the Aryl Hydrocarbon Receptor and the Constitutive Androstane Receptor to Regulate Xenobiotic Metabolism in Human Liver Cells. Int J Mol Sci 2020; 22:ijms22010372. [PMID: 33396476 PMCID: PMC7796163 DOI: 10.3390/ijms22010372] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants produced by incomplete combustion of organic matter. They induce their own metabolism by upregulating xenobiotic-metabolizing enzymes such as cytochrome P450 monooxygenase 1A1 (CYP1A1) by activating the aryl hydrocarbon receptor (AHR). However, previous studies showed that individual PAHs may also interact with the constitutive androstane receptor (CAR). Here, we studied ten PAHs, different in carcinogenicity classification, for their potential to activate AHR- and CAR-dependent luciferase reporter genes in human liver cells. The majority of investigated PAHs activated AHR, while non-carcinogenic PAHs tended to activate CAR. We further characterized gene expression, protein abundancies and activities of the AHR targets CYP1A1 and 1A2, and the CAR target CYP2B6 in human HepaRG hepatoma cells. Enzyme induction patterns strongly resembled the profiles obtained at the receptor level, with AHR-activating PAHs inducing CYP1A1/1A2 and CAR-activating PAHs inducing CYP2B6. In summary, this study provides evidence that beside well-known activation of AHR, some PAHs also activate CAR, followed by subsequent expression of respective target genes. Furthermore, we found that an increased PAH ring number is associated with AHR activation as well as the induction of DNA double-strand breaks, whereas smaller PAHs activated CAR but showed no DNA-damaging potential.
Collapse
Affiliation(s)
- Lisa Goedtke
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (L.G.); (H.S.); (A.B.)
| | - Heike Sprenger
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (L.G.); (H.S.); (A.B.)
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, and University of Tübingen, 72074 Tübingen, Germany; (U.H.); (U.M.Z.)
| | - Felix F. Schmidt
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany; (F.F.S.); (H.S.H.); (O.P.)
| | - Helen S. Hammer
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany; (F.F.S.); (H.S.H.); (O.P.)
| | - Ulrich M. Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, and University of Tübingen, 72074 Tübingen, Germany; (U.H.); (U.M.Z.)
| | - Oliver Poetz
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany; (F.F.S.); (H.S.H.); (O.P.)
| | - Albrecht Seidel
- Biochemical Institute for Environmental Carcinogens, Prof. Dr. Gernot Grimmer Foundation, Lurup 4, 22927 Grosshansdorf, Germany;
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (L.G.); (H.S.); (A.B.)
| | - Stefanie Hessel-Pras
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (L.G.); (H.S.); (A.B.)
- Correspondence: ; Tel.: +49-30-18412-25203
| |
Collapse
|
16
|
Oliviero F, Lukowicz C, Boussadia B, Forner-Piquer I, Pascussi JM, Marchi N, Mselli-Lakhal L. Constitutive Androstane Receptor: A Peripheral and a Neurovascular Stress or Environmental Sensor. Cells 2020; 9:E2426. [PMID: 33171992 PMCID: PMC7694609 DOI: 10.3390/cells9112426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Xenobiotic nuclear receptors (NR) are intracellular players involved in an increasing number of physiological processes. Examined and characterized in peripheral organs where they govern metabolic, transport and detoxification mechanisms, accumulating data suggest a functional expression of specific NR at the neurovascular unit (NVU). Here, we focus on the Constitutive Androstane Receptor (CAR), expressed in detoxifying organs such as the liver, intestines and kidneys. By direct and indirect activation, CAR is implicated in hepatic detoxification of xenobiotics, environmental contaminants, and endogenous molecules (bilirubin, bile acids). Importantly, CAR participates in physiological stress adaptation responses, hormonal and energy homeostasis due to glucose and lipid sensing. We next analyze the emerging evidence supporting a role of CAR in NVU cells including the blood-brain barrier (BBB), a key vascular interface regulating communications between the brain and the periphery. We address the emerging concept of how CAR may regulate specific P450 cytochromes at the NVU and the associated relevance to brain diseases. A clear understanding of how CAR engages during pathological conditions could enable new mechanistic, and perhaps pharmacological, entry-points within a peripheral-brain axis.
Collapse
Affiliation(s)
- Fabiana Oliviero
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (F.O.); (C.L.)
| | - Céline Lukowicz
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (F.O.); (C.L.)
| | - Badreddine Boussadia
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Isabel Forner-Piquer
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Jean-Marc Pascussi
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Laila Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (F.O.); (C.L.)
| |
Collapse
|
17
|
Mert S, Bulutoglu B, Chu C, Dylewski M, Lin FM, Yu YM, Yarmush ML, Sheridan RL, Uygun K. Multiorgan Metabolomics and Lipidomics Provide New Insights Into Fat Infiltration in the Liver, Muscle Wasting, and Liver-Muscle Crosstalk Following Burn Injury. J Burn Care Res 2020; 42:269-287. [PMID: 32877506 DOI: 10.1093/jbcr/iraa145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Burn injury mediated hypermetabolic syndrome leads to increased mortality among severe burn victims, due to liver failure and muscle wasting. Metabolic changes may persist up to 2 years following the injury. Thus, understanding the underlying mechanisms of the pathology is crucially important to develop appropriate therapeutic approaches. We present detailed metabolomic and lipidomic analyses of the liver and muscle tissues in a rat model with a 30% body surface area burn injury located at the dorsal skin. Three hundred and thirty-eight of 1587 detected metabolites and lipids in the liver and 119 of 1504 in the muscle tissue exhibited statistically significant alterations. We observed excessive accumulation of triacylglycerols, decreased levels of S-adenosylmethionine, increased levels of glutamine and xenobiotics in the liver tissue. Additionally, the levels of gluconeogenesis, glycolysis, and tricarboxylic acid cycle metabolites are generally decreased in the liver. On the other hand, burn injury muscle tissue exhibits increased levels of acyl-carnitines, alpha-hydroxyisovalerate, ophthalmate, alpha-hydroxybutyrate, and decreased levels of reduced glutathione. The results of this preliminary study provide compelling observations that liver and muscle tissues undergo distinctly different changes during hypermetabolism, possibly reflecting liver-muscle crosstalk. The liver and muscle tissues might be exacerbating each other's metabolic pathologies, via excessive utilization of certain metabolites produced by each other.
Collapse
Affiliation(s)
- Safak Mert
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Beyza Bulutoglu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Christopher Chu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maggie Dylewski
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Florence M Lin
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Yong-Ming Yu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Martin L Yarmush
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Robert L Sheridan
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Korkut Uygun
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
18
|
Transcriptomic analysis across liver diseases reveals disease-modulating activation of constitutive androstane receptor in cholestasis. JHEP Rep 2020; 2:100140. [PMID: 32875282 PMCID: PMC7452294 DOI: 10.1016/j.jhepr.2020.100140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022] Open
Abstract
Background & Aims Liver diseases are caused by many factors, such as genetics, nutrition, and viruses. Therefore, it is important to delineate transcriptomic changes that occur in various liver diseases. Methods We performed high-throughput sequencing of mouse livers with diverse types of injuries, including cholestasis, diet-induced steatosis, and partial hepatectomy. Comparative analysis of liver transcriptome from mice and human samples of viral infections (HBV and HCV), alcoholic hepatitis (AH), non-alcoholic steatohepatitis (NASH), and biliary atresia revealed distinct and overlapping gene profiles associated with liver diseases. We hypothesised that discrete molecular signatures could be utilised to assess therapeutic outcomes. We focused on cholestasis to test and validate the hypothesis using pharmacological approaches. Results Here, we report significant overlap in the expression of inflammatory and proliferation-related genes across liver diseases. However, cholestatic livers were unique and displayed robust induction of genes involved in drug metabolism. Consistently, we found that constitutive androstane receptor (CAR) activation is crucial for the induction of the drug metabolic gene programme in cholestasis. When challenged, cholestatic mice were protected against zoxazolamine-induced paralysis and acetaminophen-induced hepatotoxicity. These protective effects were diminished upon inhibition of CAR activity. Further, drug metabolic genes were also induced in the livers from a subset of biliary atresia patients, but not in HBV and HCV infections, AH, or NASH. We also found a higher expression of CYP2B6, a CAR target, in the livers of biliary atresia patients, underscoring the clinical importance of our findings. Conclusions Comparative transcriptome analysis of different liver disorders revealed specific induction of phase I and II metabolic genes in cholestasis. Our results demonstrate that CAR activation may lead to variations in drug metabolism and clinical outcomes in biliary atresia. Lay summary Transcriptomic analysis of diverse liver diseases revealed alterations in common and distinct pathways. Specifically, in cholestasis, we found that detoxification genes and their activity are increased. Thus, cholestatic patients may have an unintended consequence on drug metabolism and not only have a beneficial effect against liver toxicity, but also may require adjustments to their therapeutic dosage. Cell cycle, inflammation, and glucose homeostasis are some of the common pathways altered in a variety of liver disorders. Phase I and II metabolic genes are induced in Fxr−/−Shp−/− double knockouts (DKOs) and bile-acid-fed control mice. Activation of xeno-sensor, constitutive androstane receptor (CAR), is observed in cholestasis. Inhibiting CAR activity in DKO mice exacerbates zoxazolamine-induced paralysis and acetaminophen-induced hepatotoxicity. A subset of patients with biliary atresia display increased expression of CAR target protein CYP2B6.
Collapse
Key Words
- AH, alcoholic hepatitis
- ALT, alanine aminotransferase
- APAP, acetaminophen
- AST, aspartate aminotransferase
- Bile acids
- CA, cholic acid
- CAR, constitutive androstane receptor
- Cholestasis
- Cytochrome p450
- DKO, double knockout
- Drug metabolism
- FXRKO, FXR knockout
- Fxr, farnesoid X receptor
- GGT, gamma-glutamyl transferase
- GSH, glutathione disulphide
- Liver diseases
- NAPQI, N-acetyl-p-benzoquinone imine
- NASH, non-alcoholic steatohepatitis
- Nuclear receptors
- PCN, pregnenolone 16 alpha-carbonitrile
- PHx, partial hepatectomy
- PXR, pregnane X receptor
- SHPKO, SHP knockout
- Shp, small heterodimer partner
- Transcriptomics
- WT, wild type
Collapse
|
19
|
The Connection of Azole Fungicides with Xeno-Sensing Nuclear Receptors, Drug Metabolism and Hepatotoxicity. Cells 2020; 9:cells9051192. [PMID: 32403288 PMCID: PMC7290820 DOI: 10.3390/cells9051192] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
Azole fungicides, especially triazole compounds, are widely used in agriculture and as pharmaceuticals. For a considerable number of agricultural azole fungicides, the liver has been identified as the main target organ of toxicity. A number of previous studies points towards an important role of nuclear receptors such as the constitutive androstane receptor (CAR), the pregnane-X-receptor (PXR), or the aryl hydrocarbon receptor (AHR), within the molecular pathways leading to hepatotoxicity of these compounds. Nuclear receptor-mediated hepatic effects may comprise rather adaptive changes such as the induction of drug-metabolizing enzymes, to hepatocellular hypertrophy, histopathologically detectable fatty acid changes, proliferation of hepatocytes, and the promotion of liver tumors. Here, we present a comprehensive review of the current knowledge of the interaction of major agricultural azole-class fungicides with the three nuclear receptors CAR, PXR, and AHR in vivo and in vitro. Nuclear receptor activation profiles of the azoles are presented and related to histopathological findings from classic toxicity studies. Important issues such as species differences and multi-receptor agonism and the consequences for data interpretation and risk assessment are discussed.
Collapse
|
20
|
Egusquiza RJ, Ambrosio ME, Wang SG, Kay KM, Zhang C, Lehmler HJ, Blumberg B. Evaluating the Role of the Steroid and Xenobiotic Receptor (SXR/PXR) in PCB-153 Metabolism and Protection against Associated Adverse Effects during Perinatal and Chronic Exposure in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:47011. [PMID: 32352317 PMCID: PMC7228131 DOI: 10.1289/ehp6262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 06/02/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) are environmental toxicants; PCB exposure has been associated with adverse effects on wildlife and humans. However, the mechanisms underlying these adverse effects are not fully understood. The steroid and xenobiotic receptor [SXR; also known as the pregnane X receptor (PXR) and formally known as NR1I2] is a nuclear hormone receptor that regulates inducible metabolism of drugs and xenobiotics and is activated or inhibited by various PCB congeners. OBJECTIVES The aim of this study was to investigate the effects of exposure to PCB-153, the most prevalent PCB congener in human tissues, on SXR knockout mice (SXRKO) and to elucidate the role of SXR in PCB-153 metabolism and promotion of its harmful effects. METHODS Wild-type (WT) and SXRKO mice were chronically or perinatally exposed to a low dose (54μg/kg/d) of PCB-153. Blood, livers, and spleens were analyzed using transcriptome sequencing (RNA-seq) and molecular techniques to investigate the impacts of exposure on metabolism, oxidative stress, and hematological parameters. RESULTS SXRKO mice perinatally exposed to PCB-153 displayed elevated oxidative stress, symptoms of hemolytic anemia, and premature death. Transcriptomal analysis revealed that expression of genes involved in metabolic processes was altered in SXRKO mice. Elevated levels of the PCB-153 metabolite, 3-OH-PCB-153, were found in exposed SXRKO mice compared to exposed WT mice. Blood hemoglobin (HGB) levels were lower throughout the lifespan, and the occurrence of intestinal tumors was larger in SXRKO mice chronically exposed to PCB-153 compared to vehicle and WT controls. DISCUSSION Our results suggest that altered metabolism induced by SXR loss of function resulted in the accumulation of hydroxylated metabolites upon exposure to PCB-153, leading to oxidative stress, hemolytic anemia, and tumor development in a mouse model. These results support a major role for SXR/PXR in protection against xenobiotic-induced oxidative stress by maintaining proper metabolism in response to PCB-153 exposure. This role of SXR could be generally applicable to other environmental toxicants as well as pharmaceutical drugs. https://doi.org/10.1289/EHP6262.
Collapse
Affiliation(s)
- Riann Jenay Egusquiza
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| | - Maria Elena Ambrosio
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Shuyi Gin Wang
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Kaelen Marie Kay
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Chunyun Zhang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - Bruce Blumberg
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| |
Collapse
|
21
|
Salanga MC, Brun NR, Francolini RD, Stegeman JJ, Goldstone JV. CRISPR-Cas9-Mutated Pregnane X Receptor (pxr) Retains Pregnenolone-induced Expression of cyp3a65 in Zebrafish (Danio rerio) Larvae. Toxicol Sci 2020; 174:51-62. [PMID: 31868891 PMCID: PMC7043230 DOI: 10.1093/toxsci/kfz246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR; NR1I2) is a nuclear receptor that regulates transcriptional responses to drug or xenobiotic exposure, including induction of CYP3A transcription, in many vertebrate species. PXR is activated by a wide range of ligands that differ across species, making functional studies on its role in the chemical defensome most relevant when approached in a species-specific manner. Knockout studies in mammals have shown a requirement for PXR in ligand-dependent activation of CYP3A expression or reporter gene activity. Morpholino knockdown of Pxr in zebrafish indicated a similar requirement. Here, we report on the generation of 2 zebrafish lines each carrying a heritable deletion in the pxr coding region, predicted to result in loss of a functional gene product. To our surprise, larvae homozygous for either of the pxr mutant alleles retain their ability to induce cyp3a65 mRNA expression following exposure to the established zebrafish Pxr ligand, pregnenolone. Thus, zebrafish carrying pxr alleles with deletions in either the DNA binding or the ligand-binding domains did not yield a loss-of-function phenotype, suggesting that a compensatory mechanism is responsible for cyp3a65 induction. Alternative possibilities are that Pxr is not required for the induction of selected genes, or that truncated yet functional mutant Pxr is sufficient for the downstream transcriptional effects. It is crucial that we develop a better understanding for the role of Pxr in this important biomedical test species. This study highlights the potential for compensatory mechanisms to avoid deleterious effects arising from gene mutations.
Collapse
Affiliation(s)
- Matthew C Salanga
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
| | - Nadja R Brun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
| | - Rene D Francolini
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
| |
Collapse
|
22
|
The Synergistic Antitumor Effect of Tanshinone IIA Plus Adriamycin on Human Hepatocellular Carcinoma Xenograft in BALB/C Nude Mice and Their Influences on Cytochrome P450 CYP3A4 In Vivo. Adv Med 2020; 2020:6231751. [PMID: 34189145 PMCID: PMC8192217 DOI: 10.1155/2020/6231751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Hepatocellular carcinoma is one of the most common diseases that seriously threaten human life and health. In this study, we evaluated the inhibitory effect of tanshinone IIA (Tan IIA) combined with adriamycin (ADM) on human hepatocellular carcinoma and developed a platform to assess the function if Chinese herbal ingredients combined with chemotherapy drugs have synergistic antitumor effects in vivo. METHODS Established animal model of human hepatocarcinoma HepG2 cell in nude mice. Mice were divided into model control group, Tan IIA group, ADM group, and Tan IIA + ADM group. The changes from general condition, weight, tumor volume, and inhibition rate were observed. The data were gathered from serum AST level and histopathological changes. The content and activity of cytochrome P450 were determined by spectrophotometric analysis. CYP3A4 protein expression was analyzed by western blotting. The binding model crystal structure of Tan IIA and ADM with pregnane X receptor (PXR) was evaluated by Discovery Studio 2.1. RESULTS A combination of Tan IIA with ADM could improve life quality by relieving ADM toxicity, decreasing tumor volume, declining serum AST level, and improving liner pathological section in tumor-bearing mice. The inhibitory rates of Tan IIA, ADM, and cotreatment were 32.77%, 60.96%, and 73.18%, respectively. The Tan IIA group significantly enhanced the content of cytochrome b5, P450, and erythromycin-N-demethylase activity. CYP3A4 protein expression was enhanced obviously by the Tan IIA + ADM group. Virtual molecular docking showed that both Tan IIA and ADM could be stably docked with the same binding site of PXR but different interactions. CONCLUSIONS Tan IIA in combination with ADM could improve the life quality in tumor-bearing mice and enhance the antitumor effect. The Tan IIA group increased the concentration of cytochrome P450 enzymes and activity. Combined Tan IIA with ADM could upregulate the CYP3A4 protein expression and make relevant interaction with protein PXR by virtual docking.
Collapse
|
23
|
Wang H, Li JM, Wei W, Yang R, Chen D, Ma XD, Jiang GM, Wang BL. Regulation of ATP-binding cassette subfamily B member 1 by Snail contributes to chemoresistance in colorectal cancer. Cancer Sci 2019; 111:84-97. [PMID: 31774615 PMCID: PMC6942434 DOI: 10.1111/cas.14253] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/15/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022] Open
Abstract
Although accumulating evidence has indicated the intimate association between epithelial‐mesenchymal transition (EMT) and acquired resistance to chemotherapy for colorectal cancer (CRC), the underlying mechanisms remain elusive. Herein, we reported that Snail, a crucial EMT controller, was upregulated in CRC tissues. Colorectal cancer cells overexpressing Snail were found to be more resistant to 5‐fluorouracil (5‐Fu). Mechanistic studies reveal that Snail could increase the expression of ATP‐binding cassette subfamily B member 1 (ABCB1) rather than the other 23 chemoresistance‐related genes. Additionally, knockdown of ABCB1 significantly attenuated Snail‐induced 5‐Fu resistance in CRC cells. Oxaliplatin increased Snail and ABCB1 expression in CRC cells. Snail and ABCB1 were upregulated in 5‐Fu‐resistant HCT‐8 (HCT‐8/5‐Fu) cells and inhibition of Snail decreased ABCB1 in HCT‐8/5‐Fu cells. These results confirm the vital role played by ABCB1 in Snail‐induced chemoresistance. Further investigation into the relevant molecular mechanism revealed Snail‐mediated ABCB1 upregulation was independent of β‐catenin, STAT3, PXR, CAR and Foxo3a, which are commonly involved in modulating ABCB1 transcription. Instead, Snail upregulated ABCB1 transcription by directly binding to its promoter. Clinical analysis confirms that increased Snail expression correlated significantly with tumor size (P = .018), lymph node metastasis (P = .033), distant metastasis (P = .025), clinical stage grade (P = .024), and poor prognosis (P = .045) of CRC patients. Moreover, coexpression of Snail and ABCB1 was observed in CRC patients. Our study revealed that direct regulation of ABCB1 by Snail was critical for conferring chemoresistance in CRC cells. These findings unraveled the mechanisms underlying the association between EMT and chemoresistance, and provided potential targets for CRC clinical treatment.
Collapse
Affiliation(s)
- Hao Wang
- Division of Life Sciences and Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Ji-Min Li
- Division of Life Sciences and Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Wei Wei
- Division of Life Sciences and Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Rui Yang
- Division of Life Sciences and Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Dong Chen
- School of Bengbu Medical College, Bengbu, China
| | - Xiao-Dong Ma
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, China
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Bao-Long Wang
- Division of Life Sciences and Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| |
Collapse
|
24
|
Liu T, Song X, Khan S, Li Y, Guo Z, Li C, Wang S, Dong W, Liu W, Wang B, Cao H. The gut microbiota at the intersection of bile acids and intestinal carcinogenesis: An old story, yet mesmerizing. Int J Cancer 2019; 146:1780-1790. [DOI: 10.1002/ijc.32563] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Tianyu Liu
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Xueli Song
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Samiullah Khan
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Yun Li
- Department of Pharmacy, General HospitalTianjin Medical University Tianjin China
| | - Zixuan Guo
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Chuqiao Li
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Wenxiao Dong
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Wentian Liu
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General HospitalTianjin Medical University Tianjin China
| |
Collapse
|
25
|
Yoshinari K, Nagai M. [In silico prediction models of the induction of drug-metabolizing enzymes for drug discovery]. Nihon Yakurigaku Zasshi 2019; 153:186-191. [PMID: 30971659 DOI: 10.1254/fpj.153.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Drug metabolism in the liver is a major factor affecting pharmacokinetics of drugs, and cytochrome P450s (P450s) are major enzymes responsible for it. Since drug-drug interactions (DDIs) can affect the pharmacokinetics of concomitantly administrated drugs, it may limit the drug therapy such as dose adjustment and contraindications for co-administration and lead to dose adjustment and contraindications for co-administration. DDI is thus one of the risk factors to be reduced in the lead-optimization stage. Therefore, it is important to estimate DDI risk in the early drug discovery stage and develop candidates with low DDI risk. P450 induction is one of the important mechanisms causing DDIs and the activation of nuclear receptors is involved in this phenomenon. In this manuscript, the mechanism and evaluation methods of P450 induction are briefly reviewed, and then the new in silico methods for the prediction of P450 induction, which have been recently established by us, and its application to drug development are introduced.
Collapse
Affiliation(s)
- Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Mika Nagai
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd
| |
Collapse
|
26
|
Ménez C, Alberich M, Courtot E, Guegnard F, Blanchard A, Aguilaniu H, Lespine A. The transcription factor NHR-8: A new target to increase ivermectin efficacy in nematodes. PLoS Pathog 2019; 15:e1007598. [PMID: 30759156 PMCID: PMC6391013 DOI: 10.1371/journal.ppat.1007598] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/26/2019] [Accepted: 01/27/2019] [Indexed: 11/18/2022] Open
Abstract
Resistance to the anthelmintic macrocyclic lactone ivermectin (IVM) has a great impact on the control of parasitic nematodes. The mechanisms by which nematodes adapt to IVM remain to be deciphered. We have identified NHR-8, a nuclear hormone receptor involved in the xenobiotic response in Caenorhabditis elegans, as a new regulator of tolerance to IVM. Loss-of-function nhr-8(ok186) C. elegans mutants subjected to larval development assays and electropharyngeogram measurements, displayed hypersensitivity to IVM, and silencing of nhr-8 in IVM-resistant worms increased IVM efficacy. In addition, compared to wild-type worms, nhr-8 mutants under IVM selection pressure failed to acquire tolerance to the drug. In addition, IVM-hypersensitive nhr-8(ok186) worms displayed low transcript levels of several genes from the xenobiotic detoxification network and a concomitant low Pgp-mediated drug efflux activity. Interestingly, some pgp and cyp genes known to impact IVM tolerance in many nematode species, were down regulated in nhr-8 mutants and inversely upregulated in IVM-resistant worms. Moreover, pgp-6 overexpression in nhr-8(ok186) C. elegans increased tolerance to IVM. Importantly, NHR-8 function was rescued in nhr-8(ok186) C. elegans with the homolog of the parasitic nematode Haemonchus contortus, and silencing of Hco-nhr-8 by RNAi on L2 H. contortus larvae increased IVM susceptibility in both susceptible and resistant H. contortus isolates. Thus, our data show that NHR-8 controls the tolerance and development of resistance to IVM in C. elegans and the molecular basis for this relates to the NHR-8-mediated upregulation of IVM detoxification genes. Since our results show that Hco-nhr-8 functions similarly to Cel-nhr-8, this study helps to better understand mechanisms underlying failure in drug efficacy and open perspectives in finding new compounds with NHR-8 antagonist activity to potentiate IVM efficacy. IVM is the most important broad-spectrum deworming drug used today but resistance to this drug has appeared in parasites of both animals and humans. This seriously jeopardizes the success of current parasite control. Preserving IVM efficacy is a public health issue, whose outcome depends on the understanding of the molecular basis of selection for resistance to these drugs. We unambiguously show that the nuclear hormone receptor NHR-8, is crucial for protection of the nematode model Caenorhabditis elegans against IVM toxicity. Worms deficient in NHR-8 are hypersensitive to IVM and fail to become resistant to IVM under drug pressure. NHR-8 functions in the parasitic nematode of ruminants Haemonchus contortus and similar mechanisms could occur in other target pathogens. By controlling the xenobiotic detoxification network, NHR-8 may contribute to the biotransformation and elimination of IVM and help to desensitize the worm to the drug. This provides novel molecular targets involved in IVM drug tolerance in parasitic nematodes. Such findings could be exploited for targeted therapeutic intervention to treat parasitic nematode infections and delay the process of resistance development to anthelmintic drugs.
Collapse
Affiliation(s)
- Cécile Ménez
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France
- * E-mail: (CM); (AL)
| | | | - Elise Courtot
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Fabrice Guegnard
- INRA, UMR 1282 Infectiology and Public Health, Nouzilly, Université François Rabelais de Tours, France
| | - Alexandra Blanchard
- INRA, UMR 1282 Infectiology and Public Health, Nouzilly, Université François Rabelais de Tours, France
| | - Hugo Aguilaniu
- CNRS, detached to the Serrapilheira Institute, Rio de Janeiro, Brazil
| | - Anne Lespine
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France
- * E-mail: (CM); (AL)
| |
Collapse
|
27
|
Hardesty JE, Wahlang B, Falkner KC, Shi H, Jin J, Wilkey D, Merchant M, Watson C, Prough RA, Cave MC. Hepatic signalling disruption by pollutant Polychlorinated biphenyls in steatohepatitis. Cell Signal 2019; 53:132-139. [PMID: 30300668 PMCID: PMC6289731 DOI: 10.1016/j.cellsig.2018.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Polychlorinated biphenyl-mediated steatohepatitis has been shown to be due in part to inhibition of epidermal growth factor receptor (EGFR) signalling. EGFR signalling regulates many facets of hepatocyte function, but it is unclear which other kinases and pathways are involved in the development of toxicant-associated steatohepatitis (TASH). METHODS Comparative hepatic phosphoproteomic analysis was used to identify which kinases were affected by either PCB exposure (Aroclor 1260 mixture), high fat diet (HFD), or their interaction in a chronic exposure model of TASH. Cellular assays and western blot analysis were used to validate the phosphoproteomic findings. RESULTS 1760 unique phosphorylated peptides were identified and of those 588 were significantly different. PCB exposure and dietary interaction promoted a near 25% reduction of hepatic phospho-peptides. Leptin and insulin signalling were pathways highly affected by PCB exposure and liver necrosis was a pathologic ontology over represented due to interaction between PCBs and a HFD. Casein kinase 2 (CK2), Extracellular regulated kinase (ERK), Protein kinase B (AKT), and Cyclin dependent kinase (CDK) activity were demonstrated to be downregulated after PCB exposure and this downregulation was exacerbated with a HFD. PCB exposure led to a loss of hepatic CK2 subunit expression limiting CK2 kinase activity and negatively regulating caspase-3 (CASP3). PCBs promoted secondary necrosis in vitro validating the latter observation. The loss of hepatic phosphoprotein signalling appeared to be due to decreased signal transduction rather than phosphatase upregulation. CONCLUSIONS PCBs are signal disrupting chemicals that promote secondary necrosis through affecting a myriad of liver processes including metabolism and cellular maintenance. PCB exposure, particularly with interaction with a HFD greatly down-regulates the hepatic kinome. More data are needed on signalling disruption and its impact on liver health.
Collapse
Affiliation(s)
- Josiah E Hardesty
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Banrida Wahlang
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; University of Louisville Superfund Research Program, University of Louisville, Louisville, KY 40202, USA.
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Hongxue Shi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Jian Jin
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Daniel Wilkey
- The Proteomics Core, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Michael Merchant
- The Proteomics Core, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Corey Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Matthew C Cave
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA; Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; University of Louisville Superfund Research Program, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
28
|
Kim KH, Choi JM, Li F, Dong B, Wooton-Kee CR, Arizpe A, Anakk S, Jung SY, Hartig SM, Moore DD. Constitutive Androstane Receptor Differentially Regulates Bile Acid Homeostasis in Mouse Models of Intrahepatic Cholestasis. Hepatol Commun 2018; 3:147-159. [PMID: 30620001 PMCID: PMC6312660 DOI: 10.1002/hep4.1274] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022] Open
Abstract
Bile acid (BA) homeostasis is tightly regulated by multiple transcription factors, including farnesoid X receptor (FXR) and small heterodimer partner (SHP). We previously reported that loss of the FXR/SHP axis causes severe intrahepatic cholestasis, similar to human progressive familial intrahepatic cholestasis type 5 (PFIC5). In this study, we found that constitutive androstane receptor (CAR) is endogenously activated in Fxr:Shp double knockout (DKO) mice. To test the hypothesis that CAR activation protects DKO mice from further liver damage, we generated Fxr;Shp;Car triple knockout (TKO) mice. In TKO mice, residual adenosine triphosphate (ATP) binding cassette, subfamily B member 11 (ABCB11; alias bile salt export pump [BSEP]) function and fecal BA excretion are completely impaired, resulting in severe hepatic and biliary damage due to excess BA overload. In addition, we discovered that pharmacologic CAR activation has different effects on intrahepatic cholestasis of different etiologies. In DKO mice, CAR agonist 1,4‐bis[2‐(3,5‐dichloropyridyloxy)]benzene (TCPOBOP; here on TC) treatment attenuated cholestatic liver injury, as expected. However, in the PFIC2 model Bsep knockout (BKO) mice, TC treatment exhibited opposite effects that reflect increased BA accumulation and liver injury. These contrasting results may be linked to differential regulation of systemic cholesterol homeostasis in DKO and BKO livers. TC treatment selectively up‐regulated hepatic cholesterol levels in BKO mice, supporting de novo BA synthesis. Conclusion: CAR activation in DKO mice is generally protective against cholestatic liver injury in these mice, which model PFIC5, but not in the PFIC2 model BKO mice. Our results emphasize the importance of the genetic and physiologic background when implementing targeted therapies to treat intrahepatic cholestasis.
Collapse
Affiliation(s)
- Kang Ho Kim
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX
| | - Jong Min Choi
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX
| | - Feng Li
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX.,Center for Drug Discovery Baylor College of Medicine Houston TX
| | - Bingning Dong
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX
| | | | - Armando Arizpe
- School of Natural Science University of Texas Austin Austin TX
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology University of Illinois at Urbana-Champaign Urbana IL
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of Medicine Houston TX
| | - Sean M Hartig
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine Baylor College of Medicine Houston TX
| | - David D Moore
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX
| |
Collapse
|
29
|
Hu Q, Yao N, Wu J, Liu M, Liu F, Zhang H, Xiong Y, Xia C. Constitutive androstane receptor weakens the induction of panaxytriol on CYP3A4 by repressing the activation of pregnane X receptor. Biochem Pharmacol 2018; 159:32-39. [PMID: 30414935 DOI: 10.1016/j.bcp.2018.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/07/2018] [Indexed: 11/25/2022]
Abstract
Nuclear receptors pregnane X receptor (PXR; NR1I2) and constitutive androstane receptor (CAR; NR1I3) play a vital role in regulating CYP3A4. Our previous studies have demonstrated that panaxytriol (PXT) upregulates the expression of CYP3A4 via the PXR regulatory pathway. This study aimed to explore how CAR mediates the regulation of CYP3A4 in the presence of PXT using HepG2 cell, hCAR-overexpressing HepG2 cell and hCAR-silenced HepG2 cell models. In HepG2 cells, PXT induced the expression of CYP3A4 in a concentration-dependent manner (10-80 μM) and the high concentration of PXT (80 μM) upregulated the expression of CAR. The concentrations of PXT (10-40 μM) had no impact on the expression of CAR, but could significantly induce the expression of CYP2B6 target gene by activating CAR. The dual-luciferase reporter gene assay also showed that CAR-mediated CYP3A4 luciferase activity can be promoted by 80 μM of PXT (1.54-fold), while 5, 10, 20, and 40 μM of PXT had no influence on CAR-mediated CYP3A4 luciferase activity. In hCAR-overexpressing HepG2 cells, PXT concentrations (10-40 μM) that significantly induced PXR and CYP3A4 in HepG2 cells had no impact on the expression of CYP3A4, CAR and PXR, whereas a high concentration of PXT (80 µM) could weakly induce the mRNA and protein levels of CAR and CYP3A4. Moreover, the expression of PXR and CYP3A4 in hCAR-silenced HepG2 cells was markedly elevated compared with the blank control or with normal HepG2 cells treated with 10-80 μM of PXT. In conclusion, CAR significantly weakens the ability of PXT to induce CYP3A4 expression by repressing the activation of PXR. There may be a cross-talk mechanism between PXR and CAR on the regulation of CYP3A4 in the presence of PXT. Additionally, a high concentration of PXT (80 μM) induced CYP3A4 via the CAR regulatory pathway.
Collapse
Affiliation(s)
- Qingqing Hu
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Na Yao
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Jie Wu
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Mingyi Liu
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Fanglan Liu
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Hong Zhang
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Yuqing Xiong
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China
| | - Chunhua Xia
- Clinical Pharmacology Institute, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Mucosal immune cells in the intestinal tract are continuously exposed to a barrage of both foreign and endogenously generated metabolites, termed xenobiotics, and endobiotics, respectively. This review summarizes recent insights into the mechanisms by which xenobiotics and endobiotics regulate intestinal immunity and inflammation. RECENT FINDINGS The community of enteric microbes (i.e., microbiota) has profound impacts on the development and function of the mucosal immune system. The composition and function of gut microbiota is dynamically regulated by diet, and this interplay dictates which and how many immunomodulatory xenobiotics are present in the intestine. Microbiota also regulate the concentration and composition of circulating bile acids, an abundant class of liver-derived endobiotics with pleotropic immunoregulatory activities. A growing body of literature is emerging that sheds new light on the mechanisms by which xenobiotics and endobiotics interact with germline-encoded receptors and transporters to shape mucosal immune function. SUMMARY The complex and dynamic interplay among xenobiotics, endobiotics, and the mucosal immune system is a new frontier in mucosal immunology that is proving fruitful for the discovery of novel and pharmacologically accessible mechanisms with relevance to human inflammatory diseases.
Collapse
|
31
|
Dietrich K, Baumgart J, Eshkind L, Reuter L, Gödtel-Armbrust U, Butt E, Musheev M, Marini F, More P, Grosser T, Niehrs C, Wojnowski L, Mathäs M. Health-Relevant Phenotypes in the Offspring of Mice Given CAR Activators Prior to Pregnancy. Drug Metab Dispos 2018; 46:1827-1835. [PMID: 30154105 DOI: 10.1124/dmd.118.082925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/22/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatic induction in response to drugs and environmental chemicals affects drug therapies and energy metabolism. We investigated whether the induction is transmitted to the offspring. We injected 3-day- and 6-week-old F0 female mice with TCPOBOP, an activator of the nuclear receptor constitutive androstane receptor (CAR, NR1I3), and mated them 1-6 weeks afterward. We detected in the offspring long-lasting alterations of CAR-mediated drug disposition, energy metabolism, and lipid profile. The transmission to the first filial generation (F1) was mediated by TCPOBOP transfer from the F0 adipose tissue via milk, as revealed by embryo transfer, crossfostering experiments, and liquid chromatography-mass spectrometry analyses. The important environmental pollutant PCB153 activated CAR in the F1 generation in a manner similar to TCPOBOP. Our findings indicate that chemicals accumulating and persisting in adipose tissue may exert liver-mediated, health-relevant effects on F1 offspring simply via physical transmission in milk. Such effects may occur even if treatment has been terminated far ahead of conception. This should be considered in assessing developmental toxicity and in the long-term follow-up of offspring of mothers exposed to both approved and investigational drugs, and to chemicals with known or suspected accumulation in adipose tissue.
Collapse
Affiliation(s)
- Karin Dietrich
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Jan Baumgart
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Leonid Eshkind
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Lea Reuter
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Ute Gödtel-Armbrust
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Elke Butt
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Michael Musheev
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Federico Marini
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Piyush More
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Tanja Grosser
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Christof Niehrs
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Leszek Wojnowski
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| | - Marianne Mathäs
- Department of Pharmacology (K.D., L.R., U.G.-A., P.M., T.G., L.W., M.Ma.) and Institute of Medical Biostatistics, Epidemiology and Informatics (F.M.), University Medical Center Mainz, Mainz, Germany; Translational Animal Research Center (J.B., L.E.), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Experimental Biomedicine II, University Hospital Würzburg, Würzburg, Germany (E.B.); Institute of Molecular Biology, Mainz, Germany (M.Mu., C.N.); and Division of Molecular Embryology, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (C.N.)
| |
Collapse
|
32
|
Characterization of CYP2C Induction in Cryopreserved Human Hepatocytes and Its Application in the Prediction of the Clinical Consequences of the Induction. J Pharm Sci 2018; 107:2479-2488. [DOI: 10.1016/j.xphs.2018.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 12/19/2022]
|
33
|
Pouché L, Vitobello A, Römer M, Glogovac M, MacLeod AK, Ellinger-Ziegelbauer H, Westphal M, Dubost V, Stiehl DP, Dumotier B, Fekete A, Moulin P, Zell A, Schwarz M, Moreno R, Huang JTJ, Elcombe CR, Henderson CJ, Roland Wolf C, Moggs JG, Terranova R. Xenobiotic CAR Activators Induce Dlk1-Dio3 Locus Noncoding RNA Expression in Mouse Liver. Toxicol Sci 2018; 158:367-378. [PMID: 28541575 DOI: 10.1093/toxsci/kfx104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Derisking xenobiotic-induced nongenotoxic carcinogenesis (NGC) represents a significant challenge during the safety assessment of chemicals and therapeutic drugs. The identification of robust mechanism-based NGC biomarkers has the potential to enhance cancer hazard identification. We previously demonstrated Constitutive Androstane Receptor (CAR) and WNT signaling-dependent up-regulation of the pluripotency associated Dlk1-Dio3 imprinted gene cluster noncoding RNAs (ncRNAs) in the liver of mice treated with tumor-promoting doses of phenobarbital (PB). Here, we have compared phenotypic, transcriptional ,and proteomic data from wild-type, CAR/PXR double knock-out and CAR/PXR double humanized mice treated with either PB or chlordane, and show that hepatic Dlk1-Dio3 locus long ncRNAs are upregulated in a CAR/PXR-dependent manner by two structurally distinct CAR activators. We further explored the specificity of Dlk1-Dio3 locus ncRNAs as hepatic NGC biomarkers in mice treated with additional compounds working through distinct NGC modes of action. We propose that up-regulation of Dlk1-Dio3 cluster ncRNAs can serve as an early biomarker for CAR activator-induced nongenotoxic hepatocarcinogenesis and thus may contribute to mechanism-based assessments of carcinogenicity risk for chemicals and novel therapeutics.
Collapse
Affiliation(s)
- Lucie Pouché
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Antonio Vitobello
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Michael Römer
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Milica Glogovac
- Novartis Business Services, Novartis Pharma, CH-4057 Basel, Switzerland
| | - A Kenneth MacLeod
- Division of Cancer Research, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | | - Magdalena Westphal
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Valérie Dubost
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Daniel Philipp Stiehl
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Bérengère Dumotier
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Alexander Fekete
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Pierre Moulin
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Andreas Zell
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Michael Schwarz
- Department of Toxicology, University of Tübingen, 72074 Tübingen, Germany
| | - Rita Moreno
- Division of Cancer Research, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Jeffrey T J Huang
- Biomarker and Drug Analysis Core Facility, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | | | - Colin J Henderson
- Division of Cancer Research, Jacqui Wood Cancer Centre, Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - C Roland Wolf
- Division of Cancer Research, Jacqui Wood Cancer Centre, Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Jonathan G Moggs
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Rémi Terranova
- Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| |
Collapse
|
34
|
Sodium butyrate increases P-gp expression in lung cancer by upregulation of STAT3 and mRNA stabilization of ABCB1. Anticancer Drugs 2018; 29:227-233. [PMID: 29293118 DOI: 10.1097/cad.0000000000000588] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As a new type of anticancer drug, the effect of histone deacetylase inhibitors (HDACIs) in cancer clinical therapy is disappointing owing to drug resistance. P-glycoprotein (P-gp) is clearly recognized as a multidrug resistance protein. However, the relationship between P-gp and sodium butyrate (SB), a kind of HDACIs, has not been investigated. In this study, we found that SB increased mRNA and protein expression of P-gp in lung cancer cells and the underlying mechanisms were elucidated. We found that SB treatment enhanced the mRNA and protein expression of STAT3 rather than that of β-catenin, Foxo3a, PXR, or CAR, which were reported to directly regulate the transcription of ABCB1, a P-gp-encoding gene. Interestingly, inhibition of STAT3 expression obviously attenuated SB-increased P-gp expression in lung cancer cells, indicating that STAT3 played an important role in SB-mediated P-gp upregulation. Furthermore, we found that SB increased the mRNA stability of ABCB1. In summary, this study showed that SB increased P-gp expression by facilitating transcriptional activation and improving ABCB1 mRNA stability. This study indicated that we should pay more attention to HDACIs during cancer clinical therapy.
Collapse
|
35
|
Hardesty JE, Al-Eryani L, Wahlang B, Falkner KC, Shi H, Jin J, Vivace BJ, Ceresa BP, Prough RA, Cave MC. Epidermal Growth Factor Receptor Signaling Disruption by Endocrine and Metabolic Disrupting Chemicals. Toxicol Sci 2018; 162:622-634. [PMID: 29329451 PMCID: PMC5888991 DOI: 10.1093/toxsci/kfy004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study is to identify an environmentally relevant shared receptor target for endocrine and metabolism disrupting chemical pollutants. A feature of the tested chemicals was that they induced Cyp2b10 in vivo implicating activation of the constitutive androstane receptor (CAR). Recent studies suggest that these compounds could be indirect CAR activators via epidermal growth factor receptor (EGFR) inhibition. Assays included a CAR activity reporter assay, EGF endocytosis assay, and EGFR phosphorylation assay. Docking simulations were used to identify putative binding sites for environmental chemicals on the EGFR. Whole-weight and lipid-adjusted serum mean pollutant exposures were determined using data from the National Health and Examination Survey (NHANES) and compared with the IC50 values determined in vitro. Chlordane, trans-nonachlor, PCB-126, PCB-153, and atrazine were the most potent EGFR inhibitors tested. PCB-126, PCB-153, and trans-nonachlor appeared to be competitive EGFR antagonists as they displaced bound EGF from EGFR. However, atrazine acted through a different mechanism and could be an EGFR tyrosine kinase inhibitor. EGFR inhibition relative effect potencies were determined for these compounds. In NHANES, serum concentrations of trans-nonachlor, PCB-126, and PCB-153 greatly exceeded their calculated IC50 values. A common mechanism of action through EGFR inhibition for three diverse classes of metabolic disrupting chemicals was characterized by measuring inhibition of EGFR phosphorylation and EGF-EGFR endocytosis. Based on NHANES data, EGFR inhibition may be an environmentally relevant mode of action for some PCBs, pesticides, and herbicides.
Collapse
Affiliation(s)
| | | | - Banrida Wahlang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - K Cameron Falkner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | | | - Jian Jin
- Department of Pharmacology and Toxicology
| | - Brad J Vivace
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | | | | | - Matthew C Cave
- Department of Biochemistry and Molecular Genetics
- Department of Pharmacology and Toxicology
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40202
- The Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky 40206
- The Jewish Hospital Liver Transplant Program, Louisville, Kentucky 40202
| |
Collapse
|
36
|
Cherian MT, Chai SC, Wright WC, Singh A, Alexandra Casal M, Zheng J, Wu J, Lee RE, Griffin PR, Chen T. CINPA1 binds directly to constitutive androstane receptor and inhibits its activity. Biochem Pharmacol 2018; 152:211-223. [PMID: 29608908 DOI: 10.1016/j.bcp.2018.03.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/28/2018] [Indexed: 01/28/2023]
Abstract
The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that regulate the expression of drug-metabolizing enzymes and efflux transporters. CAR activation promotes drug elimination, thereby reducing therapeutic effectiveness, or causes adverse drug effects via toxic metabolites. CAR inhibitors could be used to attenuate these adverse drug effects. CAR and PXR share ligands and target genes, confounding the understanding of the regulation of receptor-specific activity. We previously identified a small-molecule inhibitor, CINPA1, that inhibits CAR (without activating PXR at lower concentrations) by altering CAR-coregulator interactions and reducing CAR recruitment to DNA response elements of regulated genes. However, solid evidence was not presented for the direct binding of CINPA1 to CAR. In this study, we demonstrate direct interaction of CINPA1 with the CAR ligand-binding domain (CAR-LBD) and identify key residues involved in such interactions through a combination of biophysical and computational methods. We found that CINPA1 resides in the ligand-binding pocket to stabilize the CAR-LBD in a more rigid, less fluid state. Molecular dynamics simulations, together with our previously reported docking model, enabled us to predict which CAR residues were critical for interactions with CINPA1. The importance of these residues for CINPA1 binding were then validated by directed mutations and testing the mutant CAR proteins in transcription reporter and coregulatory interaction assays. We demonstrated strong hydrogen bonding of CINPA1 with N165 and H203 and identified other residues involved in hydrophobic contacts with CINPA1. Overall, our data confirm that CINPA1 directly binds to CAR.
Collapse
Affiliation(s)
- Milu T Cherian
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sergio C Chai
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - William C Wright
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, 920 Madison Avenue, Memphis, TN 38163, USA
| | - Aman Singh
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, 920 Madison Avenue, Memphis, TN 38163, USA
| | - Morgan Alexandra Casal
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; School of Pharmacy, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, USA
| | - Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jing Wu
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Richard E Lee
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Taosheng Chen
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, 920 Madison Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
37
|
Wang H, Huang C, Zhao L, Zhang H, Yang JM, Luo P, Zhan BX, Pan Q, Li J, Wang BL. Histone deacetylase inhibitors regulate P-gp expression in colorectal cancer via transcriptional activation and mRNA stabilization. Oncotarget 2018; 7:49848-49858. [PMID: 27409663 PMCID: PMC5226552 DOI: 10.18632/oncotarget.10488] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/12/2016] [Indexed: 01/08/2023] Open
Abstract
Histone deacetylase inhibitors (HDACIs) are emerging as a novel class of anti-tumor drugs. But the effect of HDACIs in tumors treatment has been disappointing, which mainly due to the acquisition of resistance to HDACIs. However, the underlying mechanisms have not been clearly understood. In this study, it was found that HDACIs SAHA and TSA increased P-gp expression in CRC cells, which has been well known to contribute to drug resistant. The mechanisms underlying these effects were investigated. We showed that HDACIs enhanced transcriptional activity of P-gp protein encoding gene ABCB1. HDACIs treatment also increased the protein and mRNA expression of STAT3, but not PXR, CAR, Foxo3a or β-catenin, which are known to be involved in ABCB transcription regulation. Interestingly, knockdown of STAT3 significantly attenuated HDACIs-induced P-gp up-regulation in colorectal cancer cells, suggesting that STAT3 plays a crucial role in HDACIs-up-regulated P-gp. Furthermore, this study revealed for the first time that HDACIs enhanced the stability of ABCB1 at post-transcriptional level. Taken together, these results proved that HDACIs induced P-gp expression by two distinct ways, transcriptional activation and mRNA stabilization. Our results suggested that more attention should be paid to the cancer treatment using HDACIs since they will induce multidrug resistance in cancer cells.
Collapse
Affiliation(s)
- Hao Wang
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Liang Zhao
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Huan Zhang
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Jing Mo Yang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, West Branch of Anhui Provincial Hospital, Hefei, China
| | - Peng Luo
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Bing-Xiang Zhan
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Qing Pan
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Bao-Long Wang
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
38
|
Kaur J, Sodhi RK, Madan J, Chahal SK, Kumar R. Forskolin convalesces memory in high fat diet-induced dementia in wistar rats—Plausible role of pregnane x receptors. Pharmacol Rep 2018; 70:161-171. [DOI: 10.1016/j.pharep.2017.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/14/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
|
39
|
Oladimeji PO, Chen T. PXR: More Than Just a Master Xenobiotic Receptor. Mol Pharmacol 2018; 93:119-127. [PMID: 29113993 PMCID: PMC5767680 DOI: 10.1124/mol.117.110155] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
Pregnane X receptor (PXR) is a nuclear receptor considered to be a master xenobiotic receptor that coordinately regulates the expression of genes encoding drug-metabolizing enzymes and drug transporters to essentially detoxify and eliminate xenobiotics and endotoxins from the body. In the past several years, the function of PXR in the regulation of xenobiotic metabolism has been extensively studied, and the role of PXR as a xenobiotic sensor has been well established. It is now clear, however, that PXR plays many other roles in addition to its xenobiotic-sensing function. For instance, recent studies have discovered previously unidentified roles of PXR in inflammatory response, cell proliferation, and cell migration. PXR also contributes to the dysregulation of these processes in diseases states. These recent discoveries of the role of PXR in the physiologic and pathophysiologic conditions of other cellular processes provides the possibility of novel targets for drug discovery. This review highlights areas of PXR regulation that require further clarification and summarizes the recent progress in our understanding of the nonxenobiotic functions of PXR that can be explored for relevant therapeutic applications.
Collapse
Affiliation(s)
- Peter O Oladimeji
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
40
|
Runtz L, Girard B, Toussenot M, Espallergues J, Fayd'Herbe De Maudave A, Milman A, deBock F, Ghosh C, Guérineau NC, Pascussi JM, Bertaso F, Marchi N. Hepatic and hippocampal cytochrome P450 enzyme overexpression during spontaneous recurrent seizures. Epilepsia 2017; 59:123-134. [PMID: 29125184 DOI: 10.1111/epi.13942] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Available evidence points to a role of cytochrome P450 (Cyp) drug biotransformation enzymes in central nervous system diseases, including epilepsy. Deviations in drug pharmacokinetic profiles may impact therapeutic outcomes. Here, we ask whether spontaneous recurrent seizure (SRS) activity is sufficient to modulate the expression of major Cyp enzymes in the liver and brain. METHODS Unilateral intrahippocampal (IH) kainic acid (KA) injections were used to elicit nonconvulsive status epilepticus (SE), epileptogenesis, and SRS, as monitored by video-electroencephalography. Intraperitoneal (IP) KA injection was used to trigger generalized tonic-clonic SE. KA-injected mice and sham controls were sacrificed at 24-72 hours and 1 week post-SE (IH or IP KA), and during the chronic stage (SRS; 6 weeks post-IH KA). Liver and brain tissues were processed for histology, real-time quantitative polymerase chain reaction, Western blot, or microsomal enzymatic assay. Cyp2e1, Cyp3a13, glial fibrillary acidic protein (GFAP), IBA1, xenobiotic nuclear receptors nr1i2 (PXR), nr1i3 (CAR) and nr3c1 (glucocorticoid receptor [GR]) expression was examined. Serum samples were obtained to assay corticosterone levels, a GR activator. RESULTS A significant increase of Cyp3a13 and Cyp2e1 transcript level and protein expression was found in the liver and hippocampi during SRS, as compared to control mice. In the ipsilateral hippocampus, Cyp2e1 and Cyp3a protein upregulation during SRS positively correlated to GFAP expression. GFAP+ , and not IBA1+ , cells colocalized with Cyp2e1 or Cyp3a expression. In the liver, a trend increase in Cyp3a microsomal activity was found during SRS as compared to control mice. The transcript levels of the Cyp upstream regulators GR, xenobiotic nr1i2, and nr1i3 receptors were unchanged at SRS. Corticosterone levels, a GR ligand, were increased in the blood post-SE. SIGNIFICANCE SRS modifies Cyp expression in the liver and the hippocampus. Nuclear receptors or inflammatory pathways are candidate mechanisms of Cyp regulation during seizures.
Collapse
Affiliation(s)
- Leonie Runtz
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| | - Benoit Girard
- Laboratory of Pathophysiology of Synaptic Transmission, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| | - Marion Toussenot
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| | | | - Alexis Fayd'Herbe De Maudave
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| | - Alexandre Milman
- Ion channels in Neuronal Excitability and Diseases, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| | - Frederic deBock
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| | - Chaitali Ghosh
- Cerebrovascular Research, Cleveland Clinic, Cleveland, OH, USA
| | - Nathalie C Guérineau
- Ion channels in Neuronal Excitability and Diseases, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| | - Jean-Marc Pascussi
- Laboratory of Self-Renewal and Differentiation of Epithelia, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| | - Federica Bertaso
- Laboratory of Pathophysiology of Synaptic Transmission, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| | - Nicola Marchi
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM), Montpellier, France
| |
Collapse
|
41
|
Wang X, Martínez MA, Wu Q, Ares I, Martínez-Larrañaga MR, Anadón A, Yuan Z. Fipronil insecticide toxicology: oxidative stress and metabolism. Crit Rev Toxicol 2016; 46:876-899. [DOI: 10.1080/10408444.2016.1223014] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Park S, Cheng SL, Cui JY. Characterizing drug-metabolizing enzymes and transporters that are bona fide CAR-target genes in mouse intestine. Acta Pharm Sin B 2016; 6:475-491. [PMID: 27709017 PMCID: PMC5045557 DOI: 10.1016/j.apsb.2016.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/29/2016] [Accepted: 05/20/2016] [Indexed: 12/26/2022] Open
Abstract
Intestine is responsible for the biotransformation of many orally-exposed chemicals. The constitutive androstane receptor (CAR/Nr1i3) is known to up-regulate many genes encoding drug-metabolizing enzymes and transporters (drug-processing genes/DPGs) in liver, but less is known regarding its effect in intestine. Sixty-day-old wild-type and Car−/− mice were administered the CAR-ligand TCPOBOP or vehicle once daily for 4 days. In wild-type mice, Car mRNA was down-regulated by TCPOBOP in liver and duodenum. Car−/− mice had altered basal intestinal expression of many DPGs in a section-specific manner. Consistent with the liver data (Aleksunes and Klaassen, 2012), TCPOBOP up-regulated many DPGs (Cyp2b10, Cyp3a11, Aldh1a1, Aldh1a7, Gsta1, Gsta4, Gstm1-m4, Gstt1, Ugt1a1, Ugt2b34, Ugt2b36, and Mrp2–4) in specific sections of small intestine in a CAR-dependent manner. However, the mRNAs of Nqo1 and Papss2 were previously known to be up-regulated by TCPOBOP in liver but were not altered in intestine. Interestingly, many known CAR-target genes were highest expressed in colon where CAR is minimally expressed, suggesting that additional regulators are involved in regulating their expression. In conclusion, CAR regulates the basal expression of many DPGs in intestine, and although many hepatic CAR-targeted DPGs were bona fide CAR-targets in intestine, pharmacological activation of CAR in liver and intestine are not identical.
Collapse
Key Words
- Aldh, aldehyde dehydrogenase
- Asbt, solute carrier family 10, member 2 (apical sodium/bile acid cotransporter)
- CAR
- CAR, constitutive androstane receptor
- CITCO, 6-(4-chlorophenyl)imidazo [2,1-b](1,3)thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime
- Cq, quantification cycle
- Cyp, cytochrome P450
- DPGs, drug-processing genes (genes that encodes drug metabolizing enzymes or transporters)
- Drug-metabolizing enzymes
- Drug-processing genes
- Gst, glutathione S-trasnferase
- H3, Histone 3
- HRP, horseradish peroxidase
- Intestine
- Mice
- Mrp, multi-drug resistance-associated protein (ABC transporter family C member)
- Nqo1, NAD(P)H dehydrogenase quinone 1
- Nrf2, nuclear factor erythroid 2-related factor 2
- Oatp, organic anion transporting polypeptide (solute carrier organic anion transporter family member)
- PBS, phosphate-buffered saline
- PBST, phosphate-buffered saline with 0.05% tween 20
- PPARα, peroxisome proliferator activated receptor alpha
- PVDF, polyvinylidene difluoride
- Papss2, 3ʹ-phosphoadenosine 5ʹ-phosphosulfate synthase 2
- ST buffer, sucrose Tris buffer
- Sult, sulfotransferase
- TCPOBOP, 3,3ʹ,5,5ʹ-tetrachloro-1,4-bis(pyridyloxy)benzene
- Transporters
- Ugt, UDP glucuronosyltransferase
- WT, wild-type
- cDNA, complementary DNA
- ddCq, delta delta Cq
- hCAR, human constitutive androstane receptor
- qPCR, quantitative polymerase chain reaction
Collapse
|
43
|
Chai SC, Cherian MT, Wang YM, Chen T. Small-molecule modulators of PXR and CAR. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:1141-1154. [PMID: 26921498 PMCID: PMC4975625 DOI: 10.1016/j.bbagrm.2016.02.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/06/2016] [Accepted: 02/06/2016] [Indexed: 12/27/2022]
Abstract
Two nuclear receptors, the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), participate in the xenobiotic detoxification system by regulating the expression of drug-metabolizing enzymes and transporters in order to degrade and excrete foreign chemicals or endogenous metabolites. This review aims to expand the perceived relevance of PXR and CAR beyond their established role as master xenosensors to disease-oriented areas, emphasizing their modulation by small molecules. Structural studies of these receptors have provided much-needed insight into the nature of their binding promiscuity and the important elements that lead to ligand binding. Reports of species- and isoform-selective activation highlight the need for further scrutiny when extrapolating from animal data to humans, as animal models are at the forefront of early drug discovery. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Sergio C Chai
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Milu T Cherian
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yue-Ming Wang
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
44
|
Nagai M, Konno Y, Satsukawa M, Yamashita S, Yoshinari K. Establishment of In Silico Prediction Models for CYP3A4 and CYP2B6 Induction in Human Hepatocytes by Multiple Regression Analysis Using Azole Compounds. Drug Metab Dispos 2016; 44:1390-8. [PMID: 27208383 DOI: 10.1124/dmd.115.068619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 05/18/2016] [Indexed: 11/22/2022] Open
Abstract
Drug-drug interactions (DDIs) via cytochrome P450 (P450) induction are one clinical problem leading to increased risk of adverse effects and the need for dosage adjustments and additional therapeutic monitoring. In silico models for predicting P450 induction are useful for avoiding DDI risk. In this study, we have established regression models for CYP3A4 and CYP2B6 induction in human hepatocytes using several physicochemical parameters for a set of azole compounds with different P450 induction as characteristics as model compounds. To obtain a well-correlated regression model, the compounds for CYP3A4 or CYP2B6 induction were independently selected from the tested azole compounds using principal component analysis with fold-induction data. Both of the multiple linear regression models obtained for CYP3A4 and CYP2B6 induction are represented by different sets of physicochemical parameters. The adjusted coefficients of determination for these models were of 0.8 and 0.9, respectively. The fold-induction of the validation compounds, another set of 12 azole-containing compounds, were predicted within twofold limits for both CYP3A4 and CYP2B6. The concordance for the prediction of CYP3A4 induction was 87% with another validation set, 23 marketed drugs. However, the prediction of CYP2B6 induction tended to be overestimated for these marketed drugs. The regression models show that lipophilicity mostly contributes to CYP3A4 induction, whereas not only the lipophilicity but also the molecular polarity is important for CYP2B6 induction. Our regression models, especially that for CYP3A4 induction, might provide useful methods to avoid potent CYP3A4 or CYP2B6 inducers during the lead optimization stage without performing induction assays in human hepatocytes.
Collapse
Affiliation(s)
- Mika Nagai
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical, Kyoto, Japan (M.N., Y.K., M.S.); Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (M.N., K.Y.); and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan (S.Y.)
| | - Yoshihiro Konno
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical, Kyoto, Japan (M.N., Y.K., M.S.); Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (M.N., K.Y.); and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan (S.Y.)
| | - Masahiro Satsukawa
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical, Kyoto, Japan (M.N., Y.K., M.S.); Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (M.N., K.Y.); and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan (S.Y.)
| | - Shinji Yamashita
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical, Kyoto, Japan (M.N., Y.K., M.S.); Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (M.N., K.Y.); and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan (S.Y.)
| | - Kouichi Yoshinari
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical, Kyoto, Japan (M.N., Y.K., M.S.); Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (M.N., K.Y.); and Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan (S.Y.)
| |
Collapse
|
45
|
Ochsner SA, Tsimelzon A, Dong J, Coarfa C, McKenna NJ. Research Resource: A Reference Transcriptome for Constitutive Androstane Receptor and Pregnane X Receptor Xenobiotic Signaling. Mol Endocrinol 2016; 30:937-48. [PMID: 27409825 DOI: 10.1210/me.2016-1095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The pregnane X receptor (PXR) (PXR/NR1I3) and constitutive androstane receptor (CAR) (CAR/NR1I2) members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors are well-characterized mediators of xenobiotic and endocrine-disrupting chemical signaling. The Nuclear Receptor Signaling Atlas maintains a growing library of transcriptomic datasets involving perturbations of NR signaling pathways, many of which involve perturbations relevant to PXR and CAR xenobiotic signaling. Here, we generated a reference transcriptome based on the frequency of differential expression of genes across 159 experiments compiled from 22 datasets involving perturbations of CAR and PXR signaling pathways. In addition to the anticipated overrepresentation in the reference transcriptome of genes encoding components of the xenobiotic stress response, the ranking of genes involved in carbohydrate metabolism and gonadotropin action sheds mechanistic light on the suspected role of xenobiotics in metabolic syndrome and reproductive disorders. Gene Set Enrichment Analysis showed that although acetaminophen, chlorpromazine, and phenobarbital impacted many similar gene sets, differences in direction of regulation were evident in a variety of processes. Strikingly, gene sets representing genes linked to Parkinson's, Huntington's, and Alzheimer's diseases were enriched in all 3 transcriptomes. The reference xenobiotic transcriptome will be supplemented with additional future datasets to provide the community with a continually updated reference transcriptomic dataset for CAR- and PXR-mediated xenobiotic signaling. Our study demonstrates how aggregating and annotating transcriptomic datasets, and making them available for routine data mining, facilitates research into the mechanisms by which xenobiotics and endocrine-disrupting chemicals subvert conventional NR signaling modalities.
Collapse
Affiliation(s)
- Scott A Ochsner
- Departments of Molecular and Cellular Biology (S.A.O., J.D., C.C., N.J.M.) and Lester and Sue Smith Breast Center (A.T.) and the Nuclear Receptor Signaling Atlas Informatics Group (S.A.O., N.J.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Anna Tsimelzon
- Departments of Molecular and Cellular Biology (S.A.O., J.D., C.C., N.J.M.) and Lester and Sue Smith Breast Center (A.T.) and the Nuclear Receptor Signaling Atlas Informatics Group (S.A.O., N.J.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Jianrong Dong
- Departments of Molecular and Cellular Biology (S.A.O., J.D., C.C., N.J.M.) and Lester and Sue Smith Breast Center (A.T.) and the Nuclear Receptor Signaling Atlas Informatics Group (S.A.O., N.J.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Cristian Coarfa
- Departments of Molecular and Cellular Biology (S.A.O., J.D., C.C., N.J.M.) and Lester and Sue Smith Breast Center (A.T.) and the Nuclear Receptor Signaling Atlas Informatics Group (S.A.O., N.J.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Neil J McKenna
- Departments of Molecular and Cellular Biology (S.A.O., J.D., C.C., N.J.M.) and Lester and Sue Smith Breast Center (A.T.) and the Nuclear Receptor Signaling Atlas Informatics Group (S.A.O., N.J.M.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
46
|
Ogata N, Kozaki T, Yokoyama T, Hata T, Iwabuchi K. Comparison between the Amount of Environmental Change and the Amount of Transcriptome Change. PLoS One 2015; 10:e0144822. [PMID: 26657512 PMCID: PMC4678807 DOI: 10.1371/journal.pone.0144822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/24/2015] [Indexed: 01/09/2023] Open
Abstract
Cells must coordinate adjustments in genome expression to accommodate changes in their environment. We hypothesized that the amount of transcriptome change is proportional to the amount of environmental change. To capture the effects of environmental changes on the transcriptome, we compared transcriptome diversities (defined as the Shannon entropy of frequency distribution) of silkworm fat-body tissues cultured with several concentrations of phenobarbital. Although there was no proportional relationship, we did identify a drug concentration “tipping point” between 0.25 and 1.0 mM. Cells cultured in media containing lower drug concentrations than the tipping point showed uniformly high transcriptome diversities, while those cultured at higher drug concentrations than the tipping point showed uniformly low transcriptome diversities. The plasticity of transcriptome diversity was corroborated by cultivations of fat bodies in MGM-450 insect medium without phenobarbital and in 0.25 mM phenobarbital-supplemented MGM-450 insect medium after previous cultivation (cultivation for 80 hours in MGM-450 insect medium without phenobarbital, followed by cultivation for 10 hours in 1.0 mM phenobarbital-supplemented MGM-450 insect medium). Interestingly, the transcriptome diversities of cells cultured in media containing 0.25 mM phenobarbital after previous cultivation (cultivation for 80 hours in MGM-450 insect medium without phenobarbital, followed by cultivation for 10 hours in 1.0 mM phenobarbital-supplemented MGM-450 insect medium) were different from cells cultured in media containing 0.25 mM phenobarbital after previous cultivation (cultivation for 80 hours in MGM-450 insect medium without phenobarbital). This hysteretic phenomenon of transcriptome diversities indicates multi-stability of the genome expression system. Cellular memories were recorded in genome expression networks as in DNA/histone modifications.
Collapse
Affiliation(s)
- Norichika Ogata
- Nihon BioData Corporation, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213–0012, Japan
- * E-mail:
| | - Toshinori Kozaki
- Human Resource Development Program in Agricultural Genome Sciences, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183–8501, Japan
| | - Takeshi Yokoyama
- Laboratory of Sericultural Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183–8501, Japan
| | - Tamako Hata
- National Institute of Agrobiological Sciences, Owashi 1–2, Tsukuba, Ibaraki, 305–8634, Japan
| | - Kikuo Iwabuchi
- Laboratory of Applied Entomology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183–8501, Japan
| |
Collapse
|
47
|
Cherian MT, Chai SC, Chen T. Small-molecule modulators of the constitutive androstane receptor. Expert Opin Drug Metab Toxicol 2015; 11:1099-114. [PMID: 25979168 DOI: 10.1517/17425255.2015.1043887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION The constitutive androstane receptor (CAR) induces drug-metabolizing enzymes for xenobiotic metabolism. AREAS COVERED This review covers recent advances in elucidating the biological functions of CAR and its modulation by a growing number of agonists and inhibitors. EXPERT OPINION Extrapolation of animal CAR function to that of humans should be carefully scrutinized, particularly when rodents are used in evaluating the metabolic profile and carcinogenic properties of clinical drugs and environmental chemicals. Continuous efforts are needed to discover novel CAR inhibitors, with extensive understanding of their inhibitory mechanism, species selectivity, and discriminating power against other xenobiotic sensors.
Collapse
Affiliation(s)
- Milu T Cherian
- Postdoctoral fellow, St. Jude Children's Research Hospital, Department of Chemical Biology and Therapeutics , 262 Danny Thomas Place, Memphis, TN 38105 , USA
| | | | | |
Collapse
|
48
|
Cherian MT, Lin W, Wu J, Chen T. CINPA1 is an inhibitor of constitutive androstane receptor that does not activate pregnane X receptor. Mol Pharmacol 2015; 87:878-89. [PMID: 25762023 PMCID: PMC4407736 DOI: 10.1124/mol.115.097782] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/11/2015] [Indexed: 11/22/2022] Open
Abstract
Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function.
Collapse
Affiliation(s)
- Milu T Cherian
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
49
|
Riley RJ, Wilson CE. Cytochrome P450 time-dependent inhibition and induction: advances in assays, risk analysis and modelling. Expert Opin Drug Metab Toxicol 2015; 11:557-72. [PMID: 25659570 DOI: 10.1517/17425255.2015.1013095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION It is widely accepted that current practice of polypharmacy inevitably increases the incidence of drug-drug interactions (DDIs). Serious DDIs are a major liability for new molecular entities entering the pharmaceutical market. Various strategies are employed to avoid problematic compounds for clinical development. Progress made with reversible CYP DDIs has prompted a switch to study and model time-dependent inhibition and induction interactions. AREAS COVERED An overview of popular experimental practices is presented with discussion of techniques and algorithms used to analyse the clinical DDI risk. Emphasis is placed on the transition from early, simple static equations, via more complex net mechanistic, static models to dynamic approaches involving multiple perpetrators and metabolites, simultaneous inhibition and induction. EXPERT OPINION Inclusion of the more conservative terms for parameters required for DDI evaluation may eliminate promising chemical space, encourages poor practice and hampers innovation. Breakthroughs have originated from understanding of 'outliers' from such analyses where CYP enzyme-transporter interplay may be involved. The role of key transporters in drug disposition is firmly established as the chemistry required to address new targets deviates from traditional 'drug-like' space. Attempts to model more complex interactions for substrates of both CYP enzymes and drug transporters are still in their infancy and will benefit from dynamic modelling.
Collapse
Affiliation(s)
- Robert J Riley
- Evotec (UK) Ltd , 114 Innovation Drive, Milton Park, Abingdon, Oxon, OX14 4RZ , UK +44 1235 861561 ; +44 1235 863139 ;
| | | |
Collapse
|
50
|
Frye CA. Endocrine-disrupting chemicals: elucidating our understanding of their role in sex and gender-relevant end points. VITAMINS AND HORMONES 2014; 94:41-98. [PMID: 24388187 DOI: 10.1016/b978-0-12-800095-3.00003-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are diverse and pervasive and may have significant consequence for health, including reproductive development and expression of sex-/gender-sensitive parameters. This review chapter discusses what is known about common EDCs and their effects on reproductively relevant end points. It is proposed that one way that EDCs may exert such effects is by altering steroid levels (androgens or 17-estradiol, E₂) and/or intracellular E₂ receptors (ERs) in the hypothalamus and/or hippocampus. Basic research findings that demonstrate developmentally sensitive end points to androgens and E₂ are provided. Furthermore, an approach is suggested to examine differences in EDCs that diverge in their actions at ERs to elucidate their role in sex-/gender-sensitive parameters.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY, Albany, New York, USA; Department of Biological Sciences, The University at Albany-SUNY, Albany, New York, USA; The Center for Neuroscience Research, The University at Albany-SUNY, Albany, New York, USA; The Center for Life Sciences Research, The University at Albany-SUNY, Albany, New York, USA; Department of Chemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA; IDeA Network of Biomedical Excellence (INBRE), University of Alaska Fairbanks, Fairbanks, Alaska, USA; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA.
| |
Collapse
|