1
|
Liu C, Wu MZ, Zheng ZJ, Fan ST, Tan JF, Jiao Y, Palli SR, Zhu GH. Knockout BR-C induces premature expression of E93 thus triggering adult differentiation under larval morphology. PEST MANAGEMENT SCIENCE 2025; 81:1923-1933. [PMID: 39641237 DOI: 10.1002/ps.8592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Holometabolan pupal-specifier broad-complex (BR-C) and adult specifier ecdysone-induced protein 93F (E93) are essential for metamorphosis; however, their interaction and effects on programmed cell death and cell differentiation during pupation remain unclear. RESULTS Here, multiple single-guide RNA (sgRNA)-mediated mosaic knockout of BR-C induced a deformed larva/pupa intermediate phenotype in Spodoptera frugiperda. Quantitative real-time polymerase chain reaction (qPCR) analysis showed that the adult specifier E93 was prematurely expressed in the BR-C mutants during the penultimate and last instar larval stages. Additionally, histological observation and TUNEL assay showed that apoptosis in the fat body and midgut was activated in the larval tissues; astonishingly, the adult midgut appeared in the pupae of BR-C mutants. CONCLUSION Overall, the results demonstrated that the premature expression of E93 induced by lack of BR-C triggers adult differentiation during the larval stages, which revealed the inhibitory effect of BR-C on E93 during metamorphosis in S. frugiperda. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chang Liu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Mian-Zhi Wu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Zi-Jing Zheng
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Shu-Ting Fan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Jin-Fang Tan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Yaoyu Jiao
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Guan-Heng Zhu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Depintor TS, Freitas FCP, Hernandes N, Nunes FMF, Simões ZLP. Interactions of juvenile hormone, 20-hydroxyecdysone, developmental genes, and miRNAs during pupal development in Apis mellifera. Sci Rep 2025; 15:10354. [PMID: 40133508 PMCID: PMC11937373 DOI: 10.1038/s41598-025-93580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Insect development is primarily controlled by juvenile hormone (JH) and 20-hydroxyecdysone (20E), which regulate gene cascades leading to changes in phenotype, physiology, and behavior. Besides these hormones, microRNAs play a crucial role in insect development by regulating gene expression at the post-transcriptional level. To advance the molecular understanding of holometabolous developmental events, we investigate the pupal phase in the honeybee, Apis mellifera. In this study, we assessed the expression profiles of genes components of JH and 20E cascades - Usp, ftz-f1, EcR, Met, Chd64, InR-2, Kr-h1 and Tai - as well as the microRNAs miRNA-34 and miRNA-281 during pupal development of A. mellifera. We then analyzed the impact of JH and 20E treatments on the expression of these developmental genes and their putative regulators, the microRNAs. Overall, the selected genes and miRNAs remained stable or were downregulated following 20E treatment, while treatments with JH, upregulated most of our candidate developmental genes and microRNAs. Notably, the expression profile of Met, an intracellular receptor of JH, showed a strong correlation with fluctuations in 20E titers during pupal development. Furthermore, a computational analysis, followed by experimental assays, points to both miR-34 and miR-281 as potential regulators of pupal development in A. mellifera. This study paves the way for a better understanding of how JH and 20E hormones interact with developmental genes and microRNAs (miR-34 and miR-281) to regulate pupal development in honeybees, elucidating a piece of this complex network of interactions.
Collapse
Affiliation(s)
- T S Depintor
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - F C P Freitas
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - N Hernandes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - F M F Nunes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Genetics and Evolution, Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Z L P Simões
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
3
|
Chen P, Ai H, Liu Z, Li C, Li B. The dual functions of a newly identified C-type lectin (TcCTL17) in the immunity and development of Tribolium castaneum. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025:1-14. [PMID: 40099412 DOI: 10.1017/s0007485324000920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
C-type lectins (CTLs), a diverse family of pattern recognition receptors, are essential for immune recognition and pathogen clearance in invertebrates. TcCTL17 contains one carbohydrate recognition domain and three scavenger receptor Cys-rich domains. Spatial and temporal expression analysis revealed that TcCTL17 is highly expressed in early pupa, early adult stages, and the larval gut at 20 days. The recombinant TcCTL17 exhibited dose-dependent binding to lipopolysaccharides and peptidoglycans, Ca2+-dependent binding and agglutination of bacteria in vitro. Knocking down TcCTL17 before bacterial exposure reduced survival rates and increased bacterial loads in T. castaneum larvae, accompanied by decreased antimicrobial peptide expression and haemolymph phenoloxidase activity. Additionally, TcCTL17 RNA interference caused developmental abnormalities, affecting metamorphosis and fecundity, possibly by influencing the 20E, JH, and vitellogenin pathways. These findings underscore dual functions of TcCTL17 in immunity and development, making it a potential target for pest management.
Collapse
Affiliation(s)
- Peng Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Huayi Ai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhiping Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Khan A, Smagghe G, Li S, Shakeel M, Yang G, Ahmed N. Insect metamorphosis and chitin metabolism under miRNA regulation: a review with current advances. PEST MANAGEMENT SCIENCE 2025. [PMID: 40079237 DOI: 10.1002/ps.8758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Insect metamorphosis is a complex developmental process regulated by microRNAs (miRNAs) and hormonal signaling pathways. Key genes driving insect ontogenic changes are precisely modulated by miRNAs, which interact with 20-hydroxyecdysone (20E) and juvenile hormone (JH) to coordinate developmental transitions. Over the past decade, significant progress has been made in understanding miRNA biogenesis, their regulatory roles in gene expression, and their involvement in critical biological processes, including metamorphosis and chitin metabolism. miRNAs are now recognized as essential regulators of chitin metabolism and hormonal signaling, ensuring precise control of insect development. Disrupting the expression of participating genes in hormone signaling pathways through miRNAs leads to aberrant metamorphosis and consequent lethal outcomes, highlighting their potential as targets for pest control. This review summarizes current advances in miRNA-mediated regulation of insect metamorphosis and chitin metabolism, with a focus on their interactions with 20E and JH signaling pathways. By integrating recent findings, we provide insights into the molecular mechanisms underlying miRNA function in developmental transitions and their potential applications in insect pest management strategies. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ashraf Khan
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant and Environmental Protection, National Agricultural Research Center, Pakistan Agricultural Research Council, Islamabad, Pakistan
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
- Molecular and Cellular Life Sciences, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Shangwei Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Muhammad Shakeel
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Guangming Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Institute of Biology, Guiyang, China
| | - Nazeer Ahmed
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Zeng M, Yan ZY, Lv YN, Zeng JM, Ban N, Yuan DW, Li S, Luan YX, Bai Y. Molecular basis of E93-dependent tissue morphogenesis and histolysis during insect metamorphosis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104249. [PMID: 39674518 DOI: 10.1016/j.ibmb.2024.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The evolution of insect metamorphosis has profoundly influenced their successful adaptation and diversification. Two key physiological processes during insect metamorphosis are notable: wing maturation and prothoracic gland (PG) histolysis. The ecdysone-induced protein 93 (E93) is a transcription factor indispensable for metamorphosis. While it has been established that both wing maturation and PG histolysis are dependent on E93, the molecular mechanisms through which E93 regulates these seemingly 'opposing' events remain poorly understood. In this study, time-course transcriptome profiles were generated for wing pads and PGs during metamorphosis in Blattella germanica, a hemimetabolous model insect. Comparative transcriptomic analyses demonstrated that E93 exerts predominant control over extensive gene transcription during wing morphogenesis and PG histolysis. During wing morphogenesis, E93 selectively enhances the expression of genes associated with cell proliferation, energy supply, signal transduction, actin cytoskeleton organization, and cell adhesion, etc. Additionally, E93 activates the transcription of the majority of genes within the wing gene network that are crucial for wing development in B. germanica. During PG histolysis, E93 preferentially promotes the expression of genes related to endocytosis, focal adhesion, the AMPK signaling pathway, adipocytokine signaling pathway, Toll and Imd signaling pathways, and autophagy, etc. The key genes involved in the aforementioned pathways were subsequently confirmed to contribute to the E93-dependent degeneration of the PG in B. germanica. In summary, our results reveal that E93 functions as a master transcriptional regulator orchestrating both tissue morphogenesis and histolysis during insect metamorphosis. These findings contribute to a deeper understanding of the genetic underpinnings of insect metamorphosis.
Collapse
Affiliation(s)
- Mei Zeng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Zi-Yu Yan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Ya-Nan Lv
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Jia-Ming Zeng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Ning Ban
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Dong-Wei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514000, China.
| | - Yun-Xia Luan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514000, China.
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514000, China.
| |
Collapse
|
6
|
Konopová B. Evolution of insect metamorphosis - an update. CURRENT OPINION IN INSECT SCIENCE 2025; 67:101289. [PMID: 39490982 DOI: 10.1016/j.cois.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Metamorphosis endowed the insects with properties that enabled them to conquer the Earth. It is a hormonally controlled morphogenetic process that transforms the larva into the adult. Metamorphosis appeared with the origin of wings and flight. The sesquiterpenoid juvenile hormone (JH) suppresses wing morphogenesis and ensures that metamorphosis takes place at the right ontogenetic time. This review explores the origin of insect metamorphosis and the ancestral function of JH. Fossil record shows that the first Paleozoic winged insects had (hemimetabolous) metamorphosis, and their larvae were likely aquatic. In the primitive wingless silverfish that lacks metamorphosis, JH is essential for late embryogenesis and reproduction. JH production after the embryo dorsal closure promotes hatching and terminal tissue maturation.
Collapse
Affiliation(s)
- Barbora Konopová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
7
|
Klagkou E, Gergs A, Baden CU, Lika K. Modeling the Bioenergetics and Life History Traits of Chironomus riparius-Consequences of Food Limitation. INSECTS 2024; 15:848. [PMID: 39590447 PMCID: PMC11594967 DOI: 10.3390/insects15110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Chironomids have a number of characteristics that make them a useful group for investigating the impact of environmental and chemical stressors on their life cycle stages. It is crucial to first understand sensitivities to environmental factors and provide a basis for interpreting the results of toxicity tests. We focused on Chironomus riparius-one of the most studied species in aquatic toxicity tests-to understand the changes during the larval stage under conditions of food abundance and limitation. We developed a model based on Dynamic Energy Budget (DEB) theory, a framework to capture the entire life cycle of an individual under varying food and temperature conditions. Available information from this study and the literature pointed out that the first three larval instars are immature and the fourth larval instar is mature, during which the organism saves, in two phases, energy for essential processes occurring during the subsequent non-feeding stages. The model can successfully predict the observed prolonged fourth instar duration under food limitation, the times of life history events (e.g., pupation and emergence), and egg production. This model has the potential to be integrated with toxicokinetic-toxicodynamic models to study the effects of toxicants on a variety of biological traits.
Collapse
Affiliation(s)
- Evridiki Klagkou
- Department of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Greece;
| | - Andre Gergs
- Bayer AG, Crop Science Division, Alfred-Nobel Straße 50, 40789 Monheim, Germany; (A.G.); (C.U.B.)
| | - Christian U. Baden
- Bayer AG, Crop Science Division, Alfred-Nobel Straße 50, 40789 Monheim, Germany; (A.G.); (C.U.B.)
| | - Konstadia Lika
- Department of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Greece;
| |
Collapse
|
8
|
Farrus N, Maestro JL, Piulachs MD. CHMP4B contributes to maintaining the follicular cells integrity in the panoistic ovary of the cockroach Blattella germanica. Biol Cell 2024; 116:e2400010. [PMID: 38895958 DOI: 10.1111/boc.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND The Endosomal Sorting Complex Required for Transport (ESCRT) is a highly conserved cellular machinery essential for many cellular functions, including transmembrane protein sorting, endosomal trafficking, and membrane scission. CHMP4B is a key component of ESCRT-III subcomplex and has been thoroughly studied in the meroistic ovaries of Drosophila melanogaster showing its relevance in maintaining this reproductive organ during the life of the fly. However, the role of the CHMP4B in the most basal panoistic ovaries remains elusive. RESULTS Using RNAi, we examined the function of CHMP4B in the ovary of Blattella germanica in two different physiological stages: in last instar nymphs, with proliferative follicular cells, and in vitellogenic adults when follicular cells enter in polyploidy and endoreplication. In Chmp4b-depleted specimens, the actin fibers change their distribution, appearing accumulated in the basal pole of the follicular cells, resulting in an excess of actin bundles that surround the basal ovarian follicle and modifying their shape. Depletion of Chmp4b also determines an actin accumulation in follicular cell membranes, resulting in different cell morphologies and sizes. In the end, these changes disrupt the opening of intercellular spaces between the follicular cells (patency) impeding the incorporation of yolk proteins to the growing oocyte and resulting in female sterility. In addition, the nuclei of follicular cells appeared unusually elongated, suggesting an incomplete karyokinesis. CONCLUSIONS These results proved CHMP4B essential in preserving the proper expression of cytoskeleton proteins vital for basal ovarian follicle growth and maturation and for yolk protein incorporation. Moreover, the correct distribution of actin fibers in the basal ovarian follicle emerged as a critical factor for the successful completion of ovulation and oviposition. SIGNIFICANCE The overall results, obtained in two different proliferative stages, suggest that the requirement of CHMP4B in B. germanica follicular epithelium is not related to the proliferative stage of the tissue.
Collapse
Affiliation(s)
- Nuria Farrus
- Institut de Biologia Evolutiva (CSIC- Universitat Pompeu Fabra), Barcelona, Spain
| | - José Luis Maestro
- Institut de Biologia Evolutiva (CSIC- Universitat Pompeu Fabra), Barcelona, Spain
| | | |
Collapse
|
9
|
Ye YY, Liu ZH, Wang HL. Fat body-derived juvenile hormone acid methyltransferase functions to maintain iron homeostasis in Drosophila melanogaster. FASEB J 2024; 38:e23805. [PMID: 39003630 DOI: 10.1096/fj.202400119rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024]
Abstract
Iron homeostasis is of critical importance to living organisms. Drosophila melanogaster has emerged as an excellent model to study iron homeostasis, while the regulatory mechanism of iron metabolism remains poorly understood. Herein, we accidently found that knockdown of juvenile hormone (JH) acid methyltransferase (Jhamt) specifically in the fat body, a key rate-limiting enzyme for JH synthesis, led to iron accumulation locally, resulting in serious loss and dysfunction of fat body. Jhamt knockdown-induced phenotypes were mitigated by iron deprivation, antioxidant and Ferrostatin-1, a well-known inhibitor of ferroptosis, suggesting ferroptosis was involved in Jhamt knockdown-induced defects in the fat body. Further study demonstrated that upregulation of Tsf1 and Malvolio (Mvl, homolog of mammalian DMT1), two iron importers, accounted for Jhamt knockdown-induced iron accumulation and dysfunction of the fat body. Mechanistically, Kr-h1, a key transcription factor of JH, acts downstream of Jhamt inhibiting Tsf1 and Mvl transcriptionally. In summary, the findings indicated that fat body-derived Jhamt is required for the development of Drosophila by maintaining iron homeostasis in the fat body, providing unique insight into the regulatory mechanisms of iron metabolism in Drosophila.
Collapse
Affiliation(s)
- Yun-Yan Ye
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, People's Republic of China
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, People's Republic of China
| | - Zhi-Hua Liu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, People's Republic of China
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, People's Republic of China
| | - Hui-Li Wang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, People's Republic of China
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, People's Republic of China
| |
Collapse
|
10
|
Shen S, Zhang L, Zhang L. Population Density-Dependent Developmental Regulation in Migratory Locust. INSECTS 2024; 15:443. [PMID: 38921158 PMCID: PMC11203946 DOI: 10.3390/insects15060443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
Insect development is intricately governed by hormonal signaling pathways, yet the pivotal upstream regulator that potentiates hormone activation remains largely elusive. The migratory locust, Locusta migratoria, exhibits population density-dependent phenotypic plasticity, encompassing traits such as flight capability, body coloration, and behavior. In this study, we elucidated a negative correlation between population density and ontogenetic development during the nymphal stage of locusts. We found that the level of density influences the developmental trajectory by modulating transcript abundance within the ecdysone signaling pathway, with knockdown of the prothoracicotropic hormone (PTTH) resulting in developmental delay. Transcriptomic analysis of locust brains across solitary and gregarious phases revealed significant differential expression of genes involved in various pathways, including protein synthesis, energy metabolism, hormonal regulation, and immunity. Notably, knockdown experiments targeting two energy regulators, adipokinetic hormone (AKH) and insulin-like polypeptide 1 (ilp1), failed to elicit changes in the developmental process in solitary locusts. However, knockdown of immunoglobulin (IG) significantly shortened the developmental time in higher-density populations. Collectively, our findings underscore the regulatory role of population density in determining developmental duration and suggest that an immune-related gene contributes to the observed differences in developmental patterns.
Collapse
Affiliation(s)
- Sifan Shen
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Long Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Liwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
11
|
Geens B, Goossens S, Li J, Van de Peer Y, Vanden Broeck J. Untangling the gordian knot: The intertwining interactions between developmental hormone signaling and epigenetic mechanisms in insects. Mol Cell Endocrinol 2024; 585:112178. [PMID: 38342134 DOI: 10.1016/j.mce.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Hormones control developmental and physiological processes, often by regulating the expression of multiple genes simultaneously or sequentially. Crosstalk between hormones and epigenetics is pivotal to dynamically coordinate this process. Hormonal signals can guide the addition and removal of epigenetic marks, steering gene expression. Conversely, DNA methylation, histone modifications and non-coding RNAs can modulate regional chromatin structure and accessibility and regulate the expression of numerous (hormone-related) genes. Here, we provide a review of the interplay between the classical insect hormones, ecdysteroids and juvenile hormones, and epigenetics. We summarize the mode-of-action and roles of these hormones in post-embryonic development, and provide a general overview of epigenetic mechanisms. We then highlight recent advances on the interactions between these hormonal pathways and epigenetics, and their involvement in development. Furthermore, we give an overview of several 'omics techniques employed in the field. Finally, we discuss which questions remain unanswered and possible avenues for future research.
Collapse
Affiliation(s)
- Bart Geens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Stijn Goossens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
12
|
Zhu S, Chen X, Xia S, Li Q, Ye Z, Zhao S, Liu K, Liu F. Hexamerin and allergen are required for female reproduction in the American cockroach, Periplaneta americana. INSECT SCIENCE 2024; 31:186-200. [PMID: 37327125 DOI: 10.1111/1744-7917.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/10/2023] [Accepted: 05/04/2023] [Indexed: 06/18/2023]
Abstract
Reproduction is of great importance for the continuation of the species. In insects, the fat body is the major tissue for nutrient storage and involved in vitellogenesis, which is essential for female reproduction. Here, 2 proteins, hexamerin and allergen, were separated from the fat bodies of adult female American cockroaches (Periplaneta americana) and identified as storage proteins, encoding for 733 amino acids with molecular weight of 87.88 kDa and 686 amino acids with molecular weight of 82.18 kDa, respectively. The encoding genes of these 2 storage proteins are mainly expressed in the fat body. RNA interference-mediated knockdown of Hexamerin and Allergen in the early stage of the first reproductive cycle in females suppressed vitellogenesis and ovarian maturation, indicating that these storage proteins are involved in controlling reproduction. Importantly, the expression of Hexamerin and Allergen was repressed by knockdown of the juvenile hormone (JH) receptor gene Met and the primary response gene Kr-h1, and was induced by methoprene, a JH analog, in both in vivo and in vitro experiments. Altogether, we have determined that hexamerin and allergen are identified as storage proteins and play an important role in promoting female reproduction in the American cockroach. The expression of their encoding genes is induced by JH signaling. Our data reveal a novel mechanism by which hexamerin and allergen are necessary for JH-stimulated female reproduction.
Collapse
Affiliation(s)
- Shiming Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaoyi Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sishi Xia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ziqi Ye
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shaoting Zhao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kexin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fangfang Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
13
|
Belles X. Investigating the origin of insect metamorphosis. eLife 2023; 12:e94410. [PMID: 38126357 PMCID: PMC10735215 DOI: 10.7554/elife.94410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Experiments exploring the role of juvenile hormone during the life cycle of firebrat insects provide clues about the evolution of metamorphosis.
Collapse
Affiliation(s)
- Xavier Belles
- Evolution of Insect Metamorphosis Lab, Institute of Evolutionary Biology, CSIC-Pompeu Fabra UniversityBarcelonaSpain
| |
Collapse
|
14
|
Gong ZX, Cheng FP, Xu JN, Yan WY, Wang ZL. The Juvenile-Hormone-Responsive Factor AmKr-h1 Regulates Caste Differentiation in Honey Bees. Biomolecules 2023; 13:1657. [PMID: 38002339 PMCID: PMC10669509 DOI: 10.3390/biom13111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Honey bees are typical model organisms for the study of caste differentiation, and the juvenile hormone (JH) is a crucial link in the regulatory network of caste differentiation in honey bees. To investigate the mechanism of JH-mediated caste differentiation, we analyzed the effect of the JH response gene AmKr-h1 on this process. We observed that AmKr-h1 expression levels were significantly higher in queen larvae than in worker larvae at the 48 h, 84 h, and 120 h larval stages, and were regulated by JH. Inhibiting AmKr-h1 expression in honey bee larvae using RNAi could lead to the development of larvae toward workers. We also analyzed the transcriptome changes in honey bee larvae after AmKr-h1 RNAi and identified 191 differentially expressed genes (DEGs) and 682 differentially expressed alternative splicing events (DEASEs); of these, many were related to honey bee caste differentiation. Our results indicate that AmKr-h1 regulates caste differentiation in honey bees by acting as a JH-responsive gene.
Collapse
Affiliation(s)
- Zhi-Xian Gong
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Z.-X.G.); (F.-P.C.); (J.-N.X.); (W.-Y.Y.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Fu-Ping Cheng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Z.-X.G.); (F.-P.C.); (J.-N.X.); (W.-Y.Y.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jia-Ning Xu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Z.-X.G.); (F.-P.C.); (J.-N.X.); (W.-Y.Y.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Wei-Yu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Z.-X.G.); (F.-P.C.); (J.-N.X.); (W.-Y.Y.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Zi-Long Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Z.-X.G.); (F.-P.C.); (J.-N.X.); (W.-Y.Y.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| |
Collapse
|
15
|
Rau V, Flatt T, Korb J. The remoulding of dietary effects on the fecundity / longevity trade-off in a social insect. BMC Genomics 2023; 24:244. [PMID: 37147612 PMCID: PMC10163710 DOI: 10.1186/s12864-023-09335-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND In many organisms increased reproductive effort is associated with a shortened life span. This trade-off is reflected in conserved molecular pathways that link nutrient-sensing with fecundity and longevity. Social insect queens apparently defy the fecundity / longevity trade-off as they are both, extremely long-lived and highly fecund. Here, we have examined the effects of a protein-enriched diet on these life-history traits and on tissue-specific gene expression in a termite species of low social complexity. RESULTS On a colony level, we did not observe reduced lifespan and increased fecundity, effects typically seen in solitary model organisms, after protein enrichment. Instead, on the individual level mortality was reduced in queens that consumed more of the protein-enriched diet - and partially also in workers - while fecundity seemed unaffected. Our transcriptome analyses supported our life-history results. Consistent with life span extension, the expression of IIS (insulin/insulin-like growth factor 1 signalling) components was reduced in fat bodies after protein enrichment. Interestingly, however, genes involved in reproductive physiology (e.g., vitellogenin) were largely unaffected in fat body and head transcriptomes. CONCLUSION These results suggest that IIS is decoupled from downstream fecundity-associated pathways, which can contribute to the remoulding of the fecundity/longevity trade-off in termites as compared to solitary insects.
Collapse
Affiliation(s)
- Veronika Rau
- Evolutionary Biology & Ecology, University of Freiburg, Hauptstrasse 1, 79104, Freiburg (Brsg.), Germany.
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Judith Korb
- Evolutionary Biology & Ecology, University of Freiburg, Hauptstrasse 1, 79104, Freiburg (Brsg.), Germany.
- RIEL, Charles Darwin University Casuarina Campus, Ellengowan Drive, Darwin, NT0811, Australia.
| |
Collapse
|
16
|
Lee J, Lee DW. Burkholderia gut symbiont induces insect host fecundity by modulating Kr-h1 gene expression. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21987. [PMID: 36448663 DOI: 10.1002/arch.21987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Full-length cDNAs of the Broad-Complex (BR-C) from Riptortus pedestris were cloned. Moreover, Kr-h1 and BR-C expression levels in apo-symbiotic and symbiotic host insects were compared to verify whether they are modulated by Burkholderia gut symbionts. Interestingly, Kr-h1 expression level was significantly increased in symbiotic females. To determine how Kr-h1 affects fecundity in insects, the biosynthesis of two reproduction-associated proteins, hexamerin-α and vitellogenin, was investigated in R. pedestris females. Hexamerin-α and vitellogenin expression at the transcriptional and translational levels decreased in Kr-h1-suppressed symbiotic females, subsequently reduced egg production. These results suggest that Burkholderia gut symbiont modulates Kr-h1 expression to enhance ovarian development and egg production of R. pedestris by increasing the biosynthesis of the two proteins.
Collapse
Affiliation(s)
- Junbeom Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan, Republic of Korea
| | - Dae-Weon Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan, Republic of Korea
- Department of SmartBio, Kyungsung University, Busan, Republic of Korea
| |
Collapse
|
17
|
Yang B, Miao S, Lu Y, Wang S, Wang Z, Zhao Y. Involvement of Methoprene-tolerant and Krüppel homolog 1 in juvenile hormone-mediated vitellogenesis of female Liposcelis entomophila (End.) (Psocoptera: Liposcelididae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21973. [PMID: 36193599 PMCID: PMC10078567 DOI: 10.1002/arch.21973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/31/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Methoprene-tolerant (Met) as an intracellular receptor of juvenile hormone (JH) and the Krüppel-homolog 1 (Kr-h1) as a JH-inducible transcription factor had been proved to contribute to insect reproduction. Their functions vary in different insect orders, however, they are not clear in Psocoptera. In this study, LeMet and LeKr-h1 were identified and their roles in vitellogenesis and ovarian development were investigated in Liposcelis entomophila (Enderlein). Treatment with exogenous JH III significantly induced the expression of LeKr-h1, LeVg, and LeVgR. Furthermore, silencing LeMet and LeKr-h1 remarkably reduced the transcription of LeVg and LeVgR, disrupted the production of Vg in fat body and the uptake of Vg by oocytes, and ultimately led to a decline in fecundity. The results indicated that the JH signaling pathway was essential to the reproductive process of this species. Interestingly, knockdown of LeMet or LeKr-h1 also resulted in fluctuations in the expression of FoxO, indicating the complex regulatory interactions between different hormone factors. Besides, knockdown of both LeMet and LeKr-h1 significantly increased L. entomophila mortality. Our study provides initial insight into the roles of JH signaling in the female reproduction of psocids and provided evidence that RNAi-mediated knockdown of Met or Kr-h1 is a potential pest control strategy.
Collapse
Affiliation(s)
- Bin‐Bin Yang
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Shi‐Yuan Miao
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Yu‐Jie Lu
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Sui‐Sui Wang
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Zheng‐Yan Wang
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Ya‐Ru Zhao
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
| |
Collapse
|
18
|
Su M, Yuan F, Li T, Wei C. A Non-Gradual Development Process of Cicada Eyes at the End of the Fifth-Instar Nymphal Stage to Obtain Visual Ability. INSECTS 2022; 13:1170. [PMID: 36555080 PMCID: PMC9787698 DOI: 10.3390/insects13121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Insects' visual system is directly related to ecology and critical for their survival. Some cicadas present obvious differences in color and ultrastructure of compound eyes between nymphal and adult stages, but little is known about when cicadas obtain their visual ability to deal with the novel above-ground habitat. We use transcriptome analyses and reveal that cicada Meimuna mongolica has a trichromatic color vision system and that the eyes undergo a non-gradual development process at the end of the 5th-instar nymphal stage. The white-eye 5th-instar nymphs (i.e., younger 5th-instar nymphs) have no visual ability because critical components of the visual system are deficient. The transformation of eyes toward possessing visual function takes place after a tipping point in the transition phase from the white-eye period to the subsequent red-eye period, which is related to a decrease of Juvenile Hormone. The period shortly after adult emergence is also critical for eye development. Key differentially-expressed genes related to phototransduction and chromophore synthesis play positive roles for cicadas to adapt to above-ground habitat. The accumulation of ommochromes corresponds to the color change of eyes from white to red and dark brown during the end of the 5th-instar nymphal period. Cuticle tanning leads to eye color changing from dark-brown to light-brown during the early adult stage. We hypothesize that the accumulation of ommochromes occurring at the end of 5th-instar nymphal stage and the early adult stage is not only for cicadas to obtain visual ability, but also is a secure strategy to cope with potential photodamage after emergence.
Collapse
|
19
|
Li Z, Zhou C, Chen Y, Ma W, Cheng Y, Chen J, Bai Y, Luo W, Li N, Du E, Li S. Egfr signaling promotes juvenile hormone biosynthesis in the German cockroach. BMC Biol 2022; 20:278. [PMID: 36514097 PMCID: PMC9749228 DOI: 10.1186/s12915-022-01484-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In insects, an interplay between the activities of distinct hormones, such as juvenile hormone (JH) and 20-hydroxyecdysone (20E), regulates the progression through numerous life history hallmarks. As a crucial endocrine factor, JH is mainly synthesized in the corpora allata (CA) to regulate multiple physiological and developmental processes, including molting, metamorphosis, and reproduction. During the last century, significant progress has been achieved in elucidating the JH signal transduction pathway, while less progress has been made in dissecting the regulatory mechanism of JH biosynthesis. Previous work has shown that receptor tyrosine kinase (RTK) signaling regulates hormone biosynthesis in both insects and mammals. Here, we performed a systematic RNA interference (RNAi) screening to identify RTKs involved in regulating JH biosynthesis in the CA of adult Blattella germanica females. RESULTS We found that the epidermal growth factor receptor (Egfr) is required for promoting JH biosynthesis in the CA of adult females. The Egf ligands Vein and Spitz activate Egfr, followed by Ras/Raf/ERK signaling, and finally activation of the downstream transcription factor Pointed (Pnt). Importantly, Pnt induces the transcriptional expression of two key enzyme-encoding genes in the JH biosynthesis pathway: juvenile hormone acid methyltransferase (JHAMT) and methyl farnesoate epoxidase (CYP15A1). Dual-luciferase reporter assay shows that Pnt is able to activate a promoter region of Jhamt. In addition, electrophoretic mobility shift assay confirms that Pnt directly binds to the - 941~ - 886 nt region of the Jhamt promoter. CONCLUSIONS This study reveals the detailed molecular mechanism of Egfr signaling in promoting JH biosynthesis in the German cockroach, shedding light on the intricate regulation of JH biosynthesis during insect development.
Collapse
Affiliation(s)
- Zhaoxin Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Caisheng Zhou
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yumei Chen
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wentao Ma
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yunlong Cheng
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jinxin Chen
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Bai
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Luo
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Na Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Erxia Du
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sheng Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| |
Collapse
|
20
|
Dong L, Muramatsu N, Numata H, Ito C. Functional Analysis of a Juvenile Hormone Inducible Transcription Factor, Krüppel homolog 1, in the Bean Bug, Riptortus pedestris. Zoolog Sci 2022; 39:562-569. [PMID: 36495491 DOI: 10.2108/zs220025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022]
Abstract
Juvenile hormone (JH) has two major functions in insects, i.e., suppression of metamorphosis in the larval or nymphal stage and promotion of reproduction in the adult stage. Krüppel homolog 1 (Kr-h1), a C2H2 zinc-finger type transcription factor, is reported to act downstream of the JH receptor complex. In the present study, the function of Kr-h1 was examined in adults and nymphs of Riptortus pedestris by RNA interference (RNAi). After injection of adults with dsRNA of Kr-h1, the expression level of Kr-h1 was significantly decreased in the abdomen. Kr-h1 dsRNA-injection resulted in a lower proportion of individuals with developed ovaries, but the difference was not statistically significant. The transcript levels of cyanoprotein-α and vitellogenin-1, which are JH-inducible genes encoding yolk proteins, were not affected in the abdomen by Kr-h1 knockdown. Kr-h1 dsRNA-injection was effective for suppression of Kr-h1 expression in nymphs. Some Kr-h1 dsRNA-injected fifth (final) instar nymphs had morphological defects in the wing bud. Moreover, they had several adult morphological features, including ocelli in the head, connexivum in the abdomen, coloring of the dorsal abdomen, and genitals. The nymphs possessing adult features did not emerge as adults during 1 month. These results demonstrated that Kr-h1 is necessary for maintaining nymphal characters in R. pedestris. The function of Kr-h1 in ovarian development remains unclear in R. pedestris.
Collapse
Affiliation(s)
- Li Dong
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Nobuki Muramatsu
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hideharu Numata
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Chihiro Ito
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan, .,Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
21
|
Wu JJ, Chen F, Yang R, Shen CH, Ze LJ, Jin L, Li GQ. Knockdown of Ecdysone-Induced Protein 93F Causes Abnormal Pupae and Adults in the Eggplant Lady Beetle. BIOLOGY 2022; 11:1640. [PMID: 36358341 PMCID: PMC9687827 DOI: 10.3390/biology11111640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 05/11/2025]
Abstract
Ecdysone-induced protein 93F (E93) plays triple roles during post-embryonic development in insects whose juvenile instars are more than four. However, it only acts as a specifier of adult structures in Drosophila flies whose larval instars are fixed at three. In this study, we determined the functions of E93 in the eggplant lady beetle (Henosepilachna vigintioctopunctata), which has four larval instars. We uncovered that E93 was abundantly expressed at the prepupal and pupal stages. A precocious inhibition of the juvenile hormone signal by RNA interference (RNAi) of HvKr-h1 or HvHairy, two vital downstream developmental effectors, at the penultimate instar larval stage increased the expression of E93, Conversely, ingestion of JH by the third-instar larvae stimulated the expression of HvKr-h1 but repressed the transcription of either HvE93X1 or HvE93X2. However, disturbance of the JH signal neither drove premature metamorphosis nor caused supernumerary instars. In contrast, depletion of E93 at the third- and fourth-instar larval and prepupal stages severely impaired pupation and caused a larval-pupal mixed phenotype: pupal spines and larval scoli were simultaneously presented on the cuticle. RNAi of E93 at the pupal stage affected adult eclosion. When the beetles had suffered from a dsE93 injection at the fourth-instar larval and pupal stages, a few resultant adults emerged, with separated elytra, abnormally folded hindwings, a small body size and short appendages. Taken together, our results suggest the larval instars are fixed in H. vigintioctopunctata; E93 serves as a repressor of larval characters and a specifier of adult structures during the larval-pupal-adult transition.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
22
|
Metabolite Changes in Orange Dead Leaf Butterfly Kallima inachus during Ontogeny and Diapause. Metabolites 2022; 12:metabo12090804. [PMID: 36144209 PMCID: PMC9501346 DOI: 10.3390/metabo12090804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Holometabolism is a form of insect development which includes four life stages: egg, larva, pupa, and imago (or adult). The developmental change of whole body in metabolite levels of holometabolous insects are usually ignored and lack study. Diapause is an alternative life-history strategy that can occur during the egg, larval, pupal, and adult stages in holometabolous insects. Kallima inachus (Lepidoptera: Nymphalidae) is a holometabolous and adult diapausing butterfly. This study was intended to analyze metabolic changes in K. inachus during ontogeny and diapause through a non-targeted UPLC-MS/MS (ultra-performance liquid chromatograph coupled with tandem mass spectrometry) based metabolomics analysis. A variety of glycerophospholipids (11), amino acid and its derivatives (16), and fatty acyls (nine) are crucial to the stage development of K. inachus. 2-Keto-6-acetamidocaproate, N-phenylacetylglycine, Cinnabarinic acid, 2-(Formylamino) benzoic acid, L-histidine, L-glutamate, and L-glutamine play a potentially important role in transition of successive stages (larva to pupa and pupa to adult). We observed adjustments associated with active metabolism, including an accumulation of glycerophospholipids and carbohydrates and a degradation of lipids, as well as amino acid and its derivatives shifts, suggesting significantly changed in energy utilization and management when entering into adult diapause. Alpha-linolenic acid metabolism and ferroptosis were first found to be associated with diapause in adults through pathway analyses. Our study lays the foundation for a systematic study of the developmental mechanism of holometabolous insects and metabolic basis of adult diapause in butterflies.
Collapse
|
23
|
Knockdown of the Halloween Genes spook, shadow and shade Influences Oocyte Development, Egg Shape, Oviposition and Hatching in the Desert Locust. Int J Mol Sci 2022; 23:ijms23169232. [PMID: 36012497 PMCID: PMC9408901 DOI: 10.3390/ijms23169232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
Ecdysteroids are widely investigated for their role during the molting cascade in insects; however, they are also involved in the development of the female reproductive system. Ecdysteroids are synthesized from cholesterol, which is further converted via a series of enzymatic steps into the main molting hormone, 20-hydoxyecdysone. Most of these biosynthetic conversion steps involve the activity of cytochrome P450 (CYP) hydroxylases, which are encoded by the Halloween genes. Three of these genes, spook (spo), phantom (phm) and shade (shd), were previously characterized in the desert locust, Schistocerca gregaria. Based on recent sequencing data, we have now identified the sequences of disembodied (dib) and shadow (sad), for which we also analyzed spatiotemporal expression profiles using qRT-PCR. Furthermore, we investigated the possible role(s) of five different Halloween genes in the oogenesis process by means of RNA interference mediated knockdown experiments. Our results showed that depleting the expression of SchgrSpo, SchgrSad and SchgrShd had a significant impact on oocyte development, oviposition and hatching of the eggs. Moreover, the shape of the growing oocytes, as well as the deposited eggs, was very drastically altered by the experimental treatments. Consequently, it can be proposed that these three enzymes play an important role in oogenesis.
Collapse
|
24
|
Chen N, Liu YJ, Fan YL, Pei XJ, Yang Y, Liao MT, Zhong J, Li N, Liu TX, Wang G, Pan Y, Schal C, Li S. A single gene integrates sex and hormone regulators into sexual attractiveness. Nat Ecol Evol 2022; 6:1180-1190. [PMID: 35788705 DOI: 10.1038/s41559-022-01808-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022]
Abstract
Sex differentiation and hormones are essential for the development of sexual signals in animals, and the regulation of sexual signals involves complex gene networks. However, it is unknown whether a core gene is able to connect the upstream regulators for controlling sexual signal outputs and behavioural consequences. Here, we identify a single gene that integrates both sex differentiation and hormone signalling with sexual attractiveness in an insect model. CYP4PC1 in the German cockroach, Blattella germanica, controls the rate-limiting step in producing female-specific contact sex pheromone (CSP) that stimulates male courtship. As revealed by behavioural, biochemical, molecular, genetic and bioinformatic approaches, in sexually mature females, CYP4PC1 expression and CSP production are coordinately induced by sex differentiation genes and juvenile hormone (JH) signalling. In adult males, direct inhibition of CYP4PC1 expression by doublesexM binding in gene promoter and lack of the gonadotropic hormone JH prevent CSP production, thus avoiding male-male attraction. By manipulating the upstream regulators, we show that wild-type males prefer to court cockroaches with higher CYP4PC1 expression and CSP production in a dose-dependent manner, regardless of their sex. These findings shed light on how sex-specific and high sexual attractiveness is conferred in insects.
Collapse
Affiliation(s)
- Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Yong-Jun Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China.
| | - Xiao-Jin Pei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ming-Tao Liao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jiru Zhong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China.,Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Guirong Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China. .,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China.
| |
Collapse
|
25
|
Inui T, Sezutsu H, Daimon T. MicroRNA let-7 is required for hormonal regulation of metamorphosis in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 145:103784. [PMID: 35533806 DOI: 10.1016/j.ibmb.2022.103784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
The heterochronic microRNA let-7, which was first identified in Caenorhabditis elegans, controls the timing of developmental programs, and let-7 triggers the onset of the juvenile-adult transition in bilaterians. The expression of let-7 is strongly induced during the last larval stage of C. elegans and is highly expressed in the late last instar larvae/nymphs of the fly Drosophila melanogaster and the cockroach Blattella germanica. In the silkworm Bombyx mori, the expression of let-7 remarkably increases in the corpus cardiacum-corpus allatum complex (CC-CA) at the beginning of the last larval instar and is maintained at high levels during this instar. To determine the biological function of let-7 in B. mori, we generated a let-7 knockout line and a transgenic UAS-let-7 line. The let-7 knockout larvae were developmentally arrested in the prepupal stage and became pupal-adult intermediates after apolysis. When let-7 was ubiquitously overexpressed under the transcriptional control of an Actin3-GAL4 driver, developmental timing and growth of larvae were severely impaired in the penultimate (L4) instar, and these larvae underwent precocious metamorphosis from L4. Furthermore, our results showed that reception and signaling of ecdysteroids and juvenile hormones (JHs) normally occurred in the absence of let-7, whereas the biosynthesis of ecdysone and JHs were affected by disruption and overexpression of let-7. Together, the present study demonstrates that let-7 is required for the coordination of the biosynthesis of ecdysone and JH to ensure the developmental transition during the metamorphosis of B. mori.
Collapse
Affiliation(s)
- Tomohiro Inui
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Sezutsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi 1-2, Tsukuba, Ibaraki, 305-8634, Japan
| | - Takaaki Daimon
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
26
|
He Q, Zhang Y. Kr-h1, a Cornerstone Gene in Insect Life History. Front Physiol 2022; 13:905441. [PMID: 35574485 PMCID: PMC9092015 DOI: 10.3389/fphys.2022.905441] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Insect life cycle is coordinated by hormones and their downstream effectors. Krüppel homolog1 (Kr-h1) is one of the crucial effectors which mediates the actions of the two critical hormones of insects, the juvenile hormone (JH) and 20-hydroxyecdysone (20E). It is a transcription factor with a DNA-binding motif of eight C2H2 zinc fingers which is found to be conserved among insect orders. The expression of Kr-h1 is fluctuant during insect development with high abundance in juvenile instars and lower levels in the final instar and pupal stage, and reappearance in adults, which is governed by the coordination of JH, 20E, and miRNAs. The dynamic expression pattern of Kr-h1 is closely linked to its function in the entire life of insects. Over the past several years, accumulating studies have advanced our understanding of the role of Kr-h1 during insect development. It acts as a universal antimetamorphic factor in both hemimetabolous and holometabolous species by directly inhibiting the transcription of 20E signaling genes Broad-Complex (Br-C) and Ecdysone induced protein 93F (E93), and steroidogenic enzyme genes involved in ecdysone biosynthesis. Meanwhile, it promotes vitellogenesis and ovarian development in the majority of studied insects. In addition, Kr-h1 regulates insect behavioral plasticity and caste identity, neuronal morphogenesis, maturation of sexual behavior, as well as embryogenesis and metabolic homeostasis. Hence, Kr-h1 acts as a cornerstone regulator in insect life.
Collapse
Affiliation(s)
- Qianyu He
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuanxi Zhang
- Daqing Municipal Ecology and Environment Bureau, Daqing, China
| |
Collapse
|
27
|
Sun YY, Fu DY, Liu B, Wang LJ, Chen H. Roles of Krüppel Homolog 1 and Broad-Complex in the Development of Dendroctonus armandi (Coleoptera: Scolytinae). Front Physiol 2022; 13:865442. [PMID: 35464080 PMCID: PMC9019567 DOI: 10.3389/fphys.2022.865442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
In insects, metamorphosis is controlled by juvenile hormone (JH) and 20-hydroxyecdysone (20E). Krüppel homolog 1 (Kr-h1), a key JH-early inducible gene, is responsible for the suppression of metamorphosis and the regulation of the Broad-Complex (Br-C) gene, which is induced by 20E and functions as a “pupal specifier”. In this study, we identified and characterized the expression patterns and tissue distribution of DaKr-h1 and DaBr-C at various developmental stages of Dendroctonus armandi. The expression of the two genes was induced by JH analog (JHA) methoprene and 20E, and their functions were investigated by RNA interference. DaKr-h1 and DaBr-C were predominantly expressed in the heads of larvae and were significantly downregulated during the molting stage. In contrast, the DaKr-h1 transcript level was highest in the adult anterior midgut. DaBr-C was mainly expressed in female adults, with the highest transcript levels in the ovaries. In the larval and pupal stages, both JHA and 20E significantly induced DaKr-h1, but only 20E significantly induced DaBr-C, indicating the importance of hormones in metamorphosis. DaKr-h1 knockdown in larvae upregulated DaBr-C expression, resulting in precocious metamorphosis from larvae to pupae and the formation of miniature pupae. DaKr-h1 knockdown in pupae suppressed DaBr-C expression, increased emergence, caused abnormal morphology, and caused the formation of small-winged adults. These results suggest that DaKr-h1 is required for the metamorphosis of D. armandi. Our findings provide insight into the roles of DaKr-h1 and DaBr-C in JH-induced transcriptional repression and highlight DaKr-h1 as a potential target for metamorphosis suppression in D. armandi.
Collapse
Affiliation(s)
- Ya-Ya Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Dan-Yang Fu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Bin Liu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Lin-Jun Wang
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- *Correspondence: Hui Chen,
| |
Collapse
|
28
|
Duan TF, Gao SJ, Wang HC, Li L, Li YY, Tan Y, Pang BP. MicroRNA let-7-5p targets the juvenile hormone primary response gene Krüppel homolog 1 and regulates reproductive diapause in Galeruca daurica. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103727. [PMID: 35092820 DOI: 10.1016/j.ibmb.2022.103727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs) regulate various biological processes in insects. However, their roles in the regulation of insect diapause remain unknown. In this study, we address the biological function of a conserved miRNA, let-7-5p in the regulation of a juvenile hormone primary response gene, Krüppel homolog 1 (Kr-h1), which modulates reproductive diapause in Galeruca daurica. The dual luciferase reporter assay showed that let-7-5p depressed the expression of Kr-h1. The expression profiles of let-7-5p and Kr-h1 displayed opposite patterns in the adult developmental stage. Injection of let-7-5p agomir in pre-diapause adult females inhibited the expression of Kr-h1, which consequently led to delay ovarian development, increase lipid accumulation, expand fat body, and induce reproductive diapause just as depleting Kr-h1 did. Conversely, injection of let-7-5p antagomir resulted in opposite effects by reducing fat storage and stimulating reproduction. Moreover, JH receptor agonist methoprene reduced the expression of let-7-5p, and rescued the ovarian development defects associated with let-7-5p overexpression. These results indicate that let-7-5p plays an important role in the regulation of reproductive diapause and development of G. daurica adults through its target gene Kr-h1.
Collapse
Affiliation(s)
- Tian-Feng Duan
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Shu-Jing Gao
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Hai-Chao Wang
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Ling Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan-Yan Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Yao Tan
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Bao-Ping Pang
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
29
|
Domínguez CV, Pagone V, Maestro JL. Regulation of insulin-like peptide expression in adult Blattella germanica females. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103706. [PMID: 34974083 DOI: 10.1016/j.ibmb.2021.103706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The insulin-IGF-signalling (IIS) pathway regulates key processes in metazoans. The pathway is activated through the binding of the ligands, which in insects are usually referred to as insulin-like peptides (ILPs), to a class of receptor tyrosine kinases, the insect insulin receptor. To study the pathway regulation, it is therefore essential to understand how ILPs are produced and released. In this study we analysed the factors that regulate the expression of the seven ILPs (BgILPs) expressed in adult females of the German cockroach, Blattella germanica. The results showed that the starvation-induced expression reduction of brain BgILP3, 5 and 6 and fat body BgILP7 is not due to reduced juvenile hormone (JH) or decreased TOR pathway activity. In addition, depletion of FoxO in starved females did not correct the low levels of these BgILPs, but even reduced further BgILP5 expression, indicating the need to maintain certain basal levels of BgILP5 even during starvation. Furthermore, JH promoted increased BgILP5 and decreased BgILP3 expression in the brain, an effect that required Methoprene-tolerant (Met), the JH receptor, but not Krüppel homolog 1 (Kr-h1), the main JH transducer. On the other hand, JH inhibited the expression of BgILP7 in the fat body, although in this case, the action required both Met and Kr-h1. In addition, JH reduction treatments produced a decrease in the expression of the insulin receptor in the fat body, which suggests an increase in IIS. The results show a peculiar regulation of ILP expression in adult B. germanica females, which is clearly different than that seen in other species. This is understandable given that gene duplications in recent clades have resulted in different sets of ILP genes, involving substantial changes in gene regulatory networks.
Collapse
Affiliation(s)
- Claudia V Domínguez
- Institute of Evolutionary Biology (CSIC.Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Viviana Pagone
- Institute of Evolutionary Biology (CSIC.Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - José L Maestro
- Institute of Evolutionary Biology (CSIC.Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
30
|
Zhu S, Liu Y, Liao M, Yang Y, Bai Y, Li N, Li S, Luan Y, Chen N. Evaluation of Reference Genes for Transcriptional Profiling in Two Cockroach Models. Genes (Basel) 2021; 12:genes12121880. [PMID: 34946836 PMCID: PMC8701133 DOI: 10.3390/genes12121880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 02/02/2023] Open
Abstract
The German cockroach, Blattella germanica, and the American cockroach, Periplaneta americana are the most common and synanthropic household pests of interest to public health. While they have increasingly served as model systems in hemimetabolous insects for studying many biological issues, there is still a lack of stable reference gene evaluation for reliable quantitative real-time PCR (qPCR) outputs and functional genomics. Here, we evaluated the expression variation of common insect reference genes, including the historically used actin, across various tissues and developmental stages, and also under experimental treatment conditions in these two species by using three individual algorithms (geNorm, BestKeeper, and NormFinder) and a comprehensive program (RefFinder). RPL32 in B. germanica and EF1α in P. americana showed the overall lowest variation among all examined samples. Based on the stability rankings by RefFinder, the optimal but varied reference genes under specific conditions were selected for qPCR normalization. In addition, the combination of RPL32 and EF1α was recommended for all the tested tissues and stages in B. germanica, whereas the combination of multiple reference genes was unfavorable in P. americana. This study provides a condition-specific resource of reference gene selection for accurate gene expression profiling and facilitating functional genomics in these two important cockroaches.
Collapse
Affiliation(s)
- Shen Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Yongjun Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Mingtao Liao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Yunxia Luan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
- Correspondence:
| |
Collapse
|
31
|
Gospocic J, Glastad KM, Sheng L, Shields EJ, Berger SL, Bonasio R. Kr-h1 maintains distinct caste-specific neurotranscriptomes in response to socially regulated hormones. Cell 2021; 184:5807-5823.e14. [PMID: 34739833 DOI: 10.1016/j.cell.2021.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
Abstract
Behavioral plasticity is key to animal survival. Harpegnathos saltator ants can switch between worker and queen-like status (gamergate) depending on the outcome of social conflicts, providing an opportunity to study how distinct behavioral states are achieved in adult brains. Using social and molecular manipulations in live ants and ant neuronal cultures, we show that ecdysone and juvenile hormone drive molecular and functional differences in the brains of workers and gamergates and direct the transcriptional repressor Kr-h1 to different target genes. Depletion of Kr-h1 in the brain caused de-repression of "socially inappropriate" genes: gamergate genes were upregulated in workers, whereas worker genes were upregulated in gamergates. At the phenotypic level, loss of Kr-h1 resulted in the emergence of worker-specific behaviors in gamergates and gamergate-specific traits in workers. We conclude that Kr-h1 is a transcription factor that maintains distinct brain states established in response to socially regulated hormones.
Collapse
Affiliation(s)
- Janko Gospocic
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karl M Glastad
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lihong Sheng
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Emily J Shields
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shelley L Berger
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania School of Arts and Sciences, Philadelphia, PA 19104, USA.
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Jindra M, McKinstry WJ, Nebl T, Bittova L, Ren B, Shaw J, Phan T, Lu L, Low JKK, Mackay JP, Sparrow LG, Lovrecz GO, Hill RJ. Purification of an insect juvenile hormone receptor complex enables insights into its post-translational phosphorylation. J Biol Chem 2021; 297:101387. [PMID: 34758356 PMCID: PMC8683598 DOI: 10.1016/j.jbc.2021.101387] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
Juvenile hormone (JH) plays vital roles in insect reproduction, development, and in many aspects of physiology. JH primarily acts at the gene-regulatory level through interaction with an intracellular receptor (JH receptor [JHR]), a ligand-activated complex of transcription factors consisting of the JH-binding protein methoprene-tolerant (MET) and its partner taiman (TAI). Initial studies indicated significance of post-transcriptional phosphorylation, subunit assembly, and nucleocytoplasmic transport of JHR in JH signaling. However, our knowledge of JHR regulation at the protein level remains rudimentary, partly because of the difficulty of obtaining purified and functional JHR proteins. Here, we present a method for high-yield expression and purification of JHR complexes from two insect species, the beetle T. castaneum and the mosquito Aedes aegypti. Recombinant JHR subunits from each species were coexpressed in an insect cell line using a baculovirus system. MET–TAI complexes were purified through affinity chromatography and anion exchange columns to yield proteins capable of binding both the hormonal ligand (JH III) and DNA bearing cognate JH-response elements. We further examined the beetle JHR complex in greater detail. Biochemical analyses and MS confirmed that T. castaneum JHR was a 1:1 heterodimer consisting of MET and Taiman proteins, stabilized by the JHR agonist ligand methoprene. Phosphoproteomics uncovered multiple phosphorylation sites in the MET protein, some of which were induced by methoprene treatment. Finally, we report a functional bipartite nuclear localization signal, straddled by phosphorylated residues, within the disordered C-terminal region of MET. Our present characterization of the recombinant JHR is an initial step toward understanding JHR structure and function.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Center, Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic.
| | | | - Thomas Nebl
- CSIRO Manufacturing, CSIRO, Parkville, Victoria, Australia
| | - Lenka Bittova
- Biology Center, Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Bin Ren
- CSIRO Manufacturing, CSIRO, Parkville, Victoria, Australia
| | - Jan Shaw
- CSIRO Health and Biosecurity, CSIRO, North Ryde, New South Wales, Australia
| | - Tram Phan
- CSIRO Manufacturing, CSIRO, Parkville, Victoria, Australia
| | - Louis Lu
- CSIRO Manufacturing, CSIRO, Parkville, Victoria, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | | | | | - Ronald J Hill
- CSIRO Health and Biosecurity, CSIRO, North Ryde, New South Wales, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
33
|
Ffrench J, Tracewell J, Suzuki Y. Conventional and Organic Wheat Germ Have Distinct Physiological Effects in the Tobacco Hornworm, Manduca Sexta: Use of Black Mutant Assay to Detect Environmental Juvenoid Activity of Insect Growth Regulators. FRONTIERS IN INSECT SCIENCE 2021; 1:744847. [PMID: 38468888 PMCID: PMC10926489 DOI: 10.3389/finsc.2021.744847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/27/2021] [Indexed: 03/13/2024]
Abstract
Stored grains used in artificial diets are often treated with insecticides to control infestation by pests. In recent years, insect growth regulators (IGRs) have become an increasingly popular form of insect pest control in agricultural settings. Most IGRs specifically target insects by either disrupting their endocrine system or their chitin synthesis. One type of IGRs comprises of chemical analogs of juvenile hormone (JH), a major hormone involved in growth and development of insects. Here we demonstrate that conventional wheat germ contains JH activity and impacts growth and development of the tobacco hornworm, Manduca sexta. Feeding diet containing conventional wheat germ delayed the timing of metamorphosis in wildtype larvae by extending the duration of the final instar. Diet with conventional wheat germ also inhibited melanization of the black mutant larvae and induced the expression of the JH response gene, Krüppel homolog 1. We demonstrate that the black mutant bioassay is a sensitive assay that can determine the amount of JH activity in stored grains and suggest that this assay may offer a quick and reliable assay to determine the amount of environmental juvenoids. Researchers are urged to use caution when purchasing stored grains for mass-rearing of research insects.
Collapse
Affiliation(s)
| | | | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| |
Collapse
|
34
|
Elgendy AM, Mohamed AA, Duvic B, Tufail M, Takeda M. Involvement of Cis-Acting Elements in Molecular Regulation of JH-Mediated Vitellogenin Gene 2 of Female Periplaneta americana. Front Physiol 2021; 12:723072. [PMID: 34526913 PMCID: PMC8435907 DOI: 10.3389/fphys.2021.723072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023] Open
Abstract
Vitellogenins (Vgs) are yolk protein precursors that are regulated by juvenile hormone (JH) and/or 20-hydroxyecdysone (20E) in insects. JH acts as the principal gonadotropin that stimulates vitellogenesis in hemimetabolous insects. In this study, we cloned and characterized the Periplaneta americana Vitellogenin 2 (Vg2) promoter. Multiple sites for putative transcription factor binding were predicted for the 1,804 bp Vg2 promoter region, such as the Broad-Complex, ecdysone response element (EcRE), GATA, Hairy, JH response element (JHRE), and Methoprene (Met)-binding motif, among others. Luciferase reporter assay has identified that construct -177 bp is enough to support JH III induction but not 20E suppression. This 38 bp region (from -177 to -139 bp) contains two conserved response element half-sites separated by 2 nucleotides spacer (DR2) and is designated as Vg2RE (-168GAGTCACGGAGTCGCCGCTG-149). Mutation assay and luciferase assay data using mutated constructs verified the crucial role of G residues in Vg2RE for binding the isolated fat body nuclear protein. In Sf9 cells, a luciferase reporter placed under the control of a minimal promoter containing Vg2RE was induced by JH III in a dose- and time-dependent manner. Nuclear proteins isolated from previtellogenic female fat body cells bound to Vg2RE, and this binding was outcompeted by a 50-fold excess of cold Drosophila melanogaster DR4 and Galleria mellonella JH binding protein response elements (Chorion factor-I/Ultraspiracle). Affinity pull-down experiment with nuclear extracts of previtellogenic female fat body, using 31-bp probe Vg2RE as bait, yielded a 71 kDa candidate nuclear protein that may mediate the regulatory action of the JH III.
Collapse
Affiliation(s)
- Azza M Elgendy
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt.,Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Muhammad Tufail
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan.,Ghazi University, Dera Ghazi Khan, Punjab, Pakistan
| | - Makio Takeda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
35
|
Yao S, Yang Y, Xue Y, Zhao W, Liu X, Du M, Yin X, Guan R, Wei J, An S. New insights on the effects of spinosad on the development of Helicoverpa armigera. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112452. [PMID: 34198186 DOI: 10.1016/j.ecoenv.2021.112452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Helicoverpa armigera (cotton bollworm) is one of the most destructive pests worldwide. Due to resistance to Bacillus thuringiensis and conventional insecticides, an effective management strategy to control this pest is urgently needed. Spinosad, a natural pesticide, is considered an alternative; however, the mechanism underlying the developmental effects of sublethal spinosad exposure remains elusive. In this study, the mechanism was examined using an insect model of H. armigera. Results confirmed that exposure to sublethal spinosad led to reduced larval wet weight, delayed larval developmental period, caused difficulty in molting, and deformed pupae. Further investigation demonstrated that exposure to sublethal spinosad caused a significant decrease in 20E titer and increase in JH titer, thereby leading to the discordance between 20E and JH titers, and consequently alteration in the expression levels of HR3 and Kr-h1. These results suggested that sublethal spinosad caused hormonal disorders in larvae, which directly affect insect development. Our study serves as a reference and basis for the toxicity evaluation of spinosad on molting and pupation in insect metamorphosis, which may contribute to identifying targets for effective control of cotton bollworm.
Collapse
Affiliation(s)
- Shuangyan Yao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yue Yang
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuying Xue
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenli Zhao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoguang Liu
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengfang Du
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinming Yin
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruobing Guan
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
36
|
Regulation of metamorphosis in neopteran insects is conserved in the paleopteran Cloeon dipterum (Ephemeroptera). Proc Natl Acad Sci U S A 2021; 118:2105272118. [PMID: 34417295 DOI: 10.1073/pnas.2105272118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the Paleozoic era, more than 400 Ma, a number of insect groups continued molting after forming functional wings. Today, however, flying insects stop molting after metamorphosis when they become fully winged. The only exception is the mayflies (Paleoptera, Ephemeroptera), which molt in the subimago, a flying stage between the nymph and the adult. However, the identity and homology of the subimago still is underexplored. Debate remains regarding whether this stage represents a modified nymph, an adult, or a pupa like that of butterflies. Another relevant question is why mayflies have the subimago stage despite the risk of molting fragile membranous wings. These questions have intrigued numerous authors, but nonetheless, clear answers have not yet been found. By combining morphological studies, hormonal treatments, and molecular analysis in the mayfly Cloeon dipterum, we found answers to these old questions. We observed that treatment with a juvenile hormone analog in the last nymphal instar stimulated the expression of the Kr-h1 gene and reduced that of E93, which suppress and trigger metamorphosis, respectively. The regulation of metamorphosis thus follows the MEKRE93 pathway, as in neopteran insects. Moreover, the treatment prevented the formation of the subimago. These findings suggest that the subimago must be considered an instar of the adult mayfly. We also observed that the forelegs dramatically grow between the last nymphal instar, the subimago, and the adult. This necessary growth spread over the last two stages could explain, at least in part, the adaptive sense of the subimago.
Collapse
|
37
|
Suzuki Y, Shiotsuki T, Jouraku A, Miura K, Minakuchi C. Characterization of E93 in neometabolous thrips Frankliniella occidentalis and Haplothrips brevitubus. PLoS One 2021; 16:e0254963. [PMID: 34293026 PMCID: PMC8297894 DOI: 10.1371/journal.pone.0254963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022] Open
Abstract
Insect metamorphosis into an adult occurs after the juvenile hormone (JH) titer decreases at the end of the juvenile stage. This generally coincides with decreased transcript levels of JH-response transcription factors Krüppel homolog 1 (Kr-h1) and broad (br), and increased transcript levels of the adult specifier E93. Thrips (Thysanoptera) develop through inactive and non-feeding stages referred to as “propupa” and “pupa”, and this type of distinctive metamorphosis is called neometaboly. To understand the mechanisms of hormonal regulation in thrips metamorphosis, we previously analyzed the transcript levels of Kr-h1 and br in two thrips species, Frankliniella occidentalis (Thripidae) and Haplothrips brevitubus (Phlaeothripidae). In both species, the transcript levels of Kr-h1 and br decreased in the “propupal” and “pupal” stages, and their transcription was upregulated by exogenous JH mimic treatment. Here we analyzed the developmental profiles of E93 in these two thrips species. Quantitative RT-PCR revealed that E93 expression started to increase at the end of the larval stage in F. occidentalis and in the “propupal” stage of H. brevitubus, as Kr-h1 and br mRNA levels decreased. Treatment with an exogenous JH mimic at the onset of metamorphosis prevented pupal-adult transition and caused repression of E93. These results indicated that E93 is involved in adult differentiation after JH titer decreases at the end of the larval stage of thrips. By comparing the expression profiles of Kr-h1, br, and E93 among insect species, we propose that the “propupal” and “pupal” stages of thrips have some similarities with the holometabolous prepupal and pupal stages, respectively.
Collapse
Affiliation(s)
- Youhei Suzuki
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takahiro Shiotsuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Ken Miura
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Chieka Minakuchi
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
38
|
Guo S, Wu QW, Tian Z, Zhu L, King-Jones K, Zhu F, Wang XP, Liu W. Krüppel homolog 1 regulates photoperiodic reproductive plasticity in the cabbage beetle Colaphellus bowringi. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103582. [PMID: 33905880 DOI: 10.1016/j.ibmb.2021.103582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Many insects exhibit reproductive plasticity where the photoperiod determines whether the insect becomes reproductively active or enters diapause. Adult reproductive diapause is a strategy that allows insects to survive harsh environmental conditions. A deficiency in juvenile hormone (JH) leads to reproductive diapause. However, little is known about the molecular mechanisms by which JH signaling regulates reproductive diapause. In this study, we used the cabbage beetle Colaphellus bowringi, a serious pest, to investigate the role of Krüppel homolog 1 (Kr-h1) in controlling photoperiodic plasticity of female reproduction. We focused on Kr-h1, since it acts as a key mediator of JH signaling. We show here that JH-Methoprene-tolerant signaling upregulated the expression of Kr-h1 in reproductively active C. bowringi females when reared under short day conditions. In the long day-treated diapausing females, Kr-h1 transcripts decreased dramatically. Interfering with Kr-h1 function repressed reproductive development by blocking vitellogenesis and ovarian growth. Further, Kr-h1 depletion induced other diapause-like traits, including elevated lipid accumulation and high expression of diapause-related genes. RNA-Seq showed that Kr-h1 played both activating and repressive roles, depending on whether downstream genes were acting in reproduction- or diapause pathways, respectively. Finally, we identified the DNA replication gene mini-chromosome maintenance 4 and two triacylglycerol lipase genes as critical downstream factors of Kr-h1 that are critical for reproductive plasticity in C. bowringi. These results reveal that Kr-h1 is a key component of the regulatory pathway that coordinates reproduction and diapause in insects in response to photoperiodic input.
Collapse
Affiliation(s)
- Shuang Guo
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Qing-Wen Wu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhong Tian
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Li Zhu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| | - Fen Zhu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
39
|
Zhao Z, Li L, Cheng M, Jing AD, Liu SN, Zhu SM, Du EX, Li S, Luan YX, Ren CH. Grainy head signaling regulates epithelium development and ecdysis in Blattella germanica. INSECT SCIENCE 2021; 28:485-494. [PMID: 32174010 DOI: 10.1111/1744-7917.12780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
The transcription factor grainy head (Grh) functions in the protection of the epithelium against the external environment by generating strongly adhesive layers, and this function is conserved in vertebrates and invertebrates. In Drosophila, the top model for holometabolous insects, Grh is necessary during embryonic development, epidermal differentiation, central nervous system specification and epithelial repair. However, the function of this gene in hemimetabolous insect epithelia remains unknown. To examine the function of Grh signaling in regulating epithelium development in Hemimetabola, we focused on the Blattella germanica epidermal layer using a gene knockdown strategy. The spatiotemporal expression pattern of BgGrh was detected, and knockdown of BgGrh and BgCad96ca, which provide positive feedback to BgGrh, caused severe defects in new epithelium development and impeded the molting process required to discard the old integument. Knockdown of the expression of BgGrh and BgCad96ca caused increased expression of chitin synthase gene (BgCHS1) and chitinase gene (BgCht5), the upregulations of which should be mediated by the higher level of hormone receptor 3 (BgHr3) gene. In conclusion, epithelium development is regulated by Grh signaling, which might represent a potential target for the control of urban pest cockroaches.
Collapse
Affiliation(s)
- Zheng Zhao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Liang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Min Cheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - An-Di Jing
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Su-Ning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Shi-Ming Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Er-Xia Du
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Yun-Xia Luan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Chong-Hua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| |
Collapse
|
40
|
Arya SK, Singh S, Upadhyay SK, Tiwari V, Saxena G, Verma PC. RNAi-based gene silencing in Phenacoccus solenopsis and its validation by in planta expression of a double-stranded RNA. PEST MANAGEMENT SCIENCE 2021; 77:1796-1805. [PMID: 33270964 DOI: 10.1002/ps.6204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cotton is a cash crop majorly affected by many hemipteran pests, among them the cotton mealybug, Phenacoccus solenopsis. Cotton mealybug attack has a devastating effect on cotton production and causes huge yield losses. RESULTS In this study, 25 potential RNA interference (RNAi) target genes were selected from the iBeetle database and a transcriptome data set for P. solenopsis. To assess the effectiveness of the selected target genes, three methods were utilized to deliver double-stranded (ds)RNA (ingestion, artificial diet bioassay and transient gene silencing). dsRNA molecules at different concentrations were fed to insects and insect mortality was recorded for each target gene. Based on the mortality data, three genes, Krüppel homologue-1, ADP-ATP/Translocase and IDGF-1, were selected for further gene expression studies using a reduced concentration of dsRNA (5 μg/ml). Of the three genes, Krüppel homologue-1 showed significantly downregulated expression (by 70.81% and 84.33%) at two different time points (8 and 14 days). An RNAi silencing construct was designed for Krüppel homologue-1 under control of the double enhancer CamV35S promoter in the plant binary vector. Significant downregulation of gene expression, by 66.69% and 81.80%, was found for Krüppel homologue-1 using transient gene silencing at the same time intervals. CONCLUSION This work provides the first evidence for targeting the Krüppel homologue-1 gene in a hemipteran pest, P. solenopsis, using RNAi technology through oral delivery and in planta-based transient gene silencing methods. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Surjeet Kumar Arya
- Plant Molecular Biology and Genetic Engineering Department, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow, India
| | - Sanchita Singh
- Plant Molecular Biology and Genetic Engineering Department, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Department of Botany, Lucknow University, Lucknow, Uttar Pradesh, 226007, India
| | | | - Vipin Tiwari
- Plant Molecular Biology and Genetic Engineering Department, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Gauri Saxena
- Department of Botany, Lucknow University, Lucknow, Uttar Pradesh, 226007, India
- Department of Botany, Panjab University, Chandigarh, India
| | - Praveen C Verma
- Plant Molecular Biology and Genetic Engineering Department, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
41
|
Zhu Z, Tong C, Qiu B, Yang H, Xu J, Zheng S, Song Q, Feng Q, Deng H. 20E-mediated regulation of BmKr-h1 by BmKRP promotes oocyte maturation. BMC Biol 2021; 19:39. [PMID: 33632227 PMCID: PMC7905918 DOI: 10.1186/s12915-021-00952-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/06/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Krüppel homolog 1 (Kr-h1) is a critical transcription factor for juvenile hormone (JH) signaling, known to play a key role in regulating metamorphosis and adult reproduction in insects. Kr-h1 can also be induced by molting hormone 20-hydroxyecdysone (20E), however, the underlying mechanism of 20E-induced Kr-h1 expression remains unclear. In the present study, we investigated the molecular mechanism of Kr-h1 induction by 20E in the reproductive system of a model lepidopteran insect, Bombyx mori. RESULTS Developmental and tissue-specific expression analysis revealed that BmKr-h1 was highly expressed in ovaries during the late pupal and adult stages and the expression was induced by 20E. RNA interference (RNAi)-mediated depletion of BmKr-h1 in female pupae severely repressed the transcription of vitellogenin receptor (VgR), resulting in the reduction in vitellogenin (Vg) deposition in oocytes. BmKr-h1 specifically bound the Kr-h1 binding site (KBS) between - 2818 and - 2805 nt upstream of BmVgR and enhanced the transcription of BmVgR. A 20E cis-regulatory element (CRE) was identified in the promoter of BmKr-h1 and functionally verified using luciferase reporter assay, EMSA and DNA-ChIP. Using pull-down assays, we identified a novel transcription factor B. mori Kr-h1 regulatory protein (BmKRP) that specifically bound the BmKr-h1 CRE and activated its transcription. CRISPR/Cas9-mediated knockout of BmKRP in female pupae suppressed the transcription of BmKr-h1 and BmVgR, resulting in arrested oogenesis. CONCLUSION We identified BmKRP as a new transcription factor mediating 20E regulation of B. mori oogenesis. Our data suggests that induction of BmKRP by 20E regulates BmKr-h1 expression, which in turn induces BmVgR expression to facilitate Vg uptake and oogenesis.
Collapse
Affiliation(s)
- Zidan Zhu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chunmei Tong
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Binbin Qiu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hongguang Yang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jiahui Xu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sichun Zheng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Qili Feng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Huimin Deng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
42
|
Crucial Role of Juvenile Hormone Receptor Components Methoprene-Tolerant and Taiman in Sexual Maturation of Adult Male Desert Locusts. Biomolecules 2021; 11:biom11020244. [PMID: 33572050 PMCID: PMC7915749 DOI: 10.3390/biom11020244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
Currently (2020), Africa and Asia are experiencing the worst desert locust (Schistocerca gregaria) plague in decades. Exceptionally high rainfall in different regions caused favorable environmental conditions for very successful reproduction and population growth. To better understand the molecular mechanisms responsible for this remarkable reproductive capacity, as well as to fill existing knowledge gaps regarding the regulation of male reproductive physiology, we investigated the role of methoprene-tolerant (Scg-Met) and Taiman (Scg-Tai), responsible for transducing the juvenile hormone (JH) signal, in adult male locusts. We demonstrated that knockdown of these components by RNA interference strongly inhibits male sexual maturation, severely disrupting reproduction. This was evidenced by the inability to show mating behavior, the absence of a yellow-colored cuticle, the reduction of relative testes weight, and the drastically reduced phenylacetonitrile (PAN) pheromone levels of the treated males. We also observed a reduced relative weight, as well as relative protein content, of the male accessory glands in Scg-Met knockdown locusts. Interestingly, in these animals the size of the corpora allata (CA), the endocrine glands where JH is synthesized, was significantly increased, as well as the transcript level of JH acid methyltransferase (JHAMT), a rate-limiting enzyme in the JH biosynthesis pathway. Moreover, other endocrine pathways appeared to be affected by the knockdown, as evidenced by changes in the expression levels of the insulin-related peptide and two neuroparsins in the fat body. Our results demonstrate that JH signaling pathway components play a crucial role in male reproductive physiology, illustrating their potential as molecular targets for pest control.
Collapse
|
43
|
Zhu ZD, Hu QH, Tong CM, Yang HG, Zheng SC, Feng QL, Deng HM. Transcriptomic analysis reveals the regulation network of BmKrüppel homolog 1 in the oocyte development of Bombyx mori. INSECT SCIENCE 2021; 28:47-62. [PMID: 32283000 DOI: 10.1111/1744-7917.12747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 06/11/2023]
Abstract
Krüppel homolog 1 (Kr-h1), a zinc finger transcription factor, is involved in the metamorphosis and adult reproduction of insects. However, the role of Kr-h1 in reproduction of holometabolic insects remains to be elucidated. The regulation network of Kr-h1-associated genes in the reproduction in Bombyx mori was investigated in this study. The higher expression level of BmKr-h1 in the ovaries was detected during the late pupal stage and adults. RNA interference (RNAi)-mediated depletion of BmKr-h1 in the female at day 6 of pupae resulted in abnormal oocytes at 48 h post-double-stranded RNA treatment, which showed less yolk protein deposition and partially transparent chorion. RNA-seq and subsequent differentially expressed transcripts analysis showed that knockdown of BmKr-h1 caused a decrease in the expression of 2882 genes and an increase in the expression of 2565 genes in the oocytes at day 8 of pupae. Totally, 27 genes coding for transcription factors were down-regulated, while six genes coding for other transcription factors were up-regulated. BmKr-h1 bound to the Kr-h1 binding site of the transcription factors AP-1 (activating protein-1) and FOXG1 to increase their messenger RNA transcripts in the BmN cells, respectively. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses of that positively co-expressed with AP-1 and FOXG1 transcripts showed mainly enrichment in the metabolic-related pathways, the nutrient absorption and the yolk protein absorption processes. These data suggested that BmKr-h1 might directly regulate the metabolic-related pathways, the nutrient absorption and the yolk protein absorption processes or probably through AP-1 and /or FOXG1 to regulate oocyte development.
Collapse
Affiliation(s)
- Zi-Dan Zhu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-Hao Hu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Chun-Mei Tong
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hong-Guang Yang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Si-Chun Zheng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-Li Feng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hui-Min Deng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
44
|
Martín D, Chafino S, Franch-Marro X. How stage identity is established in insects: the role of the Metamorphic Gene Network. CURRENT OPINION IN INSECT SCIENCE 2021; 43:29-38. [PMID: 33075581 DOI: 10.1016/j.cois.2020.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Proper formation of adult insects requires the integration of spatial and temporal regulatory axes. Whereas spatial information confers identity to each tissue, organ and appendage, temporal information specifies at which stage of development the animal is. Regardless of the type of post-embryonic development, either hemimetabolous or holometabolous, temporal specificity is achieved through interactions between the temporal identity genes Kr-h1, E93 and Br-C, whose sequential expression is controlled by the two major developmental hormones, 20-hydroxyecdysone and Juvenile hormone. Given the intimate regulatory connection between these three factors to specify life stage identity, we dubbed the regulatory axis that comprises these genes as the Metamorphic Gene Network (MGN). In this review, we survey the molecular mechanisms underlying the control by the MGN of stage identity and progression in hemimetabolous and holometabolous insects.
Collapse
Affiliation(s)
- David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Silvia Chafino
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
45
|
Collins DH, Wirén A, Labédan M, Smith M, Prince DC, Mohorianu I, Dalmay T, Bourke AFG. Gene expression during larval caste determination and differentiation in intermediately eusocial bumblebees, and a comparative analysis with advanced eusocial honeybees. Mol Ecol 2021; 30:718-735. [PMID: 33238067 PMCID: PMC7898649 DOI: 10.1111/mec.15752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
The queen‐worker caste system of eusocial insects represents a prime example of developmental polyphenism (environmentally‐induced phenotypic polymorphism) and is intrinsic to the evolution of advanced eusociality. However, the comparative molecular basis of larval caste determination and subsequent differentiation in the eusocial Hymenoptera remains poorly known. To address this issue within bees, we profiled caste‐associated gene expression in female larvae of the intermediately eusocial bumblebee Bombus terrestris. In B. terrestris, female larvae experience a queen‐dependent period during which their caste fate as adults is determined followed by a nutrition‐sensitive period also potentially affecting caste fate but for which the evidence is weaker. We used mRNA‐seq and qRT‐PCR validation to isolate genes differentially expressed between each caste pathway in larvae at developmental stages before and after each of these periods. We show that differences in gene expression between caste pathways are small in totipotent larvae, then peak after the queen‐dependent period. Relatively few novel (i.e., taxonomically‐restricted) genes were differentially expressed between castes, though novel genes were significantly enriched in late‐instar larvae in the worker pathway. We compared sets of caste‐associated genes in B. terrestris with those reported from the advanced eusocial honeybee, Apis mellifera, and found significant but relatively low levels of overlap of gene lists between the two species. These results suggest both the existence of low numbers of shared toolkit genes and substantial divergence in caste‐associated genes between Bombus and the advanced eusocial Apis since their last common eusocial ancestor.
Collapse
Affiliation(s)
- David H Collins
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Anders Wirén
- School of Biological Sciences, University of East Anglia, Norwich, UK.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marjorie Labédan
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Michael Smith
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - David C Prince
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Irina Mohorianu
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Jeffrey Cheah Biomedical Centre, WT-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
46
|
He Q, Zhang Y, Dong W. MicroRNA miR-927 targets the juvenile hormone primary response gene Krüppel homolog1 to control Drosophila developmental growth. INSECT MOLECULAR BIOLOGY 2020; 29:545-554. [PMID: 32715555 DOI: 10.1111/imb.12662] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Krüppel homolog1 (Kr-h1) is a juvenile hormone (JH) response transcriptional factor that transduces JH signalling to repress insect metamorphosis in both hemimetabolous and holometabolous insects. While few studies about microRNAs (miRNAs) downregulating Kr-h1 expression to mediate insect metamorphosis have been demonstrated in hemimetabolous insects, the miRNAs that target the Kr-h1 of holometabolous insects have not been reported. Here, we identified two miR-927 binding sites within the 3'UTR region of Kr-h1 in Drosophila melanogaster, and miR-927 was found to downregulate the expression of Kr-h1. The expression profiles of miR-927 and Kr-h1 displayed relatively opposite pattern during most of the larval development stages. Overexpression of miR-927 in the fat body significantly decreased the expression of Kr-h1 and resulted in reduced oviposition, increased mortality, delayed pupation, and reduced pupal size. Notably, the co-overexpression of Kr-h1 rescued the developmental and growth defects associated with miR-927 overexpression, indicating that Kr-h1 is a biologically relevant target of miR-927. Moreover, the expression of miR-927 was found to be repressed by JH and its receptor Met/gce, forming a positive regulatory loop of JH signalling. Overall, our studies support a conserved role for the JH/miRNA/Kr-h1 regulatory axis in growth control during insect development.
Collapse
Affiliation(s)
- Q He
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Y Zhang
- Environmental Monitoring Center Station, DaQing Environmental Protection Agency, Daqing, China
| | - W Dong
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
47
|
Li X, Chen T, Jiang H, Huang J, Huang M, Xu R, Xie Q, Zhu H, Su S. Effects of methyl farnesoate on Krüppel homolog 1 (Kr-h1) during vitellogenesis in the Chinese mitten crab (Eriocheir sinensis). Anim Reprod Sci 2020; 224:106653. [PMID: 33249353 DOI: 10.1016/j.anireprosci.2020.106653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/28/2022]
Abstract
Methyl farnesoate (MF), a de-epoxidized form of juvenile hormone (JH) Ⅲ in insects, may regulate developmental processes such as reproduction and ovarian maturation in crustaceans. Krüppel homolog 1 (Kr-h1) is a target response gene for the methoprene-tolerant (Met) protein that is a component of the JH signaling pathway in insects. In the present study, Es-Kr-h1 was cloned from E. sinensis and characterized to ascertain whether JH/MF signaling in insects is conserved in crustaceans. The findings with molecular structure analysis indicated Es-Kr-h1 contains seven zinc finger motifs (Zn2-Zn8) commonly conserved in other crustaceans, but the Zn1 motif was not detected to be present. The PCR results indicated that relative abundance of Es-Kr-h1 mRNA transcript in the hepatopancreas was greatest in the Stage Ⅱ, followed by the Stage Ⅳ ovarian developmental categories. The relative abundance of Es-Kr-h1 mRNA transcript in vitro was greater after MF addition to the hepatopancreas, however, not the ovarian tissues. The results from in vivo and eyestalk ablation experiments indicated the relative abundance of Es-Kr-h1 mRNA transcript was greater after MF treatment and bilateral eyestalk removal in the hepatopancreas, however, not ovarian tissues. Notably, there were effects of MF on relative abundance of Es-Kr-h1 mRNA transcript pattern. The Es-Kr-h1 protein, therefore, may be involved in MF-mediated vitellogenesis resulting from the response to Es-Met in E. sinensis, and the JH/MF signaling pathway is potentially conserved in crustaceans.
Collapse
Affiliation(s)
- Xilei Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Tiantian Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hucheng Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, China
| | - Jiawei Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ruihan Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qiming Xie
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Haojie Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shiping Su
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
48
|
He LL, Shin SH, Wang Z, Yuan I, Weschler R, Chiou A, Koyama T, Nijhout HF, Suzuki Y. Mechanism of threshold size assessment: Metamorphosis is triggered by the TGF-beta/Activin ligand Myoglianin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 126:103452. [PMID: 32822817 DOI: 10.1016/j.ibmb.2020.103452] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/02/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Although the mechanisms that control growth are now well understood, the mechanism by which animals assess their body size remains one of the great puzzles in biology. The final larval instar of holometabolous insects, after which growth stops and metamorphosis begins, is specified by a threshold size. We investigated the mechanism of threshold size assessment in the tobacco hornworm, Manduca sexta. The threshold size was found to change depending on the amount of exposure to poor nutrient conditions whereas hypoxia treatment consistently led to a lower threshold size. Under these various conditions, the mass of the muscles plus integuments was correlated with the threshold size. Furthermore, the expression of myoglianin (myo) increased at the threshold size in both M. sexta and Tribolium castaneum. Knockdown of myo in T. castaneum led to larvae that underwent supernumerary larval molts and stayed in the larval stage permanently even after passing the threshold size. We propose that increasing levels of Myo produced by the growing tissues allow larvae to assess their body size and trigger metamorphosis at the threshold size.
Collapse
Affiliation(s)
- Lorrie L He
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA
| | - Sara H Shin
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA
| | - Zhou Wang
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA
| | - Isabelle Yuan
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA
| | - Ruthie Weschler
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA
| | - Allison Chiou
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA
| | - Takashi Koyama
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal; Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | | | - Yuichiro Suzuki
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA.
| |
Collapse
|
49
|
Gijbels M, Marchal E, Verdonckt TW, Bruyninckx E, Vanden Broeck J. RNAi-Mediated Knockdown of Transcription Factor E93 in Nymphs of the Desert Locust ( Schistocerca gregaria) Inhibits Adult Morphogenesis and Results in Supernumerary Juvenile Stages. Int J Mol Sci 2020; 21:E7518. [PMID: 33053862 PMCID: PMC7590052 DOI: 10.3390/ijms21207518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 02/02/2023] Open
Abstract
Postembryonic development of insects is coordinated by juvenile hormone (JH) together with ecdysteroids. Whereas the JH early response gene krüppel-homolog 1 (Kr-h1) plays a crucial role in the maintenance of juvenile characteristics during consecutive larval stages, the ecdysteroid-inducible early gene E93 appears to be a key factor promoting metamorphosis and adult morphogenesis. Here, we report on the developmental and molecular consequences of an RNAi-mediated knockdown of SgE93 in the desert locust, Schistocerca gregaria, a hemimetabolan species. Our experimental data show that injection of gregarious locust nymphs with a double-stranded RNA construct targeting the SgE93 transcript inhibited the process of metamorphosis and instead led to supernumerary nymphal stages. These supernumerary nymphal instars still displayed juvenile morphological features, such as a nymphal color scheme and body shape, while they reached the physical body size of the adult locusts, or even surpassed it after the next supernumerary molt. Interestingly, when compared to control locusts, the total duration of the fifth and normally final nymphal (N5) stage was shorter than normal. This appeared to correspond with temporal and quantitative changes in hemolymph ecdysteroid levels, as well as with altered expression of the rate-limiting Halloween gene, Spook (SgSpo). In addition, the levels of the ecdysone receptor (SgEcR) and retinoïd X receptor (SgRXR) transcripts were altered, indicating that silencing SgE93 affects both ecdysteroid synthesis and signaling. Upon knockdown of SgE93, a very potent upregulation of the SgKr-h1 transcript levels was observed in both head and fat body, while no significant changes were detected in the transcript levels of SgJHAMT and SgCYP15A1, the enzymes that catalyze the two final steps in JH biosynthesis. Moreover, the process of molting was disturbed in these supernumerary nymphs. While attempting ecdysis to the next stage, 50% of the N6 and all N7 nymphal instars eventually died. S. gregaria is a very harmful, swarm-forming pest species that destroys crops and threatens food security in many of the world's poorest countries. We believe that a better knowledge of the mechanisms of postembryonic development may contribute to the discovery of novel, more selective and sustainable strategies for controlling gregarious locust populations. In this context, identification of molecular target candidates that are capable of significantly reducing the fitness of this devastating swarming pest will be of crucial importance.
Collapse
Affiliation(s)
- Marijke Gijbels
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium; (M.G.); (E.M.); (T.W.V.); (E.B.)
| | - Elisabeth Marchal
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium; (M.G.); (E.M.); (T.W.V.); (E.B.)
- Life Science Technologies, Imec, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Thomas Wolf Verdonckt
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium; (M.G.); (E.M.); (T.W.V.); (E.B.)
| | - Evert Bruyninckx
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium; (M.G.); (E.M.); (T.W.V.); (E.B.)
| | - Jozef Vanden Broeck
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium; (M.G.); (E.M.); (T.W.V.); (E.B.)
| |
Collapse
|
50
|
Tsang SSK, Law STS, Li C, Qu Z, Bendena WG, Tobe SS, Hui JHL. Diversity of Insect Sesquiterpenoid Regulation. Front Genet 2020; 11:1027. [PMID: 33133135 PMCID: PMC7511761 DOI: 10.3389/fgene.2020.01027] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Insects are arguably the most successful group of animals in the world in terms of both species numbers and diverse habitats. The sesquiterpenoids juvenile hormone, methyl farnesoate, and farnesoic acid are well known to regulate metamorphosis, reproduction, sexual dimorphism, eusociality, and defense in insects. Nevertheless, different insects have evolved with different sesquiterpenoid biosynthetic pathway as well as products. On the other hand, non-coding RNAs such as microRNAs have been implicated in regulation of many important biological processes, and have recently been explored in the regulation of sesquiterpenoid production. In this review, we summarize the latest findings on the diversity of sesquiterpenoids reported in different groups of insects, as well as the recent advancements in the understanding of regulation of sesquiterpenoid production by microRNAs.
Collapse
Affiliation(s)
- Stacey S K Tsang
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sean T S Law
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chade Li
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhe Qu
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Jerome H L Hui
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|