1
|
Tanneru N, Nivya MA, Adhikari N, Saxena K, Rizvi Z, Sudhakar R, Nagwani AK, Atul, Mohammed Abdul Al-Nihmi F, Kumar KA, Sijwali PS. Plasmodium DDI1 is a potential therapeutic target and important chromatin-associated protein. Int J Parasitol 2023; 53:157-175. [PMID: 36657610 DOI: 10.1016/j.ijpara.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/13/2022] [Accepted: 11/10/2022] [Indexed: 01/18/2023]
Abstract
DNA damage inducible 1 protein (DDI1) is involved in a variety of cellular processes including proteasomal degradation of specific proteins. All DDI1 proteins contain a ubiquitin-like (UBL) domain and a retroviral protease (RVP) domain. Some DDI1 proteins also contain a ubiquitin-associated (UBA) domain. The three domains confer distinct activities to DDI1 proteins. The presence of a RVP domain makes DDI1 a potential target of HIV protease inhibitors, which also block the development of malaria parasites. Hence, we investigated the DDI1 of malaria parasites to identify its roles during parasite development and potential as a therapeutic target. DDI1 proteins of Plasmodium and other apicomplexan parasites share the UBL-RVP domain architecture, and some also contain the UBA domain. Plasmodium DDI1 is expressed across all the major life cycle stages and is important for parasite survival, as conditional depletion of DDI1 protein in the mouse malaria parasite Plasmodium berghei and the human malaria parasite Plasmodium falciparum compromised parasite development. Infection of mice with DDI1 knock-down P. berghei was self-limiting and protected the recovered mice from subsequent infection with homologous as well as heterologous parasites, indicating the potential of DDI1 knock-down parasites as a whole organism vaccine. Plasmodium falciparum DDI1 (PfDDI1) is associated with chromatin and DNA-protein crosslinks. PfDDI1-depleted parasites accumulated DNA-protein crosslinks and showed enhanced susceptibility to DNA-damaging chemicals, indicating a role of PfDDI1 in removal of DNA-protein crosslinks. Knock-down of PfDDI1 increased susceptibility to the retroviral protease inhibitor lopinavir and antimalarial artemisinin, which suggests that simultaneous inhibition of DDI1 could potentiate antimalarial activity of these drugs. As DDI1 knock-down parasites confer protective immunity and it could be a target of HIV protease inhibitors, Plasmodium DDI1 is a potential therapeutic target for malaria control.
Collapse
Affiliation(s)
- Nandita Tanneru
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, TS, India
| | - M Angel Nivya
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, TS, India
| | - Navin Adhikari
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, TS, India
| | - Kanika Saxena
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Zeba Rizvi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, TS, India
| | - Renu Sudhakar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, TS, India
| | - Amit Kumar Nagwani
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, TS, India
| | - Atul
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, TS, India
| | | | - Kota Arun Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Puran Singh Sijwali
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India.
| |
Collapse
|
2
|
Live attenuated vaccines, a favorable strategy to provide long-term immunity against protozoan diseases. Trends Parasitol 2021; 38:316-334. [PMID: 34896016 DOI: 10.1016/j.pt.2021.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022]
Abstract
The control of diseases caused by protozoan parasites is one of the United Nations' Sustainable Development Goals. In recent years much research effort has gone into developing a new generation of live attenuated vaccines (LAVs) against malaria, Chagas disease and leishmaniasis. However, there is a bottleneck related to their biosafety, production, and distribution that slows downs further development. The success of irradiated or genetically attenuated sporozoites against malaria, added to the first LAV against leishmaniasis to be evaluated in clinical trials, is indicative that the drawbacks of LAVs are gradually being overcome. However, whether persistence of LAVs is a prerequisite for sustained long-term immunity remains to be clarified, and the procedures necessary for clinical evaluation of vaccine candidates need to be standardized.
Collapse
|
3
|
De Trez C, Khan S, Magez S. T. brucei infections abrogate diverse plasma cell-mediated effector B cell responses, independently of their specificity, affinity and host genetic background. PLoS Negl Trop Dis 2020; 14:e0008358. [PMID: 32589656 PMCID: PMC7347239 DOI: 10.1371/journal.pntd.0008358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 07/09/2020] [Accepted: 05/04/2020] [Indexed: 11/18/2022] Open
Abstract
Antibody-mediated parasite killing is considered the most effective host immune response against extracellular trypanosome parasites. However, due to host-parasite co-evolution pressure, these parasites have "learned" how to hijack the host immune system via the development of immune evasion strategies. Hereby they prevent elimination and promote transmission. In the past, our group has shown that African trypanosome parasites are able to "shut down" the host B cell compartment, via the abolishment of the homeostatic B cell compartment. In line with this, we have reported that trypanosome infections result in detrimental outcomes on auto-reactive and cancer B cells. To unravel the immune mechanisms involved in these processes we adopted here a well-defined B cell vaccine model, i.e. the thymo-dependent hapten-carrier NP-CGG (4-Hydroxy-3-nitrophenylacetyl-Chicken Gamma Globulin) emulsified in Alum adjuvant. Results show that T. brucei infections abrogate the circulating titres of vaccine-induced CGG-specific as well as NP-specific IgG1+ antibodies, a hallmark of memory B cell responses in this model. This happens independently of their affinity and IFNɣ signalling. Next, we demonstrate that T. brucei infections also induce a decrease of anti-NP IgG3+ antibodies induced by the administration of NP coupled to Ficoll, a thymo-independent antigen. Confirming the non-specificity of the infection-associated immunopathology, this report also shows that trypanosome infections abolish vaccine-induced memory response against malaria parasite in BALB/c mice. Together, these data indicates that T. brucei infections impair every stages of B cell development, including effector plasma B cells, independently of their specificity and affinity as well as the host genetic background.
Collapse
Affiliation(s)
- Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| | - Shahid Khan
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Ghent University Global Campus, Yeonsu-gu, Incheon, South Korea
| |
Collapse
|
4
|
Good MF, Stanisic DI. Whole parasite vaccines for the asexual blood stages ofPlasmodium. Immunol Rev 2019; 293:270-282. [DOI: 10.1111/imr.12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Michael F. Good
- Institute for Glycomics Griffith University Gold Coast Qld. Australia
| | | |
Collapse
|
5
|
Narula AK, Azad CS, Nainwal LM. New dimensions in the field of antimalarial research against malaria resurgence. Eur J Med Chem 2019; 181:111353. [DOI: 10.1016/j.ejmech.2019.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
|
6
|
Essential role of GEXP15, a specific Protein Phosphatase type 1 partner, in Plasmodium berghei in asexual erythrocytic proliferation and transmission. PLoS Pathog 2019; 15:e1007973. [PMID: 31348803 PMCID: PMC6685639 DOI: 10.1371/journal.ppat.1007973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/07/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022] Open
Abstract
The essential and distinct functions of Protein Phosphatase type 1 (PP1) catalytic subunit in eukaryotes are exclusively achieved through its interaction with a myriad of regulatory partners. In this work, we report the molecular and functional characterization of Gametocyte EXported Protein 15 (GEXP15), a Plasmodium specific protein, as a regulator of PP1. In vitro interaction studies demonstrated that GEXP15 physically interacts with PP1 through the RVxF binding motif in P. berghei. Functional assays showed that GEXP15 was able to increase PP1 activity and the mutation of the RVxF motif completely abolished this regulation. Immunoprecipitation assays of tagged GEXP15 or PP1 in P. berghei followed by immunoblot or mass spectrometry analyses confirmed their interaction and showed that they are present both in schizont and gametocyte stages in shared protein complexes involved in the spliceosome and proteasome pathways and known to play essential role in parasite development. Phenotypic analysis of viable GEXP15 deficient P. berghei blood parasites showed that they were unable to develop lethal infection in BALB/c mice or to establish experimental cerebral malaria in C57BL/6 mice. Further, although deficient parasites produced gametocytes they did not produce any oocysts/sporozoites indicating a high fitness cost in the mosquito. Global proteomic and phosphoproteomic analyses of GEXP15 deficient schizonts revealed a profound defect with a significant decrease in the abundance and an impact on phosphorylation status of proteins involved in regulation of gene expression or invasion. Moreover, depletion of GEXP15 seemed to impact mainly the abundance of some specific proteins of female gametocytes. Our study provides the first insight into the contribution of a PP1 regulator to Plasmodium virulence and suggests that GEXP15 affects both the asexual and sexual life cycle. In the absence of an effective vaccine and the emerging resistance to artemisinin combination therapy, malaria is still a significant threat to human health. Increasing our understanding of the specific mechanisms of the biology of Plasmodium is essential to propose new strategies to control this infection. Here, we demonstrated that GEXP15, a specific protein in Plasmodium, was able to interact with the Protein Phosphatase 1 and regulate its activity. We showed that both proteins are implicated in common protein complexes involved in the mRNA splicing and proteasome pathways. We reported that the deletion of GEXP15 leads to a loss of parasite virulence during asexual stages and a total abolishment of the capacity of deficient parasites to develop in the mosquito. We also found that this deletion affects both protein phosphorylation status and significantly decreases the expression of essential proteins in schizont and gametocyte stages. This study characterizes for the first time a novel molecular pathway through the control of PP1 by an essential and specific Plasmodium regulator, which may contribute to the discovery of new therapeutic targets to control malaria.
Collapse
|
7
|
Cheng CW, Jongwutiwes S, Putaporntip C, Jackson AP. Clinical expression and antigenic profiles of a Plasmodium vivax vaccine candidate: merozoite surface protein 7 (PvMSP-7). Malar J 2019; 18:197. [PMID: 31196098 PMCID: PMC6567670 DOI: 10.1186/s12936-019-2826-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Background Vivax malaria is the predominant form of malaria outside Africa, affecting about 14 million people worldwide, with about 2.5 billion people exposed. Development of a Plasmodium vivax vaccine is a priority, and merozoite surface protein 7 (MSP-7) has been proposed as a plausible candidate. The P. vivax genome contains 12 MSP-7 genes, which contribute to erythrocyte invasion during blood-stage infection. Previous analysis of MSP-7 sequence diversity suggested that not all paralogs are functionally equivalent. To explore MSP-7 functional diversity, and to identify the best vaccine candidate within the family, MSP-7 expression and antigenicity during bloodstream infections were examined directly from clinical isolates. Methods Merozoite surface protein 7 gene expression was profiled using RNA-seq data from blood samples isolated from ten human patients with vivax malaria. Differential expression analysis and co-expression cluster analysis were used to relate PvMSP-7 expression to genetic markers of life cycle stage. Plasma from vivax malaria patients was also assayed using a custom peptide microarray to measure antibody responses against the coding regions of 12 MSP-7 paralogs. Results Ten patients presented diverse transcriptional profiles that comprised four patient groups. Two MSP-7 paralogs, 7A and 7F, were expressed abundantly in all patients, while other MSP-7 genes were uniformly rare (e.g. 7J). MSP-7H and 7I were significantly more abundant in patient group 4 only, (two patients having experienced longer patency), and were co-expressed with a schizont-stage marker, while negatively associated with liver-stage and gametocyte-stage markers. Screening infections with a PvMSP-7 peptide array identified 13 linear B-cell epitopes in five MSP-7 paralogs that were recognized by plasma from all patients. Conclusions These results show that MSP-7 family members vary in expression profile during blood infections; MSP-7A and 7F are expressed throughout the intraerythrocytic development cycle, while expression of other paralogs is focused on the schizont. This may reflect developmental regulation, and potentially functional differentiation, within the gene family. The frequency of B-cell epitopes among paralogs also varies, with MSP-7A and 7L consistently the most immunogenic. Thus, MSP-7 paralogs cannot be assumed to have equal potential as vaccines. This analysis of clinical infections indicates that the most abundant and immunogenic paralog is MSP-7A. Electronic supplementary material The online version of this article (10.1186/s12936-019-2826-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chew Weng Cheng
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK.,Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
| |
Collapse
|
8
|
Capuccini B, Lin J, Talavera-López C, Khan SM, Sodenkamp J, Spaccapelo R, Langhorne J. Transcriptomic profiling of microglia reveals signatures of cell activation and immune response, during experimental cerebral malaria. Sci Rep 2016; 6:39258. [PMID: 27991544 PMCID: PMC5171943 DOI: 10.1038/srep39258] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/22/2016] [Indexed: 02/08/2023] Open
Abstract
Cerebral malaria is a pathology involving inflammation in the brain. There are many immune cell types activated during this process, but there is little information on the response of microglia, in this severe complication. We examined microglia by genome wide transcriptomic analysis in a model of experimental cerebral malaria (ECM), in which C57BL/6 mice are infected with Plasmodium berghei ANKA. Thousands of transcripts were differentially expressed in microglia at two different time points during infection. Proliferation of microglia was a dominant feature before the onset of ECM, and supporting this, we observed an increase in numbers of these cells in the brain. When cerebral malaria symptoms were manifest, genes involved in immune responses and chemokine production were upregulated, which were possibly driven by Type I Interferon. Consistent with this hypothesis, in vitro culture of a microglial cell line with Interferon-β, but not infected red blood cells, resulted in production of several of the chemokines shown to be upregulated in the gene expression analysis. It appears that these responses are associated with ECM, as microglia from mice infected with a mutant P. berghei parasite (ΔDPAP3), which does not cause ECM, did not show the same level of activation or proliferation.
Collapse
Affiliation(s)
| | - Jingwen Lin
- The Francis Crick Institute, London NW1 1AT, UK
| | | | - Shahid M. Khan
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, Netherlands
| | | | - Roberta Spaccapelo
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | | |
Collapse
|
9
|
Cassone A, Vecchiarelli A, Hube B. Aspartyl Proteinases of Eukaryotic Microbial Pathogens: From Eating to Heating. PLoS Pathog 2016; 12:e1005992. [PMID: 28005981 PMCID: PMC5179018 DOI: 10.1371/journal.ppat.1005992] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Antonio Cassone
- Polo d’innovazione della Genomica, Genetica e Biologia, University of Perugia, Perugia, Italy
| | - Anna Vecchiarelli
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Jena, Germany
- Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany
- Friedrich-Schiller-Universität, Jena, Germany
| |
Collapse
|
10
|
Demarta-Gatsi C, Smith L, Thiberge S, Peronet R, Commere PH, Matondo M, Apetoh L, Bruhns P, Ménard R, Mécheri S. Protection against malaria in mice is induced by blood stage-arresting histamine-releasing factor (HRF)-deficient parasites. J Exp Med 2016; 213:1419-28. [PMID: 27432939 PMCID: PMC4986535 DOI: 10.1084/jem.20151976] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/26/2016] [Indexed: 11/04/2022] Open
Abstract
Although most vaccines against blood stage malaria in development today use subunit preparations, live attenuated parasites confer significantly broader and more lasting protection. In recent years, Plasmodium genetically attenuated parasites (GAPs) have been generated in rodent models that cause self-resolving blood stage infections and induce strong protection. All such GAPs generated so far bear mutations in housekeeping genes important for parasite development in red blood cells. In this study, using a Plasmodium berghei model compatible with tracking anti-blood stage immune responses over time, we report a novel blood stage GAP that lacks a secreted factor related to histamine-releasing factor (HRF). Lack of HRF causes an IL-6 increase, which boosts T and B cell responses to resolve infection and leave a cross-stage, cross-species, and lasting immunity. Mutant-induced protection involves a combination of antiparasite IgG2c antibodies and FcγR(+) CD11b(+) cell phagocytes, especially neutrophils, which are sufficient to confer protection. This immune-boosting GAP highlights an important role of opsonized parasite-mediated phagocytosis, which may be central to protection induced by all self-resolving blood stage GAP infections.
Collapse
Affiliation(s)
- Claudia Demarta-Gatsi
- Unité de Biologie des Interactions Hôte Parasites, Centre National de la Recherche Scientifique ERL9195, Institut National de la Santé et de la Recherche Médicale U1201, Institut Pasteur, F-75015 Paris, France
| | - Leanna Smith
- Unité de Biologie des Interactions Hôte Parasites, Centre National de la Recherche Scientifique ERL9195, Institut National de la Santé et de la Recherche Médicale U1201, Institut Pasteur, F-75015 Paris, France
| | - Sabine Thiberge
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, F-75015 Paris, France
| | - Roger Peronet
- Unité de Biologie des Interactions Hôte Parasites, Centre National de la Recherche Scientifique ERL9195, Institut National de la Santé et de la Recherche Médicale U1201, Institut Pasteur, F-75015 Paris, France
| | | | - Mariette Matondo
- Spectrométrie de Masse Structurale et Protéomique, Institut Pasteur, F-75015 Paris, France
| | - Lionel Apetoh
- Institut National de la Santé et de la Recherche Médicale U866, Université Bourgogne Franche-Comté et Centre Georges François Leclerc, 21000 Dijon, France
| | - Pierre Bruhns
- Anticorps en Thérapie et Pathologie, Institut National de la Santé et de la Recherche Médicale U1222, Institut Pasteur, F-75015 Paris, France
| | - Robert Ménard
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, F-75015 Paris, France
| | - Salaheddine Mécheri
- Unité de Biologie des Interactions Hôte Parasites, Centre National de la Recherche Scientifique ERL9195, Institut National de la Santé et de la Recherche Médicale U1201, Institut Pasteur, F-75015 Paris, France
| |
Collapse
|
11
|
Whole organism blood stage vaccines against malaria. Vaccine 2015; 33:7469-75. [DOI: 10.1016/j.vaccine.2015.09.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/04/2015] [Accepted: 09/14/2015] [Indexed: 11/17/2022]
|
12
|
Liu P, Robbins AH, Marzahn MR, McClung SH, Yowell CA, Stevens SM, Dame JB, Dunn BM. Enzymatic Characterization of Recombinant Food Vacuole Plasmepsin 4 from the Rodent Malaria Parasite Plasmodium berghei. PLoS One 2015; 10:e0141758. [PMID: 26510189 PMCID: PMC4624963 DOI: 10.1371/journal.pone.0141758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/12/2015] [Indexed: 01/17/2023] Open
Abstract
The rodent malaria parasite Plasmodium berghei is a practical model organism for experimental studies of human malaria. Plasmepsins are a class of aspartic proteinase isoforms that exert multiple pathological effects in malaria parasites. Plasmepsins residing in the food vacuole (FV) of the parasite hydrolyze hemoglobin in red blood cells. In this study, we cloned PbPM4, the FV plasmepsin gene of P. berghei that encoded an N-terminally truncated pro-segment and the mature enzyme from genomic DNA. We over-expressed this PbPM4 zymogen as inclusion bodies (IB) in Escherichia coli, and purified the protein following in vitro IB refolding. Auto-maturation of the PbPM4 zymogen to mature enzyme was carried out at pH 4.5, 5.0, and 5.5. Interestingly, we found that the PbPM4 zymogen exhibited catalytic activity regardless of the presence of the pro-segment. We determined the optimal catalytic conditions for PbPM4 and studied enzyme kinetics on substrates and inhibitors of aspartic proteinases. Using combinatorial chemistry-based peptide libraries, we studied the active site preferences of PbPM4 at subsites S1, S2, S3, S1’, S2’ and S3’. Based on these results, we designed and synthesized a selective peptidomimetic compound and tested its inhibition of PbPM4, seven FV plasmepsins from human malaria parasites, and human cathepsin D (hcatD). We showed that this compound exhibited a >10-fold selectivity to PbPM4 and human malaria parasite plasmepsin 4 orthologs versus hcatD. Data from this study furthesr our understanding of enzymatic characteristics of the plasmepsin family and provides leads for anti-malarial drug design.
Collapse
Affiliation(s)
- Peng Liu
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- * E-mail: (PL); (BMD)
| | - Arthur H. Robbins
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Melissa R. Marzahn
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Scott H. McClung
- Protein Core, Interdisciplinary Center for Biotechnology Research, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Charles A. Yowell
- Department of Infectious Diseases and Pathology, University of Florida, College of Veterinary Medicine, Gainesville, Florida, United States of America
| | - Stanley M. Stevens
- Protein Core, Interdisciplinary Center for Biotechnology Research, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - John B. Dame
- Department of Infectious Diseases and Pathology, University of Florida, College of Veterinary Medicine, Gainesville, Florida, United States of America
| | - Ben M. Dunn
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- * E-mail: (PL); (BMD)
| |
Collapse
|
13
|
Large screen approaches to identify novel malaria vaccine candidates. Vaccine 2015; 33:7496-505. [PMID: 26428458 DOI: 10.1016/j.vaccine.2015.09.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022]
Abstract
Until recently, malaria vaccine development efforts have focused almost exclusively on a handful of well characterized Plasmodium falciparum antigens. Despite dedicated work by many researchers on different continents spanning more than half a century, a successful malaria vaccine remains elusive. Sequencing of the P. falciparum genome has revealed more than five thousand genes, providing the foundation for systematic approaches to discover candidate vaccine antigens. We are taking advantage of this wealth of information to discover new antigens that may be more effective vaccine targets. Herein, we describe different approaches to large-scale screening of the P. falciparum genome to identify targets of either antibody responses or T cell responses using human specimens collected in Controlled Human Malaria Infections (CHMI) or under conditions of natural exposure in the field. These genome, proteome and transcriptome based approaches offer enormous potential for the development of an efficacious malaria vaccine.
Collapse
|
14
|
Perrin AJ, Bartholdson SJ, Wright GJ. P-selectin is a host receptor for Plasmodium MSP7 ligands. Malar J 2015; 14:238. [PMID: 26045295 PMCID: PMC4478713 DOI: 10.1186/s12936-015-0750-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/26/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium parasites typically elicit a non-sterile but protective immune response in human host populations, suggesting that the parasites actively modulate normal immunological mechanisms. P-selectin is a cell surface receptor expressed in mammals, that is a known component of the inflammatory response against pathogens and has been previously identified as a host factor that influences malaria-associated pathology both in human patients and rodent infection models. METHODS To better understand the molecular mechanisms underlying the involvement of P-selectin in the pathogenesis of malaria, a systematic extracellular protein interaction screen was used to identify Plasmodium falciparum merozoite surface protein 7 (MSP7) as a binding partner of human P-selectin. This interaction, and those occurring between P-selectin and Plasmodium MSP7 homologues, was characterized biochemically. RESULTS Plasmodium falciparum MSP7 and P-selectin were shown to bind each other directly via the N-terminus of PfMSP7 and the P-selectin C-type lectin and EGF-like domains. Orthologous proteins in the murine parasite Plasmodium berghei (PbMSRP1 and PbMSRP2) and mouse P-selectin also interacted. Finally, P-selectin, when complexed with MSP7, could no longer bind to its endogenous carbohydrate ligand, Sialyl-Lewis(X). CONCLUSIONS Novel interactions were identified between Plasmodium MSP7 protein family members and host P-selectin receptors. Since PfMSP7 could prevent interactions between P-selectin and its leukocyte ligands, these results provide a possible mechanism for the known immunomodulatory effects of both MSP7 and P-selectin in malaria infection models.
Collapse
Affiliation(s)
- Abigail J Perrin
- Cell Surface Signalling Laboratory and Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
| | - S Josefin Bartholdson
- Cell Surface Signalling Laboratory and Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
| | - Gavin J Wright
- Cell Surface Signalling Laboratory and Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
15
|
Disruption of Parasite hmgb2 Gene Attenuates Plasmodium berghei ANKA Pathogenicity. Infect Immun 2015; 83:2771-84. [PMID: 25916985 DOI: 10.1128/iai.03129-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/19/2015] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic high-mobility-group-box (HMGB) proteins are nuclear factors involved in chromatin remodeling and transcription regulation. When released into the extracellular milieu, HMGB1 acts as a proinflammatory cytokine that plays a central role in the pathogenesis of several immune-mediated inflammatory diseases. We found that the Plasmodium genome encodes two genuine HMGB factors, Plasmodium HMGB1 and HMGB2, that encompass, like their human counterparts, a proinflammatory domain. Given that these proteins are released from parasitized red blood cells, we then hypothesized that Plasmodium HMGB might contribute to the pathogenesis of experimental cerebral malaria (ECM), a lethal neuroinflammatory syndrome that develops in C57BL/6 (susceptible) mice infected with Plasmodium berghei ANKA and that in many aspects resembles human cerebral malaria elicited by P. falciparum infection. The pathogenesis of experimental cerebral malaria was suppressed in C57BL/6 mice infected with P. berghei ANKA lacking the hmgb2 gene (Δhmgb2 ANKA), an effect associated with a reduction of histological brain lesions and with lower expression levels of several proinflammatory genes. The incidence of ECM in pbhmgb2-deficient mice was restored by the administration of recombinant PbHMGB2. Protection from experimental cerebral malaria in Δhmgb2 ANKA-infected mice was associated with reduced sequestration in the brain of CD4(+) and CD8(+) T cells, including CD8(+) granzyme B(+) and CD8(+) IFN-γ(+) cells, and, to some extent, neutrophils. This was consistent with a reduced parasite sequestration in the brain, lungs, and spleen, though to a lesser extent than in wild-type P. berghei ANKA-infected mice. In summary, Plasmodium HMGB2 acts as an alarmin that contributes to the pathogenesis of cerebral malaria.
Collapse
|
16
|
Fernandes P, Frank R, Lewis MD, Mueller AK. Plasmodium attenuation: connecting the dots between early immune responses and malaria disease severity. Front Microbiol 2014; 5:658. [PMID: 25520710 PMCID: PMC4251431 DOI: 10.3389/fmicb.2014.00658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/13/2014] [Indexed: 12/21/2022] Open
Abstract
Sterile attenuation of Plasmodium parasites at the liver-stage either by irradiation or genetic modification, or at the blood-stage by chemoprophylaxis, has been shown to induce immune responses that can protect against subsequent wild-type infection. However, following certain interventions, parasite attenuation can be incomplete or non-sterile. Instead parasites are rendered developmentally stunted but still capable of establishing an acute infection. In experiments involving Plasmodium berghei ANKA, a model of experimental cerebral malaria, it has been observed that several forms of attenuated parasites do not induce cerebral pathology. In this perspective we collect evidence from studies on murine malaria in particular, and attempt to “connect the dots” between early immune responses and protection from severe cerebral disease, highlighting potential parallels to human infection.
Collapse
Affiliation(s)
- Priyanka Fernandes
- Parasitology Unit, Centre of Infectious Diseases, University Hospital Heidelberg Heidelberg, Germany
| | - Roland Frank
- Parasitology Unit, Centre of Infectious Diseases, University Hospital Heidelberg Heidelberg, Germany
| | - Matthew D Lewis
- Parasitology Unit, Centre of Infectious Diseases, University Hospital Heidelberg Heidelberg, Germany
| | - Ann-Kristin Mueller
- Parasitology Unit, Centre of Infectious Diseases, University Hospital Heidelberg Heidelberg, Germany
| |
Collapse
|
17
|
Raj DK, Nixon CP, Nixon CE, Dvorin JD, DiPetrillo CG, Pond-Tor S, Wu HW, Jolly G, Pischel L, Lu A, Michelow IC, Cheng L, Conteh S, McDonald EA, Absalon S, Holte SE, Friedman JF, Fried M, Duffy PE, Kurtis JD. Antibodies to PfSEA-1 block parasite egress from RBCs and protect against malaria infection. Science 2014; 344:871-7. [PMID: 24855263 DOI: 10.1126/science.1254417] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Novel vaccines are urgently needed to reduce the burden of severe malaria. Using a differential whole-proteome screening method, we identified Plasmodium falciparum schizont egress antigen-1 (PfSEA-1), a 244-kilodalton parasite antigen expressed in schizont-infected red blood cells (RBCs). Antibodies to PfSEA-1 decreased parasite replication by arresting schizont rupture, and conditional disruption of PfSEA-1 resulted in a profound parasite replication defect. Vaccination of mice with recombinant Plasmodium berghei PbSEA-1 significantly reduced parasitemia and delayed mortality after lethal challenge with the Plasmodium berghei strain ANKA. Tanzanian children with antibodies to recombinant PfSEA-1A (rPfSEA-1A) did not experience severe malaria, and Kenyan adolescents and adults with antibodies to rPfSEA-1A had significantly lower parasite densities than individuals without these antibodies. By blocking schizont egress, PfSEA-1 may synergize with other vaccines targeting hepatocyte and RBC invasion.
Collapse
Affiliation(s)
- Dipak K Raj
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Christian P Nixon
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Christina E Nixon
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christen G DiPetrillo
- Division of Infectious Diseases, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sunthorn Pond-Tor
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Hai-Wei Wu
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA. Department of Pediatrics, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Grant Jolly
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02906, USA
| | - Lauren Pischel
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ailin Lu
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ian C Michelow
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA. Department of Pediatrics, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ling Cheng
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Solomon Conteh
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Emily A McDonald
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Sabrina Absalon
- Division of Infectious Diseases, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sarah E Holte
- Fred Hutchinson Cancer Research Center Program in Biostatistics and Biomathematics, Department of Biostatistics and Global Health, University of Washington, Seattle, WA 98109, USA
| | - Jennifer F Friedman
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA. Department of Pediatrics, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Jonathan D Kurtis
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA. Department of Pathology and Laboratory Medicine, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02906, USA.
| |
Collapse
|
18
|
Galizi R, Spano F, Giubilei MA, Capuccini B, Magini A, Urbanelli L, Ogawa T, Dubey JP, Spaccapelo R, Emiliani C, Di Cristina M. Evidence of tRNA cleavage in apicomplexan parasites: Half-tRNAs as new potential regulatory molecules of Toxoplasma gondii and Plasmodium berghei. Mol Biochem Parasitol 2013; 188:99-108. [DOI: 10.1016/j.molbiopara.2013.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/12/2013] [Accepted: 03/24/2013] [Indexed: 12/11/2022]
|