1
|
Abstract
Diseases associated with nicotine dependence in the form of habitual tobacco use are a major cause of premature death in the United States. The majority of tobacco smokers will relapse within the first month of attempted abstinence. Smoking cessation agents increase the likelihood that smokers can achieve long-term abstinence. Nevertheless, currently available smoking cessation agents have limited utility and fail to prevent relapse in the majority of smokers. Pharmacotherapy is therefore an effective strategy to aid smoking cessation efforts but considerable risk of relapse persists even when the most efficacious medications currently available are used. The past decade has seen major breakthroughs in our understanding of the molecular, cellular, and systems-level actions of nicotine in the brain that contribute to the development and maintenance of habitual tobacco use. In parallel, large-scale human genetics studies have revealed allelic variants that influence vulnerability to tobacco use disorder. These advances have revealed targets for the development of novel smoking cessation agents. Here, we summarize current efforts to develop smoking cessation therapeutics and highlight opportunities for future efforts.
Collapse
Affiliation(s)
- Dana Lengel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul J. Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute (DDI), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Theodoulou A, Chepkin SC, Ye W, Fanshawe TR, Bullen C, Hartmann-Boyce J, Livingstone-Banks J, Hajizadeh A, Lindson N. Different doses, durations and modes of delivery of nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev 2023; 6:CD013308. [PMID: 37335995 PMCID: PMC10278922 DOI: 10.1002/14651858.cd013308.pub2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
BACKGROUND Nicotine replacement therapy (NRT) aims to replace nicotine from cigarettes. This helps to reduce cravings and withdrawal symptoms, and ease the transition from cigarette smoking to complete abstinence. Although there is high-certainty evidence that NRT is effective for achieving long-term smoking abstinence, it is unclear whether different forms, doses, durations of treatment or timing of use impacts its effects. OBJECTIVES To determine the effectiveness and safety of different forms, deliveries, doses, durations and schedules of NRT, for achieving long-term smoking cessation. SEARCH METHODS We searched the Cochrane Tobacco Addiction Group trials register for papers mentioning NRT in the title, abstract or keywords, most recently in April 2022. SELECTION CRITERIA We included randomised trials in people motivated to quit, comparing one type of NRT use with another. We excluded studies that did not assess cessation as an outcome, with follow-up of fewer than six months, and with additional intervention components not matched between arms. Separate reviews cover studies comparing NRT to control, or to other pharmacotherapies. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methods. We measured smoking abstinence after at least six months, using the most rigorous definition available. We extracted data on cardiac adverse events (AEs), serious adverse events (SAEs) and study withdrawals due to treatment. MAIN RESULTS: We identified 68 completed studies with 43,327 participants, five of which are new to this update. Most completed studies recruited adults either from the community or from healthcare clinics. We judged 28 of the 68 studies to be at high risk of bias. Restricting the analysis only to those studies at low or unclear risk of bias did not significantly alter results for any comparisons apart from the preloading comparison, which tested the effect of using NRT prior to quit day whilst still smoking. There is high-certainty evidence that combination NRT (fast-acting form plus patch) results in higher long-term quit rates than single form (risk ratio (RR) 1.27, 95% confidence interval (CI) 1.17 to 1.37; I2 = 12%; 16 studies, 12,169 participants). Moderate-certainty evidence, limited by imprecision, indicates that 42/44 mg patches are as effective as 21/22 mg (24-hour) patches (RR 1.09, 95% CI 0.93 to 1.29; I2 = 38%; 5 studies, 1655 participants), and that 21 mg patches are more effective than 14 mg (24-hour) patches (RR 1.48, 95% CI 1.06 to 2.08; 1 study, 537 participants). Moderate-certainty evidence, again limited by imprecision, also suggests a benefit of 25 mg over 15 mg (16-hour) patches, but the lower limit of the CI encompassed no difference (RR 1.19, 95% CI 1.00 to 1.41; I2 = 0%; 3 studies, 3446 participants). Nine studies tested the effect of using NRT prior to quit day (preloading) in comparison to using it from quit day onward. There was moderate-certainty evidence, limited by risk of bias, of a favourable effect of preloading on abstinence (RR 1.25, 95% CI 1.08 to 1.44; I2 = 0%; 9 studies, 4395 participants). High-certainty evidence from eight studies suggests that using either a form of fast-acting NRT or a nicotine patch results in similar long-term quit rates (RR 0.90, 95% CI 0.77 to 1.05; I2 = 0%; 8 studies, 3319 participants). We found no clear evidence of an effect of duration of nicotine patch use (low-certainty evidence); duration of combination NRT use (low- and very low-certainty evidence); or fast-acting NRT type (very low-certainty evidence). Cardiac AEs, SAEs and withdrawals due to treatment were all measured variably and infrequently across studies, resulting in low- or very low-certainty evidence for all comparisons. Most comparisons found no clear evidence of an effect on these outcomes, and rates were low overall. More withdrawals due to treatment were reported in people using nasal spray compared to patches in one study (RR 3.47, 95% CI 1.15 to 10.46; 1 study, 922 participants; very low-certainty evidence) and in people using 42/44 mg patches in comparison to 21/22 mg patches across two studies (RR 4.99, 95% CI 1.60 to 15.50; I2 = 0%; 2 studies, 544 participants; low-certainty evidence). AUTHORS' CONCLUSIONS There is high-certainty evidence that using combination NRT versus single-form NRT and 4 mg versus 2 mg nicotine gum can result in an increase in the chances of successfully stopping smoking. Due to imprecision, evidence was of moderate certainty for patch dose comparisons. There is some indication that the lower-dose nicotine patches and gum may be less effective than higher-dose products. Using a fast-acting form of NRT, such as gum or lozenge, resulted in similar quit rates to nicotine patches. There is moderate-certainty evidence that using NRT before quitting may improve quit rates versus using it from quit date only; however, further research is needed to ensure the robustness of this finding. Evidence for the comparative safety and tolerability of different types of NRT use is limited. New studies should ensure that AEs, SAEs and withdrawals due to treatment are reported.
Collapse
Affiliation(s)
- Annika Theodoulou
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Samantha C Chepkin
- NHS Hertfordshire and West Essex Integrated Care Board, Welwyn Garden City, UK
| | - Weiyu Ye
- Oxford University Clinical Academic Graduate School, University of Oxford, Oxford, UK
| | - Thomas R Fanshawe
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Chris Bullen
- National Institute for Health Innovation, University of Auckland, Auckland, New Zealand
| | - Jamie Hartmann-Boyce
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | | | - Anisa Hajizadeh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Nicola Lindson
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Prom-Wormley EC, Wells JL, Landes L, Edmondson AN, Sankoh M, Jamieson B, Delk KJ, Surya S, Bhati S, Clifford J. A scoping review of smoking cessation pharmacogenetic studies to advance future research across racial, ethnic, and ancestral populations. Front Genet 2023; 14:1103966. [PMID: 37359362 PMCID: PMC10285878 DOI: 10.3389/fgene.2023.1103966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/25/2023] [Indexed: 06/28/2023] Open
Abstract
Abstinence rates among smokers attempting to quit remain low despite the wide availability and accessibility of pharmacological smoking cessation treatments. In addition, the prevalence of cessation attempts and abstinence differs by individual-level social factors such as race and ethnicity. Clinical treatment of nicotine dependence also continues to be challenged by individual-level variability in effectiveness to promote abstinence. The use of tailored smoking cessation strategies that incorporate information on individual-level social and genetic factors hold promise, although additional pharmacogenomic knowledge is still needed. In particular, genetic variants associated with pharmacological responses to smoking cessation treatment have generally been conducted in populations with participants that self-identify as White race or who are determined to be of European genetic ancestry. These results may not adequately capture the variability across all smokers as a result of understudied differences in allele frequencies across genetic ancestry populations. This suggests that much of the current pharmacogenetic study results for smoking cessation may not apply to all populations. Therefore, clinical application of pharmacogenetic results may exacerbate health inequities by racial and ethnic groups. This scoping review examines the extent to which racial, ethnic, and ancestral groups that experience differences in smoking rates and smoking cessation are represented in the existing body of published pharmacogenetic studies of smoking cessation. We will summarize results by race, ethnicity, and ancestry across pharmacological treatments and study designs. We will also explore current opportunities and challenges in conducting pharmacogenomic research on smoking cessation that encourages greater participant diversity, including practical barriers to clinical utilization of pharmacological smoking cessation treatment and clinical implementation of pharmacogenetic knowledge.
Collapse
Affiliation(s)
- Elizabeth C. Prom-Wormley
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Jonathan L. Wells
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Lori Landes
- Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Amy N. Edmondson
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Mariam Sankoh
- Department of Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Brendan Jamieson
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Kayla J. Delk
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Sanya Surya
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Shambhavi Bhati
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - James Clifford
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, United States
| |
Collapse
|
4
|
Ely AV, Wetherill RR. Reward and inhibition in obesity and cigarette smoking: Neurobiological overlaps and clinical implications. Physiol Behav 2023; 260:114049. [PMID: 36470508 PMCID: PMC10694810 DOI: 10.1016/j.physbeh.2022.114049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Cigarette smoking and obesity are the leading causes of premature morbidity and mortality and increase the risk of all-cause mortality four-fold when comorbid. Individuals with these conditions demonstrate neurobiological and behavioral differences regarding how they respond to rewarding stimuli or engage in inhibitory control. This narrative review examines the role of reward and inhibition in cigarette smoking and obesity independently, as well as recent research demonstrating an effect of increased body mass index (BMI) on neurocognitive function in individuals who smoke. It is possible that chronic smoking and overeating of highly palatable food, contributing to obesity, dysregulates reward neurocircuitry, subsequently leading to hypofunction of brain networks associated with inhibitory control. These brain changes do not appear to be specific to food or nicotine and, as a result, can potentiate continued cross-use. Changes to reward and inhibitory function due to increased BMI may also make cessation more difficult for those comorbid for obesity and smoking.
Collapse
Affiliation(s)
- Alice V Ely
- Cooper University Health Care, Center for Healing, Division of Addiction Medicine, Camden, NJ 08103, USA.
| | - Reagan R Wetherill
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Savarese AM, Metten P, Phillips TJ, Jensen BE, Crabbe JC, Ozburn AR. Midazolam, methamphetamine, morphine and nicotine intake in high-drinking-in-the-dark mice. Addict Biol 2022; 27:e13212. [PMID: 36001437 PMCID: PMC9677807 DOI: 10.1111/adb.13212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
The high-drinking-in-the-dark (HDID) lines of mice were selectively bred for achieving high blood alcohol levels in the drinking-in-the-dark (DID) task and have served as a unique genetic risk model for binge-like alcohol intake. However, little is known about their willingness to consume other addictive drugs. Here, we examined (a) whether the HDID-1 and HDID-2 lines of mice would voluntarily consume midazolam, methamphetamine, morphine and nicotine in a DID test and (b) whether the HDID lines differ from their founders, heterogeneous stock/Northport (HS/NPT), in consumption levels of these drugs at the concentrations tested. Separate groups of HDID-1, HDID-2 and HS/NPT mice were given 4 days of access to each drug, using the single-bottle, limited-access DID paradigm. Male and female mice of both HDID lines consumed all four offered drugs. We observed no genotype differences in 40 μg/ml methamphetamine intake, but significant differences in nicotine, midazolam and morphine intake. Both HDID lines drank significantly more (150 μg/ml) midazolam than their founders, providing strong support for a shared genetic contribution to binge ethanol and midazolam intake. HDID-2 mice, but not HDID-1 mice, consumed more morphine (700 μg/ml) and more nicotine across a range of concentrations than HS/NPT mice. These results demonstrate that the HDID mice can be utilized for tests of voluntary drug consumption other than ethanol and highlight potentially important differences between HDID lines in risk for elevated drug intake.
Collapse
Affiliation(s)
- Antonia M. Savarese
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, USA
| | - Pamela Metten
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, USA
- VA Portland Health Care System, Portland, USA
| | - Tamara J. Phillips
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, USA
- VA Portland Health Care System, Portland, USA
| | - Bryan E. Jensen
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, USA
- VA Portland Health Care System, Portland, USA
| | - John C. Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, USA
- VA Portland Health Care System, Portland, USA
| | - Angela R. Ozburn
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, USA
- VA Portland Health Care System, Portland, USA
| |
Collapse
|
6
|
Degrandmaison J, Rochon-Haché S, Parent JL, Gendron L. Knock-In Mouse Models to Investigate the Functions of Opioid Receptors in vivo. Front Cell Neurosci 2022; 16:807549. [PMID: 35173584 PMCID: PMC8841419 DOI: 10.3389/fncel.2022.807549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 12/28/2022] Open
Abstract
Due to their low expression levels, complex multi-pass transmembrane structure, and the current lack of highly specific antibodies, the assessment of endogenous G protein-coupled receptors (GPCRs) remains challenging. While most of the research regarding their functions was performed in heterologous systems overexpressing the receptor, recent advances in genetic engineering methods have allowed the generation of several unique mouse models. These animals proved to be useful to investigate numerous aspects underlying the physiological functions of GPCRs, including their endogenous expression, distribution, interactome, and trafficking processes. Given their significant pharmacological importance and central roles in the nervous system, opioid peptide receptors (OPr) are often referred to as prototypical receptors for the study of GPCR regulatory mechanisms. Although only a few GPCR knock-in mouse lines have thus far been generated, OPr are strikingly well represented with over 20 different knock-in models, more than half of which were developed within the last 5 years. In this review, we describe the arsenal of OPr (mu-, delta-, and kappa-opioid), as well as the opioid-related nociceptin/orphanin FQ (NOP) receptor knock-in mouse models that have been generated over the past years. We further highlight the invaluable contribution of such models to our understanding of the in vivo mechanisms underlying the regulation of OPr, which could be conceivably transposed to any other GPCR, as well as the limitations, future perspectives, and possibilities enabled by such tools.
Collapse
Affiliation(s)
- Jade Degrandmaison
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Network of Junior Pain Investigators, Sherbrooke, QC, Canada
| | - Samuel Rochon-Haché
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Network of Junior Pain Investigators, Sherbrooke, QC, Canada
| | - Jean-Luc Parent
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Jean-Luc Parent,
| | - Louis Gendron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Pain Research Network, Sherbrooke, QC, Canada
- *Correspondence: Louis Gendron,
| |
Collapse
|
7
|
Hartmann-Boyce J, Theodoulou A, Farley A, Hajek P, Lycett D, Jones LL, Kudlek L, Heath L, Hajizadeh A, Schenkels M, Aveyard P. Interventions for preventing weight gain after smoking cessation. Cochrane Database Syst Rev 2021; 10:CD006219. [PMID: 34611902 PMCID: PMC8493442 DOI: 10.1002/14651858.cd006219.pub4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Most people who stop smoking gain weight. This can discourage some people from making a quit attempt and risks offsetting some, but not all, of the health advantages of quitting. Interventions to prevent weight gain could improve health outcomes, but there is a concern that they may undermine quitting. OBJECTIVES To systematically review the effects of: (1) interventions targeting post-cessation weight gain on weight change and smoking cessation (referred to as 'Part 1') and (2) interventions designed to aid smoking cessation that plausibly affect post-cessation weight gain (referred to as 'Part 2'). SEARCH METHODS Part 1 - We searched the Cochrane Tobacco Addiction Group's Specialized Register and CENTRAL; latest search 16 October 2020. Part 2 - We searched included studies in the following 'parent' Cochrane reviews: nicotine replacement therapy (NRT), antidepressants, nicotine receptor partial agonists, e-cigarettes, and exercise interventions for smoking cessation published in Issue 10, 2020 of the Cochrane Library. We updated register searches for the review of nicotine receptor partial agonists. SELECTION CRITERIA Part 1 - trials of interventions that targeted post-cessation weight gain and had measured weight at any follow-up point or smoking cessation, or both, six or more months after quit day. Part 2 - trials included in the selected parent Cochrane reviews reporting weight change at any time point. DATA COLLECTION AND ANALYSIS Screening and data extraction followed standard Cochrane methods. Change in weight was expressed as difference in weight change from baseline to follow-up between trial arms and was reported only in people abstinent from smoking. Abstinence from smoking was expressed as a risk ratio (RR). Where appropriate, we performed meta-analysis using the inverse variance method for weight, and Mantel-Haenszel method for smoking. MAIN RESULTS Part 1: We include 37 completed studies; 21 are new to this update. We judged five studies to be at low risk of bias, 17 to be at unclear risk and the remainder at high risk. An intermittent very low calorie diet (VLCD) comprising full meal replacement provided free of charge and accompanied by intensive dietitian support significantly reduced weight gain at end of treatment compared with education on how to avoid weight gain (mean difference (MD) -3.70 kg, 95% confidence interval (CI) -4.82 to -2.58; 1 study, 121 participants), but there was no evidence of benefit at 12 months (MD -1.30 kg, 95% CI -3.49 to 0.89; 1 study, 62 participants). The VLCD increased the chances of abstinence at 12 months (RR 1.73, 95% CI 1.10 to 2.73; 1 study, 287 participants). However, a second study found that no-one completed the VLCD intervention or achieved abstinence. Interventions aimed at increasing acceptance of weight gain reported mixed effects at end of treatment, 6 months and 12 months with confidence intervals including both increases and decreases in weight gain compared with no advice or health education. Due to high heterogeneity, we did not combine the data. These interventions increased quit rates at 6 months (RR 1.42, 95% CI 1.03 to 1.96; 4 studies, 619 participants; I2 = 21%), but there was no evidence at 12 months (RR 1.25, 95% CI 0.76 to 2.06; 2 studies, 496 participants; I2 = 26%). Some pharmacological interventions tested for limiting post-cessation weight gain (PCWG) reduced weight gain at the end of treatment (dexfenfluramine, phenylpropanolamine, naltrexone). The effects of ephedrine and caffeine combined, lorcaserin, and chromium were too imprecise to give useful estimates of treatment effects. There was very low-certainty evidence that personalized weight management support reduced weight gain at end of treatment (MD -1.11 kg, 95% CI -1.93 to -0.29; 3 studies, 121 participants; I2 = 0%), but no evidence in the longer-term 12 months (MD -0.44 kg, 95% CI -2.34 to 1.46; 4 studies, 530 participants; I2 = 41%). There was low to very low-certainty evidence that detailed weight management education without personalized assessment, planning and feedback did not reduce weight gain and may have reduced smoking cessation rates (12 months: MD -0.21 kg, 95% CI -2.28 to 1.86; 2 studies, 61 participants; I2 = 0%; RR for smoking cessation 0.66, 95% CI 0.48 to 0.90; 2 studies, 522 participants; I2 = 0%). Part 2: We include 83 completed studies, 27 of which are new to this update. There was low certainty that exercise interventions led to minimal or no weight reduction compared with standard care at end of treatment (MD -0.25 kg, 95% CI -0.78 to 0.29; 4 studies, 404 participants; I2 = 0%). However, weight was reduced at 12 months (MD -2.07 kg, 95% CI -3.78 to -0.36; 3 studies, 182 participants; I2 = 0%). Both bupropion and fluoxetine limited weight gain at end of treatment (bupropion MD -1.01 kg, 95% CI -1.35 to -0.67; 10 studies, 1098 participants; I2 = 3%); (fluoxetine MD -1.01 kg, 95% CI -1.49 to -0.53; 2 studies, 144 participants; I2 = 38%; low- and very low-certainty evidence, respectively). There was no evidence of benefit at 12 months for bupropion, but estimates were imprecise (bupropion MD -0.26 kg, 95% CI -1.31 to 0.78; 7 studies, 471 participants; I2 = 0%). No studies of fluoxetine provided data at 12 months. There was moderate-certainty that NRT reduced weight at end of treatment (MD -0.52 kg, 95% CI -0.99 to -0.05; 21 studies, 2784 participants; I2 = 81%) and moderate-certainty that the effect may be similar at 12 months (MD -0.37 kg, 95% CI -0.86 to 0.11; 17 studies, 1463 participants; I2 = 0%), although the estimates are too imprecise to assess long-term benefit. There was mixed evidence of the effect of varenicline on weight, with high-certainty evidence that weight change was very modestly lower at the end of treatment (MD -0.23 kg, 95% CI -0.53 to 0.06; 14 studies, 2566 participants; I2 = 32%); a low-certainty estimate gave an imprecise estimate of higher weight at 12 months (MD 1.05 kg, 95% CI -0.58 to 2.69; 3 studies, 237 participants; I2 = 0%). AUTHORS' CONCLUSIONS Overall, there is no intervention for which there is moderate certainty of a clinically useful effect on long-term weight gain. There is also no moderate- or high-certainty evidence that interventions designed to limit weight gain reduce the chances of people achieving abstinence from smoking.
Collapse
Affiliation(s)
- Jamie Hartmann-Boyce
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Annika Theodoulou
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Amanda Farley
- Public Health, Epidemiology and Biostatistics, University of Birmingham, Birmingham, UK
| | - Peter Hajek
- Wolfson Institute of Preventive Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Deborah Lycett
- Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Laura L Jones
- Public Health, Epidemiology and Biostatistics, University of Birmingham, Birmingham, UK
| | - Laura Kudlek
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Laura Heath
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Anisa Hajizadeh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | | | - Paul Aveyard
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Fisher ML, Pauly JR, Froeliger B, Turner JR. Translational Research in Nicotine Addiction. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039776. [PMID: 32513669 DOI: 10.1101/cshperspect.a039776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While commendable strides have been made in reducing smoking initiation and improving smoking cessation rates, current available smoking cessation treatment options are still only mildly efficacious and show substantial interindividual variability in their therapeutic responses. Therefore, the primary goal of preclinical research has been to further the understanding of the neural substrates and genetic influences involved in nicotine's effects and reassess potential drug targets. Pronounced advances have been made by investing in new translational approaches and placing more emphasis on bridging the gap between human and rodent models of dependence. Functional neuroimaging studies have identified key brain structures involved with nicotine-dependence phenotypes such as craving, impulsivity, withdrawal symptoms, and smoking cessation outcomes. Following up with these findings, rodent-modeling techniques have made it possible to dissect the neural circuits involved in these motivated behaviors and ascertain mechanisms underlying nicotine's interactive effects on brain structure and function. Likewise, translational studies investigating single-nucleotide polymorphisms (SNPs) within the cholinergic, dopaminergic, and opioid systems have found high levels of involvement of these neurotransmitter systems in regulating the reinforcing aspects of nicotine in both humans and mouse models. These findings and coordinated efforts between human and rodent studies pave the way for future work determining gene by drug interactions and tailoring treatment options to each individual smoker.
Collapse
Affiliation(s)
- Miranda L Fisher
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| | - James R Pauly
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| | - Brett Froeliger
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| |
Collapse
|
9
|
Ely AV, Jagannathan K, Hager N, Ketcherside A, Franklin TR, Wetherill RR. Double jeopardy: Comorbid obesity and cigarette smoking are linked to neurobiological alterations in inhibitory control during smoking cue exposure. Addict Biol 2020; 25:e12750. [PMID: 31069895 DOI: 10.1111/adb.12750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/24/2019] [Accepted: 03/02/2019] [Indexed: 12/14/2022]
Abstract
Obesity and cigarette smoking are two of the leading preventable causes of death in the United States. Research suggests that overlapping pathophysiology may contribute to obesity and nicotine use disorder (NUD), yet no studies have investigated the effect of obesity on neural response to reward stimuli in NUD. This study used arterial spin-labeled perfusion functional magnetic resonance imaging (fMRI) to examine neural responses during exposure to smoking versus nonsmoking cues in 79 treatment-seeking participants with NUD, 26 with normal weight, 28 with overweight, and 25 with obesity. Given that deficits in behavioral inhibitory control have been associated with both obesity and NUD, participants completed an affect-congruent Go/NoGo task to assess the effect of body mass index (BMI) on this construct in NUD. Analyses revealed that BMI was negatively associated with activation in the right dorsolateral prefrontal cortex (dlPFC) in response to smoking cues, with significantly reduced response in smokers with overweight and smokers with obesity compared with normal-weight smokers. In addition, greater commission errors on the Go/NoGo task were correlated with reduced neural response to smoking cues in the right dlPFC only among those with obesity. Together, these findings provide evidence that obesity in treatment-seeking NUDs is related to neurobiological alterations in inhibitory control over cue-potentiated behaviors, suggesting that smoking cessation may be more difficult in individuals with comorbid NUD and obesity than in those without, requiring treatment strategies tailored to meet their unique needs.
Collapse
Affiliation(s)
- Alice V. Ely
- Department of PsychiatryChristiana Care Health System Newark DE USA
| | | | - Nathan Hager
- Department of PsychiatryUniversity of Pennsylvania Philadelphia PA USA
| | - Ariel Ketcherside
- Department of PsychiatryUniversity of Pennsylvania Philadelphia PA USA
| | | | | |
Collapse
|
10
|
Montbriand JJ, Weinrib AZ, Azam MA, Ladak SSJ, Shah BR, Jiang J, McRae K, Tamir D, Lyn S, Katznelson R, Clarke HA, Katz J. Smoking, Pain Intensity, and Opioid Consumption 1-3 Months After Major Surgery: A Retrospective Study in a Hospital-Based Transitional Pain Service. Nicotine Tob Res 2019; 20:1144-1151. [PMID: 28472423 DOI: 10.1093/ntr/ntx094] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/01/2017] [Indexed: 12/25/2022]
Abstract
Introduction The present study investigated the associations between smoking, pain, and opioid consumption in the 3 months after major surgery in patients seen by the Transitional Pain Service. Current smoking status and lifetime pack-years were expected to be related to higher pain intensity, more opioid use, and poorer opioid weaning after surgery. Methods A total of 239 patients reported smoking status in their presurgical assessment (62 smokers, 92 past smokers, and 85 never smokers). Pain and daily opioid use were assessed in hospital before postsurgical discharge, at first outpatient visit (median of 1 month postsurgery), and at last outpatient visit (median of 3 months postsurgery). Pain was measured using numeric rating scale. Morphine equivalent daily opioid doses were calculated for each patient. Results Current smokers reported significantly higher pain intensity (p < .05) at 1 month postsurgery than never smokers and past smokers. Decline in opioid consumption differed significantly by smoking status, with both current and past smokers reporting a less than expected decline in daily opioid consumption (p < .05) at 3 months. Decline in opioid consumption was also related to pack-years, with those reporting higher pack-years having a less than expected decline in daily opioid consumption at 3 months (p < .05). Conclusions Smoking status may be an important modifiable risk factor for pain intensity and opioid use after surgery. Implications In a population with complex postsurgical pain, smoking was associated with greater pain intensity at 1 month after major surgery and less opioid weaning 3 months after surgery. Smoking may be an important modifiable risk factor for pain intensity and opioid use after surgery.
Collapse
Affiliation(s)
- Janice J Montbriand
- Department of Anesthesia and Pain Management, University Health Network, Toronto General Hospital, University of Toronto, Ontario, Canada
| | - Aliza Z Weinrib
- Department of Anesthesia and Pain Management, University Health Network, Toronto General Hospital, University of Toronto, Ontario, Canada.,Department of Psychology, York University, Toronto, Ontario, Canada
| | - Muhammad A Azam
- Department of Anesthesia and Pain Management, University Health Network, Toronto General Hospital, University of Toronto, Ontario, Canada.,Department of Psychology, York University, Toronto, Ontario, Canada
| | - Salima S J Ladak
- Department of Anesthesia and Pain Management, University Health Network, Toronto General Hospital, University of Toronto, Ontario, Canada
| | - B R Shah
- Department of Anesthesia and Pain Management, University Health Network, Toronto General Hospital, University of Toronto, Ontario, Canada
| | - Jiao Jiang
- Department of Anesthesia and Pain Management, University Health Network, Toronto General Hospital, University of Toronto, Ontario, Canada
| | - Karen McRae
- Department of Anesthesia and Pain Management, University Health Network, Toronto General Hospital, University of Toronto, Ontario, Canada
| | - Diana Tamir
- Department of Anesthesia and Pain Management, University Health Network, Toronto General Hospital, University of Toronto, Ontario, Canada
| | - Sheldon Lyn
- Department of Anesthesia and Pain Management, University Health Network, Toronto General Hospital, University of Toronto, Ontario, Canada
| | - Rita Katznelson
- Department of Anesthesia and Pain Management, University Health Network, Toronto General Hospital, University of Toronto, Ontario, Canada
| | - Hance A Clarke
- Department of Anesthesia and Pain Management, University Health Network, Toronto General Hospital, University of Toronto, Ontario, Canada
| | - Joel Katz
- Department of Anesthesia and Pain Management, University Health Network, Toronto General Hospital, University of Toronto, Ontario, Canada.,Department of Psychology, York University, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Masih J, Belschak F, Verbeke JMIW. Mood configurations and their relationship to immune system responses: Exploring the relationship between moods, immune system responses, thyroid hormones, and social support. PLoS One 2019; 14:e0216232. [PMID: 31150403 PMCID: PMC6544341 DOI: 10.1371/journal.pone.0216232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
Analyzing data on 2,057 healthy subjects in the Dutch Lifelines database we explore the relationship between immune system responses, thyroid hormone functioning and people's mood that is expected to be moderated by social support. We focus (1) on the innate immune system cell count: monocytes, eosinophil granulocytes, basophilic granulocytes, neutrophil granulocytes; and thrombocytes; and (2) on the adaptive immune system cell count: lymphocytes (T, B and NK cells). Moods were measured on the positive (PA) and negative (NA) dimensions of the PANAS scale, divided in four groups based on their PA and NA median scores: hedonic, positive mood, negative mood and anhedonic. We focus further on (3) thyroid cells: T3 and T4; and (4) on social support. We found significant differences between mood groups and mean cell counts for basophilic granulocytes and thrombocytes but not for monocytes, eosinophil granulocytes and neutrophil granulocytes in the innate immune system. However, in the adaptive immune system we found mean lymphocyte cell counts to be different in all four mood groups. We also found that T3 and T4 levels differ significantly across all mood groups and work in very close association with lymphocytes to activate the adaptive immune system. These differences were most significant in the hedonic and anhedonic groups. The findings allow us to better understand mood groups, especially the hedonic and anhedonic groups, and open up new avenues for intervention.
Collapse
Affiliation(s)
- Jolly Masih
- Erasmus School of Economics, Erasmus University, Rotterdam, The Netherlands
| | - Frank Belschak
- School of Economics, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
12
|
Lindson N, Chepkin SC, Ye W, Fanshawe TR, Bullen C, Hartmann‐Boyce J, Cochrane Tobacco Addiction Group. Different doses, durations and modes of delivery of nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev 2019; 4:CD013308. [PMID: 30997928 PMCID: PMC6470854 DOI: 10.1002/14651858.cd013308] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Nicotine replacement therapy (NRT) aims to replace nicotine from cigarettes to ease the transition from cigarette smoking to abstinence. It works by reducing the intensity of craving and withdrawal symptoms. Although there is clear evidence that NRT used after smoking cessation is effective, it is unclear whether higher doses, longer durations of treatment, or using NRT before cessation add to its effectiveness. OBJECTIVES To determine the effectiveness and safety of different forms, deliveries, doses, durations and schedules of NRT, for achieving long-term smoking cessation, compared to one another. SEARCH METHODS We searched the Cochrane Tobacco Addiction Group trials register, and trial registries for papers mentioning NRT in the title, abstract or keywords. Date of most recent search: April 2018. SELECTION CRITERIA Randomized trials in people motivated to quit, comparing one type of NRT use with another. We excluded trials that did not assess cessation as an outcome, with follow-up less than six months, and with additional intervention components not matched between arms. Trials comparing NRT to control, and trials comparing NRT to other pharmacotherapies, are covered elsewhere. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methods. Smoking abstinence was measured after at least six months, using the most rigorous definition available. We extracted data on cardiac adverse events (AEs), serious adverse events (SAEs), and study withdrawals due to treatment. We calculated the risk ratio (RR) and the 95% confidence interval (CI) for each outcome for each study, where possible. We grouped eligible studies according to the type of comparison. We carried out meta-analyses where appropriate, using a Mantel-Haenszel fixed-effect model. MAIN RESULTS We identified 63 trials with 41,509 participants. Most recruited adults either from the community or from healthcare clinics. People enrolled in the studies typically smoked at least 15 cigarettes a day. We judged 24 of the 63 studies to be at high risk of bias, but restricting the analysis only to those studies at low or unclear risk of bias did not significantly alter results, apart from in the case of the preloading comparison. There is high-certainty evidence that combination NRT (fast-acting form + patch) results in higher long-term quit rates than single form (RR 1.25, 95% CI 1.15 to 1.36, 14 studies, 11,356 participants; I2 = 4%). Moderate-certainty evidence, limited by imprecision, indicates that 42/44 mg are as effective as 21/22 mg (24-hour) patches (RR 1.09, 95% CI 0.93 to 1.29, 5 studies, 1655 participants; I2 = 38%), and that 21 mg are more effective than 14 mg (24-hour) patches (RR 1.48, 95% CI 1.06 to 2.08, 1 study, 537 participants). Moderate-certainty evidence (again limited by imprecision) also suggests a benefit of 25 mg over 15 mg (16-hour) patches, but the lower limit of the CI encompassed no difference (RR 1.19, 95% CI 1.00 to 1.41, 3 studies, 3446 participants; I2 = 0%). Five studies comparing 4 mg gum to 2 mg gum found a benefit of the higher dose (RR 1.43, 95% CI 1.12 to 1.83, 5 studies, 856 participants; I2 = 63%); however, results of a subgroup analysis suggest that only smokers who are highly dependent may benefit. Nine studies tested the effect of using NRT prior to quit day (preloading) in comparison to using it from quit day onward; there was moderate-certainty evidence, limited by risk of bias, of a favourable effect of preloading on abstinence (RR 1.25, 95% CI 1.08 to 1.44, 9 studies, 4395 participants; I2 = 0%). High-certainty evidence from eight studies suggests that using either a form of fast-acting NRT or a nicotine patch results in similar long-term quit rates (RR 0.90, 95% CI 0.77 to 1.05, 8 studies, 3319 participants; I2 = 0%). We found no evidence of an effect of duration of nicotine patch use (low-certainty evidence); 16-hour versus 24-hour daily patch use; duration of combination NRT use (low- and very low-certainty evidence); tapering of patch dose versus abrupt patch cessation; fast-acting NRT type (very low-certainty evidence); duration of nicotine gum use; ad lib versus fixed dosing of fast-acting NRT; free versus purchased NRT; length of provision of free NRT; ceasing versus continuing patch use on lapse; and participant- versus clinician-selected NRT. However, in most cases these findings are based on very low- or low-certainty evidence, and are the findings from single studies.AEs, SAEs and withdrawals due to treatment were all measured variably and infrequently across studies, resulting in low- or very low-certainty evidence for all comparisons. Most comparisons found no evidence of an effect on cardiac AEs, SAEs or withdrawals. Rates of these were low overall. Significantly more withdrawals due to treatment were reported in participants using nasal spray in comparison to patch in one trial (RR 3.47, 95% CI 1.15 to 10.46, 922 participants; very low certainty) and in participants using 42/44 mg patches in comparison to 21/22 mg patches across two trials (RR 4.99, 95% CI 1.60 to 15.50, 2 studies, 544 participants; I2 = 0%; low certainty). AUTHORS' CONCLUSIONS There is high-certainty evidence that using combination NRT versus single-form NRT, and 4 mg versus 2 mg nicotine gum, can increase the chances of successfully stopping smoking. For patch dose comparisons, evidence was of moderate certainty, due to imprecision. Twenty-one mg patches resulted in higher quit rates than 14 mg (24-hour) patches, and using 25 mg patches resulted in higher quit rates than using 15 mg (16-hour) patches, although in the latter case the CI included one. There was no clear evidence of superiority for 42/44 mg over 21/22 mg (24-hour) patches. Using a fast-acting form of NRT, such as gum or lozenge, resulted in similar quit rates to nicotine patches. There is moderate-certainty evidence that using NRT prior to quitting may improve quit rates versus using it from quit date only; however, further research is needed to ensure the robustness of this finding. Evidence for the comparative safety and tolerability of different types of NRT use is of low and very low certainty. New studies should ensure that AEs, SAEs and withdrawals due to treatment are both measured and reported.
Collapse
Affiliation(s)
- Nicola Lindson
- University of OxfordNuffield Department of Primary Care Health SciencesRadcliffe Observatory QuarterWoodstock RoadOxfordOxfordshireUKOX2 6GG
| | | | - Weiyu Ye
- University of OxfordOxford University Clinical Academic Graduate SchoolOxfordUK
| | - Thomas R Fanshawe
- University of OxfordNuffield Department of Primary Care Health SciencesRadcliffe Observatory QuarterWoodstock RoadOxfordOxfordshireUKOX2 6GG
| | - Chris Bullen
- University of AucklandNational Institute for Health InnovationPrivate Bag 92019Auckland Mail CentreAucklandNew Zealand1142
| | - Jamie Hartmann‐Boyce
- University of OxfordNuffield Department of Primary Care Health SciencesRadcliffe Observatory QuarterWoodstock RoadOxfordOxfordshireUKOX2 6GG
| | | |
Collapse
|
13
|
Belcher AM, Ferré S, Martinez PE, Colloca L. Role of placebo effects in pain and neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:298-306. [PMID: 28595945 PMCID: PMC5722709 DOI: 10.1016/j.pnpbp.2017.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 02/06/2023]
Abstract
The placebo (and the nocebo) effect is a powerful determinant of health outcomes in clinical disease treatment and management. Efforts to completely eradicate placebo effects have shifted dynamically, as increasingly more researchers are tuned to the potentially beneficial effects of incorporating those uncontrollable placebo effects into clinical therapeutic strategies. In this review, we highlight the major findings from placebo research, elucidating the main neurobiological systems and candidate determinants of the placebo phenomenon, and illustrate a perspective that can effectively frame future research on the topic. Finally, we issue a call for increased research on the efficacy of therapeutic strategies that incorporate placebo "tools," and argue that clinical trials of the placebo response in neuropsychiatric diseases and disorders has important and far-reaching translational and clinical relevance.
Collapse
Affiliation(s)
- Annabelle M Belcher
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, USA
| | - Sergi Ferré
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, USA
| | - Pedro E Martinez
- National Institute of Mental Health, National Institutes of Health, Bethesda, USA
| | - Luana Colloca
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, USA; Department of Pain and Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, USA; Department of Anesthesiology and Psychiatry, School of Medicine, University of Maryland, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, USA.
| |
Collapse
|
14
|
Replication of the pharmacogenetic effect of rs678849 on buprenorphine efficacy in African-Americans with opioid use disorder. THE PHARMACOGENOMICS JOURNAL 2018; 19:260-268. [PMID: 30368523 PMCID: PMC6486881 DOI: 10.1038/s41397-018-0065-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/24/2018] [Accepted: 09/27/2018] [Indexed: 01/01/2023]
Abstract
Many patients with opioid use disorder do not have successful outcomes during treatment but the underlying reasons are not well understood. An OPRD1 variant (rs678849) was previously associated with methadone and buprenorphine efficacy in African-Americans with opioid use disorder. The objective of this study was to determine if the effect of rs678849 on opioid use disorder treatment outcome could be replicated in an independent population. Participants were recruited from African-American patients who had participated in previous studies of methadone or buprenorphine treatment at the outpatient treatment research clinic of the NIDA Intramural Research Program in Baltimore, MD, USA between 2000 and 2017. Rs678849 was genotyped retrospectively, and genotypes were compared with urine drug screen results from the previous studies for opioids other than the one prescribed for treatment. Genotypes were available for 24 methadone patients and 55 buprenorphine patients. After controlling for demographics, the effect of rs678849 genotype was significant in the buprenorphine treatment group (RR = 1.69, 95% confidence interval (CI) 1.59-1.79, p = 0.021). Buprenorphine patients with the C/C genotype were more likely to have opioid-positive drug screens than individuals with the C/T or T/T genotypes, replicating the original pharmacogenetic finding. The effect of genotype was not significant in the methadone group (p = 0.087). Thus, the genotype at rs678849 is associated with buprenorphine efficacy in African-Americans being treated for opioid use disorder. This replication suggests that rs678849 genotype may be a valuable pharmacogenetic marker for deciding which opioid use disorder medication to prescribe in this population.
Collapse
|
15
|
Schuit E, Panagiotou OA, Munafò MR, Bennett DA, Bergen AW, David SP, Cochrane Tobacco Addiction Group. Pharmacotherapy for smoking cessation: effects by subgroup defined by genetically informed biomarkers. Cochrane Database Syst Rev 2017; 9:CD011823. [PMID: 28884473 PMCID: PMC6483659 DOI: 10.1002/14651858.cd011823.pub2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Smoking cessation therapies are not effective for all smokers, and researchers are interested in identifying those subgroups of individuals (e.g. based on genotype) who respond best to specific treatments. OBJECTIVES To assess whether quit rates vary by genetically informed biomarkers within pharmacotherapy treatment arms and as compared with placebo. To assess the effects of pharmacotherapies for smoking cessation in subgroups of smokers defined by genotype for identified genome-wide significant polymorphisms. SEARCH METHODS We searched the Cochrane Tobacco Addiction Group specialised register, clinical trial registries, and genetics databases for trials of pharmacotherapies for smoking cessation from inception until 16 August 2016. SELECTION CRITERIA We included randomised controlled trials (RCTs) that recruited adult smokers and reported pharmacogenomic analyses from trials of smoking cessation pharmacotherapies versus controls. Eligible trials included those with data on a priori genome-wide significant (P < 5 × 10-8) single-nucleotide polymorphisms (SNPs), replicated non-SNPs, and/or the nicotine metabolite ratio (NMR), hereafter collectively described as biomarkers. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. The primary outcome was smoking abstinence at six months after treatment. The secondary outcome was abstinence at end of treatment (EOT). We conducted two types of meta-analyses- one in which we assessed smoking cessation of active treatment versus placebo within genotype groups, and another in which we compared smoking cessation across genotype groups within treatment arms. We carried out analyses separately in non-Hispanic whites (NHWs) and non-Hispanic blacks (NHBs). We assessed heterogeneity between genotype groups using T², I², and Cochrane Q statistics. MAIN RESULTS Analyses included 18 trials including 9017 participants, of whom 6924 were NHW and 2093 NHB participants. Data were available for the following biomarkers: nine SNPs (rs1051730 (CHRNA3); rs16969968, rs588765, and rs2036527 (CHRNA5); rs3733829 and rs7937 (in EGLN2, near CYP2A6); rs1329650 and rs1028936 (LOC100188947); and rs215605 (PDE1C)), two variable number tandem repeats (VNTRs; DRD4 and SLC6A4), and the NMR. Included data produced a total of 40 active versus placebo comparisons, 16 active versus active comparisons, and 64 between-genotype comparisons within treatment arms.For those meta-analyses showing statistically significant heterogeneity between genotype groups, we found the quality of evidence (GRADE) to be generally moderate. We downgraded quality most often because of imprecision or risk of bias due to potential selection bias in genotyping trial participants. Comparisons of relative treatment effects by genotypeFor six-month abstinence, we found statistically significant heterogeneity between genotypes (rs16969968) for nicotine replacement therapy (NRT) versus placebo at six months for NHB participants (P = 0.03; n = 2 trials), but not for other biomarkers or treatment comparisons. Six-month abstinence was increased in the active NRT group as compared to placebo among participants with a GG genotype (risk ratio (RR) 1.47, 95% confidence interval (CI) 1.07 to 2.03), but not in the combined group of participants with a GA or AA genotype (RR 0.43, 95% CI 0.15 to 1.26; ratio of risk ratios (RRR) GG vs GA or AA of 3.51, 95% CI 1.19 to 10.3). Comparisons of treatment effects between genotype groups within pharmacotherapy randomisation armsFor those receiving active NRT, treatment was more effective in achieving six-month abstinence among individuals with a slow NMR than among those with a normal NMR among NHW and NHB combined participants (normal NMR vs slow NMR: RR 0.54, 95% CI 0.37 to 0.78; n = 2 trials). We found no such differences in treatment effects between genotypes at six months for any of the other biomarkers among individuals who received pharmacotherapy or placebo. AUTHORS' CONCLUSIONS We did not identify widespread differential treatment effects of pharmacotherapy based on genotype. Some genotype groups within certain ethnic groups may benefit more from NRT or may benefit less from the combination of bupropion with NRT. The reader should interpret these results with caution because none of the statistically significant meta-analyses included more than two trials per genotype comparison, many confidence intervals were wide, and the quality of this evidence (GRADE) was generally moderate. Although we found evidence of superior NRT efficacy for NMR slow versus normal metabolisers, because of the lack of heterogeneity between NMR groups, we cannot conclude that NRT is more effective for slow metabolisers. Access to additional data from multiple trials is needed, particularly for comparisons of different pharmacotherapies.
Collapse
Affiliation(s)
- Ewoud Schuit
- Stanford UniversityMeta‐Research Innovation Center at Stanford (METRICS)StanfordCAUSA
- University Medical Center UtrechtCochrane NetherlandsUtrechtNetherlands
- University Medical Center UtrechtJulius Center for Health Sciences and Primary CareUtrechtNetherlands
| | - Orestis A. Panagiotou
- School of Public Health, Brown UniversityDepartment of Health Services, Policy & Practice121 S. Main StreetProvidenceRIUSA02903
| | - Marcus R Munafò
- University of BristolSchool of Experimental Psychology and MRC Integrative Epidemiology Unit8 Woodland RoadBristolUKBS8 1TN
| | - Derrick A Bennett
- University of OxfordClinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population HealthRichard Doll BuildingOld Road CampusOxfordUKOX3 7LF
| | | | - Sean P David
- Stanford UniversityDivision of Primary Care and Population Health, Department of MedicineStanfordCaliforniaUSA94304‐5559
| | | |
Collapse
|
16
|
Hirasawa-Fujita M, Bly MJ, Ellingrod VL, Dalack GW, Domino EF. Genetic Variation of the Mu Opioid Receptor (OPRM1) and Dopamine D2 Receptor (DRD2) is Related to Smoking Differences in Patients with Schizophrenia but not Bipolar Disorder. CLINICAL SCHIZOPHRENIA & RELATED PSYCHOSES 2017; 11:39-48. [PMID: 28548579 PMCID: PMC4366347 DOI: 10.3371/1935-1232-11.1.39] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
It is not known why mentally ill persons smoke excessively. Inasmuch as endogenous opioid and dopaminergic systems are involved in smoking reinforcement, it is important to study mu opioid receptor (OPRM1) A118G (rs1799971), dopamine D2 receptor (DRD2) Taq1A (rs1800497) genotypes, and sex differences among patients with schizophrenia or bipolar disorder. Smokers and nonsmokers with schizophrenia (n=177) and bipolar disorder (n=113) were recruited and genotyped. They were classified into three groups: current smoker, former smoker, and never smoker by tobacco smoking status self-report. The number of cigarettes smoked per day was used as the major tobacco smoking parameter. In patients with schizophrenia, tobacco smoking prevalence was greater in males than in females as expected, but women had greater daily cigarette consumption (p<0.01). Subjects with schizophrenia who had the OPRM1 *G genotype smoked more cigarettes per day than the AA allele carriers with schizophrenia (p<0.05). DRD2 Taq1A genotype differences had no effect on the number of cigarettes smoked per day. However, female smokers with schizophrenia who were GG homozygous of the DRD2 receptor smoked more than the *A male smokers with schizophrenia (p<0.05). In bipolar patients, there were no OPRM1 and DRD2 Taq1A genotype differences in smoking status. There also were no sex differences for smoking behavior among the bipolar patients. The results of this study indicate that single nucleotide polymorphism (SNP) of the less functional mu opioid receptor increases tobacco smoking in patients with schizophrenia. Alteration of DRD2 receptor function also increased smoking behavior in females with schizophrenia.
Collapse
|
17
|
Crist RC, Doyle GA, Nelson EC, Degenhardt L, Martin NG, Montgomery GW, Saxon AJ, Ling W, Berrettini WH. A polymorphism in the OPRM1 3'-untranslated region is associated with methadone efficacy in treating opioid dependence. THE PHARMACOGENOMICS JOURNAL 2016; 18:173-179. [PMID: 27958381 PMCID: PMC5468510 DOI: 10.1038/tpj.2016.89] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 11/10/2022]
Abstract
The mu-opioid receptor (MOR) is the primary target of methadone and buprenorphine. The primary neuronal transcript of the OPRM1 gene, MOR-1, contains a ~13kb 3′ untranslated region with five common haplotypes in European-Americans. We analyzed the effects of these haplotypes on the percentage of opioid positive urine tests in European-Americans (n = 582) during a 24-week, randomized, open-label trial of methadone or buprenorphine/naloxone (Suboxone) for the treatment of opioid dependence. A single haplotype, tagged by rs10485058, was significantly associated with patient urinalysis data in the methadone treatment group. Methadone patients with the A/A genotype at rs10485058 were less likely to have opioid-positive urine drug screens than those in the combined A/G and G/G genotypes group (Relative Risk = 0.76, 95% confidence intervals = 0.73–0.80, p = 0.0064). Genotype at rs10485058 also predicted self-reported relapse rates in an independent population of Australian patients of European descent (n = 1215) who were receiving opioid substitution therapy (p = 0.003). In silico analysis predicted that miR-95-3p would interact with the G, but not the A allele of rs10485058. Luciferase assays indicated miR-95-3p decreased reporter activity of constructs containing the G, but not the A allele of rs10485058, suggesting a potential mechanism for the observed pharmacogenetic effect. These findings suggest that selection of a medication for opioid dependence based on rs10485058 genotype might improve outcomes in this ethnic group.
Collapse
Affiliation(s)
- R C Crist
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, PA, Pennsylvania, USA
| | - G A Doyle
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, PA, Pennsylvania, USA
| | - E C Nelson
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - L Degenhardt
- National Drug and Alcohol Research Centre, UNSW Australia, Sydney, New South Wales, Australia
| | - N G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - G W Montgomery
- The University of Queensland, Herston, Queensland, Australia
| | - A J Saxon
- Veteran's Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - W Ling
- University of California, Los Angeles, Integrated Substance Abuse Programs, Los Angeles, CA, USA
| | - W H Berrettini
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, PA, Pennsylvania, USA
| |
Collapse
|
18
|
Bernardi RE, Zohsel K, Hirth N, Treutlein J, Heilig M, Laucht M, Spanagel R, Sommer WH. A gene-by-sex interaction for nicotine reward: evidence from humanized mice and epidemiology. Transl Psychiatry 2016; 6:e861. [PMID: 27459726 PMCID: PMC5545715 DOI: 10.1038/tp.2016.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 02/03/2023] Open
Abstract
It has been proposed that vulnerability to nicotine addiction is moderated by variation at the μ-opioid receptor locus (OPRM1), but results from human studies vary and prospective studies based on genotype are lacking. We have developed a humanized mouse model of the most common functional OPRM1 polymorphism rs1799971_A>G (A118G). Here we use this model system together with a cohort of German youth to examine the role of the OPRM1 A118G variation on nicotine reward. Nicotine reinforcement was examined in the humanized mouse model using i.v. self-administration. Male (n=17) and female (n=26) mice homozygous either for the major human A allele (AA) or the minor G allele (GG) underwent eight daily 2 h sessions of nicotine self-administration. Furthermore, male (n=104) and female (n=118) subjects homozygous for the A allele or carrying the G allele from the Mannheim Study of Children at Risk were evaluated for pleasurable and unpleasant experiences during their initial smoking experience. A significant sex-by-genotype effect was observed for nicotine self-administration. Male 118GG mice demonstrated higher nicotine intake than male 118AA mice, suggesting increased nicotine reinforcement. In contrast, there was no genotype effect in female mice. Human male G allele carriers reported increased pleasurable effects from their first smoking experience, as compared to male homozygous A, female G and female homozygous A allele carriers. The 118G allele appears to confer greater sensitivity to nicotine reinforcement in males, but not females.
Collapse
Affiliation(s)
- R E Bernardi
- Institute of Psychopharmacology, Central
Institute of Mental Health, Medical Faculty Mannheim/Heidelberg
University, Mannheim, Germany
| | - K Zohsel
- Department of Child and Adolescent
Psychiatry, Central Institute of Mental Health, Medical Faculty
Mannheim/Heidelberg University, Mannheim,
Germany
| | - N Hirth
- Institute of Psychopharmacology, Central
Institute of Mental Health, Medical Faculty Mannheim/Heidelberg
University, Mannheim, Germany
| | - J Treutlein
- Genetic Epidemiology, Central Institute
of Mental Health, Medical Faculty Mannheim/Heidelberg University,
Mannheim, Germany
| | - M Heilig
- Center for Social and Affective
Neuroscience, Linköping University, Linköping,
Sweden
| | - M Laucht
- Department of Child and Adolescent
Psychiatry, Central Institute of Mental Health, Medical Faculty
Mannheim/Heidelberg University, Mannheim,
Germany
| | - R Spanagel
- Institute of Psychopharmacology, Central
Institute of Mental Health, Medical Faculty Mannheim/Heidelberg
University, Mannheim, Germany
| | - W H Sommer
- Institute of Psychopharmacology, Central
Institute of Mental Health, Medical Faculty Mannheim/Heidelberg
University, Mannheim, Germany,Addiction Medicine, Central Institute of
Mental Health, Medical Faculty Mannheim/Heidelberg University,
Mannheim, Germany,Institute of Psychopharmacology, Central Institute of Mental
Health, Medical Faculty Mannheim/Heidelberg University, Square
J5, Mannheim
68159, Germany; E-mail:
| |
Collapse
|
19
|
Park SJ, Yi B, Lee HS, Oh WY, Na HK, Lee M, Yang M. To quit or not: Vulnerability of women to smoking tobacco. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2016; 34:33-56. [PMID: 26669465 DOI: 10.1080/10590501.2015.1131539] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tobacco smoking is currently on the rise among women, and can pose a greater health risk. In order to understand the nature of the increase in smoking prevalence among women, we focused on the vulnerability of women to smoking behaviors--smoking cessation or tobacco addiction--and performed a systematic review of the socioeconomic and intrinsic factors as well as tobacco ingredients that affect women's susceptibility to smoking tobacco. We observed that nicotine and other tobacco components including cocoa-relatives, licorice products, and menthol aggravate tobacco addiction in women rather than in men. Various genetic and epigenetic alterations in dopamine pathway and the pharmaco-kinetics and -dynamic factors of nicotine also showed potential evidences for high susceptibility to tobacco addiction in women. Therefore, we suggest systemic approaches to prevent tobacco smoking-related health risks, considering gene-environment-gender interaction.
Collapse
Affiliation(s)
- Se-Jung Park
- a Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University , Seoul , Republic of Korea
| | - Bitna Yi
- b Department of Neurosurgery , Stanford University School of Medicine , Stanford , California , USA
| | - Ho-Sun Lee
- a Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University , Seoul , Republic of Korea
| | - Woo-Yeon Oh
- a Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University , Seoul , Republic of Korea
| | - Hyun-Kyung Na
- a Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University , Seoul , Republic of Korea
| | - Minjeong Lee
- a Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University , Seoul , Republic of Korea
| | - Mihi Yang
- a Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University , Seoul , Republic of Korea
| |
Collapse
|
20
|
Abstract
The aim of Addiction Biology is to advance our understanding of the action of drugs of abuse and addictive processes via the publication of high-impact clinical and pre-clinical findings resulting from behavioral, molecular, genetic, biochemical, neurobiological and pharmacological research. As of 2013, Addiction Biology is ranked number 1 in the category of Substance Abuse journals (SCI). Occasionally, Addiction Biology likes to highlight via review important findings focused on a particular topic and recently published in the journal. The current review summarizes a number of key publications from Addiction Biology that have contributed to the current knowledge of nicotine research, comprising a wide spectrum of approaches, both clinical and pre-clinical, at the cellular, molecular, systems and behavioral levels. A number of findings from human studies have identified, using imaging techniques, alterations in common brain circuits, as well as morphological and network activity changes, associated with tobacco use. Furthermore, both clinical and pre-clinical studies have characterized a number of mechanistic targets critical to understanding the effects of nicotine and tobacco addiction. Together, these findings will undoubtedly drive future studies examining the dramatic impact of tobacco use and the development of treatments to counter nicotine dependence.
Collapse
Affiliation(s)
- Rick E. Bernardi
- Institute of Psychopharmacology; Central Institute of Mental Health; Medical Faculty Mannheim/Heidelberg University; Germany
| |
Collapse
|
21
|
A review of pharmacogenetic studies of substance-related disorders. Drug Alcohol Depend 2015; 152:1-14. [PMID: 25819021 PMCID: PMC4458176 DOI: 10.1016/j.drugalcdep.2015.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/05/2015] [Accepted: 03/02/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Substance-related disorders (SRDs) are a major cause of morbidity and mortality worldwide. Family, twin, and adoption studies have demonstrated the substantial heritability of SRDs. To determine the impact of genetic variation on risk for SRD and the response to treatment, researchers have conducted a number of secondary data analyses and quasi-experimental studies that target one or more candidate gene variants. METHODS This review examines studies in which candidate polymorphisms were examined as mediator variables to identify pharmacogenetic effects on subjective responses to drug administration or cues or outcomes of medication trials for SRDs. Efforts to use a meta-analytic approach to quantify these effects are premature because the number of available studies using similar methods and outcomes is limited, so the present review is qualitative. RESULTS Findings from these studies provide preliminary evidence of clinically relevant pharmacogenetic effects. However, independent replication of these findings has been sparse. CONCLUSIONS Although this growing body of literature has produced conflicting results, improved statistical controls may help to clarify the findings. Additionally, the use of empirically derived sub-phenotypes (i.e., which serve to differentiate distinct groups of affected individuals) may also help to identify genetic mediators of pharmacologic response in relation to SRDs. The identification of genetic mediators can inform clinical care both by identifying risk factors for SRDs and predicting adverse events and therapeutic outcomes associated with specific pharmacotherapies.
Collapse
|
22
|
Domino EF, Hirasawa-Fujita M, Ni L, Guthrie SK, Zubieta JK. Regional brain [(11)C]carfentanil binding following tobacco smoking. Prog Neuropsychopharmacol Biol Psychiatry 2015; 59:100-104. [PMID: 25598501 PMCID: PMC4375952 DOI: 10.1016/j.pnpbp.2015.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To determine if overnight tobacco abstinent carriers of the AG or GG (*G) vs. the AA variant of the human mu opioid receptor (OPRM1) A118G polymorphism (rs1799971) differ in [(11)C]carfentanil binding after tobacco smoking. METHODS Twenty healthy American male smokers who abstained from tobacco overnight were genotyped and completed positron emission tomography (PET) scans with the mu opioid receptor agonist, [(11)C]carfentanil. They smoked deniconized (denic) and average nicotine (avnic) cigarettes during the PET scans. RESULTS Smoking avnic cigarette decreased the binding potential (BPND) of [(11)C]carfentanil in the right medial prefrontal cortex (mPfc; 6, 56, 18), left anterior medial prefrontal cortex (amPfc; -2, 46, 44), right ventral striatum (vStr; 16, 3, -10), left insula (Ins; -42, 10, -12), right hippocampus (Hippo; 18, -6, -14) and left cerebellum (Cbl; -10, -88, -34), and increased the BPND in left amygdala (Amy; -20, 0, -22), left putamen (Put; -22, 10, -6) and left nucleus accumbens (NAcc; -10, 12, -8). In the AA allele carriers, avnic cigarette smoking significantly changed the BPND compared to after denic smoking in most brain areas listed above. However in the *G carriers the significant BPND changes were confirmed in only amPfc and vStr. Free mu opioid receptor availability was significantly less in the *G than the AA carriers in the Amy and NAcc. CONCLUSION The present study demonstrates that BPND changes induced by avnic smoking in OPRM1 *G carriers were blunted compared to the AA carriers. Also *G smokers had less free mu opioid receptor availability in Amy and NAcc.
Collapse
Affiliation(s)
- Edward F Domino
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.
| | | | - Lisong Ni
- Department of Pharmacology, University of Michigan, Ann Arbor, MI USA
| | - Sally K Guthrie
- College of Pharmacy, University of Michigan, Ann Arbor, MI USA,Department of Psychiatry, University of Michigan, Ann Arbor, MI USA
| | - Jon Kar Zubieta
- Department of Psychiatry, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
23
|
Mague SD, Port RG, McMullen ME, Carlson GC, Turner JR. Mouse model of OPRM1 (A118G) polymorphism has altered hippocampal function. Neuropharmacology 2015; 97:426-35. [PMID: 25986698 DOI: 10.1016/j.neuropharm.2015.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 04/08/2015] [Accepted: 04/27/2015] [Indexed: 01/08/2023]
Abstract
A single nucleotide polymorphism (SNP) in the human μ-opioid receptor gene (OPRM1 A118G) has been widely studied for its association in a variety of drug addiction and pain sensitivity phenotypes; however, the extent of these adaptations and the mechanisms underlying these associations remain elusive. To clarify the functional mechanisms linking the OPRM1 A118G SNP to altered phenotypes, we used a mouse model possessing the equivalent nucleotide/amino acid substitution in the Oprm1 gene. In order to investigate the impact of this SNP on circuit function, we used voltage-sensitive dye imaging in hippocampal slices and in vivo electroencephalogram recordings of the hippocampus following MOPR activation. As the hippocampus contains excitatory pyramidal cells whose activity is highly regulated by a dense network of inhibitory neurons, it serves as an ideal structure to evaluate how putative receptor function abnormalities may influence circuit activity. We found that MOPR activation increased excitatory responses in wild-type animals, an effect that was significantly reduced in animals possessing the Oprm1 SNP. Furthermore, in order to assess the in vivo effects of this SNP during MOPR activation, EEG recordings of hippocampal activity following morphine administration corroborated a loss-of-function phenotype. In conclusion, as these mice have been shown to have similar MOPR expression in the hippocampus between genotypes, these data suggest that the MOPR A118G SNP results in a loss of receptor function.
Collapse
Affiliation(s)
- Stephen D Mague
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Russell G Port
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Michael E McMullen
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Greg C Carlson
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jill R Turner
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29036, USA.
| |
Collapse
|
24
|
Francès F, Portolés O, Castelló A, Costa JA, Verdú F. Association between Opioid Receptor mu 1 (OPRM1) Gene Polymorphisms and Tobacco and Alcohol Consumption in a Spanish Population. Bosn J Basic Med Sci 2015; 15:31-6. [PMID: 26042510 DOI: 10.17305/bjbms.2015.243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 12/15/2022] Open
Abstract
Evidence gained from animals and humans suggests that the encephalic opioid system might be involved in the development of drug addiction through its role in reward. Our aim is to assess the influence of genetic variations in the opioid receptor mu 1 on alcohol and tobacco consumption in a Spanish population. 763 unrelated individuals (465 women, 298 men) aged 18-85 years were recruited between October 2011 and April 2012. Participants were requested to answer a 35-item questionnaire on tobacco and alcohol consumption, as well as to complete the AUDIT and Fagerström tests. Individuals were genotyped for three polymorphisms in the opioid receptor mu 1 (OPRM1) gene, using a TaqMan protocol. In males, the rs10485057 polymorphism was associated with total pure ethanol intake and with the risk of being an alcohol consumer. Also, this polymorphism was significantly associated with higher Fagerström scores. Rs1799971 had a different influence on adaptive and maladaptive patterns of alcohol use. Despite the limited sample size, our study might enrich current knowledge on patterns of alcohol use, because it encompasses both extreme and adaptive phenotypes, providing thus a wider perspective on this subject.
Collapse
Affiliation(s)
- Francesc Francès
- Department of Preventive and Legal Medicine, School of Medicine, University of Valencia, Valencia.
| | | | | | | | | |
Collapse
|
25
|
Abstract
Nicotine dependence is a chronic, relapsing disorder with complex biological mechanisms underlying the motivational basis for this behavior. Although more than 70 % of current smokers express a desire to quit, most relapse within one year, underscoring the need for novel treatments. A key focus of translational research models addressing nicotine dependence has been on cross-validation of human and animal models in order to improve the predictive value of medication screening paradigms. In this chapter, we review several lines of research highlighting the utility of cross-validation models in elucidating the biological underpinnings of nicotine reward and reinforcement, identifying factors which may influence individual response to treatment, and facilitating rapid translation of findings to practice.
Collapse
|
26
|
A heroin addiction severity-associated intronic single nucleotide polymorphism modulates alternative pre-mRNA splicing of the μ opioid receptor gene OPRM1 via hnRNPH interactions. J Neurosci 2014; 34:11048-66. [PMID: 25122903 DOI: 10.1523/jneurosci.3986-13.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in the OPRM1 gene have been associated with vulnerability to opioid dependence. The current study identifies an association of an intronic SNP (rs9479757) with the severity of heroin addiction among Han-Chinese male heroin addicts. Individual SNP analysis and haplotype-based analysis with additional SNPs in the OPRM1 locus showed that mild heroin addiction was associated with the AG genotype, whereas severe heroin addiction was associated with the GG genotype. In vitro studies such as electrophoretic mobility shift assay, minigene, siRNA, and antisense morpholino oligonucleotide studies have identified heterogeneous nuclear ribonucleoprotein H (hnRNPH) as the major binding partner for the G-containing SNP site. The G-to-A transition weakens hnRNPH binding and facilitates exon 2 skipping, leading to altered expressions of OPRM1 splice-variant mRNAs and hMOR-1 proteins. Similar changes in splicing and hMOR-1 proteins were observed in human postmortem prefrontal cortex with the AG genotype of this SNP when compared with the GG genotype. Interestingly, the altered splicing led to an increase in hMOR-1 protein levels despite decreased hMOR-1 mRNA levels, which is likely contributed by a concurrent increase in single transmembrane domain variants that have a chaperone-like function on MOR-1 protein stability. Our studies delineate the role of this SNP as a modifier of OPRM1 alternative splicing via hnRNPH interactions, and suggest a functional link between an SNP-containing splicing modifier and the severity of heroin addiction.
Collapse
|
27
|
Kuwabara H, Heishman SJ, Brasic JR, Contoreggi C, Cascella N, Mackowick KM, Taylor R, Rousset O, Willis W, Huestis MA, Concheiro M, Wand G, Wong DF, Volkow ND. Mu Opioid Receptor Binding Correlates with Nicotine Dependence and Reward in Smokers. PLoS One 2014; 9:e113694. [PMID: 25493427 PMCID: PMC4262264 DOI: 10.1371/journal.pone.0113694] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/28/2014] [Indexed: 11/18/2022] Open
Abstract
The rewarding effects of nicotine are associated with activation of nicotine receptors. However, there is increasing evidence that the endogenous opioid system is involved in nicotine's rewarding effects. We employed PET imaging with [11C]carfentanil to test the hypotheses that acute cigarette smoking increases release of endogenous opioids in the human brain and that smokers have an upregulation of mu opioid receptors (MORs) when compared to nonsmokers. We found no significant changes in binding potential (BPND) of [11C]carfentanil between the placebo and the active cigarette sessions, nor did we observe differences in MOR binding between smokers and nonsmokers. Interestingly, we showed that in smokers MOR availability in bilateral superior temporal cortices during the placebo condition was negatively correlated with scores on the Fagerström Test for Nicotine Dependence (FTND). Also in smokers, smoking-induced decreases in [11C]carfentanil binding in frontal cortical regions were associated with self-reports of cigarette liking and wanting. Although we did not show differences between smokers and nonsmokers, the negative correlation with FTND corroborates the role of MORs in superior temporal cortices in nicotine addiction and provides preliminary evidence of a role of endogenous opioid signaling in frontal cortex in nicotine reward.
Collapse
Affiliation(s)
- Hiroto Kuwabara
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, United States of America
- * E-mail:
| | - Stephen J. Heishman
- Department of Psychiatry, Johns Hopkins University, Baltimore, United States of America
- Nicotine Psychopharmacology, National Institute on Drug Abuse, Intramural Research Program, Baltimore, United States of America
| | - James R. Brasic
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, United States of America
| | - Carlo Contoreggi
- Nicotine Psychopharmacology, National Institute on Drug Abuse, Intramural Research Program, Baltimore, United States of America
| | - Nicola Cascella
- Department of Psychiatry, Johns Hopkins University, Baltimore, United States of America
| | - Kristen M. Mackowick
- Nicotine Psychopharmacology, National Institute on Drug Abuse, Intramural Research Program, Baltimore, United States of America
| | - Richard Taylor
- Nicotine Psychopharmacology, National Institute on Drug Abuse, Intramural Research Program, Baltimore, United States of America
| | - Olivier Rousset
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, United States of America
| | - William Willis
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, United States of America
| | - Marilyn A. Huestis
- Chemistry and Drug Metabolism Sections, National Institute on Drug Abuse, Intramural Research Program, Baltimore, United States of America
| | - Marta Concheiro
- Chemistry and Drug Metabolism Sections, National Institute on Drug Abuse, Intramural Research Program, Baltimore, United States of America
| | - Gary Wand
- Department of Medicine, Johns Hopkins University, Baltimore, United States of America
| | - Dean F. Wong
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, United States of America
- Department of Psychiatry, Johns Hopkins University, Baltimore, United States of America
- Department of Neuroscience, Johns Hopkins University, Baltimore, United States of America
| | - Nora D. Volkow
- National Institute on Drug Abuse, Rockville, United States of America
| |
Collapse
|
28
|
Jackson KJ, Muldoon PP, De Biasi M, Damaj MI. New mechanisms and perspectives in nicotine withdrawal. Neuropharmacology 2014; 96:223-34. [PMID: 25433149 DOI: 10.1016/j.neuropharm.2014.11.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/21/2014] [Accepted: 11/17/2014] [Indexed: 02/08/2023]
Abstract
Diseases associated with tobacco use constitute a major health problem worldwide. Upon cessation of tobacco use, an unpleasant withdrawal syndrome occurs in dependent individuals. Avoidance of the negative state produced by nicotine withdrawal represents a motivational component that promotes continued tobacco use and relapse after smoking cessation. With the modest success rate of currently available smoking cessation therapies, understanding mechanisms involved in the nicotine withdrawal syndrome are crucial for developing successful treatments. Animal models provide a useful tool for examining neuroadaptative mechanisms and factors influencing nicotine withdrawal, including sex, age, and genetic factors. Such research has also identified an important role for nicotinic receptor subtypes in different aspects of the nicotine withdrawal syndrome (e.g., physical vs. affective signs). In addition to nicotinic receptors, the opioid and endocannabinoid systems, various signal transduction pathways, neurotransmitters, and neuropeptides have been implicated in the nicotine withdrawal syndrome. Animal studies have informed human studies of genetic variants and potential targets for smoking cessation therapies. Overall, the available literature indicates that the nicotine withdrawal syndrome is complex, and involves a range of neurobiological mechanisms. As research in nicotine withdrawal progresses, new pharmacological options for smokers attempting to quit can be identified, and treatments with fewer side effects that are better tailored to the unique characteristics of patients may become available. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- K J Jackson
- Department of Psychiatry, Virginia Commonwealth University, 800 E. Leigh St., Richmond, VA 23219, USA
| | - P P Muldoon
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Marshall St., Richmond, VA 23219, USA
| | - M De Biasi
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M I Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Marshall St., Richmond, VA 23219, USA.
| |
Collapse
|
29
|
Co-development of early adolescent alcohol use and depressive feelings: The role of the mu-opioid receptor A118G polymorphism. Dev Psychopathol 2014; 27:915-25. [PMID: 25215437 DOI: 10.1017/s0954579414000911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alcohol use and depressive feelings are often related among early adolescents. However, the nature and underlying mechanisms of this association are not yet clear. The aim of this study was to investigate the co-development of alcohol use and depressive feelings over time and to examine the effects of the mu-opioid receptor (OPRM1) A118G genotype on such co-development. Data from a five-wave longitudinal, genetically informed survey study, with intervals of 4 months among a group of 739 normative early adolescents (12-13 years of age at baseline), were analyzed using a dual latent growth curve approach. OPRM1 status was evaluated from saliva-derived DNA samples. The results indicated a positive association between alcohol use and depressive feelings both at the initial levels and over time, indicating co-development in early adolescence. Compared to OPRM1 118G carriers, homozygous 118A carriers showed a greater increase in frequency of alcohol use and higher levels of depressive feelings over time. Evidence for co-development was only found within the group of homozygous 118A carriers, whereas in OPRM1 118G carriers the development of alcohol use and depressive feelings over time were not significantly associated. These results highlight the potential of OPRM1 as a common etiological factor for the development of alcohol use and depressive feelings in early adolescence.
Collapse
|
30
|
Weerts EM, Wand GS, Kuwabara H, Xu X, Frost JJ, Wong DF, McCaul ME. Association of smoking with μ-opioid receptor availability before and during naltrexone blockade in alcohol-dependent subjects. Addict Biol 2014; 19:733-42. [PMID: 23252742 DOI: 10.1111/adb.12022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Persons with a history of alcohol dependence are more likely to use tobacco and to meet criteria for nicotine dependence compared with social drinkers or non-drinkers. The high levels of comorbidity of nicotine and alcohol use and dependence are thought to be related to interactions between nicotinic, opioid and dopamine receptors in mesolimbic regions. The current study examined whether individual differences in regional μ-opioid receptor (MOR) availability were associated with tobacco use, nicotine dependence and level of nicotine craving in 25 alcohol-dependent (AD) subjects. AD subjects completed an inpatient protocol, which included medically supervised alcohol withdrawal, monitored alcohol abstinence, transdermal nicotine maintenance (21 mg/day) and Positron Emission Tomography (PET) imaging using the MOR agonist [(11) C]-carfentanil (CFN) before (basal scan) and during treatment with 50 mg/day naltrexone (naltrexone scan). Subjects who had higher scores on the Fagerström Nicotine Dependence Test had significantly lower basal scan binding potential (BPND ) across mesolimbic regions, including the amygdala, cingulate, globus pallidus, thalamus and insula. Likewise, the number of cigarettes per day was negatively associated with basal scan BPND in mesolimbic regions. Higher nicotine craving was significantly associated with lower BPND in amygdala, globus pallidus, putamen, thalamus and ventral striatum. Although blunted during naltrexone treatment, the negative association was maintained for nicotine dependence and cigarettes per day, but not for nicotine craving. These findings suggest that intensity of cigarette smoking and severity of nicotine dependence symptoms are systematically related to reduced BPND across multiple brain regions in AD subjects.
Collapse
Affiliation(s)
- Elise M. Weerts
- Department of Psychiatry and Behavioral Sciences; The Johns Hopkins University School of Medicine; Baltimore MD USA
| | - Gary S. Wand
- Department of Psychiatry and Behavioral Sciences; The Johns Hopkins University School of Medicine; Baltimore MD USA
- Department of Medicine; The Johns Hopkins University School of Medicine; Baltimore MD USA
| | - Hiroto Kuwabara
- Department of Radiology; The Johns Hopkins University School of Medicine; Baltimore MD USA
| | - Xiaoqiang Xu
- Department of Psychiatry and Behavioral Sciences; The Johns Hopkins University School of Medicine; Baltimore MD USA
| | - J. James Frost
- Department of Radiology; The Johns Hopkins University School of Medicine; Baltimore MD USA
| | - Dean F. Wong
- Department of Psychiatry and Behavioral Sciences; The Johns Hopkins University School of Medicine; Baltimore MD USA
- Department of Radiology; The Johns Hopkins University School of Medicine; Baltimore MD USA
- Department of Neuroscience; The Johns Hopkins University School of Medicine; Baltimore MD USA
- Department of Environmental Health Sciences; The Johns Hopkins University School of Medicine; Baltimore MD USA
| | - Mary E. McCaul
- Department of Psychiatry and Behavioral Sciences; The Johns Hopkins University School of Medicine; Baltimore MD USA
- Department of Medicine; The Johns Hopkins University School of Medicine; Baltimore MD USA
| |
Collapse
|
31
|
Hirasawa-Fujita M, Bly MJ, Ellingrod VL, Dalack GW, Domino EF. Genetic Variation of the Mu Opioid Receptor (OPRM1) and Dopamine D2 Receptor (DRD2) is Related to Smoking Differences in Patients with Schizophrenia but not Bipolar Disorder. ACTA ACUST UNITED AC 2014. [DOI: 10.3371/csrp.mhmb.061314] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Abstract
Tobacco smoking is a contributory factor in the death of 50% of individuals who are regular or heavy smokers (The Office of Tobacco Control Ireland defines a regular smoker as someone who smokes 11-20 per day and a heavy smoker as someone who smokes 21 or more cigarettes per day). The World Health Organisation (WHO) regards tobacco smoking as the leading preventable cause of death worldwide. In Ireland, approximately 750,000 people smoke tobacco regularly (23.5% of the population) with 7,000 Irish people dying annually from smoking-related causes. Although there are no exact figures for prevalence rates of smoking in individuals with mental illness in Ireland, international studies unequivocally state that the prevalence of smoking is significantly higher in those with mental illness, with greater nicotine intake and increased prevalence of nicotine dependence also reported. Furthermore people with mental illness experience greater withdrawal symptoms and have lower cessation rates when attempting to stop smoking compared to the general population.
Collapse
|
33
|
Han T, Alexander M, Niggebrugge A, Hollands GJ, Marteau TM. Impact of tobacco outlet density and proximity on smoking cessation: a longitudinal observational study in two English cities. Health Place 2014; 27:45-50. [PMID: 24534263 DOI: 10.1016/j.healthplace.2014.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/25/2013] [Accepted: 01/19/2014] [Indexed: 11/21/2022]
Abstract
A previous study conducted in the USA reported an association between residential proximity to a tobacco outlet and reduced likelihood of a quit attempt enduring beyond six months. We replicated this study in an English urban setting using data on 611 smokers motivated to quit, of whom 66 were biochemically validated as being quit at six months. Sustained quitting at six months was unrelated to residential proximity of a tobacco outlet. Future studies would be improved by the use of validated mappings of retail outlets, mapped in relation to multiple activity spaces, not just residence.
Collapse
Affiliation(s)
- Tha Han
- Knowledge and Intelligence Team East, Public Health England, Cambridge, United Kingdom.
| | - Myriam Alexander
- Cardiovascular Epidemiology Unit, University of Cambridge, United Kingdom.
| | - Aphrodite Niggebrugge
- Knowledge and Intelligence Team East, Public Health England, Cambridge, United Kingdom.
| | - Gareth J Hollands
- Behaviour and Health Research Unit, University of Cambridge, Institute of Public Health, United Kingdom.
| | - Theresa M Marteau
- Behaviour and Health Research Unit, University of Cambridge, Institute of Public Health, United Kingdom.
| |
Collapse
|
34
|
Wang YJ, Huang P, Blendy JA, Liu-Chen LY. Brain region- and sex-specific alterations in DAMGO-stimulated [(35) S]GTPγS binding in mice with Oprm1 A112G. Addict Biol 2014; 19:354-61. [PMID: 22862850 DOI: 10.1111/j.1369-1600.2012.00484.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The A118G single nucleotide polymorphism (SNP) of the human μ-opioid receptor (MOPR) gene (OPRM1) was associated with heightened dopamine release by alcohol intake, better treatment outcome for nicotine and alcohol addiction, and reduced analgesic responses to morphine. A mouse model that possesses the equivalent substitution (A112G) in the mouse MOPR gene (OPRM1) was generated to delineate the mechanisms of the impact of the SNP. Mice homozygous for the G112 allele (G/G) displayed lower morphine-induced antinociception than mice homozygous for the A112 allele (A/A), similar to the results in humans. In this study, we examined whether A112G SNP affected MOPR-mediated G protein activation in the mouse model. We compared A/A and G/G mice in the MOPR-selective agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO)-stimulated [(35) S]GTPγS binding in brain regions by autoradiography. When the data of males and females were combined, G/G mice exhibited lower DAMGO-stimulated [(35) S]GTPγS binding in the ventral tegmental area than A/A mice, in accord with the previously reported reduced morphine-induced hyperactivity and locomotor sensitization in G/G mice. In the nucleus accumbens (NAc) core, female G/G mice displayed lower DAMGO-stimulated [(35) S]GTPγS binding than female A/A mice, which is consistent with the previously reported deficiency in morphine-induced conditioned place preference in female G/G mice. In G/G mice, males showed higher DAMGO-stimulated [(35) S]GTPγS binding than females in the cingulate cortex, caudate putamen, NAc core, thalamus and amygdala. Thus, A112G SNP affects DAMGO-stimulated [(35) S]GTPγS binding in region- and sex-specific manners.
Collapse
Affiliation(s)
- Yu-Jun Wang
- Department of Pharmacology; Center for Substance Abuse Research; Temple University School of Medicine; Philadelphia PA USA
| | - Peng Huang
- Department of Pharmacology; Center for Substance Abuse Research; Temple University School of Medicine; Philadelphia PA USA
| | - Julie A. Blendy
- Department of Pharmacology; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Lee-Yuan Liu-Chen
- Department of Pharmacology; Center for Substance Abuse Research; Temple University School of Medicine; Philadelphia PA USA
| |
Collapse
|
35
|
Fang J, Wang X, He B. Association between common genetic variants in the opioid pathway and smoking behaviors in Chinese men. Behav Brain Funct 2014; 10:2. [PMID: 24447405 PMCID: PMC3899627 DOI: 10.1186/1744-9081-10-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/15/2014] [Indexed: 12/27/2022] Open
Abstract
Background There is biological evidence that the brain opioidergic system plays a critical role in the addictive properties of nicotine. The purpose of the present study was to examine the associations of single nucleotide polymorphisms (SNPs) in the genes encoding mu-opioid receptor (MOR) and the MOR-interacting proteins (including OPRM1, ARRB2, and HINT1) with smoking behaviors in Chinese men. Methods A total of 284 subjects (including current and ex-smokers) were recruited. Special questionnaires were used to assess smoking behaviors including age of smoking initiation, daily cigarette consumption, and Fagerström test for nicotine dependence (FTND) score. Participant samples were genotyped for six SNPs in the opioid pathway genes: rs1799971 in OPRM1, rs1045280, rs2036657 and rs3786047 in ARRB2, rs3852209 and rs2278060 in HINT1. Linear and logistic regression models were used to determine single-locus and haplotype-based association analyses. Results There was no significant association between any of SNPs analyzed and smoking behaviors. Logistic regression analyses under dominant, recessive, and additive models showed no significant associations of the six SNPs with smoking status (current vs. ex-smokers). After adjustment for age at enrollment and smoking initiation age, HINT1 rs3852209 was significantly associated with smoking status with an OR of 0.54 (95% CI, 0.31-0.95; P = 0.03) under dominant inheritance model. No haplotypes in ARRB2 or HINT1 were related to smoking status. Conclusions The present study indicates no significant association between common genetic variations in MOR and MOR-interacting proteins and smoking behaviors in Chinese men, and gives suggestive evidence that HINT1 rs3852209 may be related to smoking status. The findings require confirmation from further studies in additional larger samples.
Collapse
Affiliation(s)
| | | | - Bei He
- Department of Respiratory Medicine, Peking University Third Hospital, No, 49 Hua Yuan Bei Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
36
|
Crist RC, Berrettini WH. Pharmacogenetics of OPRM1. Pharmacol Biochem Behav 2013; 123:25-33. [PMID: 24201053 DOI: 10.1016/j.pbb.2013.10.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/19/2013] [Accepted: 10/23/2013] [Indexed: 12/23/2022]
Abstract
Pharmacogenetic research has the potential to explain the variation in treatment efficacy within patient populations. Understanding the interaction between genetic variation and medications may provide a method for matching patients to the most effective therapeutic options and improving overall patient outcomes. The OPRM1 gene has been a target of interest in a large number of pharmacogenetic studies due to its genetic and structural variation, as well as the role of opioid receptors in a variety of disorders. The mu-opioid receptor (MOR), encoded by OPRM1, naturally regulates the analgesic response to pain and also controls the rewarding effects of many drugs of abuse, including opioids, nicotine, and alcohol. Genetic variants in OPRM1, particularly the non-synonymous polymorphism A118G, have been repeatedly associated with the efficacy of treatments for pain and various types of dependence. This review focuses on the current understanding of the pharmacogenetic impact of OPRM1, primarily with regard to the treatment of pain and addiction.
Collapse
Affiliation(s)
- Richard C Crist
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania School of Medicine, 125 South 31st St., Philadelphia, PA 19104, United States.
| | - Wade H Berrettini
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania School of Medicine, 125 South 31st St., Philadelphia, PA 19104, United States
| |
Collapse
|
37
|
Kleinjan M, Poelen EA, Engels RCME, Verhagen M. Dual growth of adolescent smoking and drinking: evidence for an interaction between the mu-opioid receptor (OPRM1) A118G polymorphism and sex. Addict Biol 2013; 18:1003-12. [PMID: 22260295 DOI: 10.1111/j.1369-1600.2011.00422.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Smoking and alcohol use often co-occur during adolescence, but little is known about the codevelopment of these substances. In the search for etiological factors that help to explain the development of adolescent substance use patterns, studies have revealed substantial heritability for both alcohol use and smoking. In this regard, the µ-opioid receptor gene (OPRM1, chromosome 6q24-q25) has been linked to both substances. This study examined the predictive relationships between initial level and growth of smoking and drinking in 311 early adolescents (13-15 years old) over a 4-year period. In addition, the effects of the A118G polymorphism of the OPRM1 gene on the initial values and the development over time of alcohol use and smoking were assessed. Finally, as prevalence and heritability estimates for both alcohol- and smoking-related behaviors differ between males and females, OPRM1 by sex interactions were tested. We found that high initial levels of early adolescent alcohol consumption were related to a stronger increase in smoking levels over time. In contrast, high initial levels of smoking were not related to growth of alcohol use. No main OPRM1 effects were found, but sex-specificity of the gene was found for smoking development. Male A-allele carriers showed a faster development in smoking behavior, whereas in females, the G-allele led to a faster development in smoking. Thus, in addition to high levels of alcohol as a risk factor for the development of smoking behavior, sex-specific effects exist for OPRM1, which may additionally have consequences for the development of adolescent smoking.
Collapse
Affiliation(s)
- Marloes Kleinjan
- Behavioural Science Institute, Radboud University Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
38
|
Abstract
Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes-primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065.
| | | |
Collapse
|
39
|
de Viron S, Malats N, Van der Heyden J, Van Oyen H, Brand A. Environmental and Genomic Factors as well as Interventions Influencing Smoking Cessation: A Systematic Review of Reviews and a Proposed Working Model. Public Health Genomics 2013; 16:159-73. [DOI: 10.1159/000351453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/18/2013] [Indexed: 11/19/2022] Open
|
40
|
Mura E, Govoni S, Racchi M, Carossa V, Ranzani GN, Allegri M, van Schaik RH. Consequences of the 118A>G polymorphism in the OPRM1 gene: translation from bench to bedside? J Pain Res 2013; 6:331-53. [PMID: 23658496 PMCID: PMC3645947 DOI: 10.2147/jpr.s42040] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The 118A>G single nucleotide polymorphism (SNP) in the μ-opioid receptor (OPRM1) gene has been the most described variant in pharmacogenetic studies regarding opioid drugs. Despite evidence for an altered biological function encoded by this variant, this knowledge is not yet utilized clinically. The aim of the present review was to collect and discuss the available information on the 118A>G SNP in the OPRM1 gene, at the molecular level and in its clinical manifestations. In vitro biochemical and molecular assays have shown that the variant receptor has higher binding affinity for β-endorphins, that it has altered signal transduction cascade, and that it has a lower expression compared with wild-type OPRM1. Studies using animal models for 118A>G have revealed a double effect of the variant receptor, with an apparent gain of function with respect to the response to endogenous opioids but a loss of function with exogenous administered opioid drugs. Although patients with this variant have shown a lower pain threshold and a higher drug consumption in order to achieve the analgesic effect, clinical experiences have demonstrated that patients carrying the variant allele are not affected by the increased opioid consumption in terms of side effects.
Collapse
Affiliation(s)
- Elisa Mura
- Department of Drug Sciences, Centre of Excellence in Applied Biology, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Daher M, Costa FMM, Neves FAR. Genotyping the Mu-Opioid Receptor A118G Polymorphism Using the Real-time Amplification Refractory Mutation System: Allele Frequency Distribution Among Brazilians. Pain Pract 2013; 13:614-20. [DOI: 10.1111/papr.12042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/22/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Mauricio Daher
- Department of Anesthesiology, University Hospital of Brasilia, University of Brasilia, Brasilia, Brazil
| | | | | |
Collapse
|
42
|
Stead LF, Perera R, Bullen C, Mant D, Hartmann-Boyce J, Cahill K, Lancaster T. Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev 2012; 11:CD000146. [PMID: 23152200 DOI: 10.1002/14651858.cd000146.pub4] [Citation(s) in RCA: 446] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The aim of nicotine replacement therapy (NRT) is to temporarily replace much of the nicotine from cigarettes to reduce motivation to smoke and nicotine withdrawal symptoms, thus easing the transition from cigarette smoking to complete abstinence. OBJECTIVES The aims of this review were: To determine the effect of NRT compared to placebo in aiding smoking cessation, and to consider whether there is a difference in effect for the different forms of NRT (chewing gum, transdermal patches, oral and nasal sprays, inhalers and tablets/lozenges) in achieving abstinence from cigarettes. To determine whether the effect is influenced by the dosage, form and timing of use of NRT; the intensity of additional advice and support offered to the smoker; or the clinical setting in which the smoker is recruited and treated. To determine whether combinations of NRT are more likely to lead to successful quitting than one type alone. To determine whether NRT is more or less likely to lead to successful quitting compared to other pharmacotherapies. SEARCH METHODS We searched the Cochrane Tobacco Addiction Group trials register for papers mentioning 'NRT' or any type of nicotine replacement therapy in the title, abstract or keywords. Date of most recent search July 2012. SELECTION CRITERIA Randomized trials in which NRT was compared to placebo or to no treatment, or where different doses of NRT were compared. We excluded trials which did not report cessation rates, and those with follow-up of less than six months. DATA COLLECTION AND ANALYSIS We extracted data in duplicate on the type of participants, the dose, duration and form of nicotine therapy, the outcome measures, method of randomization, and completeness of follow-up. The main outcome measure was abstinence from smoking after at least six months of follow-up. We used the most rigorous definition of abstinence for each trial, and biochemically validated rates if available. We calculated the risk ratio (RR) for each study. Where appropriate, we performed meta-analysis using a Mantel-Haenszel fixed-effect model. MAIN RESULTS We identified 150 trials; 117 with over 50,000 participants contributed to the primary comparison between any type of NRT and a placebo or non-NRT control group. The risk ratio (RR) of abstinence for any form of NRT relative to control was 1.60 (95% confidence interval [CI] 1.53 to 1.68). The pooled RRs for each type were 1.49 (95% CI 1.40 to 1.60, 55 trials) for nicotine gum; 1.64 (95% CI 1.52 to 1.78, 43 trials) for nicotine patch; 1.95 (95% CI 1.61 to 2.36, 6 trials) for oral tablets/lozenges; 1.90 (95% CI 1.36 to 2.67, 4 trials) for nicotine inhaler; and 2.02 (95% CI 1.49 to 2.73, 4 trials) for nicotine nasal spray. One trial of oral spray had an RR of 2.48 (95% CI 1.24 to 4.94). The effects were largely independent of the duration of therapy, the intensity of additional support provided or the setting in which the NRT was offered. The effect was similar in a small group of studies that aimed to assess use of NRT obtained without a prescription. In highly dependent smokers there was a significant benefit of 4 mg gum compared with 2 mg gum, but weaker evidence of a benefit from higher doses of patch. There was evidence that combining a nicotine patch with a rapid delivery form of NRT was more effective than a single type of NRT (RR 1.34, 95% CI 1.18 to 1.51, 9 trials). The RR for NRT used for a short period prior to the quit date was 1.18 (95% CI 0.98 to 1.40, 8 trials), just missing statistical significance, though the efficacy increased when we pooled only patch trials and when we removed one trial in which confounding was likely. Five studies directly compared NRT to a non-nicotine pharmacotherapy, bupropion; there was no evidence of a difference in efficacy (RR 1.01; 95% CI 0.87 to 1.18). A combination of NRT and bupropion was more effective than bupropion alone (RR 1.24; 95% CI 1.06 to 1.45, 4 trials). Adverse effects from using NRT are related to the type of product, and include skin irritation from patches and irritation to the inside of the mouth from gum and tablets. There is no evidence that NRT increases the risk of heart attacks. AUTHORS' CONCLUSIONS All of the commercially available forms of NRT (gum, transdermal patch, nasal spray, inhaler and sublingual tablets/lozenges) can help people who make a quit attempt to increase their chances of successfully stopping smoking. NRTs increase the rate of quitting by 50 to 70%, regardless of setting. The effectiveness of NRT appears to be largely independent of the intensity of additional support provided to the individual. Provision of more intense levels of support, although beneficial in facilitating the likelihood of quitting, is not essential to the success of NRT.
Collapse
Affiliation(s)
- Lindsay F Stead
- Department of Primary Care Health Sciences, University of Oxford,Oxford,UK.
| | | | | | | | | | | | | |
Collapse
|
43
|
Munafò MR, Johnstone EC, Aveyard P, Marteau T. Lack of association of OPRM1 genotype and smoking cessation. Nicotine Tob Res 2012; 15:739-44. [PMID: 22990223 DOI: 10.1093/ntr/nts174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Previous studies have reported an association between μ-opioid receptor (OPRM1) genotype and smoking cessation, with some evidence that the strength of this association depends on dose of nicotine replacement therapy (NRT). We examined whether a single-nucleotide polymorphism in the OPRM1 gene is associated with cessation and whether this variant moderates the effects of higher doses of NRT on abstinence. METHODS Participants were recruited from the practices of primary care physicians in the United Kingdom. Patients smoking an average of at least 10 cigarettes a day, who wanted to quit and were 18 years or older were eligible for inclusion. A total of N = 633 participants were recruited into the original trial, of whom complete data for pharmacogenetic analyses were available on n = 598. Logistic regression was used to test for the effects of OPRM1 genotype and NRT dose, including the genotype × dose interaction term, on smoking status at 4-week, and 26-week follow-up. Analyses were adjusted for potential confounders. RESULTS There was no evidence of a genotype effect at either follow-up, and no evidence of a genotype × dose interaction effect. CONCLUSIONS OPRM1 genotype may not affect the likelihood of smoking cessation, and it may not influence response to high- versus low-dose NRT. OPRM1 may have at most only a modest role in explaining cigarette smoking and cessation.
Collapse
Affiliation(s)
- Marcus R Munafò
- School of Experimental Psychology, University of Bristol, Bristol, UK.
| | | | | | | |
Collapse
|
44
|
Tobacco smoking produces greater striatal dopamine release in G-allele carriers with mu opioid receptor A118G polymorphism. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:236-40. [PMID: 22516252 DOI: 10.1016/j.pnpbp.2012.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/27/2012] [Accepted: 04/03/2012] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To determine if carriers of the allelic expression of the G variant of the human mu opioid receptor (OPRM1) A118G polymorphism have greater increases in striatal dopamine (DA) release after tobacco smoking. METHODS Nineteen of 20 genotyped male tobacco smokers, after overnight abstinence, smoked denicotinized (denic) and average nicotine (nic) containing tobacco cigarettes in a PET brain imaging study using [(11)C]raclopride. RESULTS The right striatum had more free D(2) receptors than the left striatum pre- and post-tobacco smoking. After smoking the nic cigarettes, mean decreased DA binding was observed in the left dorsal caudate (-14 6 11; t=3.77), left and right ventral putamen (-26 3-8; t=4.27; 28 2 1; t=4.25, respectively), and right caudate (17 18 1; t=3.92). The effects of A118G genotype on the binding potentials for these four regions were then analyzed. Carriers of the G allele had larger magnitudes of DA release in response to nic smoking than those homozygous for the more prevalent AA allele in the right caudate and right ventral pallidum (t=3.03; p=0.008 and t=3.91; p=0.001). A voxel by voxel whole brain SPM analysis using an independent samples t test did not reveal any other differences between genotype groups. In addition, the venous plasma cortisol levels of the volunteers from 8:30 a.m. to 12:40 p.m. were lower in the AG/GG allele carriers. Nic smoking increased plasma cortisol in both groups, but they were higher in the AA group. CONCLUSION This preliminary study indicates a difference in both brain striatal DA release and plasma cortisol in A118G polymorphic male tobacco smokers.
Collapse
|
45
|
Falcone M, Gold AB, Wileyto EP, Ray R, Ruparel K, Newberg A, Dubroff J, Logan J, Zubieta JK, Blendy JA, Lerman C. μ-Opioid receptor availability in the amygdala is associated with smoking for negative affect relief. Psychopharmacology (Berl) 2012; 222:701-8. [PMID: 22389047 PMCID: PMC3670416 DOI: 10.1007/s00213-012-2673-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/16/2012] [Indexed: 11/29/2022]
Abstract
RATIONALE The perception that smoking relieves negative affect contributes to smoking persistence. Endogenous opioid neurotransmission, and the μ-opioid receptor (MOR) in particular, plays a role in affective regulation and is modulated by nicotine. OBJECTIVES We examined the relationship of MOR binding availability in the amygdala to the motivation to smoke for negative affect relief and to the acute effects of smoking on affective responses. METHODS Twenty-two smokers were scanned on two separate occasions after overnight abstinence using [¹¹C]carfentanil positron emission tomography imaging: after smoking a nicotine-containing cigarette and after smoking a denicotinized cigarette. Self-reports of smoking motives were collected at baseline, and measures of positive and negative affect were collected pre- and post- cigarette smoking. RESULTS Higher MOR availability in the amygdala was associated with motivation to smoke to relieve negative affect. However, MOR availability was unrelated to changes in affect after smoking either cigarette. CONCLUSIONS Increased MOR availability in amygdala may underlie the motivation to smoke for negative affective relief. These results are consistent with previous data highlighting the role of MOR neurotransmission in smoking behavior.
Collapse
Affiliation(s)
- Mary Falcone
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104,Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
| | - Allison B. Gold
- Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
| | - E. Paul Wileyto
- Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
| | - Riju Ray
- Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
| | - Kosha Ruparel
- Brain Behavior Laboratory, Neuropsychiatry Department, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Andrew Newberg
- Myrna Brind Center of Integrative Medicine, Department of Emergency Medicine and Radiology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jacob Dubroff
- Department of Nuclear Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Jean Logan
- Medical Department, Brookhaven National Laboratory, Upton, NY 11973
| | - Jon-Kar Zubieta
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Julie A. Blendy
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104
| | - Caryn Lerman
- Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
46
|
de Viron S, Van der Heyden J, Ambrosino E, Arbyn M, Brand A, Van Oyen H. Impact of genetic notification on smoking cessation: systematic review and pooled-analysis. PLoS One 2012; 7:e40230. [PMID: 22808123 PMCID: PMC3394798 DOI: 10.1371/journal.pone.0040230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/03/2012] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES This study aimed to evaluate the impact of genetic notification of smoking-related disease risk on smoking cessation in the general population. Secondary objectives were to assess the impact of genetic notification on intention-to-quit smoking and on emotional outcomes as well as the understanding and the recall of this notification. METHODS A systematic review of articles from inception to August 2011 without language restriction was realized using PubMed, Embase, Scopus, Web of Science, PsycINFO and Toxnet. Other publications were identified using hand search. The pooled-analysis included only randomized trials. Comparison groups were (i) high and low genetic risk versus control, and (ii) high versus low genetic risk. For the pooled-analysis random effect models were applied and sensitivity analyses were conducted. RESULTS Eight papers from seven different studies met the inclusion criteria of the review. High genetic risk notification was associated with short-term increased depression and anxiety. Four randomized studies were included in the pooled-analysis, which revealed a significant impact of genetic notification on smoking cessation in comparison to controls (clinical risk notification or no intervention) in short term follow-up less than 6 months (RR = 1.55, 95% CI 1.09-2.21). CONCLUSIONS In short term follow-up, genetic notification increased smoking cessation in comparison to control interventions. However, there is no evidence of long term effect (up to 12 month) on smoking cessation. Further research is needed to assess more in depth how genetic notification of smoking-related disease could contribute to smoking cessation.
Collapse
Affiliation(s)
- Sylviane de Viron
- Operational Direction Public Health and Surveillance, Scientific Institute of Public Health, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
47
|
Verhagen M, Kleinjan M, Engels RCME. A systematic review of the A118G (Asn40Asp) variant of OPRM1 in relation to smoking initiation, nicotine dependence and smoking cessation. Pharmacogenomics 2012; 13:917-33. [DOI: 10.2217/pgs.12.76] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Candidate gene studies on smoking behaviors mainly focused on dopaminergic and serotonergic genes, but genes within the µ-opioid system might also be involved. The A118G variant within the OPRM1 gene has been most often examined in relation to smoking, yielding inconsistent findings. It is largely unknown which of the alleles increases susceptibility for smoking behaviors. The aim of this review was to merge findings of OPRM1 gene studies in relation to smoking behaviors and to elaborate on the underlying biological mechanism of the A118G variant. It appeared that A118 was more likely to increase susceptibility to smoking behaviors than 118G, especially with regard to nicotine dependence, but less with smoking initiation and cessation. The proposed functioning of the OPRM1 gene is further explained.
Collapse
Affiliation(s)
- Maaike Verhagen
- Behavioural Science Institute, Radboud University Nijmegen, PO Box 9104, 6500 HE Nijmegen, The Netherlands
| | - Marloes Kleinjan
- Behavioural Science Institute, Radboud University Nijmegen, PO Box 9104, 6500 HE Nijmegen, The Netherlands
| | - Rutger CME Engels
- Behavioural Science Institute, Radboud University Nijmegen, PO Box 9104, 6500 HE Nijmegen, The Netherlands
| |
Collapse
|
48
|
Marteau TM, Aveyard P, Munafò MR, Prevost AT, Hollands GJ, Armstrong D, Sutton S, Hill C, Johnstone E, Kinmonth AL. Effect on adherence to nicotine replacement therapy of informing smokers their dose is determined by their genotype: a randomised controlled trial. PLoS One 2012; 7:e35249. [PMID: 22509402 PMCID: PMC3324463 DOI: 10.1371/journal.pone.0035249] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/12/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The behavioural impact of pharmacogenomics is untested. We tested two hypotheses concerning the behavioural impact of informing smokers their oral dose of NRT is tailored to analysis of DNA. METHODS AND FINDINGS We conducted an RCT with smokers in smoking cessation clinics (N = 633). In combination with NRT patch, participants were informed that their doses of oral NRT were based either on their mu-opioid receptor (OPRM1) genotype, or their nicotine dependence questionnaire score (phenotype). The proportion of prescribed NRT consumed in the first 28 days following quitting was not significantly different between groups: (68.5% of prescribed NRT consumed in genotype vs 63.6%, phenotype group, difference = 5.0%, 95% CI -0.9,10.8, p = 0.098). Motivation to make another quit attempt among those (n = 331) not abstinent at six months was not significantly different between groups (p = 0.23). Abstinence at 28 days was not different between groups (p = 0.67); at six months was greater in genotype than phenotype group (13.7% vs 7.9%, difference = 5.8%, 95% CI 1.0,10.7, p = 0.018). CONCLUSIONS Informing smokers their oral dose of NRT was tailored to genotype not phenotype had a small, statistically non-significant effect on 28-day adherence to NRT. Among those still smoking at six months, there was no evidence that saying NRT was tailored to genotype adversely affected motivation to make another quit attempt. Higher abstinence rate at six months in the genotype arm requires investigation. TRIAL REGISTRATION Controlled-Trials.com ISRCTN14352545.
Collapse
Affiliation(s)
- Theresa M Marteau
- Psychology Department at Guy's, Health Psychology Section, King's College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
A common single nucleotide polymorphism A118G of the μ opioid receptor alters its N-glycosylation and protein stability. Biochem J 2012; 441:379-86. [PMID: 21864297 DOI: 10.1042/bj20111050] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The A118G SNP (single nucleotide polymorphism) of the hMOPR [human MOPR (μ opioid receptor)] gene OPRM1 results in an amino acid substitution (N40D). Subjects homozygous for the 118G allele have been reported to require higher morphine doses to achieve adequate analgesia, and the 118G allele is more prevalent among drug abusers. However, changes in the MOPR protein associated with this SNP are unknown. Using a knockin mouse model (G/G mice; mice homozygous for the 112G allele of MOPR) that possesses the equivalent nucleotide/amino acid substitution (A112G; N38D) of the A118G SNP in the hMOPR gene, we investigated the N-linked glycosylation status of thalamic and striatal MOPR in G/G mice compared with A/A mice (wild-type mice homozygous for the 112A allele of MOPR). The molecular mass of MOPR determined by immunoblotting was lower in G/G mice than in A/A mice. Following treatment with peptide N-glycosidase F, which removes all N-linked glycans, both MOPR variants had an identical molecular mass, indicating that this discrepancy was due to a lower level of N-glycosylation of the MOPR in G/G mice. In Chinese-hamster ovary cells stably expressing hMOPRs, 118G/Asp40-hMOPR had a lower molecular mass than 118A/Asn40-hMOPR, which was similarly due to differential N-glycosylation. Pulse-chase studies revealed that the half-life of the mature form of 118G/Asp40-hMOPR (~12 h) was shorter than that of 118A/Asn40-hMOPR (~28 h). Thus the A118G SNP reduces MOPR N-glycosylation and protein stability.
Collapse
|
50
|
Farley AC, Hajek P, Lycett D, Aveyard P. Interventions for preventing weight gain after smoking cessation. Cochrane Database Syst Rev 2012; 1:CD006219. [PMID: 22258966 DOI: 10.1002/14651858.cd006219.pub3] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Most people who stop smoking gain weight. There are some interventions that have been designed to reduce weight gain when stopping smoking. Some smoking cessation interventions may also limit weight gain although their effect on weight has not been reviewed. OBJECTIVES To systematically review the effect of: (1) Interventions targeting post-cessation weight gain on weight change and smoking cessation.(2) Interventions designed to aid smoking cessation that may also plausibly affect weight on post-cessation weight change. SEARCH METHODS Part 1 - We searched the Cochrane Tobacco Addiction Group's Specialized Register and CENTRAL in September 2011.Part 2 - In addition we searched the included studies in the following "parent" Cochrane reviews: nicotine replacement therapy (NRT), antidepressants, nicotine receptor partial agonists, cannabinoid type 1 receptor antagonists and exercise interventions for smoking cessation published in Issue 9, 2011 of the Cochrane Library. SELECTION CRITERIA Part 1 - We included trials of interventions that were targeted at post-cessation weight gain and had measured weight at any follow up point and/or smoking cessation six or more months after quit day.Part 2 - We included trials that had been included in the selected parent Cochrane reviews if they had reported weight gain at any time point. DATA COLLECTION AND ANALYSIS We extracted data on baseline characteristics of the study population, intervention, outcome and study quality. Change in weight was expressed as difference in weight change from baseline to follow up between trial arms and was reported in abstinent smokers only. Abstinence from smoking was expressed as a risk ratio (RR). We used the most rigorous definition of abstinence available in each trial. Where appropriate, we performed meta-analysis using the inverse variance method for weight and Mantel-Haenszel method for smoking using a fixed-effect model. MAIN RESULTS Part 1: Some pharmacological interventions tested for limiting post cessation weight gain (PCWG) resulted in a significant reduction in WG at the end of treatment (dexfenfluramine (Mean difference (MD) -2.50 kg, 95% confidence interval (CI) -2.98 to -2.02, 1 study), phenylpropanolamine (MD -0.50 kg, 95% CI -0.80 to -0.20, N=3), naltrexone (MD -0.78 kg, 95% CI -1.52 to -0.05, N=2). There was no evidence that treatment reduced weight at 6 or 12 months (m). No pharmacological intervention significantly affected smoking cessation rates.Weight management education only was associated with no reduction in PCWG at end of treatment (6 or 12m). However these interventions significantly reduced abstinence at 12m (Risk ratio (RR) 0.66, 95% CI 0.48 to 0.90, N=2). Personalised weight management support reduced PCWG at 12m (MD -2.58 kg, 95% CI -5.11 to -0.05, N=2) and was not associated with a significant reduction of abstinence at 12m (RR 0.74, 95% CI 0.39 to 1.43, N=2). A very low calorie diet (VLCD) significantly reduced PCWG at end of treatment (MD -3.70 kg, 95% CI -4.82 to -2.58, N=1), but not significantly so at 12m (MD -1.30 kg, 95% CI -3.49 to 0.89, N=1). The VLCD increased chances of abstinence at 12m (RR 1.73, 95% CI 1.10 to 2.73, N=1). There was no evidence that cognitive behavioural therapy to allay concern about weight gain (CBT) reduced PCWG, but there was some evidence of increased PCWG at 6m (MD 0.74, 95% CI 0.24 to 1.24). It was associated with improved abstinence at 6m (RR 1.83, 95% CI 1.07 to 3.13, N=2) but not at 12m (RR 1.25, 95% CI 0.83 to 1.86, N=2). However, there was significant statistical heterogeneity.Part 2: We found no evidence that exercise interventions significantly reduced PCWG at end of treatment (MD -0.25 kg, 95% CI -0.78 to 0.29, N=4) however a significant reduction was found at 12m (MD -2.07 kg, 95% CI -3.78 to -0.36, N=3).Both bupropion and fluoxetine limited PCWG at the end of treatment (bupropion MD -1.12 kg, 95% CI -1.47 to -0.77, N=7) (fluoxetine MD -0.99 kg, 95% CI -1.36 to -0.61, N=2). There was no evidence that the effect persisted at 6m (bupropion MD -0.58 kg, 95% CI -2.16 to 1.00, N=4), (fluoxetine MD -0.01 kg, 95% CI -1.11 to 1.10, N=2) or 12m (bupropion MD -0.38 kg, 95% CI -2.00 to 1.24, N=4). There were no data on WG at 12m for fluoxetine.Overall, treatment with NRT attenuated PCWG at the end of treatment (MD -0.69 kg, 95% CI -0.88 to -0.51, N=19), with no strong evidence that the effect differed for the different forms of NRT. There was evidence of significant statistical heterogeneity caused by one study which reported a 4.3 kg reduction in PCWG due to NRT. With this study removed, the difference in weight change at end of treatment was -0.45 kg (95% CI -0.66 to -0.27, N=18). There was no evidence of an effect on PCWG at 12m (MD -0.42 kg, 95% CI -0.92 to 0.08, N=15).We found evidence that varenicline significantly reduced PCWG at end of treatment (MD -0.41 kg, 95% CI -0.63 to -0.19, N=11), but this effect was not maintained at 6 or 12m. Three studies compared the effect of bupropion to varenicline. Participants taking bupropion gained significantly less weight at the end of treatment (-0.51 kg (95% CI -0.93 to -0.09 kg), N=3). Direct comparison showed no significant difference in PCWG between varenicline and NRT. AUTHORS' CONCLUSIONS Although some pharmacotherapies tested to limit PCWG show evidence of short-term success, other problems with them and the lack of data on long-term efficacy limits their use. Weight management education only, is not effective and may reduce abstinence. Personalised weight management support may be effective and not reduce abstinence, but there are too few data to be sure. One study showed a VLCD increased abstinence but did not prevent WG in the longer term. CBT to accept WG did not limit PCWG and may not promote abstinence in the long term. Exercise interventions significantly reduced weight in the long term, but not the short term. More studies are needed to clarify whether this is an effect of treatment or a chance finding. Bupropion, fluoxetine, NRT and varenicline reduce PCWG while using the medication. Although this effect was not maintained one year after stopping smoking, the evidence is insufficient to exclude a modest long-term effect. The data are not sufficient to make strong clinical recommendations for effective programmes to prevent weight gain after cessation.
Collapse
Affiliation(s)
- Amanda C Farley
- Primary Care Clinical Sciences, University of Birmingham, Birmingham, UK
| | | | | | | |
Collapse
|